1
|
Gowri V, Monteiro A. Acquired preferences for a novel food odor do not become stronger or stable after multiple generations of odor feeding in Bicyclus anynana butterfly larvae. Ann N Y Acad Sci 2024; 1531:84-94. [PMID: 38113288 DOI: 10.1111/nyas.15090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Many herbivorous insects have specific host-plant preferences, and it is unclear how these preferences evolved. Previously, we found that Bicyclus anynana larvae can learn to prefer novel food odors from eating leaves with those odors and transmit those learned preferences to the next generation. It is uncertain whether such acquired odor preferences can increase across generations of repeated odor feeding and be maintained even in the absence of odor. In this study, we fed larvae with novel banana odor-coated leaves (odor-fed larvae) for five consecutive generations, without selection on behavioral choices, and measured how larval innate preferences changed over time. Then, we removed the odor stimulus from a larval subgroup, while the other group continued to be odor-fed. Our results show that larvae learned to prefer the novel odor within a generation of odor feeding and transmitted the learned preference to the next generation, as previously found. Odor-fed larvae preferred odor significantly more compared to control larvae across five generations of repeated odor or control feeding. However, this led neither to increased odor preference, nor its stabilization. This suggests that when butterfly larvae feed on a new host, a preference for that novel food plant may develop and be transmitted to the next generation, but this preference lasts for a single generation and disappears once the odor stimulus is removed.
Collapse
Affiliation(s)
- V Gowri
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Antónia Monteiro
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| |
Collapse
|
2
|
Smith RC, Sershen H, Youssef M, Lajtha A, Jin H, Zhang M, Chen A, Guidotti A, Davis JM. Deficits in odor discrimination versus odor identification in patients with schizophrenia and negative correlations with GABAergic and DNA methyltransferase mRNAs in lymphocytes. Front Psychiatry 2023; 14:1115399. [PMID: 37056402 PMCID: PMC10088370 DOI: 10.3389/fpsyt.2023.1115399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 03/02/2023] [Indexed: 04/15/2023] Open
Abstract
Introduction People with schizophrenia have been reported to show deficits in tests of olfactory function. DNA methylation and GABAergic input have been implicated in biochemical processes controlling odor in animal studies, but this has not been investigated in human studies. Methods In a study of measures of DNA methylation and GABAergic mRNAs in lymphocytes, we also measured odor identification and discrimination with the Sniffin' Sticks battery in 58 patients with chronic schizophrenia (CSZ) and 48 controls. mRNAs in lymphocytes were assessed by qPCR using TaqManTM probes. Cognition was assessed by the MATRICS battery (Measurement and Treatment Research to Improve Cognition in Schizophrenia) in CSZ and controls, and symptoms in CSZ were assessed by PANSS scale (Positive and Negative Symptom Scale). The relationships of odor deficits with mRNA, cognition, and symptoms were explored by correlation analysis. Variables which significantly differentiated CSZ from controls were explored by logistic regression. Results Overall, CSZ showed significantly (P≤.001) lower scores on odor discrimination compared to controls, with a moderate effect size, but no difference in odor identification. Deficits in odor discrimination, which has not been standardly assessed in many prior studies, strongly differentiated CSZ from controls. In logistic regression analysis, odor discrimination, but not odor identification, was a significant variable predicting schizophrenia versus control class membership. This is the first study to report relationship between odor deficits and DNA methylation and GABAergic mRNAs in blood cells of human subjects. There were negative correlations of odor identification with DNA methylation enzymes mRNAs and significant negative correlations with odor discrimination and GABAergic mRNAs. Lower odor scores were significantly associated with lower cognitive scores on the MATRICS battery in CSZ but not control subjects. In CSZ, lower odor scores were significantly associated with negative symptom scores, while higher odor identification scores were associated with PANNS Excitement factor. Discussion Odor discrimination was a more powerful variable than odor identification in discriminating CSZ from controls and should be used more regularly as an odor measure in studies of schizophrenia. The substantive meaning of the negative correlations of odor discrimination and GABAergic mRNA variables in peripheral lymphocytes of CSZ needs more investigation and comparison with results in neural tissue.
Collapse
Affiliation(s)
- Robert C. Smith
- Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, United States
- Department of Psychiatry, NYU Grossman School of Medicine, New York, NY, United States
- *Correspondence: Robert C. Smith, ;
| | - Henry Sershen
- Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, United States
- Department of Psychiatry, NYU Grossman School of Medicine, New York, NY, United States
| | - Mary Youssef
- Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, United States
| | - Abel Lajtha
- Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, United States
- Department of Psychiatry, NYU Grossman School of Medicine, New York, NY, United States
| | - Hua Jin
- Department of Psychiatry and VA San Diego Healthcare System, University of California San Diego, San Diego, CA, United States
| | - Mumei Zhang
- Columbia University Mailman School of Public Health, New York, NY, United States
| | - Anmei Chen
- Columbia University Mailman School of Public Health, New York, NY, United States
| | - Alessandro Guidotti
- Department of Psychiatry, Psychiatric Institute University of Illinois, Chicago, IL, United States
| | - John M. Davis
- Department of Psychiatry, Psychiatric Institute University of Illinois, Chicago, IL, United States
| |
Collapse
|
3
|
Shang A, Bieszczad KM. Epigenetic mechanisms regulate cue memory underlying discriminative behavior. Neurosci Biobehav Rev 2022; 141:104811. [PMID: 35961385 DOI: 10.1016/j.neubiorev.2022.104811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 06/15/2022] [Accepted: 08/01/2022] [Indexed: 12/01/2022]
Abstract
The burgeoning field of neuroepigenetics has introduced chromatin modification as an important interface between experience and brain function. For example, epigenetic mechanisms like histone acetylation and DNA methylation operate throughout a lifetime to powerfully regulate gene expression in the brain that is required for experiences to be transformed into long-term memories. This review highlights emerging evidence from sensory models of memory that converge on the premise that epigenetic regulation of activity-dependent transcription in the sensory brain facilitates highly precise memory recall. Chromatin modifications may be key for neurophysiological responses to transient sensory cue features experienced in the "here and now" to be recapitulated over the long term. We conclude that the function of epigenetic control of sensory system neuroplasticity is to regulate the amount and type of sensory information retained in long-term memories by regulating neural representations of behaviorally relevant cues that guide behavior. This is of broad importance in the neuroscience field because there are few circumstances in which behavioral acts are devoid of an initiating sensory experience.
Collapse
Affiliation(s)
- Andrea Shang
- Dept. of Psychology - Behavioral and Systems Neuroscience, Rutgers University - New Brunswick, 152 Frelinghuysen Road, Piscataway, NJ 08854, USA
| | - Kasia M Bieszczad
- Dept. of Psychology - Behavioral and Systems Neuroscience, Rutgers University - New Brunswick, 152 Frelinghuysen Road, Piscataway, NJ 08854, USA; Rutgers Center for Cognitive Science (RuCCS), Rutgers University, Piscataway, NJ 08854, USA; Department of Otolaryngology - Head and Neck Surgery, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ 08854, USA.
| |
Collapse
|
4
|
Williamson SM, Ingelson-Filpula WA, Hadj-Moussa H, Storey KB. Epigenetic underpinnings of freeze avoidance in the goldenrod gall moth, Epiblema scudderiana. JOURNAL OF INSECT PHYSIOLOGY 2021; 134:104298. [PMID: 34411584 DOI: 10.1016/j.jinsphys.2021.104298] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 07/13/2021] [Accepted: 08/13/2021] [Indexed: 06/13/2023]
Abstract
The goldenrod gall moth (Epiblema scudderiana) is a cold hardy insect that survives subzero temperatures during the winter by supercooling bodily fluids to approximately -40 °C, allowing the insect to remain unfrozen despite the freezing temperatures. This is characterized by a drastic increase of cryoprotectant glycerol along with widespread downregulation of non-essential genes and processes to conserve cellular energy. This study examined the role of epigenetic enzymes in regulating this freeze-avoidant process across a range of freezing temperatures experienced in nature. Cold and subzero temperature exposure in E. scudderiana resulted in upregulation of select DNA methyltransferase (DNMT) enzymes with concurrent decreases in DNMT activity and no change in activity of the Ten-Eleven Translocation (TET) demethylation enzyme activities. Levels of histone acetyltransferase (HAT) and histone deacetylase (HDAC) activity decreased during cold exposures. The increase in DNMT expression and concurrent decrease in HAT activity suggests a role for DNA methylation to assist with transcriptional suppression. These findings propose that epigenetic regulation of genes and histones underpin the winter survival strategies of this insect.
Collapse
Affiliation(s)
- Sam M Williamson
- Institute of Biochemistry and Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6, Canada
| | - W Aline Ingelson-Filpula
- Institute of Biochemistry and Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6, Canada
| | - Hanane Hadj-Moussa
- Institute of Biochemistry and Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6, Canada
| | - Kenneth B Storey
- Institute of Biochemistry and Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6, Canada.
| |
Collapse
|
5
|
Olivares-Castro G, Cáceres-Jensen L, Guerrero-Bosagna C, Villagra C. Insect Epigenetic Mechanisms Facing Anthropogenic-Derived Contamination, an Overview. INSECTS 2021; 12:780. [PMID: 34564220 PMCID: PMC8468710 DOI: 10.3390/insects12090780] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/18/2021] [Accepted: 08/19/2021] [Indexed: 12/14/2022]
Abstract
Currently, the human species has been recognized as the primary species responsible for Earth's biodiversity decline. Contamination by different chemical compounds, such as pesticides, is among the main causes of population decreases and species extinction. Insects are key for ecosystem maintenance; unfortunately, their populations are being drastically affected by human-derived disturbances. Pesticides, applied in agricultural and urban environments, are capable of polluting soil and water sources, reaching non-target organisms (native and introduced). Pesticides alter insect's development, physiology, and inheritance. Recently, a link between pesticide effects on insects and their epigenetic molecular mechanisms (EMMs) has been demonstrated. EMMs are capable of regulating gene expression without modifying genetic sequences, resulting in the expression of different stress responses as well as compensatory mechanisms. In this work, we review the main anthropogenic contaminants capable of affecting insect biology and of triggering EMMs. EMMs are involved in the development of several diseases in native insects affected by pesticides (e.g., anomalous teratogenic reactions). Additionally, EMMs also may allow for the survival of some species (mainly pests) under contamination-derived habitats; this may lead to biodiversity decline and further biotic homogenization. We illustrate these patterns by reviewing the effect of neonicotinoid insecticides, insect EMMs, and their ecological consequences.
Collapse
Affiliation(s)
- Gabriela Olivares-Castro
- Instituto de Entomología, Universidad Metropolitana de Ciencias de la Educación, Avenida José Pedro Alessandri 774, Santiago 7760197, Chile;
| | - Lizethly Cáceres-Jensen
- Laboratorio de Físicoquímica Analítica, Departamento de Química, Facultad de Ciencias Básicas, Universidad Metropolitana de Ciencias de la Educación, Santiago 7760197, Chile;
| | - Carlos Guerrero-Bosagna
- Department of Physics, Chemistry and Biology (IFM), Linköping University, 581 83 Linköping, Sweden;
- Environmental Toxicology Program, Department of Integrative Biology, Uppsala University, 752 36 Uppsala, Sweden
| | - Cristian Villagra
- Instituto de Entomología, Universidad Metropolitana de Ciencias de la Educación, Avenida José Pedro Alessandri 774, Santiago 7760197, Chile;
| |
Collapse
|
6
|
Cardoso-Júnior CAM, Yagound B, Ronai I, Remnant EJ, Hartfelder K, Oldroyd BP. DNA methylation is not a driver of gene expression reprogramming in young honey bee workers. Mol Ecol 2021; 30:4804-4818. [PMID: 34322926 DOI: 10.1111/mec.16098] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 07/06/2021] [Accepted: 07/16/2021] [Indexed: 12/01/2022]
Abstract
The presence of DNA methylation marks within genic intervals, also called gene body methylation, is an evolutionarily-conserved epigenetic hallmark of animal and plant methylomes. In social insects, gene body methylation is thought to contribute to behavioural plasticity, for example between foragers and nurse workers, by modulating gene expression. However, recent studies have suggested that the majority of DNA methylation is sequence-specific, and therefore cannot act as a flexible mediator between environmental cues and gene expression. To address this paradox, we examined whole-genome methylation patterns in the brains and ovaries of young honey bee workers that had been subjected to divergent social contexts: the presence or absence of the queen. Although these social contexts are known to bring about extreme changes in behavioral and reproductive traits through differential gene expression, we found no significant differences between the methylomes of workers from queenright and queenless colonies. In contrast, thousands of regions were differentially methylated between colonies, and these differences were not associated with differential gene expression in the subset of genes examined. Methylation patterns were highly similar between brain and ovary tissues and only differed in nine regions. These results strongly indicate that DNA methylation is not a driver of differential gene expression between tissues or behavioral morphs. Finally, despite the lack of difference in methylation patterns, queen presence affected the expression of all four DNA methyltransferase genes, suggesting that these enzymes have roles beyond DNA methylation. Therefore, the functional role of DNA methylation in social insect genomes remains an open question.
Collapse
Affiliation(s)
- Carlos A M Cardoso-Júnior
- Departamento de Biologia Celular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brasil.,Behaviour, Ecology and Evolution (BEE) Laboratory, Ecology and Evolution, School of Life and Environmental Sciences A12, University of Sydney, Sydney, NSW, Australia
| | - Boris Yagound
- Behaviour, Ecology and Evolution (BEE) Laboratory, Ecology and Evolution, School of Life and Environmental Sciences A12, University of Sydney, Sydney, NSW, Australia
| | - Isobel Ronai
- Behaviour, Ecology and Evolution (BEE) Laboratory, Ecology and Evolution, School of Life and Environmental Sciences A12, University of Sydney, Sydney, NSW, Australia
| | - Emily J Remnant
- Behaviour, Ecology and Evolution (BEE) Laboratory, Ecology and Evolution, School of Life and Environmental Sciences A12, University of Sydney, Sydney, NSW, Australia
| | - Klaus Hartfelder
- Departamento de Biologia Celular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brasil
| | - Benjamin P Oldroyd
- Behaviour, Ecology and Evolution (BEE) Laboratory, Ecology and Evolution, School of Life and Environmental Sciences A12, University of Sydney, Sydney, NSW, Australia.,Wissenschaftskolleg zu Berlin, Berlin, Germany
| |
Collapse
|
7
|
Sieber KR, Dorman T, Newell N, Yan H. (Epi)Genetic Mechanisms Underlying the Evolutionary Success of Eusocial Insects. INSECTS 2021; 12:498. [PMID: 34071806 PMCID: PMC8229086 DOI: 10.3390/insects12060498] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/18/2021] [Accepted: 05/21/2021] [Indexed: 12/11/2022]
Abstract
Eusocial insects, such as bees, ants, and wasps of the Hymenoptera and termites of the Blattodea, are able to generate remarkable diversity in morphology and behavior despite being genetically uniform within a colony. Most eusocial insect species display caste structures in which reproductive ability is possessed by a single or a few queens while all other colony members act as workers. However, in some species, caste structure is somewhat plastic, and individuals may switch from one caste or behavioral phenotype to another in response to certain environmental cues. As different castes normally share a common genetic background, it is believed that much of this observed within-colony diversity results from transcriptional differences between individuals. This suggests that epigenetic mechanisms, featured by modified gene expression without changing genes themselves, may play an important role in eusocial insects. Indeed, epigenetic mechanisms such as DNA methylation, histone modifications and non-coding RNAs, have been shown to influence eusocial insects in multiple aspects, along with typical genetic regulation. This review summarizes the most recent findings regarding such mechanisms and their diverse roles in eusocial insects.
Collapse
Affiliation(s)
- Kayli R. Sieber
- Department of Biology, University of Florida, Gainesville, FL 32611, USA; (K.R.S.); (T.D.); (N.N.)
| | - Taylor Dorman
- Department of Biology, University of Florida, Gainesville, FL 32611, USA; (K.R.S.); (T.D.); (N.N.)
| | - Nicholas Newell
- Department of Biology, University of Florida, Gainesville, FL 32611, USA; (K.R.S.); (T.D.); (N.N.)
| | - Hua Yan
- Department of Biology, University of Florida, Gainesville, FL 32611, USA; (K.R.S.); (T.D.); (N.N.)
- Center for Smell and Taste, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
8
|
Dion E, Pui LX, Weber K, Monteiro A. Early-exposure to new sex pheromone blends alters mate preference in female butterflies and in their offspring. Nat Commun 2020; 11:53. [PMID: 31896746 PMCID: PMC6940390 DOI: 10.1038/s41467-019-13801-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 11/22/2019] [Indexed: 11/09/2022] Open
Abstract
While the diversity of sex pheromone communication systems across insects is well documented, the mechanisms that lead to such diversity are not well understood. Sex pheromones constitute a species-specific system of sexual communication that reinforces interspecific reproductive isolation. When odor blends evolve, the efficacy of male-female communication becomes compromised, unless preference for novel blends also evolves. We explore odor learning as a possible mechanism leading to changes in sex pheromone preferences in the butterfly Bicyclus anynana. Our experiments reveal mating patterns suggesting that mating bias for new blends can develop following a short learning experience, and that this maternal experience impacts the mating outcome of offspring without further exposure. We propose that odor learning can be a key factor in the evolution of sex pheromone blend recognition and in chemosensory speciation.
Collapse
Affiliation(s)
- Emilie Dion
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore, 117543, Singapore.
| | - Li Xian Pui
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore, 117543, Singapore
| | - Katie Weber
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore, 117543, Singapore
| | - Antónia Monteiro
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore, 117543, Singapore.
- Yale-NUS-College, 6 College Avenue East, Singapore, 138614, Singapore.
| |
Collapse
|
9
|
DNA Methylation and Histone H1 Jointly Repress Transposable Elements and Aberrant Intragenic Transcripts. Mol Cell 2020; 77:310-323.e7. [DOI: 10.1016/j.molcel.2019.10.011] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 08/26/2019] [Accepted: 10/10/2019] [Indexed: 12/12/2022]
|
10
|
Gowri V, Dion E, Viswanath A, Piel FM, Monteiro A. Transgenerational inheritance of learned preferences for novel host plant odors inBicyclus anynanabutterflies. Evolution 2019; 73:2401-2414. [DOI: 10.1111/evo.13861] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 09/21/2019] [Indexed: 12/31/2022]
Affiliation(s)
- V. Gowri
- Department of Biological SciencesNational University of Singapore 14 Science Drive 4 117543 Singapore
| | - Emilie Dion
- Department of Biological SciencesNational University of Singapore 14 Science Drive 4 117543 Singapore
| | - Athmaja Viswanath
- Department of Biological SciencesNational University of Singapore 14 Science Drive 4 117543 Singapore
| | - Florence Monteiro Piel
- Department of Biological SciencesNational University of Singapore 14 Science Drive 4 117543 Singapore
| | - Antónia Monteiro
- Department of Biological SciencesNational University of Singapore 14 Science Drive 4 117543 Singapore
- Yale‐NUS‐College 6 College Avenue East 138614 Singapore
| |
Collapse
|
11
|
Ellers J, Visser M, Mariën J, Kraaijeveld K, Lammers M. The Importance of Validating the Demethylating Effect of 5-aza-2'-deoxycytidine in Model Species (A Comment on Cook et al., "DNA Methylation and Sex Allocation in the Parasitoid Wasp Nasonia vitripennis"). Am Nat 2019; 194:422-431. [PMID: 31553212 DOI: 10.1086/704247] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The use of DNA demethylating agents has been popular in epigenetic studies. Recently, Cook and colleagues, in a 2015 American Naturalist article, claimed an effect of 5-aza-2'-deoxycytidine (5-aza-dC) on the sex ratio of a parasitoid wasp without verifying its effect on DNA methylation. We repeated the 5-aza-dC feeding treatment to test its effectiveness. We used bisulfite amplicon sequencing of 10 genes that either were heavily methylated, previously showed a response to 5-aza-dC, or were suggested to regulate fatty acid synthesis epigenetically, and we demonstrate that wasps fed 5-aza-dC did not show reduced DNA methylation at these loci. Therefore, the conclusion that demethylation shifts sex ratios upward needs reconsideration.
Collapse
|
12
|
Søvik E, Berthier P, Klare WP, Helliwell P, Buckle ELS, Plath JA, Barron AB, Maleszka R. Cocaine Directly Impairs Memory Extinction and Alters Brain DNA Methylation Dynamics in Honey Bees. Front Physiol 2018; 9:79. [PMID: 29487536 PMCID: PMC5816933 DOI: 10.3389/fphys.2018.00079] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Accepted: 01/22/2018] [Indexed: 12/11/2022] Open
Abstract
Drug addiction is a chronic relapsing behavioral disorder. The high relapse rate has often been attributed to the perseverance of drug-associated memories due to high incentive salience of stimuli learnt under the influence of drugs. Drug addiction has also been interpreted as a memory disorder since drug associated memories are unusually enduring and some drugs, such as cocaine, interfere with neuroepigenetic machinery known to be involved in memory processing. Here we used the honey bee (an established invertebrate model for epigenomics and behavioral studies) to examine whether or not cocaine affects memory processing independently of its effect on incentive salience. Using the proboscis extension reflex training paradigm we found that cocaine strongly impairs consolidation of extinction memory. Based on correlation between the observed effect of cocaine on learning and expression of epigenetic processes, we propose that cocaine interferes with memory processing independently of incentive salience by directly altering DNA methylation dynamics. Our findings emphasize the impact of cocaine on memory systems, with relevance for understanding how cocaine can have such an enduring impact on behavior.
Collapse
Affiliation(s)
- Eirik Søvik
- Department of Science and Mathematics, Volda University College, Volda, Norway
| | - Pauline Berthier
- Department of Biological Sciences, Macquarie University, Sydney, NSW, Australia
| | - William P Klare
- Department of Biological Sciences, Macquarie University, Sydney, NSW, Australia
| | - Paul Helliwell
- Research School of Biology, Australian National University, Canberra, ACT, Australia
| | - Edwina L S Buckle
- Department of Biological Sciences, Macquarie University, Sydney, NSW, Australia
| | - Jenny A Plath
- Department of Biological Sciences, Macquarie University, Sydney, NSW, Australia
| | - Andrew B Barron
- Department of Biological Sciences, Macquarie University, Sydney, NSW, Australia
| | - Ryszard Maleszka
- Research School of Biology, Australian National University, Canberra, ACT, Australia
| |
Collapse
|
13
|
Gong Z, Tan K, Nieh JC. First demonstration of olfactory learning and long term memory in honey bee queens. J Exp Biol 2018; 221:jeb.177303. [DOI: 10.1242/jeb.177303] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 05/15/2018] [Indexed: 01/06/2023]
Abstract
As the primary source of colony reproduction, social insect queens play a vital role. However, the cognitive abilities of queens are not well understood, although queen learning and memory are essential in multiple species such as honey bees, in which virgin queens must leave the nest and then successful learn to navigate back over repeated nuptial flights. Honey bee queen learning has never been previously demonstrated. We therefore tested olfactory learning in queens and workers and examined the role of DNA methylation, which plays a key role in long term memory formation. We provide the first evidence that honey bee queens have excellent learning and memory. The proportion of honey bee queens that exhibited learning was 5-fold higher than workers at every tested age and, for memory, 4-fold higher than workers at a very young age. DNA methylation may play a key role in this queen memory because queens exhibiting remote memory had a more consistent elevation in Dnmt3 gene expression as compared to workers. Both castes also showed excellent remote memory (7 day memory), which was reduced by 14-20% by the DNA methylation inhibitor, zebularine. Given that queens live about 10-fold longer than workers, these results suggest that queens can serve as an excellently long-term reservoir of colony memory.
Collapse
Affiliation(s)
- Zhiwen Gong
- Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Science, Kunming, Yunnan Province, China
- Southeast Asia Biodiversity Research Institute, Chinese Academy of Science. Menglun, China
| | - Ken Tan
- Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Science, Kunming, Yunnan Province, China
- Southeast Asia Biodiversity Research Institute, Chinese Academy of Science. Menglun, China
| | - James C. Nieh
- Division of Biological Sciences, Section of Ecology, Behavior, and Evolution, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
14
|
Biergans SD, Claudianos C, Reinhard J, Galizia CG. DNA Methylation Adjusts the Specificity of Memories Depending on the Learning Context and Promotes Relearning in Honeybees. Front Mol Neurosci 2016; 9:82. [PMID: 27672359 PMCID: PMC5018481 DOI: 10.3389/fnmol.2016.00082] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 08/25/2016] [Indexed: 12/29/2022] Open
Abstract
The activity of the epigenetic writers DNA methyltransferases (Dnmts) after olfactory reward conditioning is important for both stimulus-specific long-term memory (LTM) formation and extinction. It, however, remains unknown which components of memory formation Dnmts regulate (e.g., associative vs. non-associative) and in what context (e.g., varying training conditions). Here, we address these aspects in order to clarify the role of Dnmt-mediated DNA methylation in memory formation. We used a pharmacological Dnmt inhibitor and classical appetitive conditioning in the honeybee Apis mellifera, a well characterized model for classical conditioning. We quantified the effect of DNA methylation on naïve odor and sugar responses, and on responses following olfactory reward conditioning. We show that (1) Dnmts do not influence naïve odor or sugar responses, (2) Dnmts do not affect the learning of new stimuli, but (3) Dnmts influence odor-coding, i.e., 'correct' (stimulus-specific) LTM formation. Particularly, Dnmts reduce memory specificity when experience is low (one-trial training), and increase memory specificity when experience is high (multiple-trial training), generating an ecologically more useful response to learning. (4) In reversal learning conditions, Dnmts are involved in regulating both excitatory (re-acquisition) and inhibitory (forgetting) processes.
Collapse
Affiliation(s)
- Stephanie D Biergans
- Queensland Brain Institute, University of Queensland, BrisbaneQLD, Australia; Neurobiologie, Universität KonstanzKonstanz, Germany
| | - Charles Claudianos
- Queensland Brain Institute, University of Queensland, BrisbaneQLD, Australia; Monash Institute of Cognitive and Clinical Neuroscience, Faculty of Biomedical and Psychological Sciences, Monash University, MelbourneVIC, Australia
| | - Judith Reinhard
- Queensland Brain Institute, University of Queensland, Brisbane QLD, Australia
| | - C G Galizia
- Neurobiologie, Universität Konstanz Konstanz, Germany
| |
Collapse
|