1
|
Xu M, Fang L, Xue Q, Zhang X, He Y. The Nrf2 Pathway Alleviates Overloading Force-Induced TMJ Degeneration by Downregulating Oxidative Stress Reactions. J Inflamm Res 2023; 16:5601-5612. [PMID: 38046402 PMCID: PMC10691432 DOI: 10.2147/jir.s434799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 11/10/2023] [Indexed: 12/05/2023] Open
Abstract
Objective Oxidative stress is involved in the mechanisms associated with temporomandibular joint (TMJ) diseases. Nuclear factor erythroid 2-related factor 2 (Nrf2) is a crucial oxidative stress marker, but the specific mechanisms of its regulation in the early stages of mandibular condylar cartilage (MCC) degeneration remain unclear. This study aimed to explore the regulatory role of Nrf2 and its related oxidative stress signaling pathway in the early stage of MCC degeneration. Materials and Methods Overloading force-induced MCC degeneration was performed in wild-type and Nrf2 knockout mice, as well as in mice after treatment with the Nrf2 activator cardamonin. Changes in MCC degeneration and the expression of oxidative stress markers in the corresponding situations were observed. Results Nrf2 and NADPH oxidase 2 (NOX2) expression were elevated during early MCC degeneration induced by an overloading force. MCC degeneration was aggravated when Nrf2 was knocked out, accompanied by increased NOX2 and superoxide dismutase 2 (SOD2) expression. The MCC degeneration process was alleviated after cardamonin treatment, with activation of the Nrf2 pathway and decreased NOX2 and SOD2 expression. Conclusion Early MCC degeneration is accompanied by mild oxidative stress progression. Activated Nrf2 and related pathways could alleviate the degeneration of MCC.
Collapse
Affiliation(s)
- Minglu Xu
- Department of Orthodontics, Stomatological Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
- Chongqing Key Laboratory of Oral Disease and Biomedical Sciences, Stomatological Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
| | - Lingli Fang
- Department of Orthodontics, Stomatological Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
- Chongqing Key Laboratory of Oral Disease and Biomedical Sciences, Stomatological Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
| | - Qin Xue
- Department of Orthodontics, Stomatological Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
- Chongqing Key Laboratory of Oral Disease and Biomedical Sciences, Stomatological Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
| | - Xuyang Zhang
- Department of Orthodontics, Stomatological Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
- Chongqing Key Laboratory of Oral Disease and Biomedical Sciences, Stomatological Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
| | - Yao He
- Department of Orthodontics, Stomatological Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Stomatological Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
| |
Collapse
|
2
|
Xu M, Zhang X, He Y. An updated view on Temporomandibular Joint degeneration: insights from the cell subsets of mandibular condylar cartilage. Stem Cells Dev 2022; 31:445-459. [PMID: 35044232 DOI: 10.1089/scd.2021.0324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The high prevalence of temporomandibular joint osteoarthritis (TMJOA), which causes joint dysfunction, indicates the need for more effective methods for treatment and repair. Mandibular condylar cartilage (MCC), a typical fibrocartilage that experiences degenerative changes during the development of TMJOA, has become a research focus and therapeutic target in recent years. MCC is composed of four zones of cells at various stages of differentiation. The cell subsets in MCC exhibit different physiological and pathological characteristics during development and in TMJOA. Most studies of TMJOA are mainly concerned with gene regulation of pathological changes. The corresponding treatment targets with specific cell subsets in MCC may provide more accurate and reliable results for cartilage repair and TMJOA treatment. In this review, we summarized the current research progress on the cell subsets of MCC from the perspective of MCC development and degeneration. We hope to provide a reference for further exploration of the pathological process of TMJOA and improvement of TMJOA treatment.
Collapse
Affiliation(s)
- Minglu Xu
- Chongqing Medical University, 12550, Chongqing, Chongqing, China;
| | - Xuyang Zhang
- Chongqing Medical University, 12550, Chongqing, Chongqing, China;
| | - Yao He
- Chongqing Medical University, 12550, Chongqing, China, 400016;
| |
Collapse
|
3
|
He Y, Zhang M, Song J, Warman ML. Cell depleted areas do not repopulate after diphtheria toxin-induced killing of mandibular cartilage chondrocytes. Osteoarthritis Cartilage 2021; 29:1474-1484. [PMID: 34166809 DOI: 10.1016/j.joca.2021.06.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 06/04/2021] [Accepted: 06/13/2021] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Growth of mandibular condylar cartilage (MCC) is associated with cell proliferation within the polymorphic cell layer and subsequent differentiation into chondrocytes that reside along the condylar surface and along the cartilage/subchondral bone interface. We examined whether cells in the polymorphic layer would proliferate and repopulate toxin-induced cell-depleted areas in MCCs of adult mice. METHOD We induced diphtheria toxin (DTA) expression (ROSA26l-s-lDTA) to cell-autonomously kill large fractions of MCC chondrocytes throughout the cartilage or along the articular cartilage surface with Aggrecan-CreERt2 (AcanCreERt2) or Lubricin-CreERt2 (Prg4CreERt2) Cre-recombinase-inducible mice, respectively. We examined MCCs from these mice shortly after cell killing or several months later with histology and confocal microscopy for evidence of chondrocyte proliferation and repopulation. RESULTS AcanCreERt2-induced DTA expression killed an average of 53% MCC chondrocytes in adult mice after 1 week (39-66%, 95% confidence interval (CI)). Twelve weeks later, surviving chondrocytes had proliferated but not migrated to cell depleted areas. Prg4CreERt2-induced DTA expression killed an average of 24% surface chondrocytes in mice after 5 weeks (14-34% CI). After thirteen weeks there was 34% fewer surface chondrocytes (4-63% CI) in Prg4CreERt2 DTA-induced mice compared to controls. CONCLUSION In adult mice, after diphtheria toxin-mediated chondrocyte killing, cell depleted areas within MCC cartilage are not repopulated by new cells.
Collapse
Affiliation(s)
- Y He
- Department of Orthodontics, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Stomatological Hospital of Chongqing Medical University, Chongqing, China.
| | - M Zhang
- Orthopaedic Research Laboratories, Department of Orthopaedic Surgery, Boston Children's Hospital and Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - J Song
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Stomatological Hospital of Chongqing Medical University, Chongqing, China
| | - M L Warman
- Orthopaedic Research Laboratories, Department of Orthopaedic Surgery, Boston Children's Hospital and Department of Genetics, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
4
|
Fang L, Ye Y, Tan X, Huang L, He Y. Overloading stress-induced progressive degeneration and self-repair in condylar cartilage. Ann N Y Acad Sci 2021; 1503:72-87. [PMID: 33962484 DOI: 10.1111/nyas.14606] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 03/14/2021] [Accepted: 04/14/2021] [Indexed: 12/23/2022]
Abstract
Overloading stress-induced condylar cartilage degeneration acts as the main pathologic change in temporomandibular joint osteoarthritis (TMJ-OA). However, the progression of degeneration and the ability for self-repair remain poorly understood. Here, we explored the progression of cartilage degeneration by dividing pathological stages using a steady mouth-opening mouse model. Then, we observed changes of cartilage by removing the loading at different stages to test the potential self-repair after degeneration induced. Three-dimensional confocal microscopy combined with histology and micro-CT scanning was applied to examine TMJ at different stages of degeneration before and after self-repair. We found the cartilage underwent progressive and thorough degeneration as the overloading stress developed. During the initial adaptation stage, robust proliferation of posteromedial cartilage began at the area of direct loading. Subsequently, widespread chondrocyte apoptosis was found, followed by new chondrocyte proliferation in aggregates with matrix degradation and subchondral bone catabolism. Finally, with cartilage surface damage, the degeneration reached a point where the lesion could not be reversed by self-repair. While the cartilage nearly returned to normal when the interference was removed within 5 days. These results suggested overloading force induces a pathological process of successive degeneration in TMJ cartilage, which can be reversed by self-repair at early stages.
Collapse
Affiliation(s)
- Lingli Fang
- Department of Orthodontics, Stomatological Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Oral Disease and Biomedical Sciences, Stomatological Hospital of Chongqing Medical University, Chongqing, China
| | - Yusi Ye
- Chongqing Key Laboratory of Oral Disease and Biomedical Sciences, Stomatological Hospital of Chongqing Medical University, Chongqing, China
| | - Xi Tan
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Stomatological Hospital of Chongqing Medical University, Chongqing, China
| | - Lan Huang
- Department of Orthodontics, Stomatological Hospital of Chongqing Medical University, Chongqing, China
| | - Yao He
- Department of Orthodontics, Stomatological Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Stomatological Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
5
|
Roberts RR, Bobzin L, Teng CS, Pal D, Tuzon CT, Schweitzer R, Merrill AE. FGF signaling patterns cell fate at the interface between tendon and bone. Development 2019; 146:dev.170241. [PMID: 31320326 DOI: 10.1242/dev.170241] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 06/21/2019] [Indexed: 12/17/2022]
Abstract
Tendon and bone are attached by a transitional connective tissue that is morphologically graded from tendinous to osseous and develops from bipotent progenitors that co-express scleraxis (Scx) and Sox9 (Scx+/Sox9+). Scx+/Sox9+ progenitors have the potential to differentiate into either tenocytes or chondrocytes, yet the developmental mechanism that spatially resolves their bipotency at the tendon-bone interface during embryogenesis remains unknown. Here, we demonstrate that development of Scx+/Sox9+ progenitors within the mammalian lower jaw requires FGF signaling. We find that loss of Fgfr2 in the mouse tendon-bone interface reduces Scx expression in Scx+/Sox9+ progenitors and induces their biased differentiation into Sox9+ chondrocytes. This expansion of Sox9+ chondrocytes, which is concomitant with decreased Notch2-Dll1 signaling, prevents formation of a mixed population of chondrocytes and tenocytes, and instead results in ectopic endochondral bone at tendon-bone attachment units. Our work shows that FGF signaling directs zonal patterning at the boundary between tendon and bone by regulating cell fate decisions through a mechanism that employs Notch signaling.
Collapse
Affiliation(s)
- Ryan R Roberts
- Center for Craniofacial Molecular Biology, Ostrow School of Dentistry, University of Southern California, Los Angeles, CA 90033, USA.,Department of Biochemistry and Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Lauren Bobzin
- Center for Craniofacial Molecular Biology, Ostrow School of Dentistry, University of Southern California, Los Angeles, CA 90033, USA.,Department of Biochemistry and Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Camilla S Teng
- Department of Biochemistry and Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA.,Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, CA 90033, USA
| | - Deepanwita Pal
- Research Division, Shriners Hospital for Children, Oregon Health & Science University, Portland, OR 97239, USA
| | - Creighton T Tuzon
- Center for Craniofacial Molecular Biology, Ostrow School of Dentistry, University of Southern California, Los Angeles, CA 90033, USA.,Department of Biochemistry and Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Ronen Schweitzer
- Research Division, Shriners Hospital for Children, Oregon Health & Science University, Portland, OR 97239, USA
| | - Amy E Merrill
- Center for Craniofacial Molecular Biology, Ostrow School of Dentistry, University of Southern California, Los Angeles, CA 90033, USA .,Department of Biochemistry and Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| |
Collapse
|
6
|
Wu T, Ni S, Cao Y, Liao S, Hu J, Duan C. Three-dimensional visualization and pathologic characteristics of cartilage and subchondral bone changes in the lumbar facet joint of an ovariectomized mouse model. Spine J 2018; 18:663-673. [PMID: 29155252 DOI: 10.1016/j.spinee.2017.11.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 10/28/2017] [Accepted: 11/07/2017] [Indexed: 02/03/2023]
Abstract
BACKGROUND CONTEXT Low back pain (LBP) is more prevalent among postmenopausal women than men. Ovariectomy (OVX) is an established animal model that mimics the estrogen deficiency of postmenopausal women. Little is known about the three-dimensional (3D) morphologic properties of cartilage and subchondral bone changes in the lumbar facet joint (LFJ) of an OVX mouse model. PURPOSE The purpose of this study was to characterize the 3D morphologic change of cartilage and subchondral bone in the LFJ of an OVX mouse model. STUDY DESIGN Three-dimensional visualization and a histologic study on degenerative changes in cartilage and subchondral bone in the LFJ of an OVX mouse model were conducted. MATERIALS AND METHODS Ovariectomy is performed to mimic postmenopausal changes in adult female mice. We present an imaging tool for 3D visualization of the pathologic characteristics of cartilage and subchondral bone changes LFJ degradation using propagation-based phase-contrast computed tomography (PPCT). The samples were further dissected, fixed, and stained for histologic examination. RESULTS Propagation-based phase-contrast computed tomography imaging provides a 3D visualization of altered cartilage with a simultaneous high detail of the subchondral bone abnormalities in an OVX LFJ model. A quantitative analysis demonstrated that the cartilage volume, the surface area, and thickness were decreased in the OVX group compared with the control group (p<.05). Meanwhile, these decreases were accompanied by an obvious destruction of the subchondral bone surface and a loss of trabecular bone in the OVX group (p<.05). The delineation of the 3D pathologic changes in the PPCT imaging was confirmed by a histopathologic method with Safranin-O staining. Tartrate-resistant acid phosphatase staining revealed an increased number of osteoclasts in the subchondral bone of the OVX mice compared with that of the control group. CONCLUSIONS These results demonstrated that a mouse model of OVX-induced LFJ osteoarthritis (OA)-like changes was successfully established and showed a good resemblance to the human OA pathology. Propagation-based phase-contrast computed tomography has great potential to becomea powerful 3D imaging method to comprehensively characterize LFJ OA and to effectively monitor therapeutics. Moreover, degenerative LFJ possesses a severe morphologic change in the subchondral bone, may be the source of postmenopausal LBP, and has the potential to be a novel therapeutic target for LBP treatment.
Collapse
Affiliation(s)
- Tianding Wu
- Department of Spine Surgery, Xiangya Hospital, Central South University, Xiangya Rd No.87, Changsha, 410008, China; The Key Laboratory of Organ Damage, Aging and Reproductive Medicine of Hunan Province, Xiangya Rd No.87, Changsha, Hunan, China
| | - Shuangfei Ni
- Department of Spine Surgery, Xiangya Hospital, Central South University, Xiangya Rd No.87, Changsha, 410008, China; The Key Laboratory of Organ Damage, Aging and Reproductive Medicine of Hunan Province, Xiangya Rd No.87, Changsha, Hunan, China
| | - Yong Cao
- Department of Spine Surgery, Xiangya Hospital, Central South University, Xiangya Rd No.87, Changsha, 410008, China; The Key Laboratory of Organ Damage, Aging and Reproductive Medicine of Hunan Province, Xiangya Rd No.87, Changsha, Hunan, China
| | - Shenghui Liao
- School of Information Science and Engineering, Central South University, Lushan South Rd, Changsha, 410008, China
| | - Jianzhong Hu
- Department of Spine Surgery, Xiangya Hospital, Central South University, Xiangya Rd No.87, Changsha, 410008, China; The Key Laboratory of Organ Damage, Aging and Reproductive Medicine of Hunan Province, Xiangya Rd No.87, Changsha, Hunan, China
| | - Chunyue Duan
- Department of Spine Surgery, Xiangya Hospital, Central South University, Xiangya Rd No.87, Changsha, 410008, China; The Key Laboratory of Organ Damage, Aging and Reproductive Medicine of Hunan Province, Xiangya Rd No.87, Changsha, Hunan, China.
| |
Collapse
|
7
|
Kurio N, Saunders C, Bechtold TE, Salhab I, Nah HD, Sinha S, Billings PC, Pacifici M, Koyama E. Roles of Ihh signaling in chondroprogenitor function in postnatal condylar cartilage. Matrix Biol 2018; 67:15-31. [PMID: 29447948 DOI: 10.1016/j.matbio.2018.02.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 02/09/2018] [Accepted: 02/10/2018] [Indexed: 12/14/2022]
Abstract
Condylar articular cartilage in mouse temporomandibular joint develops from progenitor cells near the articulating surface that proliferate, undergo chondrogenesis and mature into hypertrophic chondrocytes. However, it remains unclear how these processes are regulated, particularly postnatally. Here we focused on the apical polymorphic layer rich in progenitors and asked whether the phenotype and fate of the cells require signaling by Indian hedgehog (Ihh) previously studied in developing long bones. In condyles in newborn mice, the apical polymorphic/progenitor cell layer was ~10 cell layer-thick and expressed the articular matrix marker Tenascin-C (Tn-C), and the underlying thick cell layer expressed Tn-C as well as the chondrogenic master regulator Sox9. By 1 month, condylar cartilage had gained its full width, but became thinner along its main longitudinal axis and displayed hypertrophic chondrocytes. By 3 months, articular cartilage consisted of a 2-3 cell layer-thick zone of superficial cells and chondroprogenitors expressing both Tn-C and Sox9 and a bottom zone of chondrocytes displaying vertical matrix septa. EdU cell tracing in juvenile mice revealed that conversion of chondroprogenitors into chondrocytes and hypertrophic chondrocytes required about 48 and 72 h, respectively. Notably, EdU injection in 3 month-old mice labeled both progenitors and maturing chondrocytes by 96 h. Conditional ablation of Ihh in juvenile/early adult mice compromised chondroprogenitor organization and function and led to reduced chondroprogenitor and chondrocyte proliferation. The phenotype of mutant condyles worsened over time as indicated by apoptotic chondrocyte incidence, ectopic chondrocyte hypertrophy, chondrocyte column derangement and subchondral bone deterioration. In micromass cultures of condylar apical cells, hedgehog (Hh) treatment stimulated chondrogenesis and alkaline phosphatase (APase) activity, while treatment with HhAntag inhibited both. Our findings indicate that the chondroprogenitor layer is continuously engaged in condylar growth postnatally and its organization and functioning depend on hedgehog signaling.
Collapse
Affiliation(s)
- Naito Kurio
- Division of Plastic and Reconstructive Surgery, Department of Surgery, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Oral and Maxillofacial Surgery, Okayama University Graduate School, 2-5-1, Okayama, Japan
| | - Cheri Saunders
- Division of Orthopaedic Surgery, Department of Surgery, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Till E Bechtold
- Division of Orthopaedic Surgery, Department of Surgery, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Orofacial Orthopaedics, Center of Dentistry and Oral Medicine, University Hospital Tuebingen, D-72076 Tuebingen, Germany
| | - Imad Salhab
- Division of Plastic and Reconstructive Surgery, Department of Surgery, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Hyun-Duck Nah
- Division of Plastic and Reconstructive Surgery, Department of Surgery, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Sayantani Sinha
- Division of Orthopaedic Surgery, Department of Surgery, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Paul C Billings
- Division of Orthopaedic Surgery, Department of Surgery, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Maurizio Pacifici
- Division of Orthopaedic Surgery, Department of Surgery, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Eiki Koyama
- Division of Orthopaedic Surgery, Department of Surgery, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA.
| |
Collapse
|
8
|
Shuhaibar LC, Robinson JW, Vigone G, Shuhaibar NP, Egbert JR, Baena V, Uliasz TF, Kaback D, Yee SP, Feil R, Fisher MC, Dealy CN, Potter LR, Jaffe LA. Dephosphorylation of the NPR2 guanylyl cyclase contributes to inhibition of bone growth by fibroblast growth factor. eLife 2017; 6:31343. [PMID: 29199951 PMCID: PMC5745078 DOI: 10.7554/elife.31343] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 12/02/2017] [Indexed: 01/17/2023] Open
Abstract
Activating mutations in fibroblast growth factor (FGF) receptor 3 and inactivating mutations in the NPR2 guanylyl cyclase both cause severe short stature, but how these two signaling systems interact to regulate bone growth is poorly understood. Here, we show that bone elongation is increased when NPR2 cannot be dephosphorylated and thus produces more cyclic GMP. By developing an in vivo imaging system to measure cyclic GMP production in intact tibia, we show that FGF-induced dephosphorylation of NPR2 decreases its guanylyl cyclase activity in growth plate chondrocytes in living bone. The dephosphorylation requires a PPP-family phosphatase. Thus FGF signaling lowers cyclic GMP production in the growth plate, which counteracts bone elongation. These results define a new component of the signaling network by which activating mutations in the FGF receptor inhibit bone growth. Between birth and puberty, the bones of mammals grow drastically in length. This process is controlled by many proteins, and mutations affecting these proteins can cause bones to either be too long or too short. For example, mutations of a protein called the fibroblast growth factor receptor, or FGF for short, and a protein called NPR2, can cause similar forms of dwarfism – a condition characterized by short stature. The FGF protein controls bone growth, and people with overactive receptors for FGF suffer from a form of dwarfism known as achondroplasia, while people that lack FGF receptors have longer bones. The NPR2 protein, on the other hand, produces a molecule called cGMP, which is necessary for the bones to grow. When NPR2 is blocked, less cGMP is produced, which results in shorter limbs. Previous studies of bone cells grown in the laboratory have shown that these two proteins are linked by a chain of chemical messages. When the FGF receptor is active, phosphate molecules are removed from the NPR2 protein, which reduces the amount of GMP produced. However, until now it was not known whether this mechanism also controls growth in actual bones. Here, Shuhaibar et al. used genetically modified mice in which the phosphate group could not be removed from their NPR2 enzyme. As a result, the bones of these mice were longer than usual. Shuhaibar et al. then developed an imaging technique to examine the region in the bone were growth happens. To see whether FGF reduces the amount of cGMP produced by NPR2 in these areas, cGMP was detected with a fluorescent sensor in order to be tracked. In normal mice, the FGF receptor reduced the rate at which cGMP was produced, but in mice with mutated NPR2, this did not happen. When the cells could not remove the phosphates from NPR2, cGMP levels stayed high and the bones grew longer. These findings reveal new insights into the molecular causes of dwarfism. The next step will be to identify the enzyme responsible for removing phosphate from NPR2. Blocking its activity could help to enhance bone growth. In the future, this could lead to new drug treatments for achondroplasia.
Collapse
Affiliation(s)
- Leia C Shuhaibar
- Department of Cell Biology, University of Connecticut Health Center, Farmington, United States
| | - Jerid W Robinson
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, United States
| | - Giulia Vigone
- Department of Cell Biology, University of Connecticut Health Center, Farmington, United States
| | - Ninna P Shuhaibar
- Department of Cell Biology, University of Connecticut Health Center, Farmington, United States
| | - Jeremy R Egbert
- Department of Cell Biology, University of Connecticut Health Center, Farmington, United States
| | - Valentina Baena
- Department of Cell Biology, University of Connecticut Health Center, Farmington, United States
| | - Tracy F Uliasz
- Department of Cell Biology, University of Connecticut Health Center, Farmington, United States
| | - Deborah Kaback
- Department of Cell Biology, University of Connecticut Health Center, Farmington, United States
| | - Siu-Pok Yee
- Department of Cell Biology, University of Connecticut Health Center, Farmington, United States
| | - Robert Feil
- Interfakultäres Institut für Biochemie, University of Tübingen, Tübingen, Germany
| | - Melanie C Fisher
- Center for Regenerative Medicine and Skeletal Development, University of Connecticut Health Center, Farmington, United States
| | - Caroline N Dealy
- Center for Regenerative Medicine and Skeletal Development, University of Connecticut Health Center, Farmington, United States
| | - Lincoln R Potter
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, United States
| | - Laurinda A Jaffe
- Department of Cell Biology, University of Connecticut Health Center, Farmington, United States
| |
Collapse
|
9
|
Rashid H, Chen H, Hassan Q, Javed A. Dwarfism in homozygous Agc1 CreERT mice is associated with decreased expression of aggrecan. Genesis 2017; 55. [PMID: 28921880 DOI: 10.1002/dvg.23070] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 08/29/2017] [Accepted: 09/14/2017] [Indexed: 12/19/2022]
Abstract
Aggrecan (Acan), a large proteoglycan is abundantly expressed in cartilage tissue. Disruption of Acan gene causes dwarfism and perinatal lethality of homozygous mice. Because of sustained expression of Acan in the growth plate and articular cartilage, AgcCre model has been developed for the regulated ablation of target gene in chondrocytes. In this model, the IRES-CreERT-Neo-pgk transgene is knocked-in the 3'UTR of the Acan gene. We consistently noticed variable weight and size among the AgcCre littermates, prompting us to examine the cause of this phenotype. Wild-type, Cre-heterozygous (Agc+/Cre ), and Cre-homozygous (AgcCre/Cre ) littermates were indistinguishable at birth. However, by 1-month, AgcCre/Cre mice showed a significant reduction in body weight (18-27%) and body length (19-22%). Low body weight and dwarfism was sustained through adulthood and occurred in both genders. Compared with wild-type and Agc+/Cre littermates, long bones and vertebrae were shorter in AgcCre/Cre mice. Histological analysis of AgcCre/Cre mice revealed a significant reduction in the length of the growth plate and the thickness of articular cartilage. The amount of proteoglycan deposited in the cartilage of AgcCre/Cre mice was nearly half of the WT littermates. Analysis of gene expression indicates impaired differentiation of chondrocyte in hyaline cartilage of AgcCre/Cre mice. Notably, both Acan mRNA and protein was reduced by 50% in AgcCre/Cre mice. A strong correlation was noted between the level of Acan mRNA and the body length. Importantly, Agc+/Cre mice showed no overt skeletal phenotype. Thus to avoid misinterpretation of data, only the Agc+/Cre mice should be used for conditional deletion of a target gene in the cartilage tissue.
Collapse
Affiliation(s)
- Harunur Rashid
- Department of Oral and Maxillofacial Surgery, Institute of Oral Health Research, School of Dentistry, University of Alabama at Birmingham, Birmingham, Alabama
| | - Haiyan Chen
- Department of Oral and Maxillofacial Surgery, Institute of Oral Health Research, School of Dentistry, University of Alabama at Birmingham, Birmingham, Alabama
| | - Quamarul Hassan
- Department of Oral and Maxillofacial Surgery, Institute of Oral Health Research, School of Dentistry, University of Alabama at Birmingham, Birmingham, Alabama
| | - Amjad Javed
- Department of Oral and Maxillofacial Surgery, Institute of Oral Health Research, School of Dentistry, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
10
|
Cao Y, Ni S, Wu T, Duan C, Liao S, Hu J. WITHDRAWN: 3D visualization and pathological characteristics of cartilage and subchondral bone changes in the lumbar facet joint of an Ovariectomized mouse model. Spine J 2017:S1529-9430(17)30322-4. [PMID: 28713051 DOI: 10.1016/j.spinee.2017.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 06/19/2017] [Accepted: 07/06/2017] [Indexed: 02/03/2023]
Abstract
The Publisher regrets that this article is an accidental duplication of an article that has already been published, http://dx.doi.org/10.1016/j.spinee.2017.11.009. The duplicate article has therefore been withdrawn. The full Elsevier Policy on Article Withdrawal can be found at https://www.elsevier.com/about/our-business/policies/article-withdrawal.
Collapse
Affiliation(s)
- Yong Cao
- Department of Spine Surgery, Xiangya Hospital, Central South University, Changsha, 410008, China; The Key Laboratory of Organ Damage, Aging and Reproductive Medicine of Hunan Province, Changsha, Hunan, PR China
| | - Shuangfei Ni
- Department of Spine Surgery, Xiangya Hospital, Central South University, Changsha, 410008, China; The Key Laboratory of Organ Damage, Aging and Reproductive Medicine of Hunan Province, Changsha, Hunan, PR China
| | - Tianding Wu
- Department of Spine Surgery, Xiangya Hospital, Central South University, Changsha, 410008, China; The Key Laboratory of Organ Damage, Aging and Reproductive Medicine of Hunan Province, Changsha, Hunan, PR China.
| | - Chunyue Duan
- Department of Spine Surgery, Xiangya Hospital, Central South University, Changsha, 410008, China; The Key Laboratory of Organ Damage, Aging and Reproductive Medicine of Hunan Province, Changsha, Hunan, PR China.
| | - Shenghui Liao
- School of Information Science and Engineering, Central South University, Changsha, 410008, China.
| | - Jianzhong Hu
- Department of Spine Surgery, Xiangya Hospital, Central South University, Changsha, 410008, China; The Key Laboratory of Organ Damage, Aging and Reproductive Medicine of Hunan Province, Changsha, Hunan, PR China
| |
Collapse
|