1
|
Raghav S, Hitaishi P, Giri RP, Mukherjee A, Sharma VK, Ghosh SK. Selective assembly and insertion of ubiquicidin antimicrobial peptide in lipid monolayers. J Mater Chem B 2024. [PMID: 39434705 DOI: 10.1039/d4tb01487a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
Antimicrobial-resistant bacteria pose a significant threat to humans, prompting extensive research into developing new antimicrobial peptides (AMPs). The biomembrane is the first barrier of a biological cell, hence, comprehending the interaction and self-assembly of AMPs in and around such membranes is of great importance. In the present study, several biophysical techniques have been applied to explore the self-assembly of ubiquicidin (29-41), an archetypical AMP, in and around the phospholipid monolayers formed at air-water interface. Such a monolayer mimics one of the leaflets of a lipid bilayer. The surface pressure-area isotherm exhibits the strongest interaction with a negatively charged lipid, 1,2-dipalmitoyl-sn-glycero-3-phospho-(1'-rac-glycerol) (sodium salt) (DPPG). The weakest affinity was towards the zwitterionic lipid, 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC). Another zwitterionic lipid, 1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine (DPPE), shows an intermediate affinity. This affinity was quantified by analyzing alterations in the effective mean molecular area of the lipid, the in-plane compressional modulus of the assembly, and the electrostatic potential induced by the presence of peptides. The precise organization of the peptide around the lipid monolayer at a sub-nanometre length scale was revealed using synchrotron-based X-ray reflectivity measurements from the air-water interface. Information about the selective interaction of the peptide with lipids and their varied orientation at the lipid-water interface could be useful in understanding the selectivity of AMP in developing new antibiotics.
Collapse
Affiliation(s)
- Sonam Raghav
- Department of Physics, School of Natural Sciences, Shiv Nadar Institution of Eminence, NH 91, Tehsil Dadri, G. B. Nagar, Uttar Pradesh 201314, India.
| | - Prashant Hitaishi
- Department of Physics, School of Natural Sciences, Shiv Nadar Institution of Eminence, NH 91, Tehsil Dadri, G. B. Nagar, Uttar Pradesh 201314, India.
| | - Rajendra P Giri
- Institut für Experimentelle und Angewandte Physik, Christian-Albrechts-Universität Zu Kiel, 24098 Kiel, Germany
| | - Archana Mukherjee
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Mumbai 400085, India
- Homi Bhabha National Institute, Mumbai, 400094, India.
| | - Veerendra K Sharma
- Homi Bhabha National Institute, Mumbai, 400094, India.
- Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai, 400085, India
| | - Sajal K Ghosh
- Department of Physics, School of Natural Sciences, Shiv Nadar Institution of Eminence, NH 91, Tehsil Dadri, G. B. Nagar, Uttar Pradesh 201314, India.
| |
Collapse
|
2
|
Skrzyniarz K, Takvor-Mena S, Lach K, Łysek-Gładysińska M, Barrios-Gumiel Ó, Cano J, Ciepluch K. Molecular mechanism of action of imidazolium carbosilane dendrimers on the outer bacterial membrane - From membrane damage to permeability to antimicrobial endolysin. J Colloid Interface Sci 2024; 665:814-824. [PMID: 38555749 DOI: 10.1016/j.jcis.2024.03.130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/13/2024] [Accepted: 03/20/2024] [Indexed: 04/02/2024]
Abstract
The outer bacterial membrane of drug-resistant bacteria is a significant barrier to many antimicrobials. Therefore, the development of new antibacterials primarily focuses on damaging the outer bacterial membrane of Gram-negative bacteria. Among many membrane-disrupting substances, the most promising are cationic dendritic systems. However, the mode of action may vary among different strains due to variations in the lipid compositions of the membrane. Here, we investigated the interaction of two types of cationic imidazolium carbosilane dendrimers: one with a single cationic group (methyl imidazolium) and the other with the same cationic group but attached to a functional group (a pendant pyridyl moiety), capable of establishing interactions with membranes through H-bonding or ion-dipole electrostatic interactions. We used different models of the outer membrane of Gram-negative bacteria - Escherichia coli, Pseudomonas aeruginosa, and Acinetobacter baumannii. Additionally, we assessed the combined effect of the dendrimers and the antibacterial endolysin on P. aeruginosa. Our results show that the mechanism of action depends on the type of dendrimer and the lipid composition of the membrane. We also demonstrate that the alteration of membrane fluidity and permeability to endolysin by the methyl imidazolium and pyridyl imidazolium dendrimers may play a more significant role in antimicrobial activity compared to membrane damage caused by positively charged dendrimers.
Collapse
Affiliation(s)
- Kinga Skrzyniarz
- Division of Medical Biology, Jan Kochanowski University in Kielce, Uniwersytecka Street 7, 25-640 Kielce, Poland
| | - Samuel Takvor-Mena
- Department of Organic and Inorganic Chemistry, Research Institute in Chemistry "Andrés M. del Río" (IQAR), University of Alcalá, 28805 Alcalá de Henares, Spain; Networking Research Center for Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Av. Monforte de Lemos, 3-5, 28029 Madrid, Spain; Ramón y Cajal Institute of Health Research, IRYCIS, Ctra. de Colmenar Viejo, Km. 9, 28034 Madrid, Spain
| | - Karolina Lach
- Division of Medical Biology, Jan Kochanowski University in Kielce, Uniwersytecka Street 7, 25-640 Kielce, Poland
| | - Małgorzata Łysek-Gładysińska
- Division of Medical Biology, Jan Kochanowski University in Kielce, Uniwersytecka Street 7, 25-640 Kielce, Poland
| | - Óscar Barrios-Gumiel
- Department of Organic and Inorganic Chemistry, Research Institute in Chemistry "Andrés M. del Río" (IQAR), University of Alcalá, 28805 Alcalá de Henares, Spain; Networking Research Center for Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Av. Monforte de Lemos, 3-5, 28029 Madrid, Spain; Ramón y Cajal Institute of Health Research, IRYCIS, Ctra. de Colmenar Viejo, Km. 9, 28034 Madrid, Spain
| | - Jesús Cano
- Department of Organic and Inorganic Chemistry, Research Institute in Chemistry "Andrés M. del Río" (IQAR), University of Alcalá, 28805 Alcalá de Henares, Spain; Networking Research Center for Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Av. Monforte de Lemos, 3-5, 28029 Madrid, Spain; Ramón y Cajal Institute of Health Research, IRYCIS, Ctra. de Colmenar Viejo, Km. 9, 28034 Madrid, Spain
| | - Karol Ciepluch
- Division of Medical Biology, Jan Kochanowski University in Kielce, Uniwersytecka Street 7, 25-640 Kielce, Poland.
| |
Collapse
|
3
|
Cherniavskyi YK, Oliva R, Stellato M, Del Vecchio P, Galdiero S, Falanga A, Dames SA, Tieleman DP. Structural characterization of the antimicrobial peptides myxinidin and WMR in bacterial membrane mimetic micelles and bicelles. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2024; 1866:184272. [PMID: 38211645 DOI: 10.1016/j.bbamem.2024.184272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 01/03/2024] [Accepted: 01/04/2024] [Indexed: 01/13/2024]
Abstract
Antimicrobial peptides are a promising class of potential antibiotics that interact selectively with negatively charged lipid bilayers. This paper presents the structural characterization of the antimicrobial peptides myxinidin and WMR associated with bacterial membrane mimetic micelles and bicelles by NMR, CD spectroscopy, and molecular dynamics simulations. Both peptides adopt a different conformation in the lipidic environment than in aqueous solution. The location of the peptides in micelles and bicelles has been studied by paramagnetic relaxation enhancement experiments with paramagnetic tagged 5- and 16-doxyl stearic acid (5-/16-SASL). Molecular dynamics simulations of multiple copies of the peptides were used to obtain an atomic level of detail on membrane-peptide and peptide-peptide interactions. Our results highlight an essential role of the negatively charged membrane mimetic in the structural stability of both myxinidin and WMR. The peptides localize predominantly in the membrane's headgroup region and have a noticeable membrane thinning effect on the overall bilayer structure. Myxinidin and WMR show a different tendency to self-aggregate, which is also influenced by the membrane composition (DOPE/DOPG versus DOPE/DOPG/CL) and can be related to the previously observed difference in the ability of the peptides to disrupt different types of model membranes.
Collapse
Affiliation(s)
- Yevhen K Cherniavskyi
- Department of Biological Sciences and Centre for Molecular Simulation, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Rosario Oliva
- Department of Chemical Sciences, University of Naples "Federico II", via Cintia, 80126 Naples, Italy
| | - Marco Stellato
- Department of Chemical Sciences, University of Naples "Federico II", via Cintia, 80126 Naples, Italy
| | - Pompea Del Vecchio
- Department of Chemical Sciences, University of Naples "Federico II", via Cintia, 80126 Naples, Italy
| | - Stefania Galdiero
- Department of Pharmacy, University of Naples 'Federico II', Via Domenico Montesano 49, 80131 Naples, Italy
| | - Annarita Falanga
- Department of Agricultural Science, University of Naples 'Federico II', Via dell' Università 100, 80055 Portici, Naples, Italy
| | - Sonja A Dames
- Chair of Biomolecular NMR Spectroscopy, Department of Chemistry, Technische Universität München, Lichtenbergstr. 4, 85747 Garching, Germany; Hausdorff Center for Mathematics, University of Bonn, Endenicher Allee 62, 53115 Bonn, Germany; Institute of Structural Biology, Helmholtz Zentrum München, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany.
| | - D Peter Tieleman
- Department of Biological Sciences and Centre for Molecular Simulation, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada.
| |
Collapse
|
4
|
Zannella C, Chianese A, Monti A, Giugliano R, Morone MV, Secci F, Sanna G, Manzin A, De Filippis A, Doti N, Galdiero M. SARS-CoV-2 Fusion Peptide Conjugated to a Tetravalent Dendrimer Selectively Inhibits Viral Infection. Pharmaceutics 2023; 15:2791. [PMID: 38140131 PMCID: PMC10748278 DOI: 10.3390/pharmaceutics15122791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/13/2023] [Accepted: 12/14/2023] [Indexed: 12/24/2023] Open
Abstract
Fusion is a key event for enveloped viruses, through which viral and cell membranes come into close contact. This event is mediated by viral fusion proteins, which are divided into three structural and functional classes. The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein belongs to class I fusion proteins, characterized by a trimer of helical hairpins and an internal fusion peptide (FP), which is exposed once fusion occurs. Many efforts have been directed at finding antivirals capable of interfering with the fusion mechanism, mainly by designing peptides on the two heptad-repeat regions present in class I viral fusion proteins. Here, we aimed to evaluate the anti-SARS-CoV-2 activity of the FP sequence conjugated to a tetravalent dendrimer through a classical organic nucleophilic substitution reaction (SN2) using a synthetic bromoacetylated peptide mimicking the FP and a branched scaffold of poly-L-Lysine functionalized with cysteine residues. We found that the FP peptide conjugated to the dendrimer, unlike the monomeric FP sequence, has virucidal activity by impairing the attachment of SARS-CoV-2 to cells. Furthermore, we found that the peptide dendrimer does not have the same effects on other coronaviruses, demonstrating that it is selective against SARS-CoV-2.
Collapse
Affiliation(s)
- Carla Zannella
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (C.Z.); (A.C.); (R.G.); (M.V.M.); (A.D.F.)
| | - Annalisa Chianese
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (C.Z.); (A.C.); (R.G.); (M.V.M.); (A.D.F.)
| | - Alessandra Monti
- Institute of Biostructures and Bioimaging (IBB), National Research Council (CNR), 80131 Naples, Italy; (A.M.); (N.D.)
| | - Rosa Giugliano
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (C.Z.); (A.C.); (R.G.); (M.V.M.); (A.D.F.)
| | - Maria Vittoria Morone
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (C.Z.); (A.C.); (R.G.); (M.V.M.); (A.D.F.)
| | - Francesco Secci
- Department of Chemical and Geological Sciences, University of Cagliari, University Campus, 09042 Cagliari, Italy;
| | - Giuseppina Sanna
- Department of Biomedical Sciences, University of Cagliari, University Campus, 09042 Cagliari, Italy; (G.S.); (A.M.)
| | - Aldo Manzin
- Department of Biomedical Sciences, University of Cagliari, University Campus, 09042 Cagliari, Italy; (G.S.); (A.M.)
| | - Anna De Filippis
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (C.Z.); (A.C.); (R.G.); (M.V.M.); (A.D.F.)
| | - Nunzianna Doti
- Institute of Biostructures and Bioimaging (IBB), National Research Council (CNR), 80131 Naples, Italy; (A.M.); (N.D.)
| | - Massimiliano Galdiero
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (C.Z.); (A.C.); (R.G.); (M.V.M.); (A.D.F.)
- UOC of Virology and Microbiology, University Hospital of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| |
Collapse
|
5
|
Dennison SR, Morton LH, Badiani K, Harris F, Phoenix DA. Bacterial susceptibility and resistance to modelin-5. SOFT MATTER 2023; 19:8247-8263. [PMID: 37869970 DOI: 10.1039/d3sm01007d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2023]
Abstract
Modelin-5 (M5-NH2) killed Pseudomonas aeruginosa with a minimum lethal concentration (MLC) of 5.86 μM and strongly bound its cytoplasmic membrane (CM) with a Kd of 23.5 μM. The peptide adopted high levels of amphiphilic α-helical structure (75.0%) and penetrated the CM hydrophobic core (8.0 mN m-1). This insertion destabilised CM structure via increased lipid packing and decreased fluidity (ΔGmix < 0), which promoted high levels of lysis (84.1%) and P. aeruginosa cell death. M5-NH2 showed a very strong affinity (Kd = 3.5 μM) and very high levels of amphiphilic α-helical structure with cardiolipin membranes (96.0%,) which primarily drove the peptide's membranolytic action against P. aeruginosa. In contrast, M5-NH2 killed Staphylococcus aureus with an MLC of 147.6 μM and weakly bound its CM with a Kd of 117.6 μM, The peptide adopted low levels of amphiphilic α-helical structure (35.0%) and only penetrated the upper regions of the CM (3.3 mN m-1). This insertion stabilised CM structure via decreased lipid packing and increased fluidity (ΔGmix > 0) and promoted only low levels of lysis (24.3%). The insertion and lysis of the S. aureus CM by M5-NH2 showed a strong negative correlation with its lysyl phosphatidylglycerol (Lys-PG) content (R2 > 0.98). In combination, these data suggested that Lys-PG mediated mechanisms inhibited the membranolytic action of M5-NH2 against S. aureus, thereby rendering the organism resistant to the peptide. These results are discussed in relation to structure/function relationships of M5-NH2 and CM lipids that underpin bacterial susceptibility and resistance to the peptide.
Collapse
Affiliation(s)
- Sarah R Dennison
- School of Pharmacy and Biomedical Sciences, University of Central Lancashire, Preston PR1 2HE, UK.
| | - Leslie Hg Morton
- School of Pharmacy and Biomedical Sciences, University of Central Lancashire, Preston PR1 2HE, UK.
| | - Kamal Badiani
- Pepceuticals Limited, 4 Feldspar Close, Warrens Park, Enderby, Leicestershire, LE19 4JS, UK
| | - Frederick Harris
- School of Pharmacy and Biomedical Sciences, University of Central Lancashire, Preston PR1 2HE, UK.
| | - David A Phoenix
- Office of the Vice Chancellor, London South Bank University, 103 Borough Road, London SE1 0AA, UK
| |
Collapse
|
6
|
Chianese A, Zannella C, Monti A, Doti N, Sanna G, Manzin A, De Filippis A, Galdiero M. Hylin-a1: A Pan-Inhibitor against Emerging and Re-Emerging Respiratory Viruses. Int J Mol Sci 2023; 24:13888. [PMID: 37762191 PMCID: PMC10531407 DOI: 10.3390/ijms241813888] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/04/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
Pandemic and epidemic outbreaks of respiratory viruses are a challenge for public health and social care system worldwide, leading to high mortality and morbidity among the human populations. In light of the limited efficacy of current vaccines and antiviral drugs against respiratory viral infections and the emergence and re-emergence of new viruses, novel broad-spectrum antiviral drugs are needed for the prevention and treatment of these infections. Antimicrobial peptides with an antiviral effect, also known as AVPs, have already been reported as potent inhibitors of viral infections by affecting different stages of the virus lifecycle. In the present study, we analyzed the activity of the AVP Hylin-a1, secreted by the frog Hypsiboas albopunctatus, against a wide range of respiratory viruses, including the coronaviruses HCoV-229E and SARS-CoV-2, measles virus, human parainfluenza virus type 3, and influenza virus H1N1. We report a significant inhibitory effect on infectivity in all the enveloped viruses, whereas there was a lack of activity against the naked coxsackievirus B3. Considering the enormous therapeutic potential of Hylin-a1, further experiments are required to elucidate its mechanism of action and to increase its stability by modifying the native sequence.
Collapse
Affiliation(s)
- Annalisa Chianese
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (A.C.); (C.Z.); (A.D.F.)
| | - Carla Zannella
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (A.C.); (C.Z.); (A.D.F.)
| | - Alessandra Monti
- Institute of Biostructures and Bioimaging (IBB), National Research Council (CNR), 80131 Naples, Italy; (A.M.); (N.D.)
| | - Nunzianna Doti
- Institute of Biostructures and Bioimaging (IBB), National Research Council (CNR), 80131 Naples, Italy; (A.M.); (N.D.)
| | - Giuseppina Sanna
- Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria, 09042 Monserrato, Italy; (G.S.); (A.M.)
| | - Aldo Manzin
- Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria, 09042 Monserrato, Italy; (G.S.); (A.M.)
| | - Anna De Filippis
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (A.C.); (C.Z.); (A.D.F.)
| | - Massimiliano Galdiero
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (A.C.); (C.Z.); (A.D.F.)
| |
Collapse
|
7
|
Ligorio C, Mata A. Synthetic extracellular matrices with function-encoding peptides. NATURE REVIEWS BIOENGINEERING 2023; 1:1-19. [PMID: 37359773 PMCID: PMC10127181 DOI: 10.1038/s44222-023-00055-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 03/16/2023] [Indexed: 06/28/2023]
Abstract
The communication of cells with their surroundings is mostly encoded in the epitopes of structural and signalling proteins present in the extracellular matrix (ECM). These peptide epitopes can be incorporated in biomaterials to serve as function-encoding molecules to modulate cell-cell and cell-ECM interactions. In this Review, we discuss natural and synthetic peptide epitopes as molecular tools to bioengineer bioactive hydrogel materials. We present a library of functional peptide sequences that selectively communicate with cells and the ECM to coordinate biological processes, including epitopes that directly signal to cells, that bind ECM components that subsequently signal to cells, and that regulate ECM turnover. We highlight how these epitopes can be incorporated in different biomaterials as individual or multiple signals, working synergistically or additively. This molecular toolbox can be applied in the design of biomaterials aimed at regulating or controlling cellular and tissue function, repair and regeneration.
Collapse
Affiliation(s)
- Cosimo Ligorio
- Biodiscovery Institute, University of Nottingham, Nottingham, UK
- Department of Chemical and Environmental Engineering, University of Nottingham, Nottingham, UK
| | - Alvaro Mata
- Biodiscovery Institute, University of Nottingham, Nottingham, UK
- Department of Chemical and Environmental Engineering, University of Nottingham, Nottingham, UK
- School of Pharmacy, University of Nottingham, Nottingham, UK
| |
Collapse
|
8
|
Hemmingsen LM, Giordani B, Paulsen MH, Vanić Ž, Flaten GE, Vitali B, Basnet P, Bayer A, Strøm MB, Škalko-Basnet N. Tailored anti-biofilm activity - Liposomal delivery for mimic of small antimicrobial peptide. BIOMATERIALS ADVANCES 2023; 145:213238. [PMID: 36527962 DOI: 10.1016/j.bioadv.2022.213238] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 11/18/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022]
Abstract
The eradication of bacteria embedded in biofilms is among the most challenging obstacles in the management of chronic wounds. These biofilms are found in most chronic wounds; moreover, the biofilm-embedded bacteria are considerably less susceptible to conventional antimicrobial treatment than the planktonic bacteria. Antimicrobial peptides and their mimics are considered attractive candidates in the pursuit of novel therapeutic options for the treatment of chronic wounds and general bacterial eradication. However, some limitations linked to these membrane-active antimicrobials are making their clinical use challenging. Novel innovative delivery systems addressing these limitations represent a smart solution. We hypothesized that incorporation of a novel synthetic mimic of an antimicrobial peptide in liposomes could improve its anti-biofilm effect as well as the anti-inflammatory activity. The small synthetic mimic of an antimicrobial peptide, 7e-SMAMP, was incorporated into liposomes (~280 nm) tailored for skin wounds and evaluated for its potential activity against both biofilm formation and eradication of pre-formed biofilms. The 7e-SMAMP-liposomes significantly lowered inflammatory response in murine macrophages (~30 % reduction) without affecting the viability of macrophages or keratinocytes. Importantly, the 7e-SMAMP-liposomes completely eradicated biofilms produced by Staphylococcus aureus and Escherichia coli above concentrations of 6.25 μg/mL, whereas in Pseudomonas aeruginosa the eradication reached 75 % at the same concentration. Incorporation of 7e-SMAMP in liposomes improved both the inhibition of biofilm formation as well as biofilm eradication in vitro, as compared to non-formulated antimicrobial, therefore confirming its potential as a novel therapeutic option for bacteria-infected chronic wounds.
Collapse
Affiliation(s)
- Lisa Myrseth Hemmingsen
- Drug Transport and Delivery Research Group, Department of Pharmacy, University of Tromsø The Arctic University of Norway, Universitetsvegen 57, N-9037 Tromsø, Norway
| | - Barbara Giordani
- Beneficial Microbes Research Group, Department of Pharmacy and Biotechnology, University of Bologna, Via San Donato 19/2, 40127 Bologna, Italy
| | - Marianne H Paulsen
- Department of Chemistry, University of Tromsø The Arctic University of Norway, Universitetsvegen 57, N-9037 Tromsø, Norway; Natural Products and Medicinal Chemistry Research Group, Department of Pharmacy, University of Tromsø The Arctic University of Norway, Universitetsvegen 57, N-9037 Tromsø, Norway
| | - Željka Vanić
- Department of Pharmaceutical Technology, Faculty of Pharmacy and Biochemistry, University of Zagreb, A. Kovačića 1, 10 000 Zagreb, Croatia
| | - Gøril Eide Flaten
- Drug Transport and Delivery Research Group, Department of Pharmacy, University of Tromsø The Arctic University of Norway, Universitetsvegen 57, N-9037 Tromsø, Norway
| | - Beatrice Vitali
- Beneficial Microbes Research Group, Department of Pharmacy and Biotechnology, University of Bologna, Via San Donato 19/2, 40127 Bologna, Italy
| | - Purusotam Basnet
- Women's Health and Perinatology Research Group, Department of Clinical Medicine, University of Tromsø The Arctic University of Norway, Universitetsveien 57, N-9037 Tromsø, Norway
| | - Annette Bayer
- Department of Chemistry, University of Tromsø The Arctic University of Norway, Universitetsvegen 57, N-9037 Tromsø, Norway
| | - Morten B Strøm
- Natural Products and Medicinal Chemistry Research Group, Department of Pharmacy, University of Tromsø The Arctic University of Norway, Universitetsvegen 57, N-9037 Tromsø, Norway
| | - Nataša Škalko-Basnet
- Drug Transport and Delivery Research Group, Department of Pharmacy, University of Tromsø The Arctic University of Norway, Universitetsvegen 57, N-9037 Tromsø, Norway.
| |
Collapse
|
9
|
Syryamina VN, Afanasyeva EF, Dzuba SA, Formaggio F, De Zotti M. Peptide-membrane binding is not enough to explain bioactivity: A case study. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2022; 1864:183978. [PMID: 35659865 DOI: 10.1016/j.bbamem.2022.183978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 05/11/2022] [Accepted: 05/26/2022] [Indexed: 06/15/2023]
Abstract
Membrane-active peptides are a promising class of antimicrobial and anticancer therapeutics. For this reason, their molecular mechanisms of action are currently actively investigated. By exploiting Electron Paramagnetic Resonance, we study the membrane interaction of two spin-labeled analogs of the antimicrobial and cytotoxic peptide trichogin GA IV (Tri), with opposite bioactivity: Tri(Api8), able to selectively kill cancer cells, and Tri(Leu4), which is completely nontoxic. In our attempt to determine the molecular basis of their different biological activity, we investigate peptide impact on the lateral organization of lipid membranes, peptide localization and oligomerization, in the zwitter-ionic 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) model membrane We show that, despite their divergent bioactivity, both peptide analogs (i) are membrane-bound, (ii) display a weak tendency to oligomerization, and (iii) do not induce significant lipid rearrangement. Conversely, literature data show that the parent peptide trichogin, which is cytotoxic without any selectivity, is strongly prone to dimerization and affects the reorganization of POPC membranes. Its dimers are involved in the rotation around the peptide helix, as observed at cryogenic temperatures in the millisecond timescale. Since this latter behavior is not observed for the inactive Tri(Leu4), we propose that for short-length peptides as trichogin oligomerization and molecular motions are crucial for bioactivity, and membrane binding alone is not enough to predict or explain it. We envisage that small changes in the peptide sequence that affect only their ability to oligomerize, or their molecular motions inside the membrane, can tune the peptide activity on membranes of different compositions.
Collapse
Affiliation(s)
- Victoria N Syryamina
- Voevodsky Institute of Chemical Kinetics and Combustion, RAS, Novosibirsk 630090, Russian Federation.
| | - Ekaterina F Afanasyeva
- Voevodsky Institute of Chemical Kinetics and Combustion, RAS, Novosibirsk 630090, Russian Federation
| | - Sergei A Dzuba
- Voevodsky Institute of Chemical Kinetics and Combustion, RAS, Novosibirsk 630090, Russian Federation; Department of Physics, Novosibirsk State University,630090 Novosibirsk, Russian Federation
| | - Fernando Formaggio
- ICB-CNR, Padova Unit, Department of Chemistry, University of Padova, 35131 Padova, Italy
| | - Marta De Zotti
- ICB-CNR, Padova Unit, Department of Chemistry, University of Padova, 35131 Padova, Italy.
| |
Collapse
|
10
|
Karonen M. Insights into Polyphenol-Lipid Interactions: Chemical Methods, Molecular Aspects and Their Effects on Membrane Structures. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11141809. [PMID: 35890443 PMCID: PMC9317924 DOI: 10.3390/plants11141809] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/01/2022] [Accepted: 07/06/2022] [Indexed: 05/12/2023]
Abstract
Plant polyphenols have many potential applications, for example, in the fields of chemical ecology and human and animal health and nutrition. These biological benefits are related to their bioavailability, bioaccessibility and interactions with other biomolecules, such as proteins, lipids, fibers and amino acids. Polyphenol-protein interactions are well-studied, but less is known about their interactions with lipids and cell membranes. However, the affinity of polyphenols for lipid bilayers partially determines their biological activity and is also important from the usability perspective. The polyphenol-lipid interactions can be studied with several chemical tools including, among others, partition coefficient measurements, calorimetric methods, spectroscopic techniques and molecular dynamics simulation. Polyphenols can variably interact with and penetrate lipid bilayers depending on the structures and concentrations of the polyphenols, the compositions of the lipids and the ambient conditions and factors. Polyphenol penetrating the lipid bilayer can perturb and cause changes in its structure and biophysical properties. The current studies have used structurally different polyphenols, diverse model lipids and various measuring techniques. This approach provides detailed information on polyphenol-lipid interactions, but there is much variability, and the results may even be contradictory, for example, in relation to the locations and orientations of the polyphenols in the lipid bilayers. Nevertheless, by using well-characterized model polyphenols and lipids systematically and combining the results obtained with several techniques within a study, it is possible to create a good overall picture of these fascinating interactions.
Collapse
Affiliation(s)
- Maarit Karonen
- Natural Chemistry Research Group, Department of Chemistry, University of Turku, 20014 Turku, Finland
| |
Collapse
|
11
|
Del Genio V, Bellavita R, Falanga A, Hervé-Aubert K, Chourpa I, Galdiero S. Peptides to Overcome the Limitations of Current Anticancer and Antimicrobial Nanotherapies. Pharmaceutics 2022; 14:1235. [PMID: 35745807 PMCID: PMC9230615 DOI: 10.3390/pharmaceutics14061235] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/25/2022] [Accepted: 06/09/2022] [Indexed: 12/13/2022] Open
Abstract
Biomedical research devotes a huge effort to the development of efficient non-viral nanovectors (NV) to improve the effectiveness of standard therapies. NVs should be stable, sustainable and biocompatible and enable controlled and targeted delivery of drugs. With the aim to foster the advancements of such devices, this review reports some recent results applicable to treat two types of pathologies, cancer and microbial infections, aiming to provide guidance in the overall design of personalized nanomedicines and highlight the key role played by peptides in this field. Additionally, future challenges and potential perspectives are illustrated, in the hope of accelerating the translational advances of nanomedicine.
Collapse
Affiliation(s)
- Valentina Del Genio
- Department of Pharmacy, University of Naples “Federico II”, Via Domenico Montesano 49, 80138 Naples, Italy; (V.D.G.); (R.B.)
- EA 6295 Nanomédicaments et Nanosondes, University of Tours, UFR Pharmacie, 31 Avenue Monge, 37200 Tours, France;
| | - Rosa Bellavita
- Department of Pharmacy, University of Naples “Federico II”, Via Domenico Montesano 49, 80138 Naples, Italy; (V.D.G.); (R.B.)
| | - Annarita Falanga
- Department of Agricultural Science, University of Naples “Federico II”, Via Università 100, 80055 Naples, Italy;
| | - Katel Hervé-Aubert
- EA 6295 Nanomédicaments et Nanosondes, University of Tours, UFR Pharmacie, 31 Avenue Monge, 37200 Tours, France;
| | - Igor Chourpa
- EA 6295 Nanomédicaments et Nanosondes, University of Tours, UFR Pharmacie, 31 Avenue Monge, 37200 Tours, France;
| | - Stefania Galdiero
- Department of Pharmacy, University of Naples “Federico II”, Via Domenico Montesano 49, 80138 Naples, Italy; (V.D.G.); (R.B.)
| |
Collapse
|
12
|
Skwarczynski M, Bashiri S, Yuan Y, Ziora ZM, Nabil O, Masuda K, Khongkow M, Rimsueb N, Cabral H, Ruktanonchai U, Blaskovich MAT, Toth I. Antimicrobial Activity Enhancers: Towards Smart Delivery of Antimicrobial Agents. Antibiotics (Basel) 2022; 11:412. [PMID: 35326875 PMCID: PMC8944422 DOI: 10.3390/antibiotics11030412] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 02/01/2023] Open
Abstract
The development of effective treatments against infectious diseases is an extensive and ongoing process due to the rapid adaptation of bacteria to antibiotic-based therapies. However, appropriately designed activity enhancers, including antibiotic delivery systems, can increase the effectiveness of current antibiotics, overcoming antimicrobial resistance and decreasing the chance of contributing to further bacterial resistance. The activity/delivery enhancers improve drug absorption, allow targeted antibiotic delivery, improve their tissue and biofilm penetration and reduce side effects. This review provides insights into various antibiotic activity enhancers, including polymer, lipid, and silver-based systems, designed to reduce the adverse effects of antibiotics and improve formulation stability and efficacy against multidrug-resistant bacteria.
Collapse
Affiliation(s)
- Mariusz Skwarczynski
- School of Chemistry and Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Sahra Bashiri
- School of Chemistry and Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Ye Yuan
- Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Zyta M Ziora
- Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Osama Nabil
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Keita Masuda
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Mattaka Khongkow
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Phahonyothin Road, Klong 1, Klong Luang 12120, Pathumthani, Thailand
| | - Natchanon Rimsueb
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Phahonyothin Road, Klong 1, Klong Luang 12120, Pathumthani, Thailand
| | - Horacio Cabral
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Uracha Ruktanonchai
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Phahonyothin Road, Klong 1, Klong Luang 12120, Pathumthani, Thailand
| | - Mark A T Blaskovich
- Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Istvan Toth
- School of Chemistry and Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
- School of Pharmacy, The University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
13
|
WMR Peptide as Antifungal and Antibiofilm against Albicans and Non-Albicans Candida Species: Shreds of Evidence on the Mechanism of Action. Int J Mol Sci 2022; 23:ijms23042151. [PMID: 35216270 PMCID: PMC8879636 DOI: 10.3390/ijms23042151] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/07/2022] [Accepted: 02/14/2022] [Indexed: 02/06/2023] Open
Abstract
Candida species are the most common fungal pathogens infecting humans and can cause severe illnesses in immunocompromised individuals. The increased resistance of Candida to traditional antifungal drugs represents a great challenge in clinical settings. Therefore, novel approaches to overcome antifungal resistance are desired. Here, we investigated the use of an antimicrobial peptide WMR against Candida albicans and non-albicans Candida species in vitro and in vivo. Results showed a WMR antifungal activity on all Candida planktonic cells at concentrations between 25 μM to >50 μM and exhibited activity at sub-MIC concentrations to inhibit biofilm formation and eradicate mature biofilm. Furthermore, in vitro antifungal effects of WMR were confirmed in vivo as demonstrated by a prolonged survival rate of larvae infected by Candida species when the peptide was administered before or after infection. Additional experiments to unravel the antifungal mechanism were performed on C. albicans and C. parapsilosis. The time-killing curves showed their antifungal activity, which was further confirmed by the induced intracellular and mitochondrial reactive oxygen species accumulation; WMR significantly suppressed drug efflux, down-regulating the drug transporter encoding genes CDR1. Moreover, the ability of WMR to penetrate within the cells was demonstrated by confocal laser scanning microscopy. These findings provide novel insights for the antifungal mechanism of WMR against Candida albicans and non-albicans, providing fascinating scenarios for the identification of new potential antifungal targets.
Collapse
|
14
|
Carey AB, Ashenden A, Köper I. Model architectures for bacterial membranes. Biophys Rev 2022; 14:111-143. [PMID: 35340604 PMCID: PMC8921416 DOI: 10.1007/s12551-021-00913-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 11/14/2021] [Indexed: 02/06/2023] Open
Abstract
The complex composition of bacterial membranes has a significant impact on the understanding of pathogen function and their development towards antibiotic resistance. In addition to the inherent complexity and biosafety risks of studying biological pathogen membranes, the continual rise of antibiotic resistance and its significant economical and clinical consequences has motivated the development of numerous in vitro model membrane systems with tuneable compositions, geometries, and sizes. Approaches discussed in this review include liposomes, solid-supported bilayers, and computational simulations which have been used to explore various processes including drug-membrane interactions, lipid-protein interactions, host-pathogen interactions, and structure-induced bacterial pathogenesis. The advantages, limitations, and applicable analytical tools of all architectures are summarised with a perspective for future research efforts in architectural improvement and elucidation of resistance development strategies and membrane-targeting antibiotic mechanisms. Supplementary Information The online version contains supplementary material available at 10.1007/s12551-021-00913-7.
Collapse
Affiliation(s)
- Ashley B. Carey
- Institute for Nanoscale Science and Technology, College for Science and Engineering, Flinders University, Adelaide, SA 5042 Australia
| | - Alex Ashenden
- Institute for Nanoscale Science and Technology, College for Science and Engineering, Flinders University, Adelaide, SA 5042 Australia
| | - Ingo Köper
- Institute for Nanoscale Science and Technology, College for Science and Engineering, Flinders University, Adelaide, SA 5042 Australia
| |
Collapse
|
15
|
Wang Q, Peng B, Song M, Abdullah, Li J, Miao J, Feng K, Chen F, Zhai X, Cao Y. Effects of Antibacterial Peptide F1 on Bacterial Liposome Membrane Integrity. Front Nutr 2021; 8:768890. [PMID: 34869536 PMCID: PMC8633404 DOI: 10.3389/fnut.2021.768890] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 10/01/2021] [Indexed: 11/26/2022] Open
Abstract
Previous studies from our lab have shown that the antimicrobial peptide F1 obtained from the milk fermentation by Lactobacillus paracasei FX-6 derived from Tibetan kefir was different from common antimicrobial peptides; specifically, F1 simultaneously inhibited the growth of Gram-negative and Gram-positive bacteria. Here, we present follow-on work demonstrating that after the antimicrobial peptide F1 acts on either Escherichia coli ATCC 25922 (E. coli) or Staphylococcus aureus ATCC 63589 (S. aureus), their respective bacterial membranes were severely deformed. This deformation allowed leakage of potassium and magnesium ions from the bacterial membrane. The interaction between the antimicrobial peptide F1 and the bacterial membrane was further explored by artificially simulating the bacterial phospholipid membranes and then extracting them. The study results indicated that after the antimicrobial peptide F1 interacted with the bacterial membranes caused significant calcein leakage that had been simulated by different liposomes. Furthermore, transmission electron microscopy observations revealed that the phospholipid membrane structure was destroyed and the liposomes presented aggregation and precipitation. Quartz Crystal Microbalance with Dissipation (QCM-D) results showed that the antimicrobial peptide F1 significantly reduced the quality of liposome membrane and increased their viscoelasticity. Based on the study's findings, the phospholipid membrane particle size was significantly increased, indicating that the antimicrobial peptide F1 had a direct effect on the phospholipid membrane. Conclusively, the antimicrobial peptide F1 destroyed the membrane structure of both Gram-negative and Gram-positive bacteria by destroying the shared components of their respective phospholipid membranes which resulted in leakage of cell contents and subsequently cell death.
Collapse
Affiliation(s)
- Qun Wang
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Bo Peng
- College of Food Science, South China Agricultural University, Guangzhou, China.,Guangdong Haitian Innovation Technology Co., Ltd., Foshan, China
| | - Mingyue Song
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Abdullah
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Jun Li
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Jianyin Miao
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Konglong Feng
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Feilong Chen
- College of Food Science, South China Agricultural University, Guangzhou, China.,Evonik Rexim Nanning Co., Ltd., Nanning, China
| | | | - Yong Cao
- College of Food Science, South China Agricultural University, Guangzhou, China
| |
Collapse
|
16
|
Wang H, Zhao J, Zhao H, Li H, Wang J. CL-ACP: a parallel combination of CNN and LSTM anticancer peptide recognition model. BMC Bioinformatics 2021; 22:512. [PMID: 34670488 PMCID: PMC8527680 DOI: 10.1186/s12859-021-04433-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 10/05/2021] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Anticancer peptides are defence substances with innate immune functions that can selectively act on cancer cells without harming normal cells and many studies have been conducted to identify anticancer peptides. In this paper, we introduce the anticancer peptide secondary structures as additional features and propose an effective computational model, CL-ACP, that uses a combined network and attention mechanism to predict anticancer peptides. RESULTS The CL-ACP model uses secondary structures and original sequences of anticancer peptides to construct the feature space. The long short-term memory and convolutional neural network are used to extract the contextual dependence and local correlations of the feature space. Furthermore, a multi-head self-attention mechanism is used to strengthen the anticancer peptide sequences. Finally, three categories of feature information are classified by cascading. CL-ACP was validated using two types of datasets, anticancer peptide datasets and antimicrobial peptide datasets, on which it achieved good results compared to previous methods. CL-ACP achieved the highest AUC values of 0.935 and 0.972 on the anticancer peptide and antimicrobial peptide datasets, respectively. CONCLUSIONS CL-ACP can effectively recognize antimicrobial peptides, especially anticancer peptides, and the parallel combined neural network structure of CL-ACP does not require complex feature design and high time cost. It is suitable for application as a useful tool in antimicrobial peptide design.
Collapse
Affiliation(s)
- Huiqing Wang
- College of Information and Computer, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Jian Zhao
- College of Information and Computer, Taiyuan University of Technology, Taiyuan, 030024, China.
| | - Hong Zhao
- College of Information and Computer, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Haolin Li
- College of Information and Computer, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Juan Wang
- College of Information and Computer, Taiyuan University of Technology, Taiyuan, 030024, China
| |
Collapse
|
17
|
Mitra S, Sharma VK, Mitra JB, Chowdhury S, Mukhopadhyay MK, Mukhopadhyay R, Ghosh SK. Thermodynamics and structure of model bio-membrane of liver lipids in presence of imidazolium-based ionic liquids. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2021; 1863:183589. [PMID: 33652006 DOI: 10.1016/j.bbamem.2021.183589] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 01/29/2021] [Accepted: 02/17/2021] [Indexed: 12/20/2022]
Abstract
Ionic liquids (ILs) are the attractions of researchers today due to their vast area of potential applications. For biomedical uses, it becomes essential to understand their interactions with cellular membrane. Here, the membrane is mimicked with lipid bilayer and monolayer composed of liver lipids extract. Three archetypal imidazolium based ILs, 1-decyl-3-methylimidazolium tetrafluoroborate ([DMIM][BF4] or [C10MIM][BF4]), 1-octyl-3-methylimidazolium tetrafluoroborate, ([OMIM][BF4] or [C8MIM][BF4]) and 1-ethyl-3-methylimidazolium tetrafluoroborate ([EMIM][BF4] or [C2MIM][BF4]) having different alkyl chain lengths are used in the present study. The isothermal titration calorimetry (ITC) measurements showed that [DMIM][BF4] interacts strongest with the liver lipid membrane compared to other two ILs which have relatively shorter alkyl chain length. The low values of stoichiometry ratio of ILs indicates that ILs penetrate within the core of the lipid bilayer. The interaction of ILs with the liver lipid membrane is found to be mainly driven by entropy which could be due to the change in the structure of the lipid membrane at local or global scales. Dynamic light scattering (DLS) measurements indicate that there are no changes in the size of vesicles due to addition of [DMIM][BF4] indicating stability of the vesicles. On the other hand, x-ray reflectivity (XRR) measurements showed a concentration dependent change in the monolayer structure. At low concentration of the IL, the monolayer thickness decreases, exhibiting an increase in the electron density of the layer. However, at higher concentrations, the monolayer thickness increases proving a concentration dependent effects of the IL on the arrangement of the molecules.
Collapse
Affiliation(s)
- Saheli Mitra
- Department of Physics, School of Natural Sciences, Shiv Nadar University, NH 92, Tehsil Dadri, G. B. Nagar, Uttar Pradesh 201314, India
| | | | - Jyotsna Bhatt Mitra
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Mumbai 400085, India
| | - Subhadip Chowdhury
- Surface Physics and Material Science Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064, India
| | - Mrinmay Kumar Mukhopadhyay
- Surface Physics and Material Science Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064, India
| | | | - Sajal Kumar Ghosh
- Department of Physics, School of Natural Sciences, Shiv Nadar University, NH 92, Tehsil Dadri, G. B. Nagar, Uttar Pradesh 201314, India.
| |
Collapse
|
18
|
Galdiero E, Salvatore MM, Maione A, Carraturo F, Galdiero S, Falanga A, Andolfi A, Salvatore F, Guida M. Impact of the Peptide WMR-K on Dual-Species Biofilm Candida albicans/Klebsiella pneumoniae and on the Untargeted Metabolomic Profile. Pathogens 2021; 10:214. [PMID: 33669279 PMCID: PMC7920046 DOI: 10.3390/pathogens10020214] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/08/2021] [Accepted: 02/12/2021] [Indexed: 01/09/2023] Open
Abstract
In recent years, the scientific community has focused on the development of new antibiotics to address the difficulties linked to biofilm-forming microorganisms and drug-resistant infections. In this respect, synthetic antimicrobial peptides (AMPs) are particularly regarded for their therapeutic potential against a broad spectrum of pathogens. In this work, the antimicrobial and antibiofilm activities of the peptide WMR-K towards single and dual species cultures of Candida albicans and Klebsiella pneumoniae were investigated. We found minimum inhibitory concentration (MIC) values for WMR-K of 10 µM for K. pneumoniae and of 200 µM for C. albicans. Furthermore, sub-MIC concentrations of peptide showed an in vitro inhibition of biofilm formation of mono and polymicrobial systems and also a good biofilm eradication even if higher concentrations of it are needed. In order to provide additional evidence for the effect of the examined peptide, a study of changes in extracellular metabolites excreted and/or uptaken from the culture medium (metabolomic footprinting) in the poly-microbial association of C. albicans and K. pneumoniae in presence and absence of WMR-K was performed. Comparing to the untreated dual species biofilm culture, the metabolomic profile of the WMR-K treated culture appears significantly altered. The differentially expressed compounds are mainly related to the primary metabolic pathways, including amino acids, trehalose, pyruvic acid, glycerol and vitamin B6.
Collapse
Affiliation(s)
- Emilia Galdiero
- Department of Biology, University of Naples ‘Federico II’, via Cinthia, 80126 Naples, Italy; (E.G.); (A.M.); (F.C.); (M.G.)
| | - Maria Michela Salvatore
- Department of Chemical Sciences, University of Naples ‘Federico II’, via Cinthia, 80126 Naples, Italy; (A.A.); (F.S.)
| | - Angela Maione
- Department of Biology, University of Naples ‘Federico II’, via Cinthia, 80126 Naples, Italy; (E.G.); (A.M.); (F.C.); (M.G.)
| | - Federica Carraturo
- Department of Biology, University of Naples ‘Federico II’, via Cinthia, 80126 Naples, Italy; (E.G.); (A.M.); (F.C.); (M.G.)
| | - Stefania Galdiero
- Department of Pharmacy, School of Medicine, University of Naples ‘Federico II’, Via Domenico Montesano 49, 80131 Naples, Italy;
| | - Annarita Falanga
- Department of Agricultural Science, University of Naples ‘Federico II’, Via dell’ Università 100, 80055 Naples, Italy;
| | - Anna Andolfi
- Department of Chemical Sciences, University of Naples ‘Federico II’, via Cinthia, 80126 Naples, Italy; (A.A.); (F.S.)
- BAT Center—Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology, University of Naples ‘Federico II’, 80055 Naples, Italy
| | - Francesco Salvatore
- Department of Chemical Sciences, University of Naples ‘Federico II’, via Cinthia, 80126 Naples, Italy; (A.A.); (F.S.)
| | - Marco Guida
- Department of Biology, University of Naples ‘Federico II’, via Cinthia, 80126 Naples, Italy; (E.G.); (A.M.); (F.C.); (M.G.)
| |
Collapse
|
19
|
Falanga A, Del Genio V, Galdiero S. Peptides and Dendrimers: How to Combat Viral and Bacterial Infections. Pharmaceutics 2021; 13:101. [PMID: 33466852 PMCID: PMC7830367 DOI: 10.3390/pharmaceutics13010101] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 01/08/2021] [Accepted: 01/12/2021] [Indexed: 12/15/2022] Open
Abstract
The alarming growth of antimicrobial resistance and recent viral pandemic events have enhanced the need for novel approaches through innovative agents that are mainly able to attach to the external layers of bacteria and viruses, causing permanent damage. Antimicrobial molecules are potent broad-spectrum agents with a high potential as novel therapeutics. In this context, antimicrobial peptides, cell penetrating peptides, and antiviral peptides play a major role, and have been suggested as promising solutions. Furthermore, dendrimers are to be considered as suitable macromolecules for the development of advanced nanosystems that are able to complement the typical properties of dendrimers with those of peptides. This review focuses on the description of nanoplatforms constructed with peptides and dendrimers, and their applications.
Collapse
Affiliation(s)
- Annarita Falanga
- Department of Agricultural Science, University of Naples “Federico II”, Via dell’Università 100, 80100 Portici, Italy
| | - Valentina Del Genio
- Department of Pharmacy, University of Naples “Federico II”, Via Domenico Montesano 49, 80131 Naples, Italy;
| | - Stefania Galdiero
- Department of Pharmacy, University of Naples “Federico II”, Via Domenico Montesano 49, 80131 Naples, Italy;
| |
Collapse
|
20
|
Pathogen-specific antimicrobials engineered de novo through membrane-protein biomimicry. Nat Biomed Eng 2021; 5:467-480. [PMID: 33390588 PMCID: PMC8131206 DOI: 10.1038/s41551-020-00665-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 11/19/2020] [Indexed: 12/17/2022]
Abstract
Precision antimicrobials aim to kill pathogens without damaging commensal bacteria in the host, and thus to cure disease without antibiotic-associated dysbiosis. Here, we report the de novo design of a synthetic host defence peptide that targets a specific pathogen by mimicking key molecular features of the pathogen’s channel-forming membrane proteins. By exploiting physical and structural vulnerabilities within the pathogen’s cellular envelope, we designed a peptide sequence that undergoes instructed tryptophan-zippered assembly within the mycolic-acid rich outer membrane of Mycobacterium tuberculosis (Mtb) to specifically kill the pathogen without collateral toxicity towards lung commensal bacteria or host tissue. These ‘mycomembrane-templated’ assemblies elicit rapid mycobactericidal activity, and enhance the potency of antibiotics by improving their otherwise poor diffusion across the rigid Mtb envelope with respect to agents that exploit transmembrane protein channels for antimycobacterial activity. This biomimetic strategy may aid the design of other narrow-spectrum antimicrobial peptides.
Collapse
|
21
|
Sandhu G, Morrow MR, Booth V. Roles of histidine charge and cardiolipin in membrane disruption by antimicrobial peptides Gaduscidin-1 and Gaduscidin-2. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183444. [PMID: 32822647 DOI: 10.1016/j.bbamem.2020.183444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 07/23/2020] [Accepted: 08/10/2020] [Indexed: 11/16/2022]
Abstract
Gad-1 and Gad-2 are helical, histidine-rich antimicrobial peptides (AMPs) from paralogous genes in cod. 15N and 2H solid state nuclear magnetic resonance (NMR) were used to characterize their lipid-bound structures and lipid interactions. Gad-1 was found to position in-plane in POPC: POPG bilayers. Gad-1 displayed greater effects than Gad-2 on lipid acyl chain order of POPE: POPG and POPE: POPG: CL bilayers, in keeping with its greater activity against E. coli. The effect of Gad-1 and Gad-2 on lipid bilayer order was only weakly affected by changes in pH, and hence changes in histidine charge. This was somewhat surprising for Gad-2 as this peptide's biological activity has been shown to be greater at low pH and thus the finding may point to the existence of functional interactions with non-lipid components of bacteria. The incorporation of cardiolipin into POPE: POPG bilayers in such a way as to preserve the overall charge of the bilayers did not alter Gad-1's effects on lipid acyl chain order parameters, which report on motions on the 10-5 s timescale. When cardiolipin and Gad-1 were both present, there were subtle changes on membrane dynamics at other timescales.
Collapse
Affiliation(s)
- Gagandeep Sandhu
- Department of Physics and Physical Oceanography, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Michael R Morrow
- Department of Physics and Physical Oceanography, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Valerie Booth
- Department of Physics and Physical Oceanography, Memorial University of Newfoundland, St. John's, NL, Canada; Department of Biochemistry, Memorial University of Newfoundland, St. John's, NL, Canada.
| |
Collapse
|
22
|
Munusamy S, Conde R, Bertrand B, Munoz-Garay C. Biophysical approaches for exploring lipopeptide-lipid interactions. Biochimie 2020; 170:173-202. [PMID: 31978418 PMCID: PMC7116911 DOI: 10.1016/j.biochi.2020.01.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 01/19/2020] [Indexed: 02/07/2023]
Abstract
In recent years, lipopeptides (LPs) have attracted a lot of attention in the pharmaceutical industry due to their broad-spectrum of antimicrobial activity against a variety of pathogens and their unique mode of action. This class of compounds has enormous potential for application as an alternative to conventional antibiotics and for pest control. Understanding how LPs work from a structural and biophysical standpoint through investigating their interaction with cell membranes is crucial for the rational design of these biomolecules. Various analytical techniques have been developed for studying intramolecular interactions with high resolution. However, these tools have been barely exploited in lipopeptide-lipid interactions studies. These biophysical approaches would give precise insight on these interactions. Here, we reviewed these state-of-the-art analytical techniques. Knowledge at this level is indispensable for understanding LPs activity and particularly their potential specificity, which is relevant information for safe application. Additionally, the principle of each analytical technique is presented and the information acquired is discussed. The key challenges, such as the selection of the membrane model are also been briefly reviewed.
Collapse
Affiliation(s)
- Sathishkumar Munusamy
- Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, 62210, Cuernavaca, Mexico
| | - Renaud Conde
- Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca, Morelos, Mexico
| | - Brandt Bertrand
- Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, 62210, Cuernavaca, Mexico
| | - Carlos Munoz-Garay
- Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, 62210, Cuernavaca, Mexico.
| |
Collapse
|
23
|
Bhatt Mitra J, Sharma VK, Mukherjee A, Garcia Sakai V, Dash A, Kumar M. Ubiquicidin-Derived Peptides Selectively Interact with the Anionic Phospholipid Membrane. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:397-408. [PMID: 31793791 DOI: 10.1021/acs.langmuir.9b03243] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Ubiquicidin (UBI)/ribosomal protein S30 (RS30) is an intracellular protein with antimicrobial activities against various pathogens. UBI (29-41) and UBI (31-38) are two crucial peptides derived from Ubiquicidin, which have shown potential as infection imaging probes. Here, we report the interactions of UBI-derived peptides with anionic and zwitterionic phospholipid membranes. Our isothermal titration calorimetry results show that both peptides selectively interact with the anionic phospholipid membrane (a model bacterial membrane) and reside mainly on the membrane surface. The interaction of UBI-derived peptides with the anionic phospholipid membrane is exothermic and driven by both enthalpy (ΔH) and entropy (ΔS), with the entropic term TΔS being greater than ΔH. This large entropic term can be a result of the aggregation of the anionic vesicles, which is confirmed by dynamic light scattering (DLS) measurements. DLS data show that vesicle aggregation is enhanced with increasing peptide-to-lipid molar ratios (P/L) and is found to be more pronounced in the case of UBI (29-41). DLS results are found to be consistent with independent transmission measurements. To study the effects of UBI-derived peptides on the microscopic dynamics of the model bacterial membrane, quasielastic neutron scattering (QENS) measurements have been carried out. The QENS results show that both peptides restrict the lateral motion of the lipid within the leaflet. UBI (29-41) acts as a stronger stiffening agent, hindering the lateral diffusion of lipids more efficiently than UBI (31-38). To our knowledge, this is the first report illustrating the mechanism of interaction of UBI-derived peptides with model membranes. This study also has implications for the improvement and design of antimicrobial peptide-based infection imaging probes.
Collapse
Affiliation(s)
| | | | - Archana Mukherjee
- Homi Bhabha National Institute , Anushaktinagar , Mumbai 400094 , India
| | - V Garcia Sakai
- ISIS Facility, Science and Technology Facilities Council , Rutherford Appleton Laboratory , Didcot OX11 0QX , U.K
| | - Ashutosh Dash
- Homi Bhabha National Institute , Anushaktinagar , Mumbai 400094 , India
| | - Mukesh Kumar
- Homi Bhabha National Institute , Anushaktinagar , Mumbai 400094 , India
| |
Collapse
|
24
|
Molecular Dynamics Study of the Human Beta-defensins 2 and 3 Chimeric Peptides with the Cell Membrane Model of Pseudomonas aeruginosa. Int J Pept Res Ther 2020. [DOI: 10.1007/s10989-019-10000-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
25
|
Accelerated Molecular Dynamics Applied to the Peptaibol Folding Problem. Int J Mol Sci 2019; 20:ijms20174268. [PMID: 31480404 PMCID: PMC6747184 DOI: 10.3390/ijms20174268] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 08/24/2019] [Accepted: 08/27/2019] [Indexed: 01/18/2023] Open
Abstract
The use of enhanced sampling molecular dynamics simulations to facilitate the folding of proteins is a relatively new approach which has quickly gained momentum in recent years. Accelerated molecular dynamics (aMD) can elucidate the dynamic path from the unfolded state to the near-native state, “flattened” by introducing a non-negative boost to the potential. Alamethicin F30/3 (Alm F30/3), chosen in this study, belongs to the class of peptaibols that are 7–20 residue long, non-ribosomally synthesized, amphipathic molecules that show interesting membrane perturbing activity. The recent studies undertaken on the Alm molecules and their transmembrane channels have been reviewed. Three consecutive simulations of ~900 ns each were carried out where N-terminal folding could be observed within the first 100 ns, while C-terminal folding could only be achieved almost after 800 ns. It took ~1 μs to attain the near-native conformation with stronger potential boost which may take several μs worth of classical MD to produce the same results. The Alm F30/3 hexamer channel was also simulated in an E. coli mimicking membrane under an external electric field that correlates with previous experiments. It can be concluded that aMD simulation techniques are suited to elucidate peptaibol structures and to understand their folding dynamics.
Collapse
|
26
|
Biofilms: Novel Strategies Based on Antimicrobial Peptides. Pharmaceutics 2019; 11:pharmaceutics11070322. [PMID: 31295834 PMCID: PMC6680976 DOI: 10.3390/pharmaceutics11070322] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 06/24/2019] [Accepted: 07/06/2019] [Indexed: 01/11/2023] Open
Abstract
The problem of drug resistance is very worrying and ever increasing. Resistance is due not only to the reckless use of antibiotics but also to the fact that pathogens are able to adapt to different conditions and develop self-defense mechanisms such as living in biofilms; altogether these issues make the search for alternative drugs a real challenge. Antimicrobial peptides appear as promising alternatives but they have disadvantages that do not make them easily applicable in the medical field; thus many researches look for solutions to overcome the disadvantages and ensure that the advantages can be exploited. This review describes the biofilm characteristics and identifies the key features that antimicrobial peptides should have. Recalcitrant bacterial infections caused by the most obstinate bacterial species should be treated with a strategy to combine conventional peptides functionalized with nano-tools. This approach could effectively disrupt high density infections caused by biofilms. Moreover, the importance of using in vivo non mammalian models for biofilm studies is described. In particular, here we analyze the use of amphibians as a model to substitute the rodent model.
Collapse
|
27
|
Lombardi L, Falanga A, Del Genio V, Galdiero S. A New Hope: Self-Assembling Peptides with Antimicrobial Activity. Pharmaceutics 2019; 11:pharmaceutics11040166. [PMID: 30987353 PMCID: PMC6523692 DOI: 10.3390/pharmaceutics11040166] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 03/22/2019] [Accepted: 03/29/2019] [Indexed: 12/12/2022] Open
Abstract
Peptide drugs hold great promise for the treatment of infectious diseases thanks to their novel mechanisms of action, low toxicity, high specificity, and ease of synthesis and modification. Naturally developing self-assembly in nature has inspired remarkable interest in self-assembly of peptides to functional nanomaterials. As a matter of fact, their structural, mechanical, and functional advantages, plus their high bio-compatibility and bio-degradability make them excellent candidates for facilitating biomedical applications. This review focuses on the self-assembly of peptides for the fabrication of antibacterial nanomaterials holding great interest for substituting antibiotics, with emphasis on strategies to achieve nano-architectures of self-assembly. The antibacterial activities achieved by these nanomaterials are also described.
Collapse
Affiliation(s)
- Lucia Lombardi
- Department of Pharmacy, University of Naples Federico II, Via Mezzocannone 16, 80134 Naples, Italy.
| | - Annarita Falanga
- Department of Agricultural Science, University of Naples Federico II, Via Mezzocannone 16, 80134 Naples, Italy.
| | - Valentina Del Genio
- Department of Pharmacy, University of Naples Federico II, Via Mezzocannone 16, 80134 Naples, Italy.
| | - Stefania Galdiero
- Department of Pharmacy, University of Naples Federico II, Via Mezzocannone 16, 80134 Naples, Italy.
| |
Collapse
|
28
|
Lombardi L, Shi Y, Falanga A, Galdiero E, de Alteriis E, Franci G, Chourpa I, Azevedo HS, Galdiero S. Enhancing the Potency of Antimicrobial Peptides through Molecular Engineering and Self-Assembly. Biomacromolecules 2019; 20:1362-1374. [PMID: 30735368 DOI: 10.1021/acs.biomac.8b01740] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Healthcare-associated infections resulting from bacterial attachment and biofilm formation on medical implants are posing significant challenges in particular with the emergence of bacterial resistance to antibiotics. Here, we report the design, synthesis and characterization of self-assembled nanostructures, which integrate on their surface antibacterial peptides. The antibacterial WMR peptide, which is a modification of the native sequence of the myxinidin, a marine peptide isolated from the epidermal mucus of hagfish, was used considering its enhanced activity against Gram-negative bacteria. WMR was linked to a peptide segment of aliphatic residues (AAAAAAA) containing a lipidic tail (C19H38O2) attached to the ε-amino of a terminal lysine to generate a peptide amphiphile (WMR PA). The self-assembly of the WMR PA alone, or combined with coassembling shorter PAs, was studied using spectroscopy and microscopy techniques. The designed PAs were shown to self-assemble into stable nanofiber structures and these nanoassemblies significantly inhibit biofilm formation and eradicate the already formed biofilms of Pseudomonas aeruginosa (Gram-negative bacteria) and Candida albicans (pathogenic fungus) when compared to the native WMR peptide. Our results provide insights into the design of peptide based supramolecular assemblies with antibacterial activity, and establish an innovative strategy to develop self-assembled antimicrobial materials for biomedical applications.
Collapse
Affiliation(s)
- Lucia Lombardi
- Department of Pharmacy, School of Medicine , University of Naples Federico II , Via Mezzocannone 16 , 80134 Naples , Italy.,School of Engineering and Materials Science , Queen Mary, University of London , Mile End Road , London E1 4NS , United Kingdom
| | - Yejiao Shi
- School of Engineering and Materials Science , Queen Mary, University of London , Mile End Road , London E1 4NS , United Kingdom
| | - Annarita Falanga
- CIRPEB, University of Naples Federico II , Via Mezzocannone 16 , 80134 Naples , Italy.,Department of Agricultural Science , University of Naples Federico II , via Università 100 , 80055 Naples , Italy
| | - Emilia Galdiero
- Department of Biology , University of Naples Federico II , via Cinthia , 80100 Naples , Italy
| | - Elisabetta de Alteriis
- Department of Biology , University of Naples Federico II , via Cinthia , 80100 Naples , Italy
| | - Gianluigi Franci
- Department of Experimental Medicine , University of Campania Luigi Vanvitelli , via Costantinopoli 16 , 80138 Naples , Italy
| | - Igor Chourpa
- EA 6295 Nanomédicaments et Nanosondes, Université François-Rabelais de Tours , 31 avenue Monge , 37000 Tours , France
| | - Helena S Azevedo
- School of Engineering and Materials Science , Queen Mary, University of London , Mile End Road , London E1 4NS , United Kingdom
| | - Stefania Galdiero
- Department of Pharmacy, School of Medicine , University of Naples Federico II , Via Mezzocannone 16 , 80134 Naples , Italy.,CIRPEB, University of Naples Federico II , Via Mezzocannone 16 , 80134 Naples , Italy
| |
Collapse
|
29
|
Oliva R, Del Vecchio P, Grimaldi A, Notomista E, Cafaro V, Pane K, Schuabb V, Winter R, Petraccone L. Membrane disintegration by the antimicrobial peptide (P)GKY20: lipid segregation and domain formation. Phys Chem Chem Phys 2019; 21:3989-3998. [PMID: 30706924 DOI: 10.1039/c8cp06280c] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Antimicrobial peptides (AMPs) are membrane-active peptides with a broad spectrum of activity against different pathogenic organisms and they represent promising new drugs to overcome the emergence of resistance to antibiotics in bacteria. (P)GKY20 is an antimicrobial peptide with a low hemolytic effect on eukaryotic cells and a strong antimicrobial activity especially against Gram-negative bacteria. However, its mechanism of action is still unknown. Here, we use fluorescence spectroscopy and differential scanning calorimetry combined with atomic force microscopy to characterise the binding of (P)GKY20 with model biomembranes and its effect on the membrane's microstructure and thermotropic properties. We found that (P)GKY20 selectively perturbs the bacterial-like membrane via a carpet-like mechanism employing peptide conformational changes, lipid segregation and domain formation as key steps in promoting membrane disruption. These results shed a first light on the action mechanism of (P)GKY20 and could represent an important contribution to the development of new peptides serving as antimicrobial agents.
Collapse
Affiliation(s)
- Rosario Oliva
- Department of Chemical Sciences, University of Naples "Federico II", Via Cintia 4, 80126 Napoli, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Kumagai A, Dupuy FG, Arsov Z, Elhady Y, Moody D, Ernst RK, Deslouches B, Montelaro RC, Peter Di Y, Tristram-Nagle S. Elastic behavior of model membranes with antimicrobial peptides depends on lipid specificity and d-enantiomers. SOFT MATTER 2019; 15:1860-1868. [PMID: 30702120 PMCID: PMC7485610 DOI: 10.1039/c8sm02180e] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
In an effort to provide new treatments for the global crisis of bacterial resistance to current antibiotics, we have used a rational approach to design several new antimicrobial peptides (AMPs). The present study focuses on 24-mer WLBU2 and its derivative, D8, with the amino acid sequence, RRWVRRVRRWVRRVVRVVRRWVRR. In D8, all of the valines are the d-enantiomer. We use X-ray low- and wide-angle diffuse scattering data to measure elasticity and lipid chain order. We show a good correlation between in vitro bacterial killing efficiency and both bending and chain order behavior in bacterial lipid membrane mimics; our results suggest that AMP-triggered domain formation could be the mechanism of bacterial killing in both Gram-positive and Gram-negative bacteria. In red blood cell lipid mimics, D8 stiffens and orders the membrane, while WLBU2 softens and disorders it, which correlate with D8's harmless vs. WLBU2's toxic behavior in hemolysis tests. These results suggest that elasticity and chain order behavior can be used to predict mechanisms of bactericidal action and toxicity of new AMPs.
Collapse
Affiliation(s)
- Akari Kumagai
- Biological Physics Group, Physics Department, Carnegie Mellon University, Pittsburgh, PA, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Tesei G, Vazdar M, Lund M. Coarse-grained model of titrating peptides interacting with lipid bilayers. J Chem Phys 2018; 149:244108. [PMID: 30599743 DOI: 10.1063/1.5058234] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Molecular-level computer simulations of peptide aggregation, translocation, and protonation at and in biomembranes are impeded by the large time and length scales involved. We present a computationally efficient, coarse-grained, and solvent-free model for the interaction between lipid bilayers and peptides. The model combines an accurate description of mechanical membrane properties with a new granular representation of the dielectric mismatch between lipids and the aqueous phase. All-atom force fields can be easily mapped onto the coarse-grained model, and parameters for coarse-grained monopeptides accurately extrapolate to membrane permeation free energies for the corresponding dipeptides and tripeptides. Acid-base equilibria of titratable amino acid residues are further studied using a constant-pH ensemble, capturing protonation state changes upon membrane translocation. Important differences between histidine, lysine, and arginine are observed, which are in good agreement with experimental observations.
Collapse
Affiliation(s)
- Giulio Tesei
- Division of Theoretical Chemistry, Lund University, P.O. Box 124, SE-22100 Lund, Sweden
| | - Mario Vazdar
- Division of Organic Chemistry and Biochemistry, Rudjer Bošković Institute, P.O. Box 180, HR-10002 Zagreb, Croatia
| | - Mikael Lund
- Division of Theoretical Chemistry, Lund University, P.O. Box 124, SE-22100 Lund, Sweden
| |
Collapse
|
32
|
Zhang N, Qi R, Chen Y, Ji X, Han Y, Wang Y. Partition of Glutamic Acid-Based Single-Chain and Gemini Amphiphiles into Phospholipid Membranes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:13652-13661. [PMID: 30350992 DOI: 10.1021/acs.langmuir.8b02627] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Understanding the interactions of amphiphile molecules with biological membranes is very important to many practical applications. Amino acid amphiphiles are a kind of mild surfactants and have many unique performances. However, their interactions with phospholipid membranes have scarcely been studied. This work has studied the interactions of glutamic acid-based gemini amphiphile C12(Glu)2C12 and single-chain amphiphile C12Glu with the model biomembrane formed by the phospholipid 1,2-dioleoyl- sn-glycero-3-phosphocholine (DOPC). The partition coefficients of C12(Glu)2C12 and C12Glu into the DOPC vesicles were derived from the observed enthalpy curves obtained by isothermal titration calorimetry at temperatures of 25.0 and 37.0 °C, and pHs of 5.6 and 7.4, corresponding to the skin surface and human physiological conditions. The results from cryogenic transmission electron microscopy, dynamic light scattering, and zeta potential measurements show that the amphiphile molecules form different aggregates, which make the amphiphile molecules exhibit different partition abilities to the DOPC vesicles. For C12Glu, the molecules form shorter wormlike micelles with a lower surface charge at all the pHs and temperatures used, and the partition coefficient of C12Glu into the DOPC vesicles does not change with temperature and pH. Differently, the C12(Glu)2C12 molecules form fibers with a larger negative charge and belts with a smaller negative charge at pHs 7.4 and 5.6, respectively, no matter what temperature is used. As a result, the partitions of C12(Glu)2C12 into the DOPC vesicles are markedly different at these two pH values, and the belts at pH 7.4 exhibit a stronger partition ability than the fibrils at pH 5.6. Moreover, at any temperature and pH, C12(Glu)2C12 shows a stronger partition ability than C12Glu. This work can help to understand the relationship between the molecular structure and aggregate structure of amino acid amphiphiles and their partition abilities into the biomembranes.
Collapse
Affiliation(s)
- Na Zhang
- Key Laboratory of Colloid, Interface and Chemical Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences , Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190 , P. R. China
- University of Chinese Academy of Sciences , Beijing 100049 , P. R. China
| | - Ruilian Qi
- Key Laboratory of Colloid, Interface and Chemical Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences , Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190 , P. R. China
- University of Chinese Academy of Sciences , Beijing 100049 , P. R. China
| | - Yao Chen
- Key Laboratory of Colloid, Interface and Chemical Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences , Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190 , P. R. China
| | - Xiuling Ji
- Key Laboratory of Colloid, Interface and Chemical Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences , Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190 , P. R. China
| | - Yuchun Han
- Key Laboratory of Colloid, Interface and Chemical Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences , Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190 , P. R. China
| | - Yilin Wang
- Key Laboratory of Colloid, Interface and Chemical Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences , Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190 , P. R. China
- University of Chinese Academy of Sciences , Beijing 100049 , P. R. China
| |
Collapse
|
33
|
Nowacka M, Rygała A, Kręgiel D, Kowalewska A. Poly(silsesquioxanes) and poly(siloxanes) grafted with N-acetylcysteine for eradicating mature bacterial biofilms in water environment. Colloids Surf B Biointerfaces 2018; 172:627-634. [PMID: 30223245 DOI: 10.1016/j.colsurfb.2018.09.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 08/27/2018] [Accepted: 09/07/2018] [Indexed: 11/19/2022]
Abstract
Bacteria adapt to their living environment forming organised biofilms. The survival strategy makes them more resistant to disinfectants, which results in acute biofilm-caused infections, secondary water pollution by biofilm metabolites and bio-corrosion. New, efficient and environmentally friendly strategies must be developed to solve this problem. Water soluble N-acetyl derivative of L-cysteine (NAC) is a non-toxic compound of mucolytic and bacteriostatic properties that can interfere with the formation of biofilms. However, it can also be a source of C and N for undesired microorganisms, as well as a reason for some adverse human health effects. Consequently, novel procedures are required, that would decrease the take-up of NAC but not reduce its antibacterial properties. We have grafted N-acetyl-l-cysteine onto linear poly(vinylsilsesquioxanes) and poly(methylvinylsiloxanes) via thiol-ene addition. Antibacterial activity of the obtained hybrid materials (respectively, NAC-Si-1 and NAC-Si-2) was determined against Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus strains. Native NAC inhibited growth of planktonic cells for the tested bacteria at concentration 0.25% w/v. Inhibition with equivalent solutions of the polymer derivatives was less effective due to the lack of SH groups. However, the tested polymers proved to be quite effective in eradication of mature biofilms. Treatment with 1% w/v emulsions of the hybrid polymers resulted in a significant reduction of viable cells in biofilm matrix despite the absence of thiol moieties. The effect was most pronounced for mature biofilms of S. aureus eradicated with NAC-Si-2.
Collapse
Affiliation(s)
- Maria Nowacka
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Łssódź, Poland
| | - Anna Rygała
- Institute of Fermentation Technology and Microbiology, Lodz University of Technology, Wólczańska 171/173, 90-924 Łssódź, Poland
| | - Dorota Kręgiel
- Institute of Fermentation Technology and Microbiology, Lodz University of Technology, Wólczańska 171/173, 90-924 Łssódź, Poland
| | - Anna Kowalewska
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Łssódź, Poland.
| |
Collapse
|
34
|
Oliva R, Chino M, Pane K, Pistorio V, De Santis A, Pizzo E, D'Errico G, Pavone V, Lombardi A, Del Vecchio P, Notomista E, Nastri F, Petraccone L. Exploring the role of unnatural amino acids in antimicrobial peptides. Sci Rep 2018; 8:8888. [PMID: 29892005 PMCID: PMC5995839 DOI: 10.1038/s41598-018-27231-5] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 05/23/2018] [Indexed: 12/14/2022] Open
Abstract
Cationic antimicrobial peptides (CAMPs) are a promising alternative to treat multidrug-resistant bacteria, which have developed resistance to all the commonly used antimicrobial, and therefore represent a serious threat to human health. One of the major drawbacks of CAMPs is their sensitivity to proteases, which drastically limits their half-life. Here we describe the design and synthesis of three nine-residue CAMPs, which showed high stability in serum and broad spectrum antimicrobial activity. As for all peptides a very low selectivity between bacterial and eukaryotic cells was observed, we performed a detailed biophysical characterization of the interaction of one of these peptides with liposomes mimicking bacterial and eukaryotic membranes. Our results show a surface binding on the DPPC/DPPG vesicles, coupled with lipid domain formation, and, above a threshold concentration, a deep insertion into the bilayer hydrophobic core. On the contrary, mainly surface binding of the peptide on the DPPC bilayer was observed. These observed differences in the peptide interaction with the two model membranes suggest a divergence in the mechanisms responsible for the antimicrobial activity and for the observed high toxicity toward mammalian cell lines. These results could represent an important contribution to unravel some open and unresolved issues in the development of synthetic CAMPs.
Collapse
Affiliation(s)
- Rosario Oliva
- Department of Chemical Sciences, University of Naples "Federico II", via Cintia, I-80126, Naples, Italy
| | - Marco Chino
- Department of Chemical Sciences, University of Naples "Federico II", via Cintia, I-80126, Naples, Italy
| | - Katia Pane
- Department of Biology, University of Naples "Federico II", Via Cintia, I-80126, Naples, Italy
| | - Valeria Pistorio
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples "Federico II", Via Pansini, 5, I-80131, Naples, Italy
| | - Augusta De Santis
- Department of Chemical Sciences, University of Naples "Federico II", via Cintia, I-80126, Naples, Italy
| | - Elio Pizzo
- Department of Biology, University of Naples "Federico II", Via Cintia, I-80126, Naples, Italy
| | - Gerardino D'Errico
- Department of Chemical Sciences, University of Naples "Federico II", via Cintia, I-80126, Naples, Italy
| | - Vincenzo Pavone
- Department of Chemical Sciences, University of Naples "Federico II", via Cintia, I-80126, Naples, Italy
| | - Angela Lombardi
- Department of Chemical Sciences, University of Naples "Federico II", via Cintia, I-80126, Naples, Italy
| | - Pompea Del Vecchio
- Department of Chemical Sciences, University of Naples "Federico II", via Cintia, I-80126, Naples, Italy
| | - Eugenio Notomista
- Department of Biology, University of Naples "Federico II", Via Cintia, I-80126, Naples, Italy
| | - Flavia Nastri
- Department of Chemical Sciences, University of Naples "Federico II", via Cintia, I-80126, Naples, Italy
| | - Luigi Petraccone
- Department of Chemical Sciences, University of Naples "Federico II", via Cintia, I-80126, Naples, Italy.
| |
Collapse
|
35
|
Lee TH, Hirst DJ, Kulkarni K, Del Borgo MP, Aguilar MI. Exploring Molecular-Biomembrane Interactions with Surface Plasmon Resonance and Dual Polarization Interferometry Technology: Expanding the Spotlight onto Biomembrane Structure. Chem Rev 2018; 118:5392-5487. [PMID: 29793341 DOI: 10.1021/acs.chemrev.7b00729] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The molecular analysis of biomolecular-membrane interactions is central to understanding most cellular systems but has emerged as a complex technical challenge given the complexities of membrane structure and composition across all living cells. We present a review of the application of surface plasmon resonance and dual polarization interferometry-based biosensors to the study of biomembrane-based systems using both planar mono- or bilayers or liposomes. We first describe the optical principals and instrumentation of surface plasmon resonance, including both linear and extraordinary transmission modes and dual polarization interferometry. We then describe the wide range of model membrane systems that have been developed for deposition on the chips surfaces that include planar, polymer cushioned, tethered bilayers, and liposomes. This is followed by a description of the different chemical immobilization or physisorption techniques. The application of this broad range of engineered membrane surfaces to biomolecular-membrane interactions is then overviewed and how the information obtained using these techniques enhance our molecular understanding of membrane-mediated peptide and protein function. We first discuss experiments where SPR alone has been used to characterize membrane binding and describe how these studies yielded novel insight into the molecular events associated with membrane interactions and how they provided a significant impetus to more recent studies that focus on coincident membrane structure changes during binding of peptides and proteins. We then discuss the emerging limitations of not monitoring the effects on membrane structure and how SPR data can be combined with DPI to provide significant new information on how a membrane responds to the binding of peptides and proteins.
Collapse
Affiliation(s)
- Tzong-Hsien Lee
- Department of Biochemistry and Molecular Biology and Biomedicine Discovery Institute , Monash University , Clayton , VIC 3800 , Australia
| | - Daniel J Hirst
- Department of Biochemistry and Molecular Biology and Biomedicine Discovery Institute , Monash University , Clayton , VIC 3800 , Australia
| | - Ketav Kulkarni
- Department of Biochemistry and Molecular Biology and Biomedicine Discovery Institute , Monash University , Clayton , VIC 3800 , Australia
| | - Mark P Del Borgo
- Department of Biochemistry and Molecular Biology and Biomedicine Discovery Institute , Monash University , Clayton , VIC 3800 , Australia
| | - Marie-Isabel Aguilar
- Department of Biochemistry and Molecular Biology and Biomedicine Discovery Institute , Monash University , Clayton , VIC 3800 , Australia
| |
Collapse
|
36
|
Forde É, Shafiy G, Fitzgerald-Hughes D, Strömstedt AA, Devocelle M. Action of antimicrobial peptides and their prodrugs on model and biological membranes. J Pept Sci 2018; 24:e3086. [DOI: 10.1002/psc.3086] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 03/29/2018] [Accepted: 04/23/2018] [Indexed: 02/06/2023]
Affiliation(s)
- Éanna Forde
- Department of Chemistry; Royal College of Surgeons in Ireland; 123 St. Stephen's Green Dublin 2 Ireland
- Department of Clinical Microbiology; Royal College of Surgeons in Ireland; Dublin 9 Ireland
| | - Ghady Shafiy
- Department of Chemistry; Royal College of Surgeons in Ireland; 123 St. Stephen's Green Dublin 2 Ireland
- Department of Clinical Microbiology; Royal College of Surgeons in Ireland; Dublin 9 Ireland
| | | | - Adam A. Strömstedt
- Pharmacognosy, Department of Medicinal Chemistry; Uppsala University; Biomedical Centre, Box 574 751 23 Uppsala Sweden
| | - Marc Devocelle
- Department of Chemistry; Royal College of Surgeons in Ireland; 123 St. Stephen's Green Dublin 2 Ireland
| |
Collapse
|
37
|
De Santis A, La Manna S, Krauss IR, Malfitano AM, Novellino E, Federici L, De Cola A, Di Matteo A, D'Errico G, Marasco D. Nucleophosmin-1 regions associated with acute myeloid leukemia interact differently with lipid membranes. Biochim Biophys Acta Gen Subj 2018; 1862:967-978. [PMID: 29330024 DOI: 10.1016/j.bbagen.2018.01.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 12/04/2017] [Accepted: 01/08/2018] [Indexed: 01/25/2023]
Affiliation(s)
- Augusta De Santis
- Department of Chemical Sciences, University of Naples "Federico II", Naples, Italy; CSGI - Consorzio Interuniversitario per lo Sviluppo dei Sistemi a Grande Interfase, Florence, Italy
| | - Sara La Manna
- Department of Pharmacy, CIRPEB: Centro Interuniversitario di Ricerca sui Peptidi Bioattivi, University of Naples "Federico II", 80134, Naples, Italy
| | - Irene Russo Krauss
- Department of Chemical Sciences, University of Naples "Federico II", Naples, Italy; CSGI - Consorzio Interuniversitario per lo Sviluppo dei Sistemi a Grande Interfase, Florence, Italy
| | - Anna Maria Malfitano
- Department of Pharmacy, CIRPEB: Centro Interuniversitario di Ricerca sui Peptidi Bioattivi, University of Naples "Federico II", 80134, Naples, Italy
| | - Ettore Novellino
- Department of Pharmacy, CIRPEB: Centro Interuniversitario di Ricerca sui Peptidi Bioattivi, University of Naples "Federico II", 80134, Naples, Italy
| | - Luca Federici
- Department of Medical, Oral and Biotechnological Sciences and CeSI-MeT, University of Chieti "G. d'Annunzio", Via dei Vestini 31, 66100 Chieti, Italy
| | - Antonella De Cola
- Department of Medical, Oral and Biotechnological Sciences and CeSI-MeT, University of Chieti "G. d'Annunzio", Via dei Vestini 31, 66100 Chieti, Italy
| | - Adele Di Matteo
- Institute of Molecular Biology and Pathology, CNR, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Gerardino D'Errico
- Department of Chemical Sciences, University of Naples "Federico II", Naples, Italy; CSGI - Consorzio Interuniversitario per lo Sviluppo dei Sistemi a Grande Interfase, Florence, Italy
| | - Daniela Marasco
- Department of Pharmacy, CIRPEB: Centro Interuniversitario di Ricerca sui Peptidi Bioattivi, University of Naples "Federico II", 80134, Naples, Italy.
| |
Collapse
|
38
|
Merlino F, Carotenuto A, Casciaro B, Martora F, Loffredo MR, Di Grazia A, Yousif AM, Brancaccio D, Palomba L, Novellino E, Galdiero M, Iovene MR, Mangoni ML, Grieco P. Glycine-replaced derivatives of [Pro 3 ,DLeu 9 ]TL, a temporin L analogue: Evaluation of antimicrobial, cytotoxic and hemolytic activities. Eur J Med Chem 2017; 139:750-761. [DOI: 10.1016/j.ejmech.2017.08.040] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 08/03/2017] [Accepted: 08/19/2017] [Indexed: 12/23/2022]
|
39
|
Cyclic Peptides as Novel Therapeutic Microbicides: Engineering of Human Defensin Mimetics. Molecules 2017; 22:molecules22071217. [PMID: 28726740 PMCID: PMC6152268 DOI: 10.3390/molecules22071217] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 07/17/2017] [Accepted: 07/18/2017] [Indexed: 11/16/2022] Open
Abstract
Cyclic peptides are receiving significant attention thanks to their antimicrobial activity and high serum stability, which is useful to develop and design novel antimicrobial agents. Antimicrobial peptides appear to be key components of innate defences against bacteria, viruses, and fungi. Among the others, defensins possess a strong microbicidial activity. Defensins are cationic and amphipathic peptides with six cysteine residues connected by three disulfide bonds found in plants, insects, and mammals; they are divided in three families: α-, β-, and θ-defensins. α-Defensins are contained in the primary granules of human neutrophils; β-defensins are expressed in human epithelia; and θ-defensins are pseudo-cyclic defensins not found in humans, but in rhesus macaques. The structural diversities among the three families are reflected in a different antimicrobial action as well as in serum stability. The engineering of these peptides is an exciting opportunity to obtain more functional antimicrobial molecules highlighting their potential as therapeutic agents. The present review reports the most recent advances in the field of cyclic peptides with a specific regard to defensin analogs.
Collapse
|
40
|
Mamusa M, Sitia L, Barbero F, Ruyra A, Calvo TD, Montis C, Gonzalez-Paredes A, Wheeler GN, Morris CJ, McArthur M, Berti D. Cationic liposomal vectors incorporating a bolaamphiphile for oligonucleotide antimicrobials. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1859:1767-1777. [PMID: 28610721 DOI: 10.1016/j.bbamem.2017.06.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 05/10/2017] [Accepted: 06/08/2017] [Indexed: 01/01/2023]
Abstract
Antibacterial resistance has become a serious crisis for world health over the last few decades, so that new therapeutic approaches are strongly needed to face the threat of resistant infections. Transcription factor decoys (TFD) are a promising new class of antimicrobial oligonucleotides with proven in vivo activity when combined with a bolaamphiphilic cationic molecule, 12-bis-THA. These two molecular species form stable nanoplexes which, however, present very scarce colloidal stability in physiological media, which poses the challenge of drug formulation and delivery. In this work, we reformulated the 12-bis-THA/TFD nanoplexes in a liposomal carrier, which retains the ability to protect the oligonucleotide therapeutic from degradation and deliver it across the bacterial cell wall. We performed a physical-chemical study to investigate how the incorporation of 12-bis-THA and TFD affects the structure of POPC- and POPC/DOPE liposomes. Analysis was performed using dynamic light scattering (DLS), ζ-potential measurements, small-angle x-ray scattering (SAXS), and steady-state fluorescence spectroscopy to better understand the structure of the liposomal formulations containing the 12-bis-THA/TFD complexes. Oligonucleotide delivery to model Escherichia coli bacteria was assessed by means of confocal scanning laser microscopy (CLSM), evidencing the requirement of a fusogenic helper lipid for transfection. Preliminary biological assessments suggested the necessity of further development by modulation of 12-bis-THA concentration in order to optimize its therapeutic index, i.e. the ratio of antibacterial activity to the observed cytotoxicity. In summary, POPC/DOPE/12-bis-THA liposomes appear as promising formulations for TFD delivery.
Collapse
Affiliation(s)
- Marianna Mamusa
- Department of Chemistry "Ugo Schiff" and CSGI, University of Florence. Via della Lastruccia 3, 50019 Sesto Fiorentino, (FI), Italy.
| | - Leopoldo Sitia
- Procarta Biosystems Ltd, Norwich Research Park, Norwich NR4 7UH, United Kingdom
| | | | - Angels Ruyra
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, United Kingdom
| | - Teresa Díaz Calvo
- Procarta Biosystems Ltd, Norwich Research Park, Norwich NR4 7UH, United Kingdom
| | - Costanza Montis
- Department of Chemistry "Ugo Schiff" and CSGI, University of Florence. Via della Lastruccia 3, 50019 Sesto Fiorentino, (FI), Italy
| | | | - Grant N Wheeler
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, United Kingdom
| | - Christopher J Morris
- School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, United Kingdom
| | - Michael McArthur
- Procarta Biosystems Ltd, Norwich Research Park, Norwich NR4 7UH, United Kingdom; Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich NR4 7UQ, United Kingdom
| | - Debora Berti
- Department of Chemistry "Ugo Schiff" and CSGI, University of Florence. Via della Lastruccia 3, 50019 Sesto Fiorentino, (FI), Italy
| |
Collapse
|