1
|
Atkinson RAK, Collins JM, Sreedharan J, King AE, Fernandez-Martos CM. Alterations to metabolic hormones in amyotrophic lateral sclerosis and frontotemporal dementia postmortem human tissue. J Neuropathol Exp Neurol 2024; 83:907-916. [PMID: 38917432 PMCID: PMC11487092 DOI: 10.1093/jnen/nlae054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2024] Open
Abstract
Metabolic changes are observed in patients with both amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Although regulation of metabolic processes in the CNS is predominantly carried out within the hypothalamus, extra-hypothalamic CNS areas contain metabolic hormone receptors, including those for leptin (LEPR), insulin (INSR), and neuropeptide Y (NPY), indicating that they may play a role in biological processes underlying pathogenic disease processes. The status of these hormones within regions vulnerable in ALS/FTD is not well described. This study sought to determine whether the expression of these hormones and their receptors is altered in pathology-rich regions in cases of human FTD (superior frontal gyrus and insular cortex) and ALS (primary motor cortex and lumbar spinal cord) with TDP-43 pathology compared to matched healthy controls. LEPR mRNA was increased within the superior frontal gyrus of FTD cases and within primary motor cortex and lumbar spinal cord of ALS cases; INSR mRNA was increased in superior frontal gyrus and insular cortex of FTD cases. NPY protein was decreased in primary motor cortex and lumbar spinal cord of ALS cases. Our results demonstrate that metabolic hormones undergo complex alterations in ALS and FTD and suggest that these hormones could play critical roles in the pathogenesis of these diseases.
Collapse
Affiliation(s)
- Rachel A K Atkinson
- Wicking Dementia Research and Education Centre, College of Health and Medicine, University of Tasmania, Hobart, Tasmania, Australia
| | - Jessica M Collins
- Wicking Dementia Research and Education Centre, College of Health and Medicine, University of Tasmania, Hobart, Tasmania, Australia
| | - Jemeen Sreedharan
- Maurice Wohl Clinical Neuroscience Institute, Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, United Kingdom
| | - Anna E King
- Wicking Dementia Research and Education Centre, College of Health and Medicine, University of Tasmania, Hobart, Tasmania, Australia
| | - Carmen M Fernandez-Martos
- Wicking Dementia Research and Education Centre, College of Health and Medicine, University of Tasmania, Hobart, Tasmania, Australia
- Department of Health and Pharmaceutical Sciences, School of Pharmacy, Universidad CEU-San Pablo, CEU Universities, Madrid, Spain
| |
Collapse
|
2
|
Cheng JL, Cook AL, Talbot J, Perry S. How is Excitotoxicity Being Modelled in iPSC-Derived Neurons? Neurotox Res 2024; 42:43. [PMID: 39405005 PMCID: PMC11480214 DOI: 10.1007/s12640-024-00721-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 09/11/2024] [Accepted: 09/29/2024] [Indexed: 10/19/2024]
Abstract
Excitotoxicity linked either to environmental causes (pesticide and cyanotoxin exposure), excitatory neurotransmitter imbalance, or to intrinsic neuronal hyperexcitability, is a pathological mechanism central to neurodegeneration in amyotrophic lateral sclerosis (ALS). Investigation of excitotoxic mechanisms using in vitro and in vivo animal models has been central to understanding ALS mechanisms of disease. In particular, advances in induced pluripotent stem cell (iPSC) technologies now provide human cell-based models that are readily amenable to environmental and network-based excitotoxic manipulations. The cell-type specific differentiation of iPSC, combined with approaches to modelling excitotoxicity that include editing of disease-associated gene variants, chemogenetics, and environmental risk-associated exposures make iPSC primed to examine gene-environment interactions and disease-associated excitotoxic mechanisms. Critical to this is knowledge of which neurotransmitter receptor subunits are expressed by iPSC-derived neuronal cultures being studied, how their activity responds to antagonists and agonists of these receptors, and how to interpret data derived from multi-parameter electrophysiological recordings. This review explores how iPSC-based studies have contributed to our understanding of ALS-linked excitotoxicity and highlights novel approaches to inducing excitotoxicity in iPSC-derived neurons to further our understanding of its pathological pathways.
Collapse
Affiliation(s)
- Jan L Cheng
- Wicking Dementia Research and Education Centre, College of Health and Medicine, University of Tasmania, 17 Liverpool Street, Hobart, TAS, Australia
| | - Anthony L Cook
- Wicking Dementia Research and Education Centre, College of Health and Medicine, University of Tasmania, 17 Liverpool Street, Hobart, TAS, Australia
| | - Jana Talbot
- Wicking Dementia Research and Education Centre, College of Health and Medicine, University of Tasmania, 17 Liverpool Street, Hobart, TAS, Australia
| | - Sharn Perry
- Wicking Dementia Research and Education Centre, College of Health and Medicine, University of Tasmania, 17 Liverpool Street, Hobart, TAS, Australia.
| |
Collapse
|
3
|
Calma AD, van den Bos M, Pavey N, Santos Silva C, Menon P, Vucic S. Physiological Biomarkers of Upper Motor Neuron Dysfunction in ALS. Brain Sci 2024; 14:760. [PMID: 39199454 PMCID: PMC11352893 DOI: 10.3390/brainsci14080760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/24/2024] [Accepted: 07/26/2024] [Indexed: 09/01/2024] Open
Abstract
Upper motor neuron (UMN) dysfunction is an important feature of amyotrophic lateral sclerosis (ALS) for the diagnosis and understanding of pathogenesis. The identification of UMN signs forms the basis of ALS diagnosis, although may be difficult to discern, especially in the setting of severe muscle weakness. Transcranial magnetic stimulation (TMS) techniques have yielded objective physiological biomarkers of UMN dysfunction in ALS, enabling the interrogation of cortical and subcortical neuronal networks with diagnostic, pathophysiological, and prognostic implications. Transcranial magnetic stimulation techniques have provided pertinent pathogenic insights and yielded novel diagnostic and prognostic biomarkers. Cortical hyperexcitability, as heralded by a reduction in short interval intracortical inhibition (SICI) and an increase in short interval intracortical facilitation (SICF), has been associated with lower motor neuron degeneration, patterns of disease evolution, as well as the development of specific ALS clinical features including the split hand phenomenon. Reduction in SICI has also emerged as a potential diagnostic aid in ALS. More recently, physiological distinct inhibitory and facilitatory cortical interneuronal circuits have been identified, which have been shown to contribute to ALS pathogenesis. The triple stimulation technique (TST) was shown to enhance the diagnostic utility of conventional TMS measures in detecting UMN dysfunction. Resting-state EEG is a novel neurophysiological technique developed for directly interrogating cortical neuronal networks in ALS, that have yielded potentially useful physiological biomarkers of UMN dysfunction. The present review discusses physiological biomarkers of UMN dysfunction in ALS, encompassing conventional and novel TMS techniques developed to interrogate the functional integrity of the corticomotoneuronal system, focusing on pathogenic, diagnostic, and prognostic utility.
Collapse
Affiliation(s)
- Aicee Dawn Calma
- Brain and Nerve Research Center, The University of Sydney, Sydney 2139, Australia (C.S.S.)
| | - Mehdi van den Bos
- Brain and Nerve Research Center, The University of Sydney, Sydney 2139, Australia (C.S.S.)
| | - Nathan Pavey
- Brain and Nerve Research Center, The University of Sydney, Sydney 2139, Australia (C.S.S.)
| | - Cláudia Santos Silva
- Brain and Nerve Research Center, The University of Sydney, Sydney 2139, Australia (C.S.S.)
- Department of Neurosciences and Mental Health, Unidade Local de Saúde de Santa Maria, 1649-028 Lisbon, Portugal
- Faculdade de Medicina-Instituto de Medicina Molecular, Centro de Estudos Egas Moniz, Universidade de Lisboa, 1649-028 Lisbon, Portugal
| | - Parvathi Menon
- Brain and Nerve Research Center, The University of Sydney, Sydney 2139, Australia (C.S.S.)
| | - Steve Vucic
- Brain and Nerve Research Center, The University of Sydney, Sydney 2139, Australia (C.S.S.)
| |
Collapse
|
4
|
Pavey N, Hannaford A, van den Bos M, Kiernan MC, Menon P, Vucic S. Distinct neuronal circuits mediate cortical hyperexcitability in amyotrophic lateral sclerosis. Brain 2024; 147:2344-2356. [PMID: 38374770 DOI: 10.1093/brain/awae049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 01/16/2024] [Accepted: 01/27/2024] [Indexed: 02/21/2024] Open
Abstract
Cortical hyperexcitability is an important pathophysiological mechanism in amyotrophic lateral sclerosis (ALS), reflecting a complex interaction of inhibitory and facilitatory interneuronal processes that evolves in the degenerating brain. The advances in physiological techniques have made it possible to interrogate progressive changes in the motor cortex. Specifically, the direction of transcranial magnetic stimulation (TMS) stimulus within the primary motor cortex can be utilized to influence descending corticospinal volleys and to thereby provide information about distinct interneuronal circuits. Cortical motor function and cognition was assessed in 29 ALS patients with results compared to healthy volunteers. Cortical dysfunction was assessed using threshold-tracking TMS to explore alterations in short interval intracortical inhibition (SICI), short interval intracortical facilitation (SICF), the index of excitation and stimulus response curves using a figure-of-eight coil with the coil oriented relative to the primary motor cortex in a posterior-anterior, lateral-medial and anterior-posterior direction. Mean SICI, between interstimulus interval of 1-7 ms, was significantly reduced in ALS patients compared to healthy controls when assessed with the coil oriented in posterior-anterior (P = 0.044) and lateral-medial (P = 0.005) but not the anterior-posterior (P = 0.08) directions. A significant correlation between mean SICI oriented in a posterior-anterior direction and the total Edinburgh Cognitive and Behavioural ALS Screen score (Rho = 0.389, P = 0.037) was evident. In addition, the mean SICF, between interstimulus interval 1-5 ms, was significantly increased in ALS patients when recorded with TMS coil oriented in posterior-anterior (P = 0.035) and lateral-medial (P < 0.001) directions. In contrast, SICF recorded with TMS coil oriented in the anterior-posterior direction was comparable between ALS and controls (P = 0.482). The index of excitation was significantly increased in ALS patients when recorded with the TMS coil oriented in posterior-anterior (P = 0.041) and lateral-medial (P = 0.003) directions. In ALS patients, a significant increase in the stimulus response curve gradient was evident compared to controls when recorded with TMS coil oriented in posterior-anterior (P < 0.001), lateral-medial (P < 0.001) and anterior-posterior (P = 0.002) directions. The present study has established that dysfunction of distinct interneuronal circuits mediates the development of cortical hyperexcitability in ALS. Specifically, complex interplay between inhibitory circuits and facilitatory interneuronal populations, that are preferentially activated by stimulation in posterior-to-anterior or lateral-to-medial directions, promotes cortical hyperexcitability in ALS. Mechanisms that underlie dysfunction of these specific cortical neuronal circuits will enhance understanding of the pathophysiological processes in ALS, with the potential to uncover focussed therapeutic targets.
Collapse
Affiliation(s)
- Nathan Pavey
- Brain and Nerve Research Centre, Concord Clinical School, The University of Sydney, Concord Hospital, Sydney, NSW 2139, Australia
| | - Andrew Hannaford
- Brain and Nerve Research Centre, Concord Clinical School, The University of Sydney, Concord Hospital, Sydney, NSW 2139, Australia
| | - Mehdi van den Bos
- Brain and Nerve Research Centre, Concord Clinical School, The University of Sydney, Concord Hospital, Sydney, NSW 2139, Australia
| | - Matthew C Kiernan
- Brain and Mind Centre, The University of Sydney, Sydney, NSW 2139, Australia
- Department of Neurology, Royal Prince Alfred Hospital, Sydney, NSW 2139, Australia
| | - Parvathi Menon
- Brain and Nerve Research Centre, Concord Clinical School, The University of Sydney, Concord Hospital, Sydney, NSW 2139, Australia
| | - Steve Vucic
- Brain and Nerve Research Centre, Concord Clinical School, The University of Sydney, Concord Hospital, Sydney, NSW 2139, Australia
| |
Collapse
|
5
|
Dharmadasa T, Pavey N, Tu S, Menon P, Huynh W, Mahoney CJ, Timmins HC, Higashihara M, van den Bos M, Shibuya K, Kuwabara S, Grosskreutz J, Kiernan MC, Vucic S. Novel approaches to assessing upper motor neuron dysfunction in motor neuron disease/amyotrophic lateral sclerosis: IFCN handbook chapter. Clin Neurophysiol 2024; 163:68-89. [PMID: 38705104 DOI: 10.1016/j.clinph.2024.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 02/08/2024] [Accepted: 04/14/2024] [Indexed: 05/07/2024]
Abstract
Identifying upper motor neuron (UMN) dysfunction is fundamental to the diagnosis and understanding of disease pathogenesis in motor neuron disease (MND). The clinical assessment of UMN dysfunction may be difficult, particularly in the setting of severe muscle weakness. From a physiological perspective, transcranial magnetic stimulation (TMS) techniques provide objective biomarkers of UMN dysfunction in MND and may also be useful to interrogate cortical and network function. Single, paired- and triple pulse TMS techniques have yielded novel diagnostic and prognostic biomarkers in MND, and have provided important pathogenic insights, particularly pertaining to site of disease onset. Cortical hyperexcitability, as heralded by reduced short interval intracortical inhibition (SICI) and increased short interval intracortical facilitation, has been associated with the onset of lower motor neuron degeneration, along with patterns of disease spread, development of specific clinical features such as the split hand phenomenon, and may provide an indication about the rate of disease progression. Additionally, reduction of SICI has emerged as a potential diagnostic aid in MND. The triple stimulation technique (TST) was shown to enhance the diagnostic utility of conventional TMS measures in detecting UMN dysfunction in MND. Separately, sophisticated brain imaging techniques have uncovered novel biomarkers of neurodegeneration that have bene associated with progression. The present review will discuss the utility of TMS and brain neuroimaging derived biomarkers of UMN dysfunction in MND, focusing on recently developed TMS techniques and advanced neuroimaging modalities that interrogate structural and functional integrity of the corticomotoneuronal system, with an emphasis on pathogenic, diagnostic, and prognostic utility.
Collapse
Affiliation(s)
- Thanuja Dharmadasa
- Department of Neurology, The Royal Melbourne Hospital City Campus, Parkville, Victoria, Australia
| | - Nathan Pavey
- Brain and Nerve Research Center, The University of Sydney, Sydney, Australia
| | - Sicong Tu
- Brain and Mind Centre, The University of Sydney, and Department of Neurology, Royal Prince Alfred Hospital, Australia
| | - Parvathi Menon
- Brain and Nerve Research Center, The University of Sydney, Sydney, Australia
| | - William Huynh
- Brain and Mind Centre, The University of Sydney, and Department of Neurology, Royal Prince Alfred Hospital, Australia
| | - Colin J Mahoney
- Brain and Mind Centre, The University of Sydney, and Department of Neurology, Royal Prince Alfred Hospital, Australia
| | - Hannah C Timmins
- Brain and Mind Centre, The University of Sydney, and Department of Neurology, Royal Prince Alfred Hospital, Australia
| | - Mana Higashihara
- Department of Neurology, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo, Japan
| | - Mehdi van den Bos
- Brain and Nerve Research Center, The University of Sydney, Sydney, Australia
| | - Kazumoto Shibuya
- Neurology, Chiba University, Graduate School of Medicine, Chiba, Japan
| | - Satoshi Kuwabara
- Neurology, Chiba University, Graduate School of Medicine, Chiba, Japan
| | - Julian Grosskreutz
- Precision Neurology, Excellence Cluster Precision Medicine in Inflammation, University of Lübeck, University Hospital Schleswig-Holstein Campus, Lübeck, Germany
| | - Matthew C Kiernan
- Brain and Mind Centre, The University of Sydney, and Department of Neurology, Royal Prince Alfred Hospital, Australia
| | - Steve Vucic
- Brain and Nerve Research Center, The University of Sydney, Sydney, Australia.
| |
Collapse
|
6
|
Di Lazzaro V, Ranieri F, Bączyk M, de Carvalho M, Dileone M, Dubbioso R, Fernandes S, Kozak G, Motolese F, Ziemann U. Novel approaches to motoneuron disease/ALS treatment using non-invasive brain and spinal stimulation: IFCN handbook chapter. Clin Neurophysiol 2024; 158:114-136. [PMID: 38218077 DOI: 10.1016/j.clinph.2023.12.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/28/2023] [Accepted: 12/17/2023] [Indexed: 01/15/2024]
Abstract
Non-invasive brain stimulation techniques have been exploited in motor neuron disease (MND) with multifold objectives: to support the diagnosis, to get insights in the pathophysiology of these disorders and, more recently, to slow down disease progression. In this review, we consider how neuromodulation can now be employed to treat MND, with specific attention to amyotrophic lateral sclerosis (ALS), the most common form with upper motoneuron (UMN) involvement, taking into account electrophysiological abnormalities revealed by human and animal studies that can be targeted by neuromodulation techniques. This review article encompasses repetitive transcranial magnetic stimulation methods (including low-frequency, high-frequency, and pattern stimulation paradigms), transcranial direct current stimulation as well as experimental findings with the newer approach of trans-spinal direct current stimulation. We also survey and discuss the trials that have been performed, and future perspectives.
Collapse
Affiliation(s)
- Vincenzo Di Lazzaro
- Department of Medicine and Surgery, Unit of Neurology, Neurophysiology, Neurobiology and Psychiatry, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128 Roma, Italy; Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128 Roma, Italy.
| | - Federico Ranieri
- Neurology Unit, Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, P.Le L.A. Scuro 10, 37134 Verona, Italy
| | - Marcin Bączyk
- Department of Neurobiology, Poznań University of Physical Education, Królowej Jadwigi Street 27/39, 61-871 Poznań, Poland
| | - Mamede de Carvalho
- Institute of Physiology, Institute of Molecular Medicine-JLA, Egas Moniz Study Centre, Faculty of Medicine, University of Lisbon, Lisbon 1649-028, Portugal; Department of Neurosciences and Mental Health, CHULN, Lisbon, Portugal
| | - Michele Dileone
- Faculty of Health Sciences, UCLM Talavera de la Reina, Toledo, Spain; Neurology Department, Hospital Nuestra Señora del Prado, Talavera de la Reina, Toledo, Spain
| | - Raffaele Dubbioso
- Neurophysiology Unit, Department of Neurosciences, Reproductive Sciences and Odontostomatology, University of Naples "Federico II", Napoli, Italy
| | - Sofia Fernandes
- Instituto de Biofísica e Engenharia Biomédica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016-Lisboa, Portugal
| | - Gabor Kozak
- Department of Neurology and Stroke, University of Tübingen, Tübingen, Germany; Hertie-Institute of Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Francesco Motolese
- Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128 Roma, Italy
| | - Ulf Ziemann
- Department of Neurology and Stroke, University of Tübingen, Tübingen, Germany; Hertie-Institute of Clinical Brain Research, University of Tübingen, Tübingen, Germany.
| |
Collapse
|
7
|
Clark RM, Clark CM, Lewis KE, Dyer MS, Chuckowree JA, Hoyle JA, Blizzard CA, Dickson TC. Intranasal neuropeptide Y1 receptor antagonism improves motor deficits in symptomatic SOD1 ALS mice. Ann Clin Transl Neurol 2023; 10:1985-1999. [PMID: 37644692 PMCID: PMC10647012 DOI: 10.1002/acn3.51885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 08/09/2023] [Indexed: 08/31/2023] Open
Abstract
OBJECTIVE Neuropeptide Y (NPY) is a 36 amino acid peptide widely considered to provide neuroprotection in a range of neurodegenerative diseases. In the fatal motor neuron disease amyotrophic lateral sclerosis (ALS), recent evidence supports a link between NPY and ALS disease processes. The goal of this study was to determine the therapeutic potential and role of NPY in ALS, harnessing the brain-targeted intranasal delivery of the peptide, previously utilised to correct motor and cognitive phenotypes in other neurological conditions. METHODS To confirm the association with clinical disease characteristics, NPY expression was quantified in post-mortem motor cortex tissue of ALS patients and age-matched controls. The effect of NPY on ALS cortical pathophysiology was investigated using slice electrophysiology and multi-electrode array recordings of SOD1G93A cortical cultures in vitro. The impact of NPY on ALS disease trajectory was investigated by treating SOD1G93A mice intranasally with NPY and selective NPY receptor agonists and antagonists from pre-symptomatic and symptomatic phases of disease. RESULTS In the human post-mortem ALS motor cortex, we observe a significant increase in NPY expression, which is not present in the somatosensory cortex. In vitro, we demonstrate that NPY can ameliorate ALS hyperexcitability, while brain-targeted nasal delivery of NPY and a selective NPY Y1 receptor antagonist modified survival and motor deficits specifically within the symptomatic phase of the disease in the ALS SOD1G93A mouse. INTERPRETATION Taken together, these findings highlight the capacity for non-invasive brain-targeted interventions in ALS and support antagonism of NPY Y1Rs as a novel strategy to improve ALS motor function.
Collapse
Affiliation(s)
- Rosemary M. Clark
- Menzies Institute for Medical ResearchUniversity of TasmaniaHobartTasmania7000Australia
| | - Courtney M. Clark
- Menzies Institute for Medical ResearchUniversity of TasmaniaHobartTasmania7000Australia
| | - Katherine E.A. Lewis
- Menzies Institute for Medical ResearchUniversity of TasmaniaHobartTasmania7000Australia
| | - Marcus S. Dyer
- Menzies Institute for Medical ResearchUniversity of TasmaniaHobartTasmania7000Australia
| | - Jyoti A. Chuckowree
- Menzies Institute for Medical ResearchUniversity of TasmaniaHobartTasmania7000Australia
| | - Joshua A. Hoyle
- Menzies Institute for Medical ResearchUniversity of TasmaniaHobartTasmania7000Australia
| | - Catherine A. Blizzard
- Tasmanian School of Medicine, College of Health and MedicineUniversity of TasmaniaHobartTasmania7000Australia
| | - Tracey C. Dickson
- Menzies Institute for Medical ResearchUniversity of TasmaniaHobartTasmania7000Australia
| |
Collapse
|
8
|
Xie M, Pallegar PN, Parusel S, Nguyen AT, Wu LJ. Regulation of cortical hyperexcitability in amyotrophic lateral sclerosis: focusing on glial mechanisms. Mol Neurodegener 2023; 18:75. [PMID: 37858176 PMCID: PMC10585818 DOI: 10.1186/s13024-023-00665-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 10/05/2023] [Indexed: 10/21/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disorder characterized by the loss of both upper and lower motor neurons, resulting in muscle weakness, atrophy, paralysis, and eventually death. Motor cortical hyperexcitability is a common phenomenon observed at the presymptomatic stage of ALS. Both cell-autonomous (the intrinsic properties of motor neurons) and non-cell-autonomous mechanisms (cells other than motor neurons) are believed to contribute to cortical hyperexcitability. Decoding the pathological relevance of these dynamic changes in motor neurons and glial cells has remained a major challenge. This review summarizes the evidence of cortical hyperexcitability from both clinical and preclinical research, as well as the underlying mechanisms. We discuss the potential role of glial cells, particularly microglia, in regulating abnormal neuronal activity during the disease progression. Identifying early changes such as neuronal hyperexcitability in the motor system may provide new insights for earlier diagnosis of ALS and reveal novel targets to halt the disease progression.
Collapse
Affiliation(s)
- Manling Xie
- Department of Neurology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Praveen N Pallegar
- Department of Neurology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
- Mayo Clinic Graduate School of Biomedical Sciences, Rochester, MN, USA
| | - Sebastian Parusel
- Department of Neurology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Aivi T Nguyen
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Long-Jun Wu
- Department of Neurology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA.
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA.
- Department of Immunology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
9
|
Cavarsan CF, Steele PR, Genry LT, Reedich EJ, McCane LM, LaPre KJ, Puritz AC, Manuel M, Katenka N, Quinlan KA. Inhibitory interneurons show early dysfunction in a SOD1 mouse model of amyotrophic lateral sclerosis. J Physiol 2023; 601:647-667. [PMID: 36515374 PMCID: PMC9898203 DOI: 10.1113/jp284192] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022] Open
Abstract
Few studies in amyotrophic lateral sclerosis (ALS) measure effects of the disease on inhibitory interneurons synapsing onto motoneurons (MNs). However, inhibitory interneurons could contribute to dysfunction, particularly if altered before MN neuropathology, and establish a long-term imbalance of inhibition/excitation. We directly assessed excitability and morphology of glycinergic (GlyT2 expressing) ventral lumbar interneurons from SOD1G93AGlyT2eGFP (SOD1) and wild-type GlyT2eGFP (WT) mice on postnatal days 6-10. Patch clamp revealed dampened excitability in SOD1 interneurons, including depolarized persistent inward currents (PICs), increased voltage and current threshold for firing action potentials, along with a marginal decrease in afterhyperpolarization duration. Primary neurites of ventral SOD1 inhibitory interneurons were larger in volume and surface area than WT. GlyT2 interneurons were then divided into three subgroups based on location: (1) interneurons within 100 μm of the ventral white matter, where Renshaw cells (RCs) are located, (2) interneurons interspersed with MNs in lamina IX, and (3) interneurons in the intermediate ventral area including laminae VII and VIII. Ventral interneurons in the RC area were the most profoundly affected, exhibiting more depolarized PICs and larger primary neurites. Interneurons in lamina IX had depolarized PIC onset. In lamina VII-VIII, interneurons were least affected. In summary, inhibitory interneurons show very early region-specific perturbations poised to impact excitatory/inhibitory balance of MNs, modify motor output and provide early biomarkers of ALS. Therapeutics like riluzole that universally reduce CNS excitability could exacerbate the inhibitory dysfunction described here. KEY POINTS: Spinal inhibitory interneurons could contribute to amyotrophic lateral sclerosis (ALS) pathology, but their excitability has never been directly measured. We studied the excitability and morphology of glycinergic interneurons in early postnatal transgenic mice (SOD1G93A GlyT2eGFP). Interneurons were less excitable and had marginally smaller somas but larger primary neurites in SOD1 mice. GlyT2 interneurons were analysed according to their localization within the ventral spinal cord. Interestingly, the greatest differences were observed in the most ventrally located interneurons. We conclude that inhibitory interneurons show presymptomatic changes that may contribute to excitatory/inhibitory imbalance in ALS.
Collapse
Affiliation(s)
- Clarissa F Cavarsan
- George and Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI, USA
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI, USA
| | - Preston R Steele
- George and Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI, USA
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI, USA
- Interdisciplinary Neuroscience Program, University of Rhode Island, Kingston, RI, USA
| | - Landon T Genry
- George and Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI, USA
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI, USA
- Interdisciplinary Neuroscience Program, University of Rhode Island, Kingston, RI, USA
| | - Emily J Reedich
- George and Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI, USA
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI, USA
| | - Lynn M McCane
- Interdisciplinary Neuroscience Program, University of Rhode Island, Kingston, RI, USA
| | - Kay J LaPre
- George and Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI, USA
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI, USA
| | - Alyssa C Puritz
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Marin Manuel
- George and Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI, USA
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI, USA
| | - Natallia Katenka
- Department of Computer Science and Statistics, University of Rhode Island, Kingston, RI, USA
| | - Katharina A Quinlan
- George and Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI, USA
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI, USA
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
10
|
Khademullah CS, De Koninck Y. A novel assessment of fine-motor function reveals early hindlimb and detectable forelimb deficits in an experimental model of ALS. Sci Rep 2022; 12:17010. [PMID: 36220871 PMCID: PMC9553953 DOI: 10.1038/s41598-022-20333-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 09/12/2022] [Indexed: 12/29/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder associated with the loss of cortical and spinal motor neurons (MNs) and muscle degeneration (Kiernan et al. in Lancet 377:942-955, 2011). In the preclinical setting, functional tests that can detect early changes in motor function in rodent models of ALS are critical to understanding the etiology of the disease and treatment development. Here, we established a string-pulling paradigm that can detect forelimb and hindlimb motor deficits in the SOD1 mouse model of ALS earlier than traditional motor performance tasks. Additionally, our findings indicate that early loss of forelimb and hindlimb function is correlated with cortical and spinal MN loss, respectively. This task is not only ecological, low-cost, efficient, and non-onerous, it also requires little animal handling and reduces the stress placed on the animal. It has long been a concern in the field that the SOD1 mouse does not display forelimb motor deficits and does not give researchers a complete picture of the disease. Here, we provide evidence that the SOD1 model does in fact develop early forelimb motor deficits due to the task's ability to assess fine-motor function, reconciling this model with the various clinical presentation of ALS. Taken together, the string-pulling paradigm may provide novel insights into the pathogenesis of ALS, offer nuanced evaluation of prospective treatments, and has high translational potential to the clinic.
Collapse
Affiliation(s)
- C. Sahara Khademullah
- grid.23856.3a0000 0004 1936 8390CERVO Brain Research Centre, Université Laval, 2601 Chemin de la Canardière, Quebec, QC G1J 2G3 Canada
| | - Yves De Koninck
- grid.23856.3a0000 0004 1936 8390CERVO Brain Research Centre, Université Laval, 2601 Chemin de la Canardière, Quebec, QC G1J 2G3 Canada
| |
Collapse
|
11
|
Pain S, Brot S, Gaillard A. Neuroprotective Effects of Neuropeptide Y against Neurodegenerative Disease. Curr Neuropharmacol 2022; 20:1717-1725. [PMID: 34488599 PMCID: PMC9881060 DOI: 10.2174/1570159x19666210906120302] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 07/31/2021] [Accepted: 08/31/2021] [Indexed: 11/22/2022] Open
Abstract
Neuropeptide Y (NPY), a 36 amino acid peptide, is widely expressed in the mammalian brain. Changes in NPY levels in different brain regions and plasma have been described in several neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, Huntington's disease, Amyotrophic Lateral Sclerosis, and Machado-Joseph disease. The changes in NPY levels may reflect the attempt to set up an endogenous neuroprotective mechanism to counteract the degenerative process. Accumulating evidence indicates that NPY can function as an anti-apoptotic, anti-inflammatory, and pro-phagocytic agent, which may be used effectively to halt or to slow down the progression of the disease. In this review, we will focus on the neuroprotective roles of NPY in several neuropathological conditions, with a particular focus on the anti-inflammatory properties of NPY.
Collapse
Affiliation(s)
- Stéphanie Pain
- Laboratoire de Neurosciences Expérimentales et Cliniques-LNEC INSERM U-1084, Université de Poitiers, LNEC,
F-86000 Poitiers, France; ,CHU Poitiers, Poitiers, F-86021, France
| | - Sébastien Brot
- Laboratoire de Neurosciences Expérimentales et Cliniques-LNEC INSERM U-1084, Université de Poitiers, LNEC,
F-86000 Poitiers, France;
| | - Afsaneh Gaillard
- Laboratoire de Neurosciences Expérimentales et Cliniques-LNEC INSERM U-1084, Université de Poitiers, LNEC,
F-86000 Poitiers, France; ,Address correspondence to this author at the Laboratoire de Neurosciences Expérimentales et Cliniques-LNEC INSERM U-1084, Université de Poitiers, LNEC, F-86000 Poitiers, France; E-mail:
| |
Collapse
|
12
|
Poly-dipeptides produced from C9orf72 hexanucleotide repeats cause selective motor neuron hyperexcitability in ALS. Proc Natl Acad Sci U S A 2022; 119:e2113813119. [PMID: 35259014 PMCID: PMC8931230 DOI: 10.1073/pnas.2113813119] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
SignificanceThe GGGGCC hexanucleotide repeat expansion in the chromosome 9 open reading frame 72 (C9orf72) gene is the most common genetic cause of amyotrophic lateral sclerosis (ALS). Despite myriad studies on the toxic effects of poly-dipeptides produced from the C9orf72 repeats, the mechanisms underlying the selective hyperexcitability of motor cortex that characterizes the early stages of C9orf72 ALS patients remain elusive. Here, we show that the proline-arginine poly-dipeptides cause hyperexcitability in cortical motor neurons by increasing persistent sodium currents conducted by the Nav1.2/β4 sodium channel complex, which is highly expressed in the motor cortex. These findings provide the basis for understanding how the C9orf72 mutation causes motor neuron hyperactivation that can lead to the motor neuron death in C9orf72 ALS.
Collapse
|
13
|
Cortical Hyperexcitability in the Driver’s Seat in ALS. CLINICAL AND TRANSLATIONAL NEUROSCIENCE 2022. [DOI: 10.3390/ctn6010005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal disease characterized by the degeneration of cortical and spinal motor neurons. With no effective treatment available to date, patients face progressive paralysis and eventually succumb to the disease due to respiratory failure within only a few years. Recent research has revealed the multifaceted nature of the mechanisms and cell types involved in motor neuron degeneration, thereby opening up new therapeutic avenues. Intriguingly, two key features present in both ALS patients and rodent models of the disease are cortical hyperexcitability and hyperconnectivity, the mechanisms of which are still not fully understood. We here recapitulate current findings arguing for cell autonomous and non-cell autonomous mechanisms causing cortical excitation and inhibition imbalance, which is involved in the degeneration of motor neurons in ALS. Moreover, we will highlight recent evidence that strongly indicates a cardinal role for the motor cortex as a main driver and source of the disease, thus arguing for a corticofugal trajectory of the pathology.
Collapse
|
14
|
The effect of self-administered methamphetamine on GABAergic interneuron populations and functional connectivity of the nucleus accumbens and prefrontal cortex. Psychopharmacology (Berl) 2022; 239:2903-2919. [PMID: 35920922 PMCID: PMC9385811 DOI: 10.1007/s00213-022-06175-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 06/08/2022] [Indexed: 11/27/2022]
Abstract
INTRODUCTION Methamphetamine (METH, "ice") is a potent and addictive psychostimulant. Abuse of METH perturbs neurotransmitter systems and induces neurotoxicity; however, the neurobiological mechanisms which underlie addiction to METH are not fully understood, limiting the efficacy of available treatments. Here we investigate METH-induced changes to neuronal nitric oxide synthase (nNOS), parvalbumin and calretinin-expressing GABAergic interneuron populations within the nucleus accumbens (NAc), prefrontal cortex (PFC) and orbitofrontal cortex (OFC). We hypothesise that dysfunction or loss of these GABAergic interneuron populations may disrupt the excitatory/inhibitory balance within the brain. METHODS Male Long Evans rats (N = 32) were trained to lever press for intravenous METH or received yoked saline infusions. Following 14 days of behavioural extinction, animals were given a non-contingent injection of saline or METH (1 mg/kg, IP) to examine drug-primed reinstatement to METH-seeking behaviours. Ninety minutes post-IP injection, animals were culled and brain sections were analysed for Fos, nNOS, parvalbumin and calretinin immunoreactivity in eight distinct subregions of the NAc, PFC and OFC. RESULTS METH exposure differentially affected GABAergic populations, with METH self-administration increasing nNOS immunoreactivity at distinct locations in the prelimbic cortex and decreasing parvalbumin immunoreactivity in the NAc. METH self-administration triggered reduced calretinin immunoreactivity, whilst acute METH administration produced a significant increase in calretinin immunoreactivity. As expected, non-contingent METH-priming treatment increased Fos immunoreactivity in subregions of the NAc and PFC. CONCLUSION Here we report that METH exposure in this model may alter the function of GABAergic interneurons in more subtle ways, such as alterations in neuronal firing or synaptic connectivity.
Collapse
|
15
|
Setkowicz Z, Gzielo K, Kielbinski M, Janeczko K. Structural changes in the neocortex as correlates of variations in EEG spectra and seizure susceptibility in rat brains with different degrees of dysplasia. J Comp Neurol 2021; 530:1379-1398. [PMID: 34861050 PMCID: PMC9305260 DOI: 10.1002/cne.25282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 10/26/2021] [Accepted: 11/23/2021] [Indexed: 11/13/2022]
Abstract
Disturbances of the early stages of neurogenesis lead to irreversible changes in the structure of the mature brain and its functional impairment, including increased excitability, which may be the basis for drug‐resistant epilepsy. The range of possible clinical symptoms is as wide as the different stages of disturbed neurogenesis may be. In this study, we used a quadruple model of brain dysplasia by comparing structural and functional disorders in animals whose neurogenesis was disturbed with a single dose of 1 Gy of gamma rays at one of the four stages of neurogenesis, that is, on days 13, 15, 17, or 19 of prenatal development. When reached adulthood, the prenatally irradiated rats received EEG teletransmitter implantation. Thereafter, pilocarpine was administered and significant differences in susceptibility to seizure behavioral symptoms were detected depending on the degree of brain dysplasia. Before, during, and after the seizures significant correlations were found between the density of parvalbumin‐immunopositive neurons located in the cerebral cortex and the intensity of behavioral seizure symptoms or increases in the power of particular EEG bands. Neurons expressing calretinin or NPY showed also dysplasia‐related increases without, however, correlations with parameters of seizure intensity. The results point to significant roles of parvalbumin‐expressing interneurons, and also to expression of NPY—an endogenous anticonvulsant and neuroprotectant reducing susceptibility to seizures and supporting neuronal survival.
Collapse
Affiliation(s)
- Zuzanna Setkowicz
- Laboratory of Experimental Neuropathology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Kraków, Poland
| | - Kinga Gzielo
- Laboratory of Experimental Neuropathology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Kraków, Poland
| | - Michal Kielbinski
- Laboratory of Experimental Neuropathology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Kraków, Poland
| | - Krzysztof Janeczko
- Laboratory of Experimental Neuropathology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Kraków, Poland
| |
Collapse
|
16
|
Sugimoto K, Liu J, Li M, Song Y, Zhang C, Zhai Z, Gao Y. Neuroprotective Effects of Shenqi Fuzheng Injection in a Transgenic SOD1-G93A Mouse Model of Amyotrophic Lateral Sclerosis. Front Pharmacol 2021; 12:701886. [PMID: 34737697 PMCID: PMC8560685 DOI: 10.3389/fphar.2021.701886] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 09/14/2021] [Indexed: 02/04/2023] Open
Abstract
Background: Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease, in the pathogenesis of which oxidative stress (OS) was believed to play a key role. Shenqi Fuzheng Injection (SFI) concocted from two kinds of Chinese medicinal herbs, Radix Codonopsis and Radix Astragali, was proven to be eligible to reduce the OS injury and increase the activity of the nuclear factor-erythroid-2–related factor 2 (Nrf2) pathway, an antioxidant enzymes inducer. Objective: We aim to investigate the effects and potential mechanisms underlying the action of SFI on a well-established transgenic mouse model of ALS. Methods: Transgenic SOD1-G93A mice were intraperitoneally injected with SFI (40 ml/kg) three times a week from 87 days of age. Motor function, survival, pathological manifestations in the brain, and Nrf2 pathway-related assessments of the mice were performed. Results: SFI treatment efficiently postponed the disease onset (p = 0.022) and extended the overall survival (p = 0.038) of the SOD1-G93A mice. Moreover, SFI significantly reduced motor neuron loss (p < 0.001) and astrocytic activation (p < 0.05) in the motor cortex of the brain of SOD1-G93A mice at 130 days of age. The protective effects of SFI in the SOD1-G93A mice were associated with decreasing the level of malondialdehyde (p < 0.05) and increasing the levels of superoxide dismutase (p < 0.05), Nrf2 (p < 0.05), heme oxygenase-1 (p < 0.05), and glutathione S-transferase (p < 0.05) in the SOD1-G93A mice. Conclusion: The SFI treatment efficiently extended the overall survival and improved the pathological manifestations of the brain via alleviating the OS injury and activating the Nrf2 pathway in the animal model of ALS, which made SFI a potentially promising candidate for ALS treatment.
Collapse
Affiliation(s)
- Kazuo Sugimoto
- Department of Neurology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China.,Institute for Brain Disorders, Beijing University of Chinese Medicine, Beijing, China
| | - Jia Liu
- Department of Neurology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China.,Institute for Brain Disorders, Beijing University of Chinese Medicine, Beijing, China
| | - MingXuan Li
- Department of Neurology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - YueBo Song
- Department of Neurology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Chi Zhang
- Department of Neurology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China.,Institute for Brain Disorders, Beijing University of Chinese Medicine, Beijing, China
| | - ZhiGuang Zhai
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China.,Beijing University of Chinese Medicine Third Affiliated Hospital, Beijing, China
| | - Ying Gao
- Department of Neurology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China.,Institute for Brain Disorders, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
17
|
Differential NPY-Y1 Receptor Density in the Motor Cortex of ALS Patients and Familial Model of ALS. Brain Sci 2021; 11:brainsci11080969. [PMID: 34439588 PMCID: PMC8393413 DOI: 10.3390/brainsci11080969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/12/2021] [Accepted: 07/19/2021] [Indexed: 11/16/2022] Open
Abstract
Destabilization of faciliatory and inhibitory circuits is an important feature of corticomotor pathology in amyotrophic lateral sclerosis (ALS). While GABAergic inputs to upper motor neurons are reduced in models of the disease, less understood is the involvement of peptidergic inputs to upper motor neurons in ALS. The neuropeptide Y (NPY) system has been shown to confer neuroprotection against numerous pathogenic mechanisms implicated in ALS. However, little is known about how the NPY system functions in the motor system. Herein, we investigate post-synaptic NPY signaling on upper motor neurons in the rodent and human motor cortex, and on cortical neuron populations in vitro. Using immunohistochemistry, we show the increased density of NPY-Y1 receptors on the soma of SMI32-positive upper motor neurons in post-mortem ALS cases and SOD1G93A excitatory cortical neurons in vitro. Analysis of receptor density on Thy1-YFP-H-positive upper motor neurons in wild-type and SOD1G93A mouse tissue revealed that the distribution of NPY-Y1 receptors was changed on the apical processes at early-symptomatic and late-symptomatic disease stages. Together, our data demonstrate the differential density of NPY-Y1 receptors on upper motor neurons in a familial model of ALS and in ALS cases, indicating a novel pathway that may be targeted to modulate upper motor neuron activity.
Collapse
|
18
|
Migliarini S, Scaricamazza S, Valle C, Ferri A, Pasqualetti M, Ferraro E. Microglia Morphological Changes in the Motor Cortex of hSOD1 G93A Transgenic ALS Mice. Brain Sci 2021; 11:brainsci11060807. [PMID: 34207086 PMCID: PMC8234003 DOI: 10.3390/brainsci11060807] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/09/2021] [Accepted: 06/15/2021] [Indexed: 12/15/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is characterized by the progressive degeneration of spinal motor neurons as well as corticospinal (CSN) large pyramidal neurons within cortex layer V. An intense microglia immune response has been associated with both upper and lower motor neuron degeneration in ALS patients, whereas microgliosis occurrence in the motor cortex of hSOD1G93A mice—the best characterized model of this disease—is not clear and remains under debate. Since the impact of microglia cells in the neuronal environment seems to be crucial for both the initiation and the progression of the disease, here we analyzed the motor cortex of hSOD1G93A mice at the onset of symptoms by the immunolabeling of Iba1/TMEM119 double positive cells and confocal microscopy. By means of Sholl analysis, we were able to identify and quantify the presence of presumably activated Iba1/TMEM119-positive microglia cells with shorter and thicker processes as compared to the normal surveilling and more ramified microglia present in WT cortices. We strongly believe that being able to analyze microglia activation in the motor cortex of hSOD1G93A mice is of great importance for defining the timing and the extent of microglia involvement in CSN degeneration and for the identification of the initiation stages of this disease.
Collapse
Affiliation(s)
- Sara Migliarini
- Department of Biology, University of Pisa, 56126 Pisa, Italy; (S.M.); (M.P.)
| | - Silvia Scaricamazza
- National Research Council, Institute of Translational Pharmacology (IFT), 00133 Rome, Italy; (S.S.); (C.V.); (A.F.)
| | - Cristiana Valle
- National Research Council, Institute of Translational Pharmacology (IFT), 00133 Rome, Italy; (S.S.); (C.V.); (A.F.)
| | - Alberto Ferri
- National Research Council, Institute of Translational Pharmacology (IFT), 00133 Rome, Italy; (S.S.); (C.V.); (A.F.)
| | - Massimo Pasqualetti
- Department of Biology, University of Pisa, 56126 Pisa, Italy; (S.M.); (M.P.)
| | - Elisabetta Ferraro
- Department of Biology, University of Pisa, 56126 Pisa, Italy; (S.M.); (M.P.)
- Correspondence: ; Tel.: +39-339-271-0210 or +39-050-221-1491
| |
Collapse
|
19
|
Neurophysiological Mechanisms Underlying Cortical Hyper-Excitability in Amyotrophic Lateral Sclerosis: A Review. Brain Sci 2021; 11:brainsci11050549. [PMID: 33925493 PMCID: PMC8145013 DOI: 10.3390/brainsci11050549] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 04/23/2021] [Accepted: 04/26/2021] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive neuromotor disease characterized by the loss of upper and lower motor neurons (MNs), resulting in muscle paralysis and death. Early cortical hyper-excitability is a common pathological process observed clinically and in animal disease models. Although the mechanisms that underlie cortical hyper-excitability are not completely understood, the molecular and cellular mechanisms that cause enhanced neuronal intrinsic excitability and changes in excitatory and inhibitory synaptic activity are starting to emerge. Here, we review the evidence for an anterograde glutamatergic excitotoxic process, leading to cortical hyper-excitability via intrinsic cellular and synaptic mechanisms and for the role of interneurons in establishing disinhibition in clinical and experimental settings. Understanding the mechanisms that lead to these complex pathological processes will likely produce key insights towards developing novel therapeutic strategies to rescue upper MNs, thus alleviating the impact of this fatal disease.
Collapse
|
20
|
Ranieri F, Mariotto S, Dubbioso R, Di Lazzaro V. Brain Stimulation as a Therapeutic Tool in Amyotrophic Lateral Sclerosis: Current Status and Interaction With Mechanisms of Altered Cortical Excitability. Front Neurol 2021; 11:605335. [PMID: 33613416 PMCID: PMC7892772 DOI: 10.3389/fneur.2020.605335] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 12/22/2020] [Indexed: 12/14/2022] Open
Abstract
In the last 20 years, several modalities of neuromodulation, mainly based on non-invasive brain stimulation (NIBS) techniques, have been tested as a non-pharmacological therapeutic approach to slow disease progression in amyotrophic lateral sclerosis (ALS). In both sporadic and familial ALS cases, neurophysiological studies point to motor cortical hyperexcitability as a possible priming factor in neurodegeneration, likely related to dysfunction of both excitatory and inhibitory mechanisms. A trans-synaptic anterograde mechanism of excitotoxicity is thus postulated, causing upper and lower motor neuron degeneration. Specifically, motor neuron hyperexcitability and hyperactivity are attributed to intrinsic cell abnormalities related to altered ion homeostasis and to impaired glutamate and gamma aminobutyric acid gamma-aminobutyric acid (GABA) signaling. Several neuropathological mechanisms support excitatory and synaptic dysfunction in ALS; additionally, hyperexcitability seems to drive DNA-binding protein 43-kDA (TDP-43) pathology, through the upregulation of unusual isoforms directly contributing to ASL pathophysiology. Corticospinal excitability can be suppressed or enhanced using NIBS techniques, namely, repetitive transcranial magnetic stimulation (rTMS) and transcranial direct current stimulation (tDCS), as well as invasive brain and spinal stimulation. Experimental evidence supports the hypothesis that the after-effects of NIBS are mediated by long-term potentiation (LTP)-/long-term depression (LTD)-like mechanisms of modulation of synaptic activity, with different biological and physiological mechanisms underlying the effects of tDCS and rTMS and, possibly, of different rTMS protocols. This potential has led to several small trials testing different stimulation interventions to antagonize excitotoxicity in ALS. Overall, these studies suggest a possible efficacy of neuromodulation in determining a slight reduction of disease progression, related to the type, duration, and frequency of treatment, but current evidence remains preliminary. Main limitations are the small number and heterogeneity of recruited patients, the limited "dosage" of brain stimulation that can be delivered in the hospital setting, the lack of a sufficient knowledge on the excitatory and inhibitory mechanisms targeted by specific stimulation interventions, and the persistent uncertainty on the key pathophysiological processes leading to motor neuron loss. The present review article provides an update on the state of the art of neuromodulation in ALS and a critical appraisal of the rationale for the application/optimization of brain stimulation interventions, in the light of their interaction with ALS pathophysiological mechanisms.
Collapse
Affiliation(s)
- Federico Ranieri
- Neurology Unit, Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Sara Mariotto
- Neurology Unit, Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Raffaele Dubbioso
- Department of Neurosciences, Reproductive Sciences and Odontostomatology, University of Naples “Federico II”, Naples, Italy
| | - Vincenzo Di Lazzaro
- Unit of Neurology, Neurophysiology, Neurobiology, Department of Medicine, Campus Bio-Medico University, Rome, Italy
| |
Collapse
|
21
|
Ahmed RM, Halliday G, Hodges JR. Hypothalamic symptoms of frontotemporal dementia disorders. HANDBOOK OF CLINICAL NEUROLOGY 2021; 182:269-280. [PMID: 34266598 DOI: 10.1016/b978-0-12-819973-2.00019-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Frontotemporal dementia (FTD) has traditionally been regarded as a disease of cognition and behavior, but emerging evidence suggests that the disease also affects body functions including changes in eating behavior and metabolism, autonomic function, sleep behavior, and sexual function. Central to these changes are potentially complex neural networks involving the hypothalamus, with hypothalamic atrophy shown in behavioral variant FTD. The physiological changes found in FTD are reviewed and the key neural networks and neuroendocrine changes mediating these changes in function discussed, including the ability to use these changes as biomarkers to aid in disease diagnosis, monitoring disease progression, and as potential treatment targets.
Collapse
Affiliation(s)
- Rebekah M Ahmed
- Memory and Cognition Clinic, Department of Clinical Neurosciences, Royal Prince Alfred Hospital, Sydney, NSW, Australia; Central Sydney Medical School and Brain & Mind Centre, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia.
| | - Glenda Halliday
- Central Sydney Medical School and Brain & Mind Centre, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - John R Hodges
- Central Sydney Medical School and Brain & Mind Centre, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
22
|
van den Bos MAJ, Higashihara M, Geevasinga N, Menon P, Kiernan MC, Vucic S. Pathophysiological associations of transcallosal dysfunction in ALS. Eur J Neurol 2020; 28:1172-1180. [PMID: 33220162 DOI: 10.1111/ene.14653] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 11/05/2020] [Indexed: 12/28/2022]
Abstract
AIM Involvement of the corpus callosum has been identified as a feature of amyotrophic lateral sclerosis (ALS), particularly through neuropathological studies. The aim of the present study was to determine whether alteration in transcallosal function contributed to the development of ALS, disease progression and thereby functional disability. METHODS Transcallosal function and motor cortex excitability were assessed in 17 ALS patients with results compared to healthy controls. Transcallosal inhibition (interstimulus intervals (ISI) of 8-40 ms), short interval intracortical facilitation (SICF) and inhibition (SICI) were assessed in both cerebral hemispheres. Patients were staged utilising clinical and neurophysiological staging assessments. RESULTS In ALS, there was prominent reduction of transcallosal inhibition (TI) when recorded from the primary and secondary motor cortices compared to controls (F = 23.255, p < 0.001). This reduction of TI was accompanied by features indicative of cortical hyperexcitability, including reduction of SICI and increase in SICF. There was a significant correlation between the reduction in TI and the rate of disease progression (R = -0.825, p < 0.001) and reduction in muscle strength (R = 0.54, p = 0.031). CONCLUSION The present study has established that dysfunction of transcallosal circuits was an important pathophysiological mechanism in ALS, correlating with greater disability and a faster rate of disease progression. Therapies aimed at restoring the function of transcallosal circuits may be considered for therapeutic approaches in ALS.
Collapse
Affiliation(s)
| | - Mana Higashihara
- Westmead Clinical School, University of Sydney, Sydney, NSW, Australia.,Department of Neurology, Tokyo Metropolitan Geriatric Hospital, Tokyo, Japan
| | | | - Parvathi Menon
- Westmead Clinical School, University of Sydney, Sydney, NSW, Australia
| | - Matthew C Kiernan
- Department of Neurology, Brain and Mind Centre, Royal Prince Alfred Hospital, University of Sydney, Sydney, NSW, Australia
| | - Steve Vucic
- Westmead Clinical School, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
23
|
Crabé R, Aimond F, Gosset P, Scamps F, Raoul C. How Degeneration of Cells Surrounding Motoneurons Contributes to Amyotrophic Lateral Sclerosis. Cells 2020; 9:cells9122550. [PMID: 33260927 PMCID: PMC7760029 DOI: 10.3390/cells9122550] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 11/19/2020] [Accepted: 11/24/2020] [Indexed: 12/13/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurological disorder characterized by the progressive degeneration of upper and lower motoneurons. Despite motoneuron death being recognized as the cardinal event of the disease, the loss of glial cells and interneurons in the brain and spinal cord accompanies and even precedes motoneuron elimination. In this review, we provide striking evidence that the degeneration of astrocytes and oligodendrocytes, in addition to inhibitory and modulatory interneurons, disrupt the functionally coherent environment of motoneurons. We discuss the extent to which the degeneration of glial cells and interneurons also contributes to the decline of the motor system. This pathogenic cellular network therefore represents a novel strategic field of therapeutic investigation.
Collapse
Affiliation(s)
- Roxane Crabé
- The Neuroscience Institute of Montpellier, INSERM, UMR1051, University of Montpellier, 34091 Montpellier, France; (R.C.); (F.A.); (P.G.); (F.S.)
| | - Franck Aimond
- The Neuroscience Institute of Montpellier, INSERM, UMR1051, University of Montpellier, 34091 Montpellier, France; (R.C.); (F.A.); (P.G.); (F.S.)
| | - Philippe Gosset
- The Neuroscience Institute of Montpellier, INSERM, UMR1051, University of Montpellier, 34091 Montpellier, France; (R.C.); (F.A.); (P.G.); (F.S.)
| | - Frédérique Scamps
- The Neuroscience Institute of Montpellier, INSERM, UMR1051, University of Montpellier, 34091 Montpellier, France; (R.C.); (F.A.); (P.G.); (F.S.)
| | - Cédric Raoul
- The Neuroscience Institute of Montpellier, INSERM, UMR1051, University of Montpellier, 34091 Montpellier, France; (R.C.); (F.A.); (P.G.); (F.S.)
- Laboratory of Neurobiology, Kazan Federal University, 420008 Kazan, Russia
- Correspondence:
| |
Collapse
|
24
|
Differential Loss of Spinal Interneurons in a Mouse Model of ALS. Neuroscience 2020; 450:81-95. [PMID: 32858144 DOI: 10.1016/j.neuroscience.2020.08.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 08/04/2020] [Accepted: 08/07/2020] [Indexed: 12/11/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) leads to a loss of specific motor neuron populations in the spinal cord and cortex. Emerging evidence suggests that interneurons may also be affected, but a detailed characterization of interneuron loss and its potential impacts on motor neuron loss and disease progression is lacking. To examine this issue, the fate of V1 inhibitory neurons during ALS was assessed in the ventral spinal cord using the SODG93A mouse model. The V1 population makes up ∼30% of all ventral inhibitory neurons, ∼50% of direct inhibitory synaptic contacts onto motor neuron cell bodies, and is thought to play a key role in modulating motor output, in part through recurrent and reciprocal inhibitory circuits. We find that approximately half of V1 inhibitory neurons are lost in SODG93A mice at late disease stages, but that this loss is delayed relative to the loss of motor neurons and V2a excitatory neurons. We further identify V1 subpopulations based on transcription factor expression that are differentially susceptible to degeneration in SODG93A mice. At an early disease stage, we show that V1 synaptic contacts with motor neuron cell bodies increase, suggesting an upregulation of inhibition before V1 neurons are lost in substantial numbers. These data support a model in which progressive changes in V1 synaptic contacts early in disease, and in select V1 subpopulations at later stages, represent a compensatory upregulation and then deleterious breakdown of specific interneuron circuits within the spinal cord.
Collapse
|
25
|
Clark CM, Clark RM, Hoyle JA, Dickson TC. Pathogenic or protective? Neuropeptide Y in amyotrophic lateral sclerosis. J Neurochem 2020; 156:273-289. [PMID: 32654149 DOI: 10.1111/jnc.15125] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 06/16/2020] [Accepted: 06/24/2020] [Indexed: 12/13/2022]
Abstract
Neuropeptide Y (NPY) is an endogenous peptide of the central and enteric nervous systems which has gained significant interest as a potential neuroprotective agent for treatment of neurodegenerative disease. Amyotrophic lateral sclerosis (ALS) is an aggressive and fatal neurodegenerative disease characterized by motor deficits and motor neuron loss. In ALS, recent evidence from ALS patients and animal models has indicated that NPY may have a role in the disease pathogenesis. Increased NPY levels were found to correlate with disease progression in ALS patients. Similarly, NPY expression is increased in the motor cortex of ALS mice by end stages of the disease. Although the functional consequence of increased NPY levels in ALS is currently unknown, NPY has been shown to exert a diverse range of neuroprotective roles in other neurodegenerative diseases; through modulation of potassium channel activity, increased production of neurotrophins, inhibition of endoplasmic reticulum stress and autophagy, reduction of excitotoxicity, oxidative stress, neuroinflammation and hyperexcitability. Several of these mechanisms and signalling pathways are heavily implicated in the pathogenesis of ALS. Therefore, in this review, we discuss possible effects of NPY and NPY-receptor signalling in the ALS disease context, as determining NPY's contribution to, or impact on, ALS disease mechanisms will be essential for future studies investigating the NPY system as a therapeutic strategy in this devastating disease.
Collapse
Affiliation(s)
- Courtney M Clark
- Menzies Institute for Medical Research, College of Health and Medicine, University of Tasmania, Hobart, TAS, Australia
| | - Rosemary M Clark
- Menzies Institute for Medical Research, College of Health and Medicine, University of Tasmania, Hobart, TAS, Australia
| | - Joshua A Hoyle
- Menzies Institute for Medical Research, College of Health and Medicine, University of Tasmania, Hobart, TAS, Australia
| | - Tracey C Dickson
- Menzies Institute for Medical Research, College of Health and Medicine, University of Tasmania, Hobart, TAS, Australia
| |
Collapse
|
26
|
Gunes ZI, Kan VWY, Ye X, Liebscher S. Exciting Complexity: The Role of Motor Circuit Elements in ALS Pathophysiology. Front Neurosci 2020; 14:573. [PMID: 32625051 PMCID: PMC7311855 DOI: 10.3389/fnins.2020.00573] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 05/11/2020] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal disease, characterized by the degeneration of both upper and lower motor neurons. Despite decades of research, we still to date lack a cure or disease modifying treatment, emphasizing the need for a much-improved insight into disease mechanisms and cell type vulnerability. Altered neuronal excitability is a common phenomenon reported in ALS patients, as well as in animal models of the disease, but the cellular and circuit processes involved, as well as the causal relevance of those observations to molecular alterations and final cell death, remain poorly understood. Here, we review evidence from clinical studies, cell type-specific electrophysiology, genetic manipulations and molecular characterizations in animal models and culture experiments, which argue for a causal involvement of complex alterations of structure, function and connectivity of different neuronal subtypes within the cortical and spinal cord motor circuitries. We also summarize the current knowledge regarding the detrimental role of astrocytes and reassess the frequently proposed hypothesis of glutamate-mediated excitotoxicity with respect to changes in neuronal excitability. Together, these findings suggest multifaceted cell type-, brain area- and disease stage- specific disturbances of the excitation/inhibition balance as a cardinal aspect of ALS pathophysiology.
Collapse
Affiliation(s)
- Zeynep I Gunes
- Institute of Clinical Neuroimmunology, Klinikum der Universität München, Ludwig Maximilians University Munich, Munich, Germany.,Graduate School of Systemic Neurosciences, Ludwig Maximilians University Munich, Munich, Germany.,Biomedical Center, Ludwig Maximilians University Munich, Munich, Germany
| | - Vanessa W Y Kan
- Institute of Clinical Neuroimmunology, Klinikum der Universität München, Ludwig Maximilians University Munich, Munich, Germany.,Graduate School of Systemic Neurosciences, Ludwig Maximilians University Munich, Munich, Germany.,Biomedical Center, Ludwig Maximilians University Munich, Munich, Germany
| | - XiaoQian Ye
- Institute of Clinical Neuroimmunology, Klinikum der Universität München, Ludwig Maximilians University Munich, Munich, Germany.,Biomedical Center, Ludwig Maximilians University Munich, Munich, Germany
| | - Sabine Liebscher
- Institute of Clinical Neuroimmunology, Klinikum der Universität München, Ludwig Maximilians University Munich, Munich, Germany.,Biomedical Center, Ludwig Maximilians University Munich, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| |
Collapse
|
27
|
Brunet A, Stuart-Lopez G, Burg T, Scekic-Zahirovic J, Rouaux C. Cortical Circuit Dysfunction as a Potential Driver of Amyotrophic Lateral Sclerosis. Front Neurosci 2020; 14:363. [PMID: 32410944 PMCID: PMC7201269 DOI: 10.3389/fnins.2020.00363] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 03/25/2020] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disease that affects selected cortical and spinal neuronal populations, leading to progressive paralysis and death. A growing body of evidences suggests that the disease may originate in the cerebral cortex and propagate in a corticofugal manner. In particular, transcranial magnetic stimulation studies revealed that ALS patients present with early cortical hyperexcitability arising from a combination of increased excitability and decreased inhibition. Here, we discuss the possibility that initial cortical circuit dysfunction might act as the main driver of ALS onset and progression, and review recent functional, imaging and transcriptomic studies conducted on ALS patients, along with electrophysiological, pathological and transcriptomic studies on animal and cellular models of the disease, in order to evaluate the potential cellular and molecular origins of cortical hyperexcitability in ALS.
Collapse
Affiliation(s)
| | | | | | | | - Caroline Rouaux
- INSERM UMR_S 1118, Mécanismes Centraux et Périphériques de la Neurodégénérescence, Faculté de Médecine, Université de Strasbourg, Strasbourg, France
| |
Collapse
|
28
|
Khademullah CS, Aqrabawi AJ, Place KM, Dargaei Z, Liang X, Pressey JC, Bedard S, Yang JW, Garand D, Keramidis I, Gasecka A, Côté D, De Koninck Y, Keith J, Zinman L, Robertson J, Kim JC, Woodin MA. Cortical interneuron-mediated inhibition delays the onset of amyotrophic lateral sclerosis. Brain 2020; 143:800-810. [DOI: 10.1093/brain/awaa034] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 01/08/2020] [Indexed: 12/13/2022] Open
Abstract
Abstract
Amyotrophic lateral sclerosis is a fatal disease resulting from motor neuron degeneration in the cortex and spinal cord. Cortical hyperexcitability is a hallmark feature of amyotrophic lateral sclerosis and is accompanied by decreased intracortical inhibition. Using electrophysiological patch-clamp recordings, we revealed parvalbumin interneurons to be hypoactive in the late pre-symptomatic SOD1*G93A mouse model of amyotrophic lateral sclerosis. We discovered that using adeno-associated virus-mediated delivery of chemogenetic technology targeted to increase the activity of the interneurons within layer 5 of the primary motor cortex, we were able to rescue intracortical inhibition and reduce pyramidal neuron hyperexcitability. Increasing the activity of interneurons in the layer 5 of the primary motor cortex was effective in delaying the onset of amyotrophic lateral sclerosis-associated motor deficits, slowing symptom progression, preserving neuronal populations, and increasing the lifespan of SOD1*G93A mice. Taken together, this study provides novel insights into the pathogenesis and treatment of amyotrophic lateral sclerosis.
Collapse
Affiliation(s)
- C Sahara Khademullah
- Department of Cell and Systems Biology, University of Toronto, 25 Harbord Street, Toronto, Ontario, M5S 3G5, Canada
| | - Afif J Aqrabawi
- Department of Psychology, University of Toronto, 100 St George Street, Toronto, Ontario, M5S 3G3, Canada
| | - Kara M Place
- Department of Cell and Systems Biology, University of Toronto, 25 Harbord Street, Toronto, Ontario, M5S 3G5, Canada
| | - Zahra Dargaei
- Department of Cell and Systems Biology, University of Toronto, 25 Harbord Street, Toronto, Ontario, M5S 3G5, Canada
| | - Xinyi Liang
- Department of Cell and Systems Biology, University of Toronto, 25 Harbord Street, Toronto, Ontario, M5S 3G5, Canada
| | - Jessica C Pressey
- Department of Cell and Systems Biology, University of Toronto, 25 Harbord Street, Toronto, Ontario, M5S 3G5, Canada
| | - Simon Bedard
- Department of Cell and Systems Biology, University of Toronto, 25 Harbord Street, Toronto, Ontario, M5S 3G5, Canada
| | - Jy Wei Yang
- Department of Cell and Systems Biology, University of Toronto, 25 Harbord Street, Toronto, Ontario, M5S 3G5, Canada
| | - Danielle Garand
- Department of Cell and Systems Biology, University of Toronto, 25 Harbord Street, Toronto, Ontario, M5S 3G5, Canada
| | - Iason Keramidis
- CERVO Brain Research Institute, Laval University, 2601 Chemin de la Canardière, Québec, Québec, G1J 2G3, Canada
| | - Alicja Gasecka
- CERVO Brain Research Institute, Laval University, 2601 Chemin de la Canardière, Québec, Québec, G1J 2G3, Canada
| | - Daniel Côté
- CERVO Brain Research Institute, Laval University, 2601 Chemin de la Canardière, Québec, Québec, G1J 2G3, Canada
| | - Yves De Koninck
- CERVO Brain Research Institute, Laval University, 2601 Chemin de la Canardière, Québec, Québec, G1J 2G3, Canada
| | - Julia Keith
- Sunnybrook Health Science Centre, 2075 Bayview Ave, Toronto, Ontario, M4N 3M5, Canada
| | - Lorne Zinman
- Sunnybrook Health Science Centre, 2075 Bayview Ave, Toronto, Ontario, M4N 3M5, Canada
| | - Janice Robertson
- Department of Laboratory Medicine and Pathobiology and Tanz Centre for Research into Neurodegenerative Diseases, Toronto, Ontario, M5T 2S8, Canada
| | - Jun Chul Kim
- Department of Psychology, University of Toronto, 100 St George Street, Toronto, Ontario, M5S 3G3, Canada
| | - Melanie A Woodin
- Department of Cell and Systems Biology, University of Toronto, 25 Harbord Street, Toronto, Ontario, M5S 3G5, Canada
| |
Collapse
|
29
|
László ZI, Bercsényi K, Mayer M, Lefkovics K, Szabó G, Katona I, Lele Z. N-cadherin (Cdh2) Maintains Migration and Postmitotic Survival of Cortical Interneuron Precursors in a Cell-Type-Specific Manner. Cereb Cortex 2020; 30:1318-1329. [PMID: 31402374 PMCID: PMC7219024 DOI: 10.1093/cercor/bhz168] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 06/24/2019] [Accepted: 06/24/2019] [Indexed: 12/14/2022] Open
Abstract
The multiplex role of cadherin-based adhesion complexes during development of pallial excitatory neurons has been thoroughly characterized. In contrast, much less is known about their function during interneuron development. Here, we report that conditional removal of N-cadherin (Cdh2) from postmitotic neuroblasts of the subpallium results in a decreased number of Gad65-GFP-positive interneurons in the adult cortex. We also found that interneuron precursor migration into the pallium was already delayed at E14. Using immunohistochemistry and TUNEL assay in the embryonic subpallium, we excluded decreased mitosis and elevated cell death as possible sources of this defect. Moreover, by analyzing the interneuron composition of the adult somatosensory cortex, we uncovered an unexpected interneuron-type-specific defect caused by Cdh2-loss. This was not due to a fate-switch between interneuron populations or altered target selection during migration. Instead, potentially due to the migration delay, part of the precursors failed to enter the cortical plate and consequently got eliminated at early postnatal stages. In summary, our results indicate that Cdh2-mediated interactions are necessary for migration and survival during the postmitotic phase of interneuron development. Furthermore, we also propose that unlike in pallial glutamatergic cells, Cdh2 is not universal, rather a cell type-specific factor during this process.
Collapse
Affiliation(s)
- Zsófia I László
- Momentum Laboratory of Molecular Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
- Szentágothai János Doctoral School of Neuroscience, Semmelweis University, Budapest, Hungary
| | - Kinga Bercsényi
- Laboratory of Molecular Biology and Genetics, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, and Medical Research Council Centre for Neurodevelopmental Disorders, King’s College London, London, UK
| | - Mátyás Mayer
- Laboratory of Molecular Biology and Genetics, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | - Kornél Lefkovics
- Laboratory of Molecular Biology and Genetics, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | - Gábor Szabó
- Laboratory of Molecular Biology and Genetics, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | - István Katona
- Momentum Laboratory of Molecular Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | - Zsolt Lele
- Momentum Laboratory of Molecular Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
- Laboratory of Molecular Biology and Genetics, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| |
Collapse
|
30
|
Subramaniam S. Selective Neuronal Death in Neurodegenerative Diseases: The Ongoing Mystery. THE YALE JOURNAL OF BIOLOGY AND MEDICINE 2019; 92:695-705. [PMID: 31866784 PMCID: PMC6913821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
A major unresolved problem in neurodegenerative disease is why and how a specific set of neurons in the brain are highly vulnerable to neuronal death. Multiple pathways and mechanisms have been proposed to play a role in Alzheimer disease (AD), Parkinson disease (PD), amyotrophic lateral sclerosis (ALS), and Huntington disease (HD), yet how they contribute to neuronal vulnerability remains far from clear. In this review, various mechanisms ascribed in AD, PD, ALS, and HD will be briefly summarized. Particular focus will be placed on Rhes-mediated intercellular transport of the HD protein and its role in mitophagy, in which I will discuss some intriguing observations that I apply to model striatal vulnerability in HD. I may have unintentionally missed referring some studies in this review, and I extend my apologies to the authors in those circumstances.
Collapse
|
31
|
|
32
|
Held A, Major P, Sahin A, Reenan RA, Lipscombe D, Wharton KA. Circuit Dysfunction in SOD1-ALS Model First Detected in Sensory Feedback Prior to Motor Neuron Degeneration Is Alleviated by BMP Signaling. J Neurosci 2019; 39:2347-2364. [PMID: 30659087 PMCID: PMC6433758 DOI: 10.1523/jneurosci.1771-18.2019] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 12/24/2018] [Accepted: 01/10/2019] [Indexed: 12/13/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disease for which the origin and underlying cellular defects are not fully understood. Although motor neuron degeneration is the signature feature of ALS, it is not clear whether motor neurons or other cells of the motor circuit are the site of disease initiation. To better understand the contribution of multiple cell types in ALS, we made use of a Drosophila Sod1G85R knock-in model, in which all cells harbor the disease allele. End-stage dSod1G85R animals of both sexes exhibit severe motor deficits with clear degeneration of motor neurons. Interestingly, earlier in dSod1G85R larvae, motor function is also compromised, but their motor neurons exhibit only subtle morphological and electrophysiological changes that are unlikely to cause the observed decrease in locomotion. We analyzed the intact motor circuit and identified a defect in sensory feedback that likely accounts for the altered motor activity of dSod1G85R We found cell-autonomous activation of bone morphogenetic protein signaling in proprioceptor sensory neurons which are critical for the relay of the contractile status of muscles back to the central nerve cord, completely rescues early-stage motor defects and partially rescue late-stage motor function to extend lifespan. Identification of a defect in sensory feedback as a potential initiating event in ALS motor dysfunction, coupled with the ability of modified proprioceptors to alleviate such motor deficits, underscores the critical role that nonmotor neurons play in disease progression and highlights their potential as a site to identify early-stage ALS biomarkers and for therapeutic intervention.SIGNIFICANCE STATEMENT At diagnosis, many cellular processes are already disrupted in the amyotrophic lateral sclerosis (ALS) patient. Identifying the initiating cellular events is critical for achieving an earlier diagnosis to slow or prevent disease progression. Our findings indicate that neurons relaying sensory information underlie early stage motor deficits in a Drosophila knock-in model of ALS that best replicates gene dosage in familial ALS (fALS). Importantly, studies on intact motor circuits revealed defects in sensory feedback before evidence of motor neuron degeneration. These findings strengthen our understanding of how neural circuit dysfunctions lead to neurodegeneration and, coupled with our demonstration that the activation of bone morphogenetic protein signaling in proprioceptors alleviates both early and late motor dysfunction, underscores the importance of considering nonmotor neurons as therapeutic targets.
Collapse
Affiliation(s)
- Aaron Held
- Department of Molecular Biology, Cell Biology and Biochemistry
- The Robert J. and Nancy D. Carney Institute for Brain Science, Brown University, Providence, Rhode Island 02912
| | - Paxton Major
- Department of Molecular Biology, Cell Biology and Biochemistry
| | - Asli Sahin
- Department of Molecular Biology, Cell Biology and Biochemistry
| | - Robert A Reenan
- Department of Molecular Biology, Cell Biology and Biochemistry
| | - Diane Lipscombe
- Department of Neuroscience, and
- The Robert J. and Nancy D. Carney Institute for Brain Science, Brown University, Providence, Rhode Island 02912
| | - Kristi A Wharton
- Department of Molecular Biology, Cell Biology and Biochemistry,
- The Robert J. and Nancy D. Carney Institute for Brain Science, Brown University, Providence, Rhode Island 02912
| |
Collapse
|
33
|
Henstridge CM, Tzioras M, Paolicelli RC. Glial Contribution to Excitatory and Inhibitory Synapse Loss in Neurodegeneration. Front Cell Neurosci 2019; 13:63. [PMID: 30863284 PMCID: PMC6399113 DOI: 10.3389/fncel.2019.00063] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Accepted: 02/08/2019] [Indexed: 12/12/2022] Open
Abstract
Synapse loss is an early feature shared by many neurodegenerative diseases, and it represents the major correlate of cognitive impairment. Recent studies reveal that microglia and astrocytes play a major role in synapse elimination, contributing to network dysfunction associated with neurodegeneration. Excitatory and inhibitory activity can be affected by glia-mediated synapse loss, resulting in imbalanced synaptic transmission and subsequent synaptic dysfunction. Here, we review the recent literature on the contribution of glia to excitatory/inhibitory imbalance, in the context of the most common neurodegenerative disorders. A better understanding of the mechanisms underlying pathological synapse loss will be instrumental to design targeted therapeutic interventions, taking in account the emerging roles of microglia and astrocytes in synapse remodeling.
Collapse
Affiliation(s)
- Christopher M Henstridge
- Centre for Discovery Brain Sciences, The University of Edinburgh, Edinburgh, United Kingdom.,Dementia Research Institute UK, The University of Edinburgh, Edinburgh, United Kingdom
| | - Makis Tzioras
- Centre for Discovery Brain Sciences, The University of Edinburgh, Edinburgh, United Kingdom.,Dementia Research Institute UK, The University of Edinburgh, Edinburgh, United Kingdom
| | - Rosa C Paolicelli
- Department of Physiology, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
34
|
Ahmed RM, Phan K, Highton‐Williamson E, Strikwerda‐Brown C, Caga J, Ramsey E, Zoing M, Devenney E, Kim WS, Hodges JR, Piguet O, Halliday GM, Kiernan MC. Eating peptides: biomarkers of neurodegeneration in amyotrophic lateral sclerosis and frontotemporal dementia. Ann Clin Transl Neurol 2019; 6:486-495. [PMID: 30911572 PMCID: PMC6414477 DOI: 10.1002/acn3.721] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Revised: 11/25/2018] [Accepted: 12/21/2018] [Indexed: 12/12/2022] Open
Abstract
Objective Physiological changes potentially influence disease progression and survival along the Amyotrophic Lateral Sclerosis (ALS)-Frontotemporal dementia (FTD) spectrum. The peripheral peptides that regulate eating and metabolism may provide diagnostic, metabolic, and progression biomarkers. The current study aimed to examine the relationships and biomarker potential of hormonal peptides. Methods One hundred and twenty-seven participants (36 ALS, 26 ALS- cognitive, patients with additional cognitive behavioral features, and 35 behavioral variant FTD (bvFTD) and 30 controls) underwent fasting blood analyses of leptin, ghrelin, neuropeptide Y (NPY), peptide YY (PYY), and insulin levels. Relationships between endocrine measures, cognition, eating behaviors, and body mass index (BMI) were investigated. Biomarker potential was evaluated using multinomial logistic regression for diagnosis and correlation to disease duration. Results Compared to controls, ALS and ALS-cognitive had higher NPY levels and bvFTD had lower NPY levels, while leptin levels were increased in all patient groups. All groups had increased insulin levels and a state of insulin resistance compared to controls. Lower NPY levels correlated with increasing eating behavioral change and BMI, while leptin levels correlated with BMI. On multinomial logistic regression, NPY and leptin levels were found to differentiate between diagnosis. Reduced Neuropeptide Y levels correlated with increasing disease duration, suggesting it may be useful as a potential marker of disease progression. Interpretation ALS-FTD is characterized by changes in NPY and leptin levels that may impact on the underlying regional neurodegeneration as they were predictive of diagnosis and disease duration, offering the potential as biomarkers and for the development of interventional treatments.
Collapse
Affiliation(s)
- Rebekah M. Ahmed
- Memory and Cognition ClinicInstitute of Clinical NeurosciencesRoyal Prince Alfred HospitalSydneyNew South WalesAustralia
- Brain and Mind CentreSydney Medical SchoolThe University of SydneySydneyNew South WalesAustralia
- ARC Centre of Excellence in Cognition and its DisordersSydneyNew South WalesAustralia
| | - Katherine Phan
- Brain and Mind CentreSydney Medical SchoolThe University of SydneySydneyNew South WalesAustralia
| | | | - Cherie Strikwerda‐Brown
- Brain and Mind CentreSydney Medical SchoolThe University of SydneySydneyNew South WalesAustralia
- ARC Centre of Excellence in Cognition and its DisordersSydneyNew South WalesAustralia
- The University of SydneySchool of Psychology and Brain and Mind CentreSydneyNew South WalesAustralia
| | - Jashelle Caga
- Brain and Mind CentreSydney Medical SchoolThe University of SydneySydneyNew South WalesAustralia
| | - Eleanor Ramsey
- Brain and Mind CentreSydney Medical SchoolThe University of SydneySydneyNew South WalesAustralia
| | - Margaret Zoing
- Brain and Mind CentreSydney Medical SchoolThe University of SydneySydneyNew South WalesAustralia
| | - Emma Devenney
- Brain and Mind CentreSydney Medical SchoolThe University of SydneySydneyNew South WalesAustralia
| | - Woojin S. Kim
- Brain and Mind CentreSydney Medical SchoolThe University of SydneySydneyNew South WalesAustralia
| | - John R. Hodges
- Brain and Mind CentreSydney Medical SchoolThe University of SydneySydneyNew South WalesAustralia
- ARC Centre of Excellence in Cognition and its DisordersSydneyNew South WalesAustralia
| | - Olivier Piguet
- ARC Centre of Excellence in Cognition and its DisordersSydneyNew South WalesAustralia
- The University of SydneySchool of Psychology and Brain and Mind CentreSydneyNew South WalesAustralia
| | - Glenda M. Halliday
- Brain and Mind CentreSydney Medical SchoolThe University of SydneySydneyNew South WalesAustralia
| | - Matthew C. Kiernan
- Memory and Cognition ClinicInstitute of Clinical NeurosciencesRoyal Prince Alfred HospitalSydneyNew South WalesAustralia
- Brain and Mind CentreSydney Medical SchoolThe University of SydneySydneyNew South WalesAustralia
| |
Collapse
|
35
|
Van den Bos MA, Higashihara M, Geevasinga N, Menon P, Kiernan MC, Vucic S. Imbalance of cortical facilitatory and inhibitory circuits underlies hyperexcitability in ALS. Neurology 2018; 91:e1669-e1676. [DOI: 10.1212/wnl.0000000000006438] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Accepted: 07/18/2018] [Indexed: 12/14/2022] Open
Abstract
ObjectiveTo determine the relative contribution of inhibitory and facilitatory circuits in the development of cortical hyperexcitability in amyotrophic lateral sclerosis (ALS).MethodsIn this cross-sectional study, cortical excitability was assessed in 27 patients with ALS, and results compared to 25 healthy controls. In addition, a novel neurophysiologic measure of cortical function, short-interval intracortical facilitation (SICF), was assessed reflecting activity of the facilitatory circuits.ResultsThere was a significant increase in SICF (ALS −18.51 ± 1.56%, controls −8.52 ± 1.21%, p < 0.001) in patients with ALS that was accompanied by a reduction of short-interval intracortical inhibition (ALS 3.94 ± 1.29%, controls 14.23 ± 1.18%, p < 0.001) and cortical silent period duration (p = 0.034). The index of excitation, a biomarker reflecting the contribution of inhibitory and facilitatory circuit activity, was significantly increased in patients with ALS (82.79 ± 6.01%) compared to controls (36.15 ± 3.44, p < 0.001), suggesting a shift toward cortical excitation. Increased excitation correlated with upper motor neuron signs (R2 = 0.235, p = 0.016) and greater functional disability as reflected by a correlation with the Amyotrophic Lateral Sclerosis Functional Rating Scale–Revised score (R2 = 0.335, p = 0.002).ConclusionsThe present study established that cortical hyperexcitability is a key contributor to ALS pathophysiology, mediated through dysfunction of inhibitory and facilitatory intracortical circuits. Therapies aimed at restoring the cortical inhibitory imbalance provide novel avenues for future therapeutic targets.
Collapse
|
36
|
Clark RM, Brizuela M, Blizzard CA, Dickson TC. Reduced Excitability and Increased Neurite Complexity of Cortical Interneurons in a Familial Mouse Model of Amyotrophic Lateral Sclerosis. Front Cell Neurosci 2018; 12:328. [PMID: 30323744 PMCID: PMC6172321 DOI: 10.3389/fncel.2018.00328] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 09/10/2018] [Indexed: 12/12/2022] Open
Abstract
Cortical interneurons play a crucial role in regulating inhibitory-excitatory balance in brain circuits, filtering synaptic information and dictating the activity of pyramidal cells through the release of GABA. In the fatal motor neuron (MN) disease, amyotrophic lateral sclerosis (ALS), an imbalance between excitation and inhibition is an early event in the motor cortex, preceding the development of overt clinical symptoms. Patients with both sporadic and familial forms of the disease exhibit reduced cortical inhibition, including patients with mutations in the copper/zinc superoxide-dismutase-1 (SOD1) gene. In this study, we investigated the influence of the familial disease-causing hSOD1-G93A ALS mutation on cortical interneurons in neuronal networks. We performed whole-cell patch-clamp recordings and neurobiotin tracing from GFP positive interneurons in primary cortical cultures derived from Gad67-GFP::hSOD1G93A mouse embryos. Targeted recordings revealed no overt differences in the passive properties of Gad67-GFP::hSOD1G93A interneurons, however the peak outward current was significantly diminished and cells were less excitable compared to Gad67-GFP::WT controls. Post hoc neurite reconstruction identified a significantly increased morphological complexity of the Gad67-GFP::hSOD1G93A interneuron neurite arbor compared to Gad67-GFP::WT controls. Our results from the SOD1 model suggest that cortical interneurons have electrophysiological and morphological alterations that could contribute to attenuated inhibitory function in the disease. Determining if these phenomena are driven by the network or represent intrinsic alteration of the interneuron may help explain the emergence of inhibitory susceptibility and ultimately disrupted excitability, in ALS.
Collapse
Affiliation(s)
- Rosemary M Clark
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
| | - Mariana Brizuela
- Flinders Medical Centre, Flinders University, Adelaide, SA, Australia
| | - Catherine A Blizzard
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
| | - Tracey C Dickson
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
| |
Collapse
|
37
|
Quarta E, Fulgenzi G, Bravi R, Cohen EJ, Yanpallewar S, Tessarollo L, Minciacchi D. Deletion of the endogenous TrkB.T1 receptor isoform restores the number of hippocampal CA1 parvalbumin-positive neurons and rescues long-term potentiation in pre-symptomatic mSOD1(G93A) ALS mice. Mol Cell Neurosci 2018; 89:33-41. [PMID: 29580900 DOI: 10.1016/j.mcn.2018.03.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 02/13/2018] [Accepted: 03/23/2018] [Indexed: 12/13/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) causes rapidly progressive paralysis and death within 5 years from diagnosis due to degeneration of the motor circuits. However, a significant population of ALS patients also shows cognitive impairments and progressive hippocampal pathology. Likewise, the mutant SOD1(G93A) mouse model of ALS (mSOD1), in addition to loss of spinal motor neurons, displays altered spatial behavior and hippocampal abnormalities including loss of parvalbumin-positive interneurons (PVi) and enhanced long-term potentiation (LTP). However, the cellular and molecular mechanisms underlying these morpho-functional features are not well understood. Since removal of TrkB.T1, a receptor isoform of the brain-derived neurotrophic factor, can partially rescue the phenotype of the mSOD1 mice, here we tested whether removal of TrkB.T1 can normalize the number of PVi and the LTP in this model. Stereological analysis of hippocampal PVi in control, TrkB.T1-/-, mSOD1, and mSOD1 mice deficient for TrkB.T1 (mSOD1/T1-/-) showed that deletion of TrkB.T1 restored the number of PVi to physiological level in the mSOD1 hippocampus. The rescue of PVi neuron number is paralleled by a normalization of high-frequency stimulation-induced LTP in the pre-symptomatic mSOD1/T1-/- mice. Our experiments identified TrkB.T1 as a cellular player involved in the homeostasis of parvalbumin expressing interneurons and, in the context of murine ALS, show that TrkB.T1 is involved in the mechanism underlying structural and functional hippocampal degeneration. These findings have potential implications for hippocampal degeneration and cognitive impairments reported in ALS patients at early stages of the disease.
Collapse
Affiliation(s)
- Eros Quarta
- Physiological Science Section, Department of Experimental and Clinical Medicine, University of Florence, Italy; Neural Development Section, Mouse Cancer Genetics Program, CCR, NCI, Frederick, MD, USA
| | - Gianluca Fulgenzi
- Neural Development Section, Mouse Cancer Genetics Program, CCR, NCI, Frederick, MD, USA; Department of Molecular and Clinical Sciences, Marche Polytechnic University, Ancona, Italy
| | - Riccardo Bravi
- Physiological Science Section, Department of Experimental and Clinical Medicine, University of Florence, Italy
| | - Erez James Cohen
- Physiological Science Section, Department of Experimental and Clinical Medicine, University of Florence, Italy
| | | | - Lino Tessarollo
- Neural Development Section, Mouse Cancer Genetics Program, CCR, NCI, Frederick, MD, USA
| | - Diego Minciacchi
- Physiological Science Section, Department of Experimental and Clinical Medicine, University of Florence, Italy.
| |
Collapse
|