1
|
Alam M, Gulzar M, Akhtar MS, Rashid S, Zulfareen, Tanuja, Shamsi A, Hassan MI. Epigallocatechin-3-gallate therapeutic potential in human diseases: molecular mechanisms and clinical studies. MOLECULAR BIOMEDICINE 2024; 5:73. [PMID: 39725830 DOI: 10.1186/s43556-024-00240-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 09/27/2024] [Accepted: 10/29/2024] [Indexed: 12/28/2024] Open
Abstract
Green tea has garnered increasing attention across age groups due to its numerous health benefits, largely attributed to Epigallocatechin 3-gallate (EGCG), its key polyphenol. EGCG exhibits a wide spectrum of biological activities, including antioxidant, anti-inflammatory, antibacterial, anticancer, and neuroprotective properties, as well as benefits for cardiovascular and oral health. This review provides a comprehensive overview of recent findings on the therapeutic potential of EGCG in various human diseases. Neuroprotective effects of EGCG include safeguarding neurons from damage and enhancing cognitive function, primarily through its antioxidant capacity to reduce reactive oxygen species (ROS) generated during physiological stress. Additionally, EGCG modulates key signaling pathways such as JAK/STAT, Delta-Notch, and TNF, all of which play critical roles in neuronal survival, growth, and function. Furthermore, EGCG is involved in regulating apoptosis and cell cycle progression, making it a promising candidate for the treatment of metabolic diseases, including cancer and diabetes. Despite its promising therapeutic potential, further clinical trials are essential to validate the efficacy and safety of EGCG and to optimize its delivery to target tissues. While many reviews have addressed the anticancer properties of EGCG, this review focuses on the molecular mechanisms and signaling pathways by which EGCG used in specific human diseases, particularly cancer, neurodegenerative and metabolic diseases. It serves as a valuable resource for researchers, clinicians, and healthcare professionals, revealing the potential of EGCG in managing neurodegenerative disorders, cancer, and metabolic diseases and highlighting its broader therapeutic values.
Collapse
Affiliation(s)
- Manzar Alam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| | - Mehak Gulzar
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| | - Mohammad Salman Akhtar
- Department of Basic Medical Sciences, Faculty of Applied Medical Sciences, Albaha University, Albaha, Saudi Arabia
| | - Summya Rashid
- Department of Pharmacology & Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, PO Box 173, 11942, Al-Kharj, Saudi Arabia
| | - Zulfareen
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| | - Tanuja
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| | - Anas Shamsi
- Center of Medical and Bio-Allied Health Sciences Research (CMBHSR), Ajman University, P.O. Box 346, Ajman, UAE.
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India.
| |
Collapse
|
2
|
Alzamami A, Alturki NA, Khan K, Basharat Z, Mashraqi MM. Screening inhibitors against the Ef-Tu of Fusobacterium nucleatum: a docking, ADMET and PBPK assessment study. Mol Divers 2024; 28:4259-4276. [PMID: 38457020 DOI: 10.1007/s11030-024-10815-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 01/21/2024] [Indexed: 03/09/2024]
Abstract
The oral pathogen Fusobacterium nucleatum has recently been associated with an elevated risk of colorectal cancer (CRC), endometrial metastasis, chemoresistance, inflammation, metastasis, and DNA damage, along with several other diseases. This study aimed to explore the disruption of protein machinery of F. nucleatum via inhibition of elongation factor thermo unstable (Ef-Tu) protein, through natural products. No study on Ef-Tu inhibition by natural products or in Fusobacterium spp. exists till todate. Ef-Tu is an abundant specialized drug target in bacteria that varies from human Ef-Tu. Elfamycins target Ef-Tu and hence, Enacyloxin IIa was used to generate pharmacophore for virtual screening of three natural product libraries, Natural Product Activity and Species Source (NPASS) (n = 30000 molecules), Tibetan medicinal plant database (n = 54 molecules) and African medicinal plant database (n > 6000 molecules). Peptaibol Septocylindrin B (NPC141050), Hirtusneanoside, and ZINC95486259 were prioritized from these libraries as potential therapeutic candidates. ADMET profiling was done for safety assessment, physiological-based pharmacokinetic modeling in human and mouse for getting insight into drug interaction with body tissues and molecular dynamics was used to assess stability of the best hit NPC141050 (Septocylindrin B). Based on the promising results, we propose further in vitro, in vivo and pharmacokinetic testing on the lead Septocylindrin B, for possible translation into therapeutic interventions.
Collapse
Affiliation(s)
- Ahmad Alzamami
- Clinical Laboratory Science Department, College of Applied Medical Sciences, Shaqra University, 11961, Al-Quwayiyah, Saudi Arabia
| | - Norah A Alturki
- Clinical Laboratory Science Department, College of Applied Medical Sciences, King Saud University, 11433, Riyadh, Saudi Arabia
| | - Kanwal Khan
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Zarrin Basharat
- Alpha Genomics (Private) Limited, Islamabad, 45710, Pakistan.
| | - Mutaib M Mashraqi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Najran University, 61441, Najran, Saudi Arabia.
| |
Collapse
|
3
|
Li Y, Cheng L, Li M. Effects of Green Tea Extract Epigallocatechin-3-Gallate on Oral Diseases: A Narrative Review. Pathogens 2024; 13:634. [PMID: 39204235 PMCID: PMC11357325 DOI: 10.3390/pathogens13080634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/24/2024] [Accepted: 07/26/2024] [Indexed: 09/03/2024] Open
Abstract
OBJECTIVES Oral diseases are among the most prevalent diseases globally. Accumulating new evidence suggests considerable benefits of epigallocatechin-3-gallate (EGCG) for oral health. This review aims to explore the role and application of EGCG in main oral diseases. METHODS This narrative review thoroughly examines and summarizes the most recent literature available in scientific databases (PubMed, Web of Science, Scopus, and Google Scholar) reporting advances in the role and application of EGCG within the dental field. The major keywords used included "EGCG", "green tea extract", "oral health", "caries", "pulpitis", "periapical disease", "periodontal disease", "oral mucosa", "salivary gland", and "oral cancer". CONCLUSIONS EGCG prevents and manages various oral diseases through its antibacterial, anti-inflammatory, antioxidant, and antitumor properties. Compared to traditional treatments, EGCG generally exhibits lower tissue irritation and positive synergistic effects when combined with other therapies. Novel delivery systems or chemical modifications can significantly enhance EGCG's bioavailability, prolong its action, and reduce toxicity, which are current hotspots in developing new materials. CLINICAL SIGNIFICANCE this review provides an exhaustive overview of the biological activities of EGCG to major oral diseases, alongside an exploration of applications and limitations, which serves as a reference for preventing and managing oral ailments.
Collapse
Affiliation(s)
| | - Lei Cheng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu 610041, China;
| | - Mingyun Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu 610041, China;
| |
Collapse
|
4
|
Ge J, Li M, Yao J, Guo J, Li X, Li G, Han X, Li Z, Liu M, Zhao J. The potential of EGCG in modulating the oral-gut axis microbiota for treating inflammatory bowel disease. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 130:155643. [PMID: 38820660 DOI: 10.1016/j.phymed.2024.155643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 04/07/2024] [Accepted: 04/13/2024] [Indexed: 06/02/2024]
Abstract
Inflammatory bowel disease (IBD) is a recurrent chronic intestinal disorder that includes ulcerative colitis (UC) and Crohn's disease (CD). Its pathogenesis involves intricate interactions between pathogenic microorganisms, native intestinal microorganisms, and the intestinal immune system via the oral-gut axis. The strong correlation observed between oral diseases and IBD indicates the potential involvement of oral pathogenic microorganisms in IBD development. Consequently, therapeutic strategies targeting the proliferation, translocation, intestinal colonization and exacerbated intestinal inflammation of oral microorganisms within the oral-gut axis may partially alleviate IBD. Tea consumption has been identified as a contributing factor in reducing IBD, with epigallocatechin gallate (EGCG) being the primary bioactive compound used for IBD treatment. However, the precise mechanism by which EGCG mediates microbial crosstalk within the oral-gut axis remains unclear. In this review, we provide a comprehensive overview of the diverse oral microorganisms implicated in the pathogenesis of IBD and elucidate their colonization pathways and mechanisms. Subsequently, we investigated the antibacterial properties of EGCG and its potential to attenuate microbial translocation and colonization in the gut, emphasizing its role in attenuating exacerbations of IBD. We also elucidated the toxic and side effects of EGCG. Finally, we discuss current strategies for enhancing EGCG bioavailability and propose novel multi-targeted nano-delivery systems for the more efficacious management of IBD. This review elucidates the role and feasibility of EGCG-mediated modulation of the oral-gut axis microbiota in the management of IBD, contributing to a better understanding of the mechanism of action of EGCG in the treatment of IBD and the development of prospective treatment strategies.
Collapse
Affiliation(s)
- Jiaming Ge
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Tianjin Key Laboratory of Intelligent TCM Diagnosis and Treatment Technology and Equipment, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Mengyuan Li
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Tianjin Key Laboratory of Intelligent TCM Diagnosis and Treatment Technology and Equipment, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Jingwen Yao
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Tianjin Key Laboratory of Intelligent TCM Diagnosis and Treatment Technology and Equipment, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Jinling Guo
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Tianjin Key Laboratory of Intelligent TCM Diagnosis and Treatment Technology and Equipment, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xiankuan Li
- Tianjin Key Laboratory of Intelligent TCM Diagnosis and Treatment Technology and Equipment, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Gang Li
- State Key Laboratory of Precision Measurement Technology and Instruments, Tianjin University, Tianjin 300072, China
| | - Xiangli Han
- Department of Geriatric, Fourth Teaching Hospital of Tianjin University of TCM, Tianjin 300450, China
| | - Zheng Li
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Tianjin Key Laboratory of Intelligent TCM Diagnosis and Treatment Technology and Equipment, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Tianjin Key Laboratory of Intelligent and Green Pharmaceuticals for Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Ming Liu
- Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, 236 Baidi Road, Nankai District, Tianjin 300192, China.
| | - Jing Zhao
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Tianjin Key Laboratory of Intelligent TCM Diagnosis and Treatment Technology and Equipment, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Tianjin Key Laboratory of Intelligent and Green Pharmaceuticals for Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| |
Collapse
|
5
|
Rosner O, Livne S, Bsharat M, Dviker S, Jeffet U, Matalon S, Sterer N. Lavandula angustifolia Essential Oil Inhibits the Ability of Fusobacterium nucleatum to Produce Volatile Sulfide Compounds, a Key Components in Oral Malodor. Molecules 2024; 29:2982. [PMID: 38998934 PMCID: PMC11243465 DOI: 10.3390/molecules29132982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 06/16/2024] [Accepted: 06/16/2024] [Indexed: 07/14/2024] Open
Abstract
Oral malodor still constitutes a major challenge worldwide. A strong effort is invested in eliminating volatile sulfur compound-producing oral bacteria through organic natural products such as essential oils. Fusobacterium nucleatum is a known volatile sulfur compound-producing bacteria that inspires oral malodor. The aim of the present study was to test the effect of lavender essential oil on the bacterium's ability to produce volatile sulfide compounds, the principal components of oral malodor. Lavender (Lavandula angustifolia) essential oil was extracted by hydrodistillation and analyzed using GC-MS. The minimal inhibitory concentration (MIC) of lavender essential oil on Fusobacterium nucleatum was determined in a previous trial. Fusobacterium nucleatum was incubated anaerobically in the presence of sub-MIC, MIC, and above MIC concentrations of lavender essential oil, as well as saline and chlorhexidine as negative and positive controls, respectively. Following incubation, volatile sulfur compound levels were measured using GC (Oralchroma), and bacterial cell membrane damage was studied using fluorescence microscopy. Chemical analysis of lavender essential oil yielded five main components, with camphor being the most abundant, accounting for nearly one-third of the total lavender essential oil volume. The MIC (4 µL/mL) of lavender essential oil reduced volatile sulfur compound secretion at a statistically significant level compared to the control (saline). Furthermore, the level of volatile sulfur compound production attributed to 1 MIC of lavender essential oil was in the range of the positive control chlorhexidine with no significant difference. When examining bacterial membrane damage, 2 MIC of lavender essential oil (i.e., 8 µL/mL) demonstrated the same, showing antibacterial membrane damage values comparative to chlorhexidine. Since lavender essential oil was found to be highly effective in hindering volatile sulfur compound production by Fusobacterium nucleatum through the induction of bacterial cell membrane damage, the results suggest that lavender essential oil may be a suitable alternative to conventional chemical-based anti-malodor agents.
Collapse
Affiliation(s)
- Ofir Rosner
- Department of Prosthodontics, Goldschleger School of Dental Medicine, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv 6997801, Israel
| | - Shiri Livne
- Department of Prosthodontics, Goldschleger School of Dental Medicine, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv 6997801, Israel
| | - Maria Bsharat
- Department of Prosthodontics, Goldschleger School of Dental Medicine, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv 6997801, Israel
| | - Shir Dviker
- Department of Prosthodontics, Goldschleger School of Dental Medicine, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv 6997801, Israel
| | - Uziel Jeffet
- Department of Prosthodontics, Goldschleger School of Dental Medicine, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv 6997801, Israel
| | - Shlomo Matalon
- Department of Prosthodontics, Goldschleger School of Dental Medicine, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv 6997801, Israel
| | - Nir Sterer
- Department of Prosthodontics, Goldschleger School of Dental Medicine, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv 6997801, Israel
| |
Collapse
|
6
|
Wang M, Chu W. Dencichine attenuates the virulence of Fusobacterium nucleatum by targeting hydrogen sulfide-producing enzyme. Int Microbiol 2024:10.1007/s10123-024-00539-1. [PMID: 38789725 DOI: 10.1007/s10123-024-00539-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/31/2023] [Accepted: 05/19/2024] [Indexed: 05/26/2024]
Abstract
Oral opportunistic pathogen Fusobacterium nucleatum can participate in various disease processes through the metabolite hydrogen sulfide, such as halitosis and colorectal cancer. The object of this study is to identify inhibitor capable of suppressing Fn1220, which is the principal hydrogen sulfide-producing enzyme in F. nucleatum. Through this inhibition, we aim to reduce the hydrogen sulfide production of F. nucleatum, consequently diminishing its virulence. Employing molecular docking techniques for inhibitor screening, we identified dencichine as the monomeric compound from Chinese medicine exhibiting the lowest binding energy to Fn1220 among a set of 27,045 candidates, and evaluated in vitro the ability of dencichine to inhibit hydrogen sulfide production using bismuth chloride method. Additionally, we investigated its impact on key virulence factors, including biofilm formation, hemolysis, and adhesion factors of F. nucleatum, using the crystalline violet method, sheep blood method, and RT-qPCR, respectively. Furthermore, we assessed the influence of dencichine on the lifespan of Caenorhabditis elegans. Results showed that dencichine was a suitable inhibitor of the Fn1220 of F. nucleatum, which significantly inhibited the production of virulence factors, e.g., biofilm, hemolysin, FadA, and Fap2 of F. nucleatum and improved the survival of C. elegans. We successfully identified the inhibitor of the enzyme Fn1220, dencichine, which inhibited the production of hydrogen sulfide and attenuated the virulence of F. nucleatum and holds promise as a potential therapeutic avenue for addressing oral diseases, e.g., halitosis in the future.
Collapse
Affiliation(s)
- Minyu Wang
- Department of Pharmaceutical Microbiology, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, China
| | - Weihua Chu
- Department of Pharmaceutical Microbiology, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, China.
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
7
|
Cui J, Wu B, Zhou J. Changes in amino acids, catechins and alkaloids during the storage of oolong tea and their relationship with antibacterial effect. Sci Rep 2024; 14:10424. [PMID: 38710752 DOI: 10.1038/s41598-024-60951-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 04/29/2024] [Indexed: 05/08/2024] Open
Abstract
The storage process has a significant impact on tea quality. Few is known about effect of storage on quality of oolong tea. This study aimed to assess the effect of different storage times on the key chemical components of oolong tea by measuring changes in catechin, free amino acid, and alkaloid content. Variation in the main substances was determined by principal component analysis and heat map analysis. The results revealed notable effects of the storage process on the levels of theanine, epigallocatechin gallate (EGCG), and glutamine. These findings suggest that these compounds could serve as indicators for monitoring changes in oolong tea quality during storage. Additionally, the study observed an increase in the antibacterial ability of tea over time. Correlation analysis indicated that the antibacterial ability against Micrococcus tetragenus and Escherichia coli was influenced by metabolites such as aspartic acid, threonine, serine, gamma-aminobutyric acid, ornithine, alanine, arginine, and EGCG. Overall, this study presents an approach for identifying key metabolites to monitor tea quality effectively with relatively limited data.
Collapse
Affiliation(s)
- Jilai Cui
- College of Life Science, Xinyang Normal University, 237 Nanhu R., Xinyang, 464000, Henan, People's Republic of China.
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang Ave W., Hefei, 230036, Anhui, People's Republic of China.
| | - Bin Wu
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang Ave W., Hefei, 230036, Anhui, People's Republic of China
| | - Jie Zhou
- College of Life Science, Xinyang Normal University, 237 Nanhu R., Xinyang, 464000, Henan, People's Republic of China
| |
Collapse
|
8
|
Lin Y, Liang S, Zhang Y, Yu Y. The antibacterial mechanism of (-)-epigallocatechin-3-gallate (EGCG) against Campylobacter jejuni through transcriptome profiling. J Food Sci 2024; 89:2384-2396. [PMID: 38389445 DOI: 10.1111/1750-3841.16966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/08/2024] [Accepted: 01/17/2024] [Indexed: 02/24/2024]
Abstract
(-)-Epigallocatechin-3-gallate (EGCG) has been shown antibacterial activity against Campylobacter jejuni; however, the relevant antibacterial mechanism is unknown. In this study, phenotypic experiments and RNA sequencing were used to explore the antibacterial mechanism. The minimum inhibitory concentration of EGCG on C. jejuni was 32 µg/mL. EGCG-treated was able to increase intracellular reactive oxygen species levels and decline bacterial motility. The morphology and cell membrane of C. jejuni after EGCG treatment were observed collapsed, broken, and agglomerated by field emission scanning electron microscopy and fluorescent microscopy. The RNA-seq analysis presents that there are 36 and 72 differential expressed genes after C. jejuni was treated by EGCG with the concentration of 16 and 32 µg/mL, respectively. EGCG-treated increased the thioredoxin expression, which was a critical protein to resist oxidative stress. Moreover, downregulation of the flgH and flgM gene in flagellin biosynthesis of C. jejuni was able to impair the flagella, reducing cell motility and virulence. The primary antibacterial mechanism revealed by RNA-seq is that EGCG with iron-chelating activity competes with C. jejuni for iron, causing iron deficiency in C. jejuni, which potentially impacts the survival and virulence of C. jejuni. The results suggested a new direction for exploring the activity of EGCG against C. jejuni in the food industry. PRACTICAL APPLICATION: A deeper understanding of the antibacterial mechanism of EGCG against C. jejuni was more beneficial in improving the food safety, eliminating concerns about human health caused by C. jejuni in future food, and promoting the natural antibacterial agent EGCG application in the food industry.
Collapse
Affiliation(s)
- Yilin Lin
- Research Center of Food Safety and Detection, School of Food Sciences and Engineering, South China University of Technology, Guangzhou, China
| | - Siwei Liang
- Research Center of Food Safety and Detection, School of Food Sciences and Engineering, South China University of Technology, Guangzhou, China
| | - Yehui Zhang
- Sericulture & Agri-food Research Institute Guangdong Academy of Agricultural Sciences, Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou, China
| | - Yigang Yu
- Research Center of Food Safety and Detection, School of Food Sciences and Engineering, South China University of Technology, Guangzhou, China
| |
Collapse
|
9
|
Bonatto MDS, Feltran GDS, Barbosa TP, Pereira DA, Santos SDS, Mendes PGJ, E Pessoa RS, Bezerra FJB, Zambuzzi WF, de Oliveira GJPL. Green tea and hyaluronic acid gel enhance fibroblast activation and improves the gingival healing post-third molar extraction. Sci Rep 2024; 14:7124. [PMID: 38531928 DOI: 10.1038/s41598-024-57821-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 03/21/2024] [Indexed: 03/28/2024] Open
Abstract
This study evaluates the effects of a green tea (Camellia sinensis) and hyaluronic acid gel on fibroblast activity and alveolar bone repair following third molar extractions. By examining the gene expression related to cell survival, proliferation, and angiogenesis, the study bridges in vitro findings with clinical outcomes in a split-mouth randomized trial. Human fibroblasts were exposed to the treatment gel, analysing gene expression through RT-qPCR. Twenty participants undergoing bilateral third molar extractions received the test gel on one side and a placebo on the other. Assessments included patient-reported outcomes, professional evaluations, and radiographic analyses at multiple postoperative intervals. The test gel significantly enhanced AKT, CDKs, and VEGF gene expressions, indicating a positive effect on angiogenesis and cell proliferation. Clinically, it resulted in reduced exudate, swelling, and secondary interventions, with radiographs showing improved alveolar bone density after 90 days. The green tea and hyaluronic acid gel significantly improves soft tissue and bone healing post-extraction, offering a promising adjunctive therapy for enhancing postoperative recovery. This gel represents a novel adjuvant treatment option for facilitating improved healing outcomes after third molar extractions, highlighting its potential utility in clinical dental practice.
Collapse
Affiliation(s)
- Mariana da Silva Bonatto
- School of Dentistry - Universidade Federal de Uberlândia (UFU), Pará, Av., 1760-1844, Uberlândia, MG, 38405-320, Brazil
| | - Geórgia da Silva Feltran
- UNESP - Campus de Botucatu - Instituto de Biociências, São Paulo State University, Rua Prof a. Dr a. Irina Delanova Gemtchujnicov, s/nº, Botucatu, SP, 18618-693, Brazil
| | - Thamires Prazeres Barbosa
- UNESP - Campus de Botucatu - Instituto de Biociências, São Paulo State University, Rua Prof a. Dr a. Irina Delanova Gemtchujnicov, s/nº, Botucatu, SP, 18618-693, Brazil
| | - Davisson Alves Pereira
- School of Dentistry - Universidade Federal de Uberlândia (UFU), Pará, Av., 1760-1844, Uberlândia, MG, 38405-320, Brazil
| | - Samara de Souza Santos
- School of Dentistry - Universidade Federal de Uberlândia (UFU), Pará, Av., 1760-1844, Uberlândia, MG, 38405-320, Brazil
| | - Pedro Gomes Junqueira Mendes
- School of Dentistry - Universidade Federal de Uberlândia (UFU), Pará, Av., 1760-1844, Uberlândia, MG, 38405-320, Brazil
| | | | - Fábio José Barbosa Bezerra
- UNESP - Campus de Botucatu - Instituto de Biociências, São Paulo State University, Rua Prof a. Dr a. Irina Delanova Gemtchujnicov, s/nº, Botucatu, SP, 18618-693, Brazil
| | - Willian Fernando Zambuzzi
- UNESP - Campus de Botucatu - Instituto de Biociências, São Paulo State University, Rua Prof a. Dr a. Irina Delanova Gemtchujnicov, s/nº, Botucatu, SP, 18618-693, Brazil.
| | | |
Collapse
|
10
|
Simões R, Ribeiro AC, Dias R, Freitas V, Soares S, Pérez-Gregorio R. Unveiling the Immunomodulatory Potential of Phenolic Compounds in Food Allergies. Nutrients 2024; 16:551. [PMID: 38398875 PMCID: PMC10891931 DOI: 10.3390/nu16040551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/11/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024] Open
Abstract
Food allergies are becoming ever more prevalent around the world. This pathology is characterized by the breakdown of oral tolerance to ingested food allergens, resulting in allergic reactions in subsequent exposures. Due to the possible severity of the symptoms associated with this pathology, new approaches to prevent it and reduce associated symptoms are of utmost importance. In this framework, dietary phenolic compounds appear as a tool with a not fully explored potential. Some phenolic compounds have been pointed to with the ability to modulate food allergies and possibly reduce their symptoms. These compounds can modulate food allergies through many different mechanisms, such as altering the bioaccessibility and bioavailability of potentially immunogenic peptides, by modulating the human immune system and by modulating the composition of the human microbiome that resides in the oral cavity and the gastrointestinal tract. This review deepens the state-of-the-art of the modulation of these mechanisms by phenolic compounds. While this review shows clear evidence that dietary supplementation with foods rich in phenolic compounds might constitute a new approach to the management of food allergies, it also highlights the need for further research to delve into the mechanisms of action of these compounds and decipher systematic structure/activity relationships.
Collapse
Affiliation(s)
- Rodolfo Simões
- REQUIMTE/LAQV, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, Rua Campo Alegre 687, s/n, 4169-007 Porto, Portugal
- Food and Health Omics Group, Food and Agroecology Institute, University of Vigo, Campus As Lagoas, s/n, 32004 Ourense, Spain
- Food and Health Omics Group, Department of Chemistry and Biochemistry, Galicia Sur Health Research Institute (IISGS), SERGAS-UVIGO, 32002 Ourense, Spain
| | - Ana Catarina Ribeiro
- REQUIMTE/LAQV, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, Rua Campo Alegre 687, s/n, 4169-007 Porto, Portugal
| | - Ricardo Dias
- REQUIMTE/LAQV, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, Rua Campo Alegre 687, s/n, 4169-007 Porto, Portugal
| | - Victor Freitas
- REQUIMTE/LAQV, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, Rua Campo Alegre 687, s/n, 4169-007 Porto, Portugal
| | - Susana Soares
- REQUIMTE/LAQV, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, Rua Campo Alegre 687, s/n, 4169-007 Porto, Portugal
| | - Rosa Pérez-Gregorio
- REQUIMTE/LAQV, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, Rua Campo Alegre 687, s/n, 4169-007 Porto, Portugal
- Food and Health Omics Group, Food and Agroecology Institute, University of Vigo, Campus As Lagoas, s/n, 32004 Ourense, Spain
- Food and Health Omics Group, Department of Chemistry and Biochemistry, Galicia Sur Health Research Institute (IISGS), SERGAS-UVIGO, 32002 Ourense, Spain
| |
Collapse
|
11
|
Pouliou C, Piperi C. Advances of Oxidative Stress Impact in Periodontitis: Biomarkers and Effective Targeting Options. Curr Med Chem 2024; 31:6187-6203. [PMID: 38726786 DOI: 10.2174/0109298673297545240507091410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/29/2024] [Accepted: 04/19/2024] [Indexed: 10/16/2024]
Abstract
Periodontitis is the most common inflammatory oral disease that affects around 15% of adults and contributes to severe periodontal tissue destruction with subsequent tooth loosening and loss. Among the main pathogenic mechanisms underlying periodontitis, excessive reactive oxygen species production and oxidative stress play a predominant role in inducing both local and systemic damage. Current therapeutic approaches have expanded the conventional methods combined with herbal antioxidant compounds to free radical-scavenging nanomaterials and infrared laser therapy, offering promising pre-clinical evidence in periodontitis management. Herein, we review the pathogenic mechanisms of reactive oxygen species tissue damage, along with recent advances in oxidative stress biomarkers and novel targeting options.
Collapse
Affiliation(s)
- Chrysi Pouliou
- Dental School, National and Kapodistrian University of Athens, 2 Thivon Str, Goudi, Athens, 11527, Greece
| | - Christina Piperi
- Dental School, National and Kapodistrian University of Athens, 2 Thivon Str, Goudi, Athens, 11527, Greece
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 75 M. Asias Street, Athens, 11527, Greece
| |
Collapse
|
12
|
Guo Y, Li Z, Chen F, Chai Y. Polyphenols in Oral Health: Homeostasis Maintenance, Disease Prevention, and Therapeutic Applications. Nutrients 2023; 15:4384. [PMID: 37892459 PMCID: PMC10610286 DOI: 10.3390/nu15204384] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 09/30/2023] [Accepted: 10/13/2023] [Indexed: 10/29/2023] Open
Abstract
Polyphenols, a class of bioactive compounds with phenolic structures, are abundant in human diets. They have gained attention in biomedical fields due to their beneficial properties, including antioxidant, antibacterial, and anti-inflammatory activities. Therefore, polyphenols can prevent multiple chronic or infectious diseases and may help in the prevention of oral diseases. Oral health is crucial to our well-being, and maintaining a healthy oral microbiome is essential for preventing various dental and systemic diseases. However, the mechanisms by which polyphenols modulate the oral microbiota and contribute to oral health are still not fully understood, and the application of polyphenol products lies in different stages. This review provides a comprehensive overview of the advancements in understanding polyphenols' effects on oral health: dental caries, periodontal diseases, halitosis, and oral cancer. The mechanisms underlying the preventive and therapeutic effects of polyphenols derived from dietary sources are discussed, and new findings from animal models and clinical trials are included, highlighting the latest achievements. Given the great application potential of these natural compounds, novel approaches to dietary interventions and oral disease treatments may emerge. Moreover, investigating polyphenols combined with different materials presents promising opportunities for developing innovative therapeutic strategies in the treatment of oral diseases.
Collapse
Affiliation(s)
- Yuanyuan Guo
- School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen 518060, China;
- Key Laboratory of Optoelectronic Devices and Systems, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen 518060, China
| | - Zhiquan Li
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, DK-2200 Copenhagen, Denmark;
| | - Feng Chen
- Central Laboratory, Peking University School and Hospital of Stomatology, Beijing 100081, China
| | - Yujuan Chai
- School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen 518060, China;
| |
Collapse
|
13
|
Yin H, Yan Q, Cheng G, Zhang L, Li M, Hu T, Gao S, Chen Y, Tang H, Luo J. The antivirulence activity, transcriptomics of EGCG and its protective effects on zebrafish infected by Aeromonas hydrophila. Front Cell Infect Microbiol 2023; 13:1271448. [PMID: 37868352 PMCID: PMC10587681 DOI: 10.3389/fcimb.2023.1271448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 09/22/2023] [Indexed: 10/24/2023] Open
Abstract
Background Aeromonas hydrophila is an important pathogen that mainly harms aquatic animals and exhibits resistance to a variety of antibiotics. This study investigated the effect of epigallocatechin-3-gallate (EGCG) on the virulence factors of A.hydrophila and its impact on adhesion, invasion, and cytotoxicity in Caco-2 cells. The potential mechanism of antibacterial activity of EGCG was investigated by transcriptomic analysis. Results EGCG not only inhibited the production of biofilm, hemolytic activity, motility, and protease activity of A.hydrophila, but also reduced its adhesion, invasion, and cytotoxicity in Caco-2 cells. Transcriptomic analysis indicated that the antimicrobial activity of EGCG may be achieved by weakening the chemotaxis and stress response of the bacteria, as well as inhibiting the TonB system. Animal studies demonstrated that EGCG can significantly improve the survival rate and organs damage of zebrafish infected with A.hydrophila. Conclusion EGCG would be a potential alternative drug for the prevention and treatment of A. hydrophila infections by anti-virulence mechanism.
Collapse
Affiliation(s)
- Hongmei Yin
- School of Animal Science, Xichang University, Xichang, Sichuan, China
- Department of Pharmacy, Sichuan Agricultural University, Chengdu, China
| | - Qiaohua Yan
- Department of Pharmacy, Sichuan Agricultural University, Chengdu, China
| | - Guoqiang Cheng
- Sichuan Academy of Chinese Medicine Sciences, Chengdu, China
| | - Li Zhang
- Sichuan Academy of Chinese Medicine Sciences, Chengdu, China
| | - Meiqing Li
- Department of Pharmacy, Sichuan Agricultural University, Chengdu, China
| | - Tingting Hu
- Department of Pharmacy, Sichuan Agricultural University, Chengdu, China
| | - Sihui Gao
- Department of Pharmacy, Sichuan Agricultural University, Chengdu, China
| | - Yuanhang Chen
- Department of Pharmacy, Sichuan Agricultural University, Chengdu, China
| | - Huaqiao Tang
- Department of Pharmacy, Sichuan Agricultural University, Chengdu, China
| | - Jie Luo
- Department of Pharmacy, Sichuan Agricultural University, Chengdu, China
- Key Open Laboratory of Traditional Chinese Veterinary Medicine, Tongren Polytechnic College, Tongren, China
| |
Collapse
|
14
|
Silva E, Teixeira JA, Pereira MO, Rocha CMR, Sousa AM. Evolving biofilm inhibition and eradication in clinical settings through plant-based antibiofilm agents. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 119:154973. [PMID: 37499434 DOI: 10.1016/j.phymed.2023.154973] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 07/05/2023] [Accepted: 07/15/2023] [Indexed: 07/29/2023]
Abstract
BACKGROUND After almost 100 years since evidence of biofilm mode of growth and decades of intensive investigation about their formation, regulatory pathways and mechanisms of antimicrobial tolerance, nowadays there are still no therapeutic solutions to eradicate bacterial biofilms and their biomedical related issues. PURPOSE This review intends to provide a comprehensive summary of the recent and most relevant published studies on plant-based products, or their isolated compounds with antibiofilm activity mechanisms of action or identified molecular targets against bacterial biofilms. The objective is to offer a new perspective of most recent data for clinical researchers aiming to prevent or eliminate biofilm-associated infections caused by bacterial pathogens. METHODS The search was performed considering original research articles published on PubMed, Web of Science and Scopus from 2015 to April 2023, using keywords such as "antibiofilm", "antivirulence", "phytochemicals" and "plant extracts". RESULTS Over 180 articles were considered for this review with a focus on the priority human pathogens listed by World Health Organization, including Pseudomonas aeruginosa, Staphylococcus aureus, Klebsiella pneumoniae and Escherichia coli. Inhibition and detachment or dismantling of biofilms formed by these pathogens were found using plant-based extract/products or derivative compounds. Although combination of plant-based products and antibiotics were recorded and discussed, this topic is currently poorly explored and only for a reduced number of bacterial species. CONCLUSIONS This review clearly demonstrates that plant-based products or derivative compounds may be a promising therapeutic strategy to eliminate bacterial biofilms and their associated infections. After thoroughly reviewing the vast amount of research carried out over years, it was concluded that plant-based products are mostly able to prevent biofilm formation through inhibition of quorum sensing signals, but also to disrupt mature biofilms developed by multidrug resistant bacteria targeting the biofilm extracellular polymeric substance. Flavonoids and phenolic compounds seemed the most effective against bacterial biofilms.
Collapse
Affiliation(s)
- Eduarda Silva
- Centre of Biological Engineering, LIBRO - Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, Campus de Gualtar, Braga 4710-057, Portugal
| | - José A Teixeira
- Centre of Biological Engineering, LIBRO - Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, Campus de Gualtar, Braga 4710-057, Portugal; LABBELS - Associate Laboratory, Guimarães, Braga, Portugal
| | - Maria Olivia Pereira
- Centre of Biological Engineering, LIBRO - Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, Campus de Gualtar, Braga 4710-057, Portugal; LABBELS - Associate Laboratory, Guimarães, Braga, Portugal
| | - Cristina M R Rocha
- Centre of Biological Engineering, LIBRO - Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, Campus de Gualtar, Braga 4710-057, Portugal; LABBELS - Associate Laboratory, Guimarães, Braga, Portugal
| | - Ana Margarida Sousa
- Centre of Biological Engineering, LIBRO - Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, Campus de Gualtar, Braga 4710-057, Portugal; LABBELS - Associate Laboratory, Guimarães, Braga, Portugal.
| |
Collapse
|
15
|
Gou M, Zou C, Jiang Y, Xie H, Wang H, Song H. Antibacterial efficacy of epigallocatechin-3-gallate cross-linked small intestinal submucosa guided bone regeneration membrane. Dent Mater J 2023; 42:624-632. [PMID: 37612096 DOI: 10.4012/dmj.2022-167] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
The leading cause of guided bone regeneration (GBR) failure is infection. Herein, we developed a new GBR membrane with good mechanical and osteogenic properties by crosslinking the small intestinal submucosa (SIS) with epigallocatechin-3-gallate (EGCG). Meanwhile, EGCG is also a natural antibacterial agent. This study aimed to investigate the antibacterial efficacy of EGCG-crosslinked SIS (E-SIS) against Staphylococcus aureus and Escherichia coli through EGCG release, bacterial count, live/dead staining, scanning electron microscopy, growth curve, and biofilm formation tests. The results showed that E-SIS effectively inhibited bacteria's growth and adhesion, and its antibacterial activity against Staphylococcus aureus was stronger than that against Escherichia coli. 0.5% E-SIS had the most potent antibacterial activity. The antibacterial mechanism of E-SIS might be related to the release of EGCG and the surface properties of E-SIS. In conclusion, 0.5% E-SIS is a promising GBR membrane with good osteogenic and antibacterial properties.
Collapse
Affiliation(s)
- Min Gou
- Chengdu Second People's Hospital, Department of Stomatology
| | - Chenyu Zou
- Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy
| | - Yanlin Jiang
- Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy
| | - Huiqi Xie
- Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy
| | - Hang Wang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University
| | - Hongjie Song
- Chengdu Second People's Hospital, Department of Stomatology
| |
Collapse
|
16
|
Chauhan J, Sharma RK. Synbiotic formulations with microbial biofilm, animal derived (casein, collagen, chitosan) and plant derived (starch, cellulose, alginate) prebiotic polymers: A review. Int J Biol Macromol 2023; 248:125873. [PMID: 37473897 DOI: 10.1016/j.ijbiomac.2023.125873] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/29/2023] [Accepted: 07/15/2023] [Indexed: 07/22/2023]
Abstract
The need for a broader range of probiotics, prebiotics, and synbiotics to improve the activity and functioning of gut microbiota has led to the development of new nutraceuticals formulations. These techniques majorly depend on the type of the concerned food, inclusive factors i.e. application of biotic components, probiotics, and synbiotics along with the type of encapsulation involved. For improvisation of the oral transfer mode of synbiotics delivery within the intestine along with viability, efficacy, and stability co-encapsulation is required. The present study explores encapsulation materials, probiotics and prebiotics in the form of synbiotics. The emphasis was given to the selection and usage of probiotic delivery matrix or prebiotic polymers, which primarily include animal derived (gelatine, casein, collagen, chitosan) and plant derived (starch, cellulose, pectin, alginate) materials. Beside this, the role of microbial polymers and biofilms (exopolysaccharides, extracellular polymeric substances) has also been discussed in the formation of probiotic functional foods. In this instance, the microbial biofilm is also used as suitable polymeric compound for encapsulation providing stability, viability, and efficacy. Thus, the review highlights the utilization of diverse prebiotic polymers in synbiotic formulations, along with microbial biofilms, which hold great potential for enhancing gut microbiota activity and improving overall health.
Collapse
Affiliation(s)
- Juhi Chauhan
- Department of Biosciences, Manipal University Jaipur, Jaipur 303007, Rajasthan, India
| | - Rakesh Kumar Sharma
- Department of Biosciences, Manipal University Jaipur, Jaipur 303007, Rajasthan, India.
| |
Collapse
|
17
|
Cui X, Xu L, Qi K, Lan H. Effects of Tea Polyphenols and Theaflavins on Three Oral Cariogenic Bacteria. Molecules 2023; 28:6034. [PMID: 37630286 PMCID: PMC10458778 DOI: 10.3390/molecules28166034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 07/22/2023] [Accepted: 07/31/2023] [Indexed: 08/27/2023] Open
Abstract
In order to investigate the antibacterial mechanism of tea polyphenols and theaflavins against oral cariogenic bacteria, the pH value of the culture medium, the number of bacteria adhering to the smooth glass tube wall, and the electrical conductivity value within 10 h were measured, respectively. The effects of four concentrations of tea polyphenols and theaflavins below the MIC value were studied on acid production, adhesion, and electrical conductivity of oral cariogenic bacteria. The live/dead staining method was used to observe the effects of four concentrations of tea polyphenols and theaflavins below the MIC value on the biofilm formation of oral cariogenic bacteria under a laser scanning confocal microscope. With the increase in concentrations of tea polyphenols and theaflavins, the acid production and adhesion of the cariogenic bacteria gradually decreased, and the conductivity gradually increased. However, the conductivity increase was not significant (p < 0.05). Compared with the control group, the 1/2MIC and 1/4MIC tea polyphenols and theaflavins treatments significantly reduced the biomass of the cariogenic biofilm (p < 0.05). The confocal laser scanning microscope showed that the integrated optical density of green fluorescence of the cariogenic biofilm gradually decreased with the increase in agent concentration after the action of tea polyphenols and theaflavins.
Collapse
Affiliation(s)
- Xia Cui
- College of Pharmacy, Dali University, Dali 671000, China
- College of Fundamentals and Pharmacy, Yunnan Medical Health College, Anning 650300, China
| | - Lei Xu
- College of Pharmacy, Dali University, Dali 671000, China
| | - Kezhen Qi
- College of Pharmacy, Dali University, Dali 671000, China
| | - Hai Lan
- College of Pharmacy, Dali University, Dali 671000, China
| |
Collapse
|
18
|
Zhong W, Tang M, Xie Y, Huang X, Liu Y. Tea Polyphenols Inhibit the Activity and Toxicity of Staphylococcus aureus by Destroying Cell Membranes and Accumulating Reactive Oxygen Species. Foodborne Pathog Dis 2023; 20:294-302. [PMID: 37347934 DOI: 10.1089/fpd.2022.0085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/24/2023] Open
Abstract
Staphylococcus aureus can cause bacterial food intoxication and seriously affect human health. Tea polyphenols (TP) are a kind of natural, safe, and broad-spectrum bacteriostatic substances, with a wide range of bacteriostatic effects. In the study, we explored the possible bacteriostatic mode of TP. The minimum inhibitory concentration of TP against S. aureus was 64 μg/mL. Protein, DNA, and K+ leak experiments, fluorescence microscopy, and transmission electron microscopy suggested that TP disrupt cell membranes, leading to intracellular component loss. By studying the effect of TP on the toxicity of S. aureus, it was found that the expression levels of two toxin genes, coa and spa, were downregulated by 2.37 and 32.6, respectively. Furthermore, after treatment with TP, a large number of reactive oxygen species (ROS) were propagated and released, leading to oxidative stress in cells. We speculated that the bacteriostatic mechanism of TP may be through the destruction of the cell membrane and ROS-mediated oxidative stress. Meanwhile, the hemolysis activity proved the safety of TP. Our results suggested that TP may be a potential antimicrobial agent for food.
Collapse
Affiliation(s)
- Weiwei Zhong
- Department of Food Science and Engineering, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Zhejiang Provincial Key Laboratory of Animal Protein Food Intensive Processing Technology, Ningbo University, Ningbo, China
| | - Mengsheng Tang
- Department of Food Science and Engineering, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Zhejiang Provincial Key Laboratory of Animal Protein Food Intensive Processing Technology, Ningbo University, Ningbo, China
| | - Yan Xie
- Department of Food Science and Engineering, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Zhejiang Provincial Key Laboratory of Animal Protein Food Intensive Processing Technology, Ningbo University, Ningbo, China
| | - Xianqing Huang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Yanan Liu
- Department of Food Science and Engineering, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Zhejiang Provincial Key Laboratory of Animal Protein Food Intensive Processing Technology, Ningbo University, Ningbo, China
| |
Collapse
|
19
|
Lyubitelev A, Studitsky V. Inhibition of Cancer Development by Natural Plant Polyphenols: Molecular Mechanisms. Int J Mol Sci 2023; 24:10663. [PMID: 37445850 PMCID: PMC10341686 DOI: 10.3390/ijms241310663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/08/2023] [Accepted: 06/09/2023] [Indexed: 07/15/2023] Open
Abstract
Malignant tumors remain one of the main sources of morbidity and mortality around the world. A chemotherapeutic approach to cancer treatment poses a multitude of challenges, primarily due to the low selectivity and genotoxicity of the majority of chemotherapeutic drugs currently used in the clinical practice, often leading to treatment-induced tumors formation. Highly selective antitumor drugs can largely resolve this issue, but their high selectivity leads to significant drawbacks due to the intrinsic tumor heterogeneity. In contrast, plant polyphenols can simultaneously affect many processes that are involved in the acquiring and maintaining of hallmark properties of malignant cells, and their toxic dose is typically much higher than the therapeutic one. In the present work we describe the mechanisms of the action of polyphenols on cancer cells, including their effects on genetic and epigenetic instability, tumor-promoting inflammation, and altered microbiota.
Collapse
Affiliation(s)
| | - Vasily Studitsky
- Biology Faculty, Lomonosov Moscow State University, 119234 Moscow, Russia;
- Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| |
Collapse
|
20
|
DUQUE C, SOUZA ACA, AIDA KL, PEREIRA JA, CAIAFFA KS, SANTOS VRD, COSME-SILVA L, PRAKKI A. Synergistic antimicrobial potential of EGCG and fosfomycin against biofilms associated with endodontic infections. J Appl Oral Sci 2023; 31:e20220282. [PMID: 36995882 PMCID: PMC10065763 DOI: 10.1590/1678-7757-2022-0282] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 02/21/2023] [Indexed: 03/29/2023] Open
Abstract
OBJECTIVE This study aimed to evaluate the cytotoxicity and synergistic effect of epigallocatechin gallate (EGCG) and fosfomycin (FOSFO) on biofilms of oral bacteria associated with endodontic infections. METHODOLOGY This study determined minimum inhibitory and bactericidal concentration (MIC/MBC) and fractionated inhibitory concentration (FIC) of EGCG and FOSFO against Enterococcus faecalis, Actinomyces israelii, Streptococcus mutans, and Fusobacterium nucleatum. Monospecies and multispecies biofilms with those bacteria formed in polystyrene microplates and in radicular dentin blocks of bovine teeth were treated with the compounds and control chlorhexidine (CHX) and evaluated by bacterial counts and microscopy analysis. Toxicity effect of the compounds was determined on fibroblasts culture by methyl tetrazolium assays. RESULTS The combination of EGCG + FOSFO demonstrated synergism against all bacterial species, with an FIC index ranging from 0.35 to 0.5. At the MIC/FIC concentrations, EGCG, FOSFO, and EGCG+FOSFO were not toxic to fibroblasts. EGCG+FOSFO significantly reduced monospecies biofilms of E. faecalis and A. israelli, whereas S. mutans and F. nucleatum biofilms were eliminated by all compounds. Scanning electron microscopy of multispecies biofilms treated with EGCG, EGCG+FOSFO, and CHX at 100x MIC showed evident biofilm disorganization and substantial reduction of extracellular matrix. Confocal microscopy observed a significant reduction of multispecies biofilms formed in dentin tubules with 84.85%, 78.49%, and 50.6% of dead cells for EGCG+FOSFO, EGCG, and CHX at 100x MIC, respectively. CONCLUSION EGCG and fosfomycin showed a synergistic effect against biofilms of oral pathogens related to root canal infections without causing cytotoxicity.
Collapse
|
21
|
Kong C, Zhang H, Li L, Liu Z. Effects of green tea extract epigallocatechin-3-gallate (EGCG) on oral disease-associated microbes: a review. J Oral Microbiol 2022; 14:2131117. [PMID: 36212989 PMCID: PMC9542882 DOI: 10.1080/20002297.2022.2131117] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
For thousands of years, caries, periodontitis and mucosal diseases, which are closely related to oral microorganisms, have always affected human health and quality of life. These complex microbiota present in different parts of the mouth can cause chronic infections in the oral cavity under certain conditions, some of which can also lead to acute and systemic diseases. With the mutation of related microorganisms and the continuous emergence of drug-resistant strains, in order to prevent and treat related diseases, in addition to the innovation of diagnosis and treatment technology, the development of new antimicrobial drugs is also important. Catechins are polyphenolic compounds in green tea, some of which are reported to provide health benefits for a variety of diseases. Studies have shown that epigallocatechin-3-gallate (EGCG) is the most abundant and effective active ingredient in green tea catechins, which acts against a variety of gram-positive and negative bacteria, as well as some fungi and viruses. This review aims to summarize the research progress on the activity of EGCG against common oral disease-associated organisms and discuss the mechanisms of these actions, hoping to provide new medication strategies for the prevention and treatment of oral infectious diseases, the future research of EGCG and its translation into clinical practice are also discussed.
Collapse
Affiliation(s)
- Chen Kong
- Hospital of Stomatology, Jilin University, Changchun, Jilin, China
| | - Huili Zhang
- Hospital of Stomatology, Jilin University, Changchun, Jilin, China
| | - Lingfeng Li
- Hospital of Stomatology, Jilin University, Changchun, Jilin, China
| | - Zhihui Liu
- Hospital of Stomatology, Jilin University, Changchun, Jilin, China
| |
Collapse
|
22
|
Oral microbiota in cancer: could the bad guy turn good with application of polyphenols? Expert Rev Mol Med 2022; 25:e1. [PMID: 36511134 DOI: 10.1017/erm.2022.39] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The human oral cavity is comprised of dynamic and polynomial microbes which uniquely reside in the microenvironments of oral cavities. The cumulative functions of the symbiotic microbial communities maintain normal homeostasis; however, a shifted microbiota yields a dysbiosis state, which produces local and systemic diseases including dental caries, periodontitis, cancer, obesity and diabetes. Recent research reports claim that an association occurs between oral dysbiosis and the progression of different types of cancers including oral, gastric and pancreatic ones. Different mechanisms are proposed for the development of cancer, such as induction of inflammatory reactions, production of carcinogenic materials and alteration of the immune system. Medications are available to treat these associated diseases; however, the current strategies may further worsen the disease by unwanted side effects. Natural-derived polyphenol molecules significantly inhibit a wide range of systemic diseases with fewer side effects. In this review, we have displayed the functions of the oral microbes and we have extended the report regarding the role of polyphenols in oral microbiota to maintain healthy conditions and prevention of diseases with emphasis on the treatment of oral microbiota-associated cancer.
Collapse
|
23
|
Hr R, Jagwani S, Shenoy PA, Jadhav K, Shaikh S, Mutalik SP, Mullick P, Mutalik S, Jalalpure S, Sikarwar MS, Dhamecha D. Thermoreversible gel of green tea extract: Formulation and evaluation for the management of periodontitis. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
24
|
Chi Y, Wang Y, Ji M, Li Y, Zhu H, Yan Y, Fu D, Zou L, Ren B. Natural products from traditional medicine as promising agents targeting at different stages of oral biofilm development. Front Microbiol 2022; 13:955459. [PMID: 36033896 PMCID: PMC9411938 DOI: 10.3389/fmicb.2022.955459] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 07/25/2022] [Indexed: 11/23/2022] Open
Abstract
Oral cavity is an ideal habitat for more than 1,000 species of microorganisms. The diverse oral microbes form biofilms over the hard and soft tissues in the oral cavity, affecting the oral ecological balance and the development of oral diseases, such as caries, apical periodontitis, and periodontitis. Currently, antibiotics are the primary agents against infectious diseases; however, the emergence of drug resistance and the disruption of oral microecology have challenged their applications. The discovery of new antibiotic-independent agents is a promising strategy against biofilm-induced infections. Natural products from traditional medicine have shown potential antibiofilm activities in the oral cavity with high safety, cost-effectiveness, and minimal adverse drug reactions. Aiming to highlight the importance and functions of natural products from traditional medicine against oral biofilms, here we summarized and discussed the antibiofilm effects of natural products targeting at different stages of the biofilm formation process, including adhesion, proliferation, maturation, and dispersion, and their effects on multi-species biofilms. The perspective of antibiofilm agents for oral infectious diseases to restore the balance of oral microecology is also discussed.
Collapse
Affiliation(s)
- Yaqi Chi
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ye Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Mengzhen Ji
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yanyao Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Hualing Zhu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yujia Yan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Di Fu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ling Zou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- *Correspondence: Ling Zou,
| | - Biao Ren
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Biao Ren,
| |
Collapse
|
25
|
Role of Antimicrobial Drug in the Development of Potential Therapeutics. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:2500613. [PMID: 35571735 PMCID: PMC9098294 DOI: 10.1155/2022/2500613] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 04/13/2022] [Accepted: 04/18/2022] [Indexed: 12/17/2022]
Abstract
Population of the world run into several health-related emergencies among mankind and humans as it creates a challenge for the evolution of novel drug discoveries. One such can be the emergence of multidrug-resistant (MDR) strains in both hospital and community settings, which have been due to an inappropriate use and inadequate control of antibiotics that has led to the foremost human health concerns with a high impact on the global economy. So far, there has been application of two strategies for the development of anti-infective agents either by classical antibiotics that have been derived for their synthetic analogs with increased efficacy or screening natural compounds along with the synthetic compound libraries for the antimicrobial activities. However, need for newer treatment options for infectious diseases has led research to develop new generation of antimicrobial activity to further lessen the spread of antibiotic resistance. Currently, the principles aim to find novel mode of actions or products to target the specific sites and virulence factors in pathogens by a series of better understanding of physiology and molecular aspects of the microbial resistance, mechanism of infection process, and gene-pathogenicity relationship. The design various novel strategies tends to provide us a path for the development of various antimicrobial therapies that intends to have a broader and wider antimicrobial spectrum that helps to combat MDR strains worldwide. The development of antimicrobial peptides, metabolites derived from plants, microbes, phage-based antimicrobial agents, use of metal nanoparticles, and role of CRISPR have led to an exceptional strategies in designing and developing the next-generation antimicrobials. These novel strategies might help to combat the seriousness of the infection rates and control the health crisis system.
Collapse
|
26
|
Naveed M, Makhdoom SI, Abbas G, Safdari M, Farhadi A, Habtemariam S, Shabbir MA, Jabeen K, Asif MF, Tehreem S. The Virulent Hypothetical Proteins: The Potential Drug Target Involved in Bacterial Pathogenesis. Mini Rev Med Chem 2022; 22:2608-2623. [DOI: 10.2174/1389557522666220413102107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 12/01/2021] [Accepted: 01/21/2022] [Indexed: 11/22/2022]
Abstract
Abstract:
Hypothetical proteins (HPs) are non-predicted sequences that are identified only by open reading frames in sequenced genomes but their protein products remain uncharacterized by any experimental means. The genome of every species consists of HPs that are involved in various cellular processes and signaling pathways. Annotation of HPs is important as they play a key role in disease mechanisms, drug designing, vaccine production, antibiotic production, and host adaptation. In the case of bacteria, 25-50% of the genome comprises of HPs, which are involved in metabolic pathways and pathogenesis. The characterization of bacterial HPs helps to identify virulent proteins that are involved in pathogenesis. This can be done using in-silico studies, which provide sequence analogs, physiochemical properties, cellular or subcellular localization, structure and function validation, and protein-protein interactions. The most diverse types of virulent proteins are exotoxins, endotoxins, and adherent virulent factors that are encoded by virulent genes present on the chromosomal DNA of the bacteria. This review evaluates virulent HPs of pathogenic bacteria, such as Staphylococcus aureus, Chlamydia trachomatis, Fusobacterium nucleatum, and Yersinia pestis. The potential of these HPs as a drug target in bacteria-caused infectious diseases along with the mode of action and treatment approaches have been discussed.
Collapse
Affiliation(s)
- Muhammad Naveed
- Department of Biotechnology, Faculty of Life Sciences, University of Central Punjab, Pakistan
| | - Syeda Izma Makhdoom
- Department of Biotechnology, Faculty of Life Sciences, University of Central Punjab, Pakistan
| | - Ghulam Abbas
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mohammadreza Safdari
- Department of Orthopedic Surgery, Faculty of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Amin Farhadi
- Kavian Institute of Higher Education, Mashhad, Iran
| | - Solomon Habtemariam
- Pharmacognosy Research Laboratories & Herbal Analysis Services UK, University of Greenwich, Medway Campus-Science, Grenville Building (G102/G107), Central Avenue, Chatham-Maritime, Kent, ME4 4TB, UK
| | - Muhammad Aqib Shabbir
- Department of Biotechnology, Faculty of Life Sciences, University of Central Punjab, Pakistan
| | - Khizra Jabeen
- Department of Biotechnology, Faculty of Life Sciences, University of Central Punjab, Pakistan
| | - Muhammad Farrukh Asif
- Department of Biotechnology, Faculty of Life Sciences, University of Central Punjab, Pakistan
| | - Sana Tehreem
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, Hubei, China
| |
Collapse
|
27
|
Groeger S, Zhou Y, Ruf S, Meyle J. Pathogenic Mechanisms of Fusobacterium nucleatum on Oral Epithelial Cells. FRONTIERS IN ORAL HEALTH 2022; 3:831607. [PMID: 35478496 PMCID: PMC9037381 DOI: 10.3389/froh.2022.831607] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 02/28/2022] [Indexed: 11/28/2022] Open
Abstract
Periodontitis is an oral chronic inflammatory disease and may cause tooth loss in adults. Oral epithelial cells provide a barrier for bacteria and participate in the immune response. Fusobacterium nucleatum (F. nucleatum) is one of the common inhabitants of the oral cavity and has been identified as a potential etiologic bacterial agent of oral diseases, such as periodontitis and oral carcinomas. F. nucleatum has been shown to be of importance in the development of diverse human cancers. In the dental biofilm, it exhibits a structural role as a bridging organism, connecting primary colonizers to the largely anaerobic secondary colonizers. It expresses adhesins and is able to induce host cell responses, including the upregulation of defensins and the release of chemokines and interleukins. Like other microorganisms, its detection is achieved through germline-encoded pattern-recognition receptors (PRRs) and pathogen-associated molecular patterns (PAMPs). By identification of the pathogenic mechanisms of F. nucleatum it will be possible to develop effective methods for the diagnosis, prevention, and treatment of diseases in which a F. nucleatum infection is involved. This review summarizes the recent progress in research targeting F. nucleatum and its impact on oral epithelial cells.
Collapse
Affiliation(s)
- Sabine Groeger
- Department of Periodontology, Justus-Liebig-University of Giessen, Giessen, Germany
- Department of Orthodontics, Justus-Liebig-University of Giessen, Giessen, Germany
- *Correspondence: Sabine Groeger
| | - Yuxi Zhou
- Department of Periodontology, Justus-Liebig-University of Giessen, Giessen, Germany
| | - Sabine Ruf
- Department of Orthodontics, Justus-Liebig-University of Giessen, Giessen, Germany
| | - Joerg Meyle
- Department of Periodontology, Justus-Liebig-University of Giessen, Giessen, Germany
| |
Collapse
|
28
|
Greenbaum J, Lin X, Su KJ, Gong R, Shen H, Shen J, Xiao HM, Deng HW. Integration of the Human Gut Microbiome and Serum Metabolome Reveals Novel Biological Factors Involved in the Regulation of Bone Mineral Density. Front Cell Infect Microbiol 2022; 12:853499. [PMID: 35372129 PMCID: PMC8966780 DOI: 10.3389/fcimb.2022.853499] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 02/21/2022] [Indexed: 12/12/2022] Open
Abstract
While the gut microbiome has been reported to play a role in bone metabolism, the individual species and underlying functional mechanisms have not yet been characterized. We conducted a systematic multi-omics analysis using paired metagenomic and untargeted serum metabolomic profiles from a large sample of 499 peri- and early post-menopausal women to identify the potential crosstalk between these biological factors which may be involved in the regulation of bone mineral density (BMD). Single omics association analyses identified 22 bacteria species and 17 serum metabolites for putative association with BMD. Among the identified bacteria, Bacteroidetes and Fusobacteria were negatively associated, while Firmicutes were positively associated. Several of the identified serum metabolites including 3-phenylpropanoic acid, mainly derived from dietary polyphenols, and glycolithocholic acid, a secondary bile acid, are metabolic byproducts of the microbiota. We further conducted a supervised integrative feature selection with respect to BMD and constructed the inter-omics partial correlation network. Although still requiring replication and validation in future studies, the findings from this exploratory analysis provide novel insights into the interrelationships between the gut microbiome and serum metabolome that may potentially play a role in skeletal remodeling processes.
Collapse
Affiliation(s)
- Jonathan Greenbaum
- Tulane Center of Biomedical Informatics and Genomics, Deming Department of Medicine, Tulane University School of Medicine, Tulane University, New Orleans, LA, United States
| | - Xu Lin
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Kuan-Jui Su
- Tulane Center of Biomedical Informatics and Genomics, Deming Department of Medicine, Tulane University School of Medicine, Tulane University, New Orleans, LA, United States
| | - Rui Gong
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Hui Shen
- Tulane Center of Biomedical Informatics and Genomics, Deming Department of Medicine, Tulane University School of Medicine, Tulane University, New Orleans, LA, United States
| | - Jie Shen
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Hong-Mei Xiao
- Center of Systems Biology, Data Information and Reproductive Health, School of Basic Medical Science, Central South University, Changsha, China
| | - Hong-Wen Deng
- Tulane Center of Biomedical Informatics and Genomics, Deming Department of Medicine, Tulane University School of Medicine, Tulane University, New Orleans, LA, United States
| |
Collapse
|
29
|
Zhou Z, Wang Y, Ji R, Zhang D, Ma C, Ma W, Ma Y, Jiang X, Du K, Zhang R, Chen P. Vanillin Derivatives Reverse Fusobacterium nucleatum-Induced Proliferation and Migration of Colorectal Cancer Through E-Cadherin/β-Catenin Pathway. Front Pharmacol 2022; 13:841918. [PMID: 35308221 PMCID: PMC8931468 DOI: 10.3389/fphar.2022.841918] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 01/21/2022] [Indexed: 12/24/2022] Open
Abstract
Colorectal cancer (CRC) is a common clinical malignant tumor and closely related to intestinal microbiome disorders. Especially, Fusobacterium nucleatum (F. nucleatum) is one of the most prevalent pathogens in CRC. However, its change in CRC patients of Northwest China, an area with a high incidence of gastrointestinal tumors, is unclear, and therapeutic strategies targeting F. nucleatum remain unresolved. Here, fecal samples of healthy people and CRC patients were studied using 16S rRNA sequencing to explore microbial community alterations. Additionally, vanillin derivate (IPM711 and IPM712) intervention by coculture with CRC cells and potential mechanism were investigated. Results showed that intestinal microbial homeostasis was gradually dysregulated, and the abundance of Fusobacterium was higher in CRC patients. Moreover, IPM711 and IPM712 showed better anti-F. nucleatum activity than vanillin by increasing cell membrane permeability and destroying bacterial integrity. In addition, IPM711 and IPM712 could downregulate the expression of E-cadherin and β-catenin, thus, suppressing the migration of HCT116. Collectively, IPM711 and IPM712 have both anticolorectal cancer and anti-F. nucleatum activities, providing potential natural product drug candidates for microbe-targeted strategies for the treatment of CRC.
Collapse
Affiliation(s)
- Zhongkun Zhou
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Yiqing Wang
- The First Hospital of Lanzhou University, Lanzhou, China
| | - Rui Ji
- The First Hospital of Lanzhou University, Lanzhou, China
| | - Dekui Zhang
- The Second Hospital of Lanzhou University, Lanzhou, China
| | - Chi Ma
- The Second Hospital of Lanzhou University, Lanzhou, China
| | - Wantong Ma
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Yunhao Ma
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Xinrong Jiang
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Kangjia Du
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Rentao Zhang
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Peng Chen
- School of Pharmacy, Lanzhou University, Lanzhou, China
| |
Collapse
|
30
|
A Potential “Vitaminic Strategy” against Caries and Halitosis. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12052457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Streptococcus mutans and Fusobacterium nucleatum are two key bacteria of the oral microbiota. Due to their ability to form biofilms on oral tissues, they are both involved in the onset of the most common oral diseases. F. nucleatum is also the principal producer of hydrogen sulfide (H2S), causative of the awkward bad breath of halitosis. In this study, the oral product Vea® Oris, made by vitamin E and capric/caprylic acid only, was evaluated as a potential treatment for the most common oral diseases. Different concentrations of the product were tested against both S. mutans and F. nucleatum. The effect on planktonic and biofilm growth was investigated for both strains, and for F. nucleatum, the influence on H2S production was evaluated. From our data, the product did not relevantly reduce the planktonic growth of both strains, whereas it validly counteracted biofilm assemblage. Moreover, an interesting trend of H2S reduction was highlighted. Overall, these results suggested, on the one hand, a synergistic antimicrobial–antibiofilm action of two Vea® Oris components and, together, potential modulation activity on H2S production. However, the study should be implemented to confirm these only preliminary findings, certainly extending the panel of tested bacteria and using alternative methods of detection.
Collapse
|
31
|
Liu T, Shen H, Wang F, Zhou X, Zhao P, Yang Y, Guo Y. Thinned-Young Apple Polyphenols Inhibit Halitosis-Related Bacteria Through Damage to the Cell Membrane. Front Microbiol 2022; 12:745100. [PMID: 35281303 PMCID: PMC8905352 DOI: 10.3389/fmicb.2021.745100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 12/27/2021] [Indexed: 01/10/2023] Open
Abstract
The thinned young apple is a by-product and is generally discarded in the orchard during fruit thinning. The polyphenol content of thinned young apples is about 10 times more than that of ripe apples. In our study, the antibacterial effect of thinned young apple polyphenols (YAP) on the halitosis-related bacteria including Porphyromonas gingivalis, Prevotella intermedius, and Fusobacterium nucleatum was investigated. The minimum inhibitory concentrations of YAP against P. gingivalis, P. intermedia, and F. nucleatum were 8.0, 8.0, and 12.0 mg/ml, while the minimum bactericidal concentrations were 10.0, 10.0, and 14.0 mg/ml, respectively. The scanning electron microscopy and transmission electron microscopy analyses showed that after YAP treatment, the membrane surface of halitosis-related bacterial cells was coarse and the cell wall and membrane were separated and eventually ruptured. The integrity of the cell membrane was determined by flow cytometry, indicating that the cells with the integrity membrane significantly reduced as the YAP concentration treatment increased. The release of proteins and nucleic acids into the cell suspension significantly increased, and the membrane potential reduced after the YAP treatment. This research illustrated the antibacterial mechanism of YAP against halitosis-related bacteria and provided a scientific basis of utilizing the polyphenols from the discarded thinned young apples.
Collapse
Affiliation(s)
- Ting Liu
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi’an, China
- National Research and Development Center of Apple Processing Technology, Xi’an, China
| | - Hailiang Shen
- Citrus Research Institute, Southwest University, Chongqing, China
- Citrus Research Institute, Chinese Academy of Agricultural Sciences, Chongqing, China
| | - Furong Wang
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi’an, China
- National Research and Development Center of Apple Processing Technology, Xi’an, China
| | - Xueru Zhou
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi’an, China
- National Research and Development Center of Apple Processing Technology, Xi’an, China
| | - Pengtao Zhao
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi’an, China
- National Research and Development Center of Apple Processing Technology, Xi’an, China
| | - Yali Yang
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi’an, China
- National Research and Development Center of Apple Processing Technology, Xi’an, China
| | - Yurong Guo
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi’an, China
- National Research and Development Center of Apple Processing Technology, Xi’an, China
| |
Collapse
|
32
|
Wang X, Liu Y, Wu Z, Zhang P, Zhang X. Tea Polyphenols: A Natural Antioxidant Regulates Gut Flora to Protect the Intestinal Mucosa and Prevent Chronic Diseases. Antioxidants (Basel) 2022; 11:253. [PMID: 35204136 PMCID: PMC8868443 DOI: 10.3390/antiox11020253] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 01/26/2022] [Accepted: 01/27/2022] [Indexed: 02/07/2023] Open
Abstract
The intestinal tract of a healthy human body hosts many microorganisms that are closely linked to all aspects of people's lives. The impact of intestinal flora on host health is no longer limited to the gut but can also affect every organ in the body through various pathways. Studies have found that intestinal flora can be altered by external factors, which provides new ideas for treating some diseases. Tea polyphenols (TP), a general term for polyphenols in tea, are widely used as a natural antioxidant in various bioactive foods. In recent years, with the progress of research, there have been many experiments that provide strong evidence for the ability of TP to regulate intestinal flora. However, there are very few studies on the use of TP to modify the composition of intestinal microorganisms to maintain health or treat related diseases, and this area has not received sufficient attention. In this review, we outline the mechanisms by which TP regulates intestinal flora and the essential role in maintaining suitable health. In addition, we highlighted the protective effects of TP on intestinal mucosa by regulating intestinal flora and the preventive and therapeutic effects on certain chronic diseases, which will help further explore measures to prevent related chronic diseases.
Collapse
Affiliation(s)
- Xinzhou Wang
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, China; (X.W.); (Y.L.); (Z.W.)
| | - Yanan Liu
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, China; (X.W.); (Y.L.); (Z.W.)
| | - Zufang Wu
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, China; (X.W.); (Y.L.); (Z.W.)
| | - Peng Zhang
- Department of Student Affairs, Xinyang Normal University, Xinyang 464000, China
| | - Xin Zhang
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, China; (X.W.); (Y.L.); (Z.W.)
| |
Collapse
|
33
|
Pellerin G, Bazinet L, Grenier D. Effect of cranberry juice deacidification on its antibacterial activity against periodontal pathogens and its anti-inflammatory properties in an oral epithelial cell model. Food Funct 2021; 12:10470-10483. [PMID: 34554173 DOI: 10.1039/d1fo01552d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Cranberries are widely recognized as a functional food that can promote oral health. However, the high concentration of organic acids in cranberry juice can cause tooth enamel erosion. Electrodialysis with bipolar membrane (EDBM) is a process used for the deacidification of cranberry juice. The present study investigated whether the removal of organic acids (0%, 19%, 42%, 60%, and 79%) from cranberry juice by EDBM affects its antibacterial activity against major periodontopathogens as well as its anti-inflammatory properties in an oral epithelial cell model. A deacidification rate ≥60% attenuated the bactericidal effect against planktonic and biofilm-embedded Aggregatibacter actinomycetemcomitans but had no impact on Porphyromonas gingivalis and Fusobacterium nucleatum. Cranberry juice increased the adherence of A. actinomycetemcomitans and P. gingivalis to oral epithelial cells, but reduced the adherence of F. nucleatum by half regardless of the deacidification rate. F. nucleatum produced more hydrogen sulfide when it was exposed to deacidified cranberry juice with a deacidification rate ≥42% compared to the raw beverage. Interestingly, the removal of organic acids from cranberry juice lowered the cytotoxicity of the beverage for oral epithelial cells. Deacidification attenuated the anti-inflammatory effect of cranberry juice in an in vitro oral epithelial cell model. The secretion of IL-6 by lipopolysaccharide (LPS)-stimulated oral epithelial cells exposed to cranberry juice increased proportionally with the deacidification rate. No such effect was observed with respect to the production of IL-8. This study provided evidence that organic acids, just like phenolic compounds, might contribute to the health benefits of cranberry juice against periodontitis.
Collapse
Affiliation(s)
- Geneviève Pellerin
- Institute of Nutrition and Functional Foods (INAF) and Department of Food Sciences, Université Laval, Quebec City, QC, Canada G1V 0A6.,Laboratoire de Transformation Alimentaire et Procédés Électro-Membranaires (LTAPEM, Laboratory of Food Processing and Electromembrane Processes), Université Laval, Quebec City, QC, Canada G1V 0A6.
| | - Laurent Bazinet
- Institute of Nutrition and Functional Foods (INAF) and Department of Food Sciences, Université Laval, Quebec City, QC, Canada G1V 0A6.,Laboratoire de Transformation Alimentaire et Procédés Électro-Membranaires (LTAPEM, Laboratory of Food Processing and Electromembrane Processes), Université Laval, Quebec City, QC, Canada G1V 0A6.
| | - Daniel Grenier
- Oral Ecology Research Group, Faculty of Dentistry, Université Laval, Quebec City, QC, Canada G1V 0A6.
| |
Collapse
|
34
|
Zhang Q, Zhang J, Zhang J, Xu D, Li Y, Liu Y, Zhang X, Zhang R, Wu Z, Weng P. Antimicrobial Effect of Tea Polyphenols against Foodborne Pathogens: A Review. J Food Prot 2021; 84:1801-1808. [PMID: 34086921 DOI: 10.4315/jfp-21-043] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 06/03/2021] [Indexed: 11/11/2022]
Abstract
ABSTRACT Food contamination by foodborne pathogens is still widespread in many countries around the world, and food safety is a major global public health issue. Therefore, novel preservatives that can guarantee safer food are in high demand. Contrary to artificial food preservatives, tea polyphenols (TPs) are getting wide attention as food additives for being "green," "safe," and "healthy." TPs come from many sources, and the purification technology is sophisticated. Compared with other natural antibacterial agents, the antibacterial effect of TPs is more stable, making them excellent natural antibacterial agents. This review includes a systematic summary of the important chemical components of TPs and the antibacterial mechanisms of TPs against various foodborne pathogens. The potential applications of TPs are also discussed. These data provide a theoretical basis for the in-depth study of TPs. HIGHLIGHTS
Collapse
Affiliation(s)
- Qianling Zhang
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, People's Republic of China
| | - Jin Zhang
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, People's Republic of China
| | - Jiaqi Zhang
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, People's Republic of China
| | - Duo Xu
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, People's Republic of China
| | - Yajuan Li
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, People's Republic of China
| | - Yanan Liu
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, People's Republic of China
| | - Xin Zhang
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, People's Republic of China
| | - Ruilin Zhang
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, People's Republic of China
| | - Zufang Wu
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, People's Republic of China
| | - Peifang Weng
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, People's Republic of China
| |
Collapse
|
35
|
Dib K, Ennibi O, Alaoui K, Cherrah Y, Filali-Maltouf A. Antibacterial activity of plant extracts against periodontal pathogens: A systematic review. J Herb Med 2021. [DOI: 10.1016/j.hermed.2021.100493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
36
|
Cai Z, Zhu T, Liu F, Zhuang Z, Zhao L. Co-pathogens in Periodontitis and Inflammatory Bowel Disease. Front Med (Lausanne) 2021; 8:723719. [PMID: 34616755 PMCID: PMC8488124 DOI: 10.3389/fmed.2021.723719] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 08/27/2021] [Indexed: 02/05/2023] Open
Abstract
Localized inflammatory lesions in one area of the body may affect other distant organs through various modes of transmission thus initiating secondary inflammatory infections. Periodontal disease (PD) and inflammatory bowel disease (IBD) have been shown to coexist. Periodontitis is a multifactorial inflammatory disease, and dental plaque is considered to be the initial risk factor. Individuals with genetic susceptibility are more likely to develop periodontitis when exposed to external stimuli. IBD is affected by host genetics, immunoregulation, daily diet, and the gut microbiota, and its risk factors appear to be shared with those of PD. However, the key etiologies of both diseases remain unclear, thus hindering the exploration of possible links between IBD and PD. Recent studies and systematic reviews have focused on evidence-based statistics of the prevalence and clinical manifestations of both diseases, but discussions of the microbial etiological correlation between periodontitis and intestinal inflammation are scarce. Here, we summarize the potential common pathogenic microorganisms that may serve as bridges between the two diseases. Studies have shown that invasive microorganisms such as Porphyromonas gingivalis, Fusobacterium nucleatum, Klebsiella spp. and Campylobacter spp. play key roles in the comorbidity of PD and IBD.
Collapse
Affiliation(s)
- Zhengwen Cai
- State Key Laboratory of Oral Diseases, West China College of Stomatology, Sichuan University, Chengdu, China
| | - Tao Zhu
- State Key Laboratory of Oral Diseases, West China College of Stomatology, Sichuan University, Chengdu, China
| | - Fengshuo Liu
- State Key Laboratory of Oral Diseases, West China College of Stomatology, Sichuan University, Chengdu, China
| | - Zixuan Zhuang
- Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Lei Zhao
- State Key Laboratory of Oral Diseases, West China College of Stomatology, Sichuan University, Chengdu, China
- Department of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
37
|
Subbaraj GK, Kumar YS, Kulanthaivel L. Antiangiogenic role of natural flavonoids and their molecular mechanism: an update. THE EGYPTIAN JOURNAL OF INTERNAL MEDICINE 2021. [DOI: 10.1186/s43162-021-00056-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Abstract
Background
Angiogenesis is the development of new blood vessels from the existing vasculature, which is important in normal developmental processes. Angiogenesis is a key step in tumor growth, invasion, and metastasis. Angiogenesis is necessary for the proper nourishment and removal of metabolic wastes from tumor sites. Therefore, modulation of angiogenesis is considered a therapeutic strategy of great importance for human health.
Main body
Numerous bioactive plant compounds are recently tested for their antiangiogenic potential. Among the most frequently studied are flavonoids which are abundantly present in fruits and vegetables. Flavonoids inhibit angiogenesis and metastasis through the regulation of multiple signaling pathways. Flavonoids regulate the expression of VEGF, matrix metalloproteinases (MMPs), EGFR, and inhibit NFB, PI3-K/Akt, and ERK1/2 signaling pathways, thereby causing strong antiangiogenic effects. This present review aimed to provide up-to-date information on the molecular mechanisms of antiangiogenic properties of natural flavonoids.
Conclusion
Presently developed antiangiogenic drugs in malignant growth treatment do not meet assumptions about adequacy and safety. So further investigations are needed in this field in the future. More recently, flavonoids are the most effective antiangiogenic agent, by inhibition of signaling pathways.
Collapse
|
38
|
Dekens DW, Eisel ULM, Gouweleeuw L, Schoemaker RG, De Deyn PP, Naudé PJW. Lipocalin 2 as a link between ageing, risk factor conditions and age-related brain diseases. Ageing Res Rev 2021; 70:101414. [PMID: 34325073 DOI: 10.1016/j.arr.2021.101414] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 07/19/2021] [Accepted: 07/20/2021] [Indexed: 12/12/2022]
Abstract
Chronic (neuro)inflammation plays an important role in many age-related central nervous system (CNS) diseases, including Alzheimer's disease, Parkinson's disease and vascular dementia. Inflammation also characterizes many conditions that form a risk factor for these CNS disorders, such as physical inactivity, obesity and cardiovascular disease. Lipocalin 2 (Lcn2) is an inflammatory protein shown to be involved in different age-related CNS diseases, as well as risk factor conditions thereof. Lcn2 expression is increased in the periphery and the brain in different age-related CNS diseases and also their risk factor conditions. Experimental studies indicate that Lcn2 contributes to various neuropathophysiological processes of age-related CNS diseases, including exacerbated neuroinflammation, cell death and iron dysregulation, which may negatively impact cognitive function. We hypothesize that increased Lcn2 levels as a result of age-related risk factor conditions may sensitize the brain and increase the risk to develop age-related CNS diseases. In this review we first provide a comprehensive overview of the known functions of Lcn2, and its effects in the CNS. Subsequently, this review explores Lcn2 as a potential (neuro)inflammatory link between different risk factor conditions and the development of age-related CNS disorders. Altogether, evidence convincingly indicates Lcn2 as a key constituent in ageing and age-related brain diseases.
Collapse
Affiliation(s)
- Doortje W Dekens
- Department of Neurology and Alzheimer Center Groningen, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands; Department of Molecular Neurobiology, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, the Netherlands
| | - Ulrich L M Eisel
- Department of Molecular Neurobiology, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, the Netherlands
| | - Leonie Gouweleeuw
- Department of Molecular Neurobiology, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, the Netherlands
| | - Regien G Schoemaker
- Department of Molecular Neurobiology, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, the Netherlands
| | - Peter P De Deyn
- Department of Neurology and Alzheimer Center Groningen, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands; Laboratory of Neurochemistry and Behaviour, Biobank, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium
| | - Petrus J W Naudé
- Department of Neurology and Alzheimer Center Groningen, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands; Department of Molecular Neurobiology, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, the Netherlands; Department of Psychiatry and Mental Health and Neuroscience Institute, Brain Behaviour Unit, University of Cape Town, Cape Town, South Africa.
| |
Collapse
|
39
|
Chen Y, Cheng S, Dai J, Wang L, Xu Y, Peng X, Xie X, Peng C. Molecular mechanisms and applications of tea polyphenols: A narrative review. J Food Biochem 2021; 45:e13910. [PMID: 34426979 DOI: 10.1111/jfbc.13910] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/29/2021] [Accepted: 08/09/2021] [Indexed: 12/12/2022]
Abstract
Tea is a worldwide popular drink with high nutritional and medicinal values as it is rich in nutrients, such as polyphenols, amino acids, vitamins, glycosides, and so on. Among them, tea polyphenols (TPs) are the current research hotspot. TPs are known to have multiple biological activities such as anti-oxidation, anti-tumor, anti-inflammation, anti-bacteria, lowering lipid, and liver protection. By reviewing a large number of literatures, we explained the mechanism of TPs exerting biological activity and a wide range of applications. We also discussed the deficiencies and development potential of TPs, in order to provide theoretical reference and scientific basis for the subsequent development and utilization of TPs. PRACTICAL APPLICATIONS: We summarized the bioactivity mechanisms of TPs in anti-tumor, anti-oxidation, antibacterial, anti-inflammatory, lipid-lowering, and liver protection, focused on its application fields in food and medicine, and discussed the deficiency and development potential of current research on TPs, so as to provide a certain convenient way for scholars studying TPs. It is expected to contribute to the subsequent discovery of biological activity and the broadening of the field of TPs.
Collapse
Affiliation(s)
- Yan Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China.,School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Si Cheng
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jiangang Dai
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Liang Wang
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yun Xu
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaoyu Peng
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaofang Xie
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China.,College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China.,College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
40
|
Stokowa-Sołtys K, Wojtkowiak K, Jagiełło K. Fusobacterium nucleatum - Friend or foe? J Inorg Biochem 2021; 224:111586. [PMID: 34425476 DOI: 10.1016/j.jinorgbio.2021.111586] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 08/13/2021] [Accepted: 08/15/2021] [Indexed: 01/16/2023]
Abstract
Fusobacterium nucleatum (F. nucleatum) is one of the most abundant Gram-negative anaerobic bacteria, part of the gut, and oral commensal flora, generally found in human dental plaque. Its presence could be associated with various human diseases, including, e.g., periodontal, angina, lung and gynecological abscesses. This bacteria can enter the blood circulation as a result of periodontal infection. It was proven that F. nucleatum migrates from its primary site of colonization in the oral cavity to other parts of the body. It could cause numerous diseases, including cancers. On the other hand, it was shown that Fusobacterium produces significant amounts of butyric acid, which is a great source of energy for colonocytes (anti-inflammatory cells). Therefore, it is very interesting to get to know the two faces of F. nucleatum.
Collapse
Affiliation(s)
- Kamila Stokowa-Sołtys
- Faculty of Chemistry, University of Wroclaw, F. Joliot-Curie 14, 50-383 Wroclaw, Poland.
| | - Kamil Wojtkowiak
- Faculty of Chemistry, University of Wroclaw, F. Joliot-Curie 14, 50-383 Wroclaw, Poland
| | - Karolina Jagiełło
- Faculty of Chemistry, University of Wroclaw, F. Joliot-Curie 14, 50-383 Wroclaw, Poland
| |
Collapse
|
41
|
Bogolitsyn K, Dobrodeeva L, Parshina A, Samodova A. In vitro and in vivo activities of polyphenol extracts from Arctic brown alga Fucus vesiculosus. JOURNAL OF APPLIED PHYCOLOGY 2021; 33:2597-2608. [DOI: 10.1007/s10811-021-02450-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 03/08/2021] [Accepted: 03/08/2021] [Indexed: 01/04/2025]
|
42
|
Co-Encapsulated Synbiotics and Immobilized Probiotics in Human Health and Gut Microbiota Modulation. Foods 2021; 10:foods10061297. [PMID: 34200108 PMCID: PMC8230215 DOI: 10.3390/foods10061297] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/31/2021] [Accepted: 06/02/2021] [Indexed: 12/20/2022] Open
Abstract
Growing interest in the development of innovative functional products as ideal carriers for synbiotics, e.g., nutrient bars, yogurt, chocolate, juice, ice cream, and cheese, to ensure the daily intake of probiotics and prebiotics, which are needed to maintain a healthy gut microbiota and overall well-being, is undeniable and inevitable. This review focuses on the modern approaches that are currently being developed to modulate the gut microbiota, with an emphasis on the health benefits mediated by co-encapsulated synbiotics and immobilized probiotics. The impact of processing, storage, and simulated gastrointestinal conditions on the viability and bioactivity of probiotics together with prebiotics such as omega-3 polyunsaturated fatty acids, phytochemicals, and dietary fibers using various delivery systems are considered. Despite the proven biological properties of synbiotics, research in this area needs to be focused on the proper selection of probiotic strains, their prebiotic counterparts, and delivery systems to avoid suppression of their synergistic or complementary effect on human health. Future directions should lead to the development of functional food products containing stable synbiotics tailored for different age groups or specifically designed to fulfill the needs of adjuvant therapy.
Collapse
|
43
|
Yang Y, Han X, Chen Y, Wu J, Li M, Yang H, Xu W, Wei L. EGCG Induces Pro-inflammatory Response in Macrophages to Prevent Bacterial Infection through the 67LR/p38/JNK Signaling Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:5638-5651. [PMID: 33993695 DOI: 10.1021/acs.jafc.1c01353] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Extensive studies focused on the therapeutic efficacy of epigallocatechin-3-gallate (EGCG) against bacterial infection. However, little is known about its prophylactic efficacy against bacterial infection. Herein, we found that EGCG showed an effective prophylactic efficacy against bacterial infection with a broad spectrum, including Gram-negative, Gram-positive, and drug-resistant bacteria. Pretreatment with EGCG through intraperitoneal injection, intravenous injection, or intragastric administration significantly reduced the bacterial load, inflammatory response, and mortality in mouse abdominal infection models induced by bacterial inoculation or cecal ligation and puncture. Pretreatment with EGCG by intraperitoneal injection significantly increased the numbers of neutrophils and monocytes/macrophages in the abdominal cavity and peripheral blood of mice, and depletion of neutrophils and monocytes/macrophages by specific antibodies or chemical drugs obviously increased the bacterial load in mice. Of note, EGCG did not directly induce neutrophil and macrophage migration, and it just induced phagocyte migration in the presence of macrophages in a co-cultured system, implying that EGCG-induced phagocyte migration relies on its immunoregulatory effects on macrophages. EGCG markedly induced the production of cytokines and chemokines in macrophages and mouse peritoneal lavage, including tumor necrosis factor-α (TNF-α), interleukin-1 β (IL-1β), IL-6, CXC chemokine ligands 1 and 2 (CXCL1 and 2), and monocyte chemotactic protein-1 (MCP-1). EGCG significantly induced the phosphorylation of p38 and JNK mitogen-activated protein kinases (MAPKs) in macrophages, and inhibition of p38 and JNK MAPKs markedly reduced EGCG-induced chemokine and cytokine production. Anti-67-kDa laminin receptor (67LR) antibody treatment significantly reduced EGCG-induced chemokine production and p38 and JNK phosphorylation in macrophages. Together, EGCG showed an obvious prophylactic efficacy against bacterial infection by inducing a pro-inflammatory response in macrophages through the 67LR/p38/JNK signaling pathway, supporting the further development of EGCG as a potent prophylaxis for bacterial infection and providing new clues to understand the healthcare function of green tea.
Collapse
Affiliation(s)
- Yang Yang
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, Jiangsu, China
| | - Xiaoyang Han
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, Jiangsu, China
| | - Yue Chen
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, Jiangsu, China
| | - Jing Wu
- School of Basic Medical Sciences, Kunming Medical University, Kunming 650500, Yunnan, China
| | - Min Li
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, Jiangsu, China
| | - Hailong Yang
- School of Basic Medical Sciences, Kunming Medical University, Kunming 650500, Yunnan, China
| | - Wei Xu
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, Jiangsu, China
| | - Lin Wei
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, Jiangsu, China
| |
Collapse
|
44
|
|
45
|
Vaillancourt K, LeBel G, Pellerin G, Ben Lagha A, Grenier D. Effects of the Licorice Isoflavans Licoricidin and Glabridin on the Growth, Adherence Properties, and Acid Production of Streptococcus mutans, and Assessment of Their Biocompatibility. Antibiotics (Basel) 2021; 10:antibiotics10020163. [PMID: 33562595 PMCID: PMC7915699 DOI: 10.3390/antibiotics10020163] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/01/2021] [Accepted: 02/03/2021] [Indexed: 12/11/2022] Open
Abstract
Pharmacological studies have linked a number of human health benefits with licorice due to its anticancer, anti-inflammatory, anti-oxidant, and antimicrobial properties. The aim of this study was to investigate the effects of licoricidin and glabridin, two major licorice isoflavans, on growth and virulence properties (biofilm formation, acid production, dextran production, adherence) of the cariogenic bacterium Streptococcus mutans. Moreover, the biocompatibility of these licorice compounds was assessed in an in vitro model of oral keratinocytes. We used a broth microdilution assay to show that licoricidin and glabridin exhibit a marked antibacterial activity against S. mutans. Glabridin and, to a lesser extent, licoricidin reduced the biofilm viability of S. mutans. In addition, glabridin decreased the production of dextran by S. mutans. The two licorice isoflavans attenuated the adherence of S. mutans to a saliva-coated hydroxylapatite surface, and reduced acid production from glucose. Lastly, depending on the concentrations tested, the two licorice isoflavans showed no or low toxicity toward oral keratinocytes. Within the limitations of this study, our data suggest that licoricidin and glabridin may be promising agents for controlling dental caries.
Collapse
|
46
|
Kostić M, Ivanov M, Babić SS, Petrović J, Soković M, Ćirić A. An Up-to-Date Review on Bio-Resource Therapeutics Effective against Bacterial Species Frequently Associated with Chronic Sinusitis and Tonsillitis. Curr Med Chem 2021; 27:6892-6909. [PMID: 32368971 DOI: 10.2174/0929867327666200505093143] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 02/07/2020] [Accepted: 02/12/2020] [Indexed: 01/26/2023]
Abstract
Upper respiratory tract infections include inflammations of the nose, sinuses (sinusitis), pharynx (tonsillitis, pharyngitis) and larynx (laryngitis) with bacteria or viruses as the main cause of these conditions. Due to their repetitive nature, chronic respiratory infections represent a global problem which is often a result of improper treatment. If not treated adequately, these conditions may have serious consequences. On the other hand, mis - and overuse of antibiotics has reduced their efficiency and accelerated the development of resistant bacterial strains, which further complicates the treatment of infections. This literature review will focus on current knowledge regarding medicinal plants and mushrooms which have been traditionally used in the treatment of infections caused by chronic sinusitis and tonsillitis commonly linked to bacteria - Staphylococcus aureus, Streptococcus pneumoniae, Streptococcus pyogenes, Fusobacterium nucleatum, Haemophilus influenzae and Moraxella catarrhalis. The present literature overview might be considered as a starting point for the development of novel, natural antimicrobial products with potential practical use in the treatment of chronic tonsillitis and sinusitis.
Collapse
Affiliation(s)
- Marina Kostić
- Department of Plant Physiology, Institute for Biological Research "Sinisa Stankovic" - National Institute of Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11000 Belgrade, Serbia
| | - Marija Ivanov
- Department of Plant Physiology, Institute for Biological Research "Sinisa Stankovic" - National Institute of Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11000 Belgrade, Serbia
| | | | - Jovana Petrović
- Department of Plant Physiology, Institute for Biological Research "Sinisa Stankovic" - National Institute of Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11000 Belgrade, Serbia
| | - Marina Soković
- Department of Plant Physiology, Institute for Biological Research "Sinisa Stankovic" - National Institute of Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11000 Belgrade, Serbia
| | - Ana Ćirić
- Department of Plant Physiology, Institute for Biological Research "Sinisa Stankovic" - National Institute of Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11000 Belgrade, Serbia
| |
Collapse
|
47
|
Makarewicz M, Drożdż I, Tarko T, Duda-Chodak A. The Interactions between Polyphenols and Microorganisms, Especially Gut Microbiota. Antioxidants (Basel) 2021; 10:188. [PMID: 33525629 PMCID: PMC7911950 DOI: 10.3390/antiox10020188] [Citation(s) in RCA: 124] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/15/2021] [Accepted: 01/25/2021] [Indexed: 02/07/2023] Open
Abstract
This review presents the comprehensive knowledge about the bidirectional relationship between polyphenols and the gut microbiome. The first part is related to polyphenols' impacts on various microorganisms, especially bacteria, and their influence on intestinal pathogens. The research data on the mechanisms of polyphenol action were collected together and organized. The impact of various polyphenols groups on intestinal bacteria both on the whole "microbiota" and on particular species, including probiotics, are presented. Moreover, the impact of polyphenols present in food (bound to the matrix) was compared with the purified polyphenols (such as in dietary supplements) as well as polyphenols in the form of derivatives (such as glycosides) with those in the form of aglycones. The second part of the paper discusses in detail the mechanisms (pathways) and the role of bacterial biotransformation of the most important groups of polyphenols, including the production of bioactive metabolites with a significant impact on the human organism (both positive and negative).
Collapse
Affiliation(s)
| | | | | | - Aleksandra Duda-Chodak
- Department of Fermentation Technology and Microbiology, Faculty of Food Technology, University of Agriculture in Krakow, 30-149 Kraków, Poland; (M.M.); (I.D.); (T.T.)
| |
Collapse
|
48
|
Inhibition of Biofilm Formation by the Synergistic Action of EGCG-S and Antibiotics. Antibiotics (Basel) 2021; 10:antibiotics10020102. [PMID: 33494273 PMCID: PMC7909832 DOI: 10.3390/antibiotics10020102] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/18/2021] [Accepted: 01/18/2021] [Indexed: 12/18/2022] Open
Abstract
Biofilm, a stress-induced physiological state, is an established means of antimicrobial tolerance. A perpetual increase in multidrug resistant (MDR) infections associated with high mortality and morbidity have been observed in healthcare settings. Multiple studies have indicated that the use of natural products can prevent bacterial growth. Recent studies in the field have identified that epigallocatechin gallate (EGCG), a green tea polyphenol, could disrupt bacterial biofilms. A modified lipid-soluble EGCG, epigallocatechin-3-gallate-stearate (EGCG-S), has enhanced the beneficial properties of green tea. This study focuses on utilizing EGCG-S as a novel synergistic agent with antibiotics to prevent or control biofilm. Different formulations of EGCG-S and selected antibiotics were used to study their combinatorial effects on biofilms produced by five potential pathogenic bacteria, Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, Staphylococcus epidermidis, and Mycobacterium smegmatis. The crystal violet (CV) assay and the sensitive fluorescence-based resazurin biofilm viability assay were used to assess the biofilm production. Our results identified optimal formulation for each bacterium, effectively inhibiting biofilm formation to an extent of 95-99%. Colony-forming unit (CFU) and cell viability analyses showed a decrease of viable bacteria. These results depict the potential of EGCG-S as a synergistic agent with antibiotics and as an anti-biofilm agent.
Collapse
|
49
|
Tafazoli A, Tafazoli Moghadam E. Camellia Sinensis Mouthwashes in Oral Care: a Systematic Review. JOURNAL OF DENTISTRY (SHIRAZ, IRAN) 2020; 21:249-262. [PMID: 33344675 PMCID: PMC7737926 DOI: 10.30476/dentjods.2020.83204.1045] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Herbal products are increasingly growing in the oral care market. Some of the related herbal compounds in this field have considerable clinical evidence for use in mouthwashes in their background. Camellia sinensis or tea plant has attracted numerous researchers of dentistry and pharmaceutical sciences, in recent years, for its biologic and medicinal properties. The effects such as anti-septic, anti-oxidative, and anti-inflammatory activities have made this plant a suitable candidate for preparation of mouthwashes. In this systematic review, we tried to find, evaluate, and categorize the sparse evidence in medical literature about Camellia sinensis mouthwashes. We explored three scientific databases with keywords including tea, dental care, Camellia sinensis, and mouthwashes and found 69 relevant studies including 41 randomized controlled trials (RCTs), which are generally proposing anti-microbial, anti-plaque, and analgesic indications for these tea formulations. Considering the main trend in clinical evidence and favorable safety profile, Camellia sinensis products are able to act as antiseptic, anti-plaque, and anti-inflammatory agents and can be used as useful mouthwashes in the future clinical studies and practice.
Collapse
Affiliation(s)
- Ali Tafazoli
- Dept. Clinical Pharmacy, Faculty of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ehsan Tafazoli Moghadam
- Dept. of Orthodontics, School of Dentistry, Qazvin University of Medical Sciences, Qazvin, Iran
| |
Collapse
|
50
|
Moghadam ET, Yazdanian M, Tahmasebi E, Tebyanian H, Ranjbar R, Yazdanian A, Seifalian A, Tafazoli A. Current herbal medicine as an alternative treatment in dentistry: In vitro, in vivo and clinical studies. Eur J Pharmacol 2020; 889:173665. [PMID: 33098834 DOI: 10.1016/j.ejphar.2020.173665] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 10/16/2020] [Accepted: 10/21/2020] [Indexed: 12/29/2022]
Abstract
Since the time that human population comprehended the importance of general health maintenance and the burden of disease, there has been a search for healing properties in the natural environment. Herbal medicine is the use of plants with medical properties for prevention and treatment of conditions that can affect general health. Recently, a growing interest has been observed toward the use of traditional herbal medicine alongside synthetic modern drugs. Around 80% of the population, especially in developing countries relies on it for healthcare. Oral healthcare is considered a major part of general health. According to the world health organization (WHO), oral health is considered an important part of general health and quality of life. The utilization of natural medications for the management of pathologic oro-dental conditions can be a logical alternative to pharmaceutical methods due to their availability, low costs, and lower side effects. The current literature review aimed at exploration of the variety and extent of herbal products application in oral health maintenance including different fields of oral healthcare such as dental caries, periodontal maintenance, microbial infections, oral cancers, and inflammatory conditions.
Collapse
Affiliation(s)
- Ehsan Tafazoli Moghadam
- Research Center for Prevention of Oral and Dental Diseases, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mohsen Yazdanian
- Research Center for Prevention of Oral and Dental Diseases, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Elahe Tahmasebi
- Research Center for Prevention of Oral and Dental Diseases, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Hamid Tebyanian
- Research Center for Prevention of Oral and Dental Diseases, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Reza Ranjbar
- Research Center for Prevention of Oral and Dental Diseases, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Alireza Yazdanian
- Department of Veterinary, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Alexander Seifalian
- Nanotechnology and Regenerative Medicine Commercialization Centre (NanoRegMed Ltd), The London Bioscience Innovation Centre, London, United Kingdom
| | - Ali Tafazoli
- Clinical Pharmacy Department, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|