1
|
Jacquet P, Billot R, Shimon A, Hoekstra N, Bergonzi C, Jenks A, Chabrière E, Daudé D, Elias MH. Changes in Active Site Loop Conformation Relate to the Transition toward a Novel Enzymatic Activity. JACS AU 2024; 4:1941-1953. [PMID: 38818068 PMCID: PMC11134384 DOI: 10.1021/jacsau.4c00179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/11/2024] [Accepted: 04/12/2024] [Indexed: 06/01/2024]
Abstract
Enzymatic promiscuity, the ability of enzymes to catalyze multiple, distinct chemical reactions, has been well documented and is hypothesized to be a major driver of the emergence of new enzymatic functions. Yet, the molecular mechanisms involved in the transition from one activity to another remain debated and elusive. Here, we evaluated the redesign of the active site binding cleft of lactonase SsoPox using structure-based design and combinatorial libraries. We created variants with largely improved catalytic abilities against phosphotriesters, the best ones being >1000-fold better compared to the wild-type enzyme. The observed shifts in activity specificity are large, and some variants completely lost their initial activity. The selected combinations of mutations have considerably reshaped the active site cavity via side chain changes but mostly through large rearrangements of the active site loops and changes to their conformations, as revealed by a suite of crystal structures. This suggests that a specific active site loop configuration is critical to the lactonase activity. Interestingly, analysis of high-resolution structures hints at the potential role of conformational sampling and its directionality in defining the enzyme activity profile.
Collapse
Affiliation(s)
| | - Raphaël Billot
- Gene&GreenTK, 19-21 Bd Jean Moulin, Marseille 13005, France
| | - Amir Shimon
- Biotechnology
Institute, University of Minnesota, St. Paul, Minnesota 55108, United States
| | - Nathan Hoekstra
- Biotechnology
Institute, University of Minnesota, St. Paul, Minnesota 55108, United States
| | - Céline Bergonzi
- Gene&GreenTK, 19-21 Bd Jean Moulin, Marseille 13005, France
- Biotechnology
Institute, University of Minnesota, St. Paul, Minnesota 55108, United States
| | - Anthony Jenks
- Department
of Biochemistry, Molecular Biology and Biophysics & Biotechnology
Institute, University of Minnesota, St. Paul, Minnesota 55108, United States
| | - Eric Chabrière
- Gene&GreenTK, 19-21 Bd Jean Moulin, Marseille 13005, France
- Aix
Marseille University, IRD, APHM, MEPHI, IHU Méditerranée Infection, Marseille 13005, France
| | - David Daudé
- Gene&GreenTK, 19-21 Bd Jean Moulin, Marseille 13005, France
| | - Mikael H. Elias
- Biotechnology
Institute, University of Minnesota, St. Paul, Minnesota 55108, United States
- Department
of Biochemistry, Molecular Biology and Biophysics & Biotechnology
Institute, University of Minnesota, St. Paul, Minnesota 55108, United States
| |
Collapse
|
2
|
Soultanas P, Janniere L. The metabolic control of DNA replication: mechanism and function. Open Biol 2023; 13:230220. [PMID: 37582405 PMCID: PMC10427196 DOI: 10.1098/rsob.230220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 07/26/2023] [Indexed: 08/17/2023] Open
Abstract
Metabolism and DNA replication are the two most fundamental biological functions in life. The catabolic branch of metabolism breaks down nutrients to produce energy and precursors used by the anabolic branch of metabolism to synthesize macromolecules. DNA replication consumes energy and precursors for faithfully copying genomes, propagating the genetic material from generation to generation. We have exquisite understanding of the mechanisms that underpin and regulate these two biological functions. However, the molecular mechanism coordinating replication to metabolism and its biological function remains mostly unknown. Understanding how and why living organisms respond to fluctuating nutritional stimuli through cell-cycle dynamic changes and reproducibly and distinctly temporalize DNA synthesis in a wide-range of growth conditions is important, with wider implications across all domains of life. After summarizing the seminal studies that founded the concept of the metabolic control of replication, we review data linking metabolism to replication from bacteria to humans. Molecular insights underpinning these links are then presented to propose that the metabolic control of replication uses signalling systems gearing metabolome homeostasis to orchestrate replication temporalization. The remarkable replication phenotypes found in mutants of this control highlight its importance in replication regulation and potentially genetic stability and tumorigenesis.
Collapse
Affiliation(s)
- Panos Soultanas
- Biodiscovery Institute, School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - Laurent Janniere
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Université Evry, Université Paris-Saclay, 91057 Evry, France
| |
Collapse
|
3
|
Zheng JW, He GH, Xu RX, Wang X, Li HY, Yang WD. Systematic exploration of transcriptional responses of interspecies interaction between Karenia mikimotoi and Prorocentrum shikokuense. HARMFUL ALGAE 2023; 126:102441. [PMID: 37290889 DOI: 10.1016/j.hal.2023.102441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 04/27/2023] [Accepted: 04/29/2023] [Indexed: 06/10/2023]
Abstract
Karenia mikimotoi and Prorocentrum shikokuense (also identified as P. donghaiense Lu and P. obtusidens Schiller) are two important harmful algal species which often form blooms in the coasts of China. Studies have shown that the allelopathy of K. mikimotoi and P. shikokuense plays an important role in inter-algal competition, though the underlying mechanisms remain largely unclear. Here, we observed reciprocal inhibitory effects between K. mikimotoi and P. shikokuense under co-cultures. Based on the reference sequences, we isolated RNA sequencing reads of K. mikimotoi and P. shikokuense from co-culture metatranscriptome, respectively. We found the genes involved in photosynthesis, carbon fixation, energy metabolism, nutrients absorption and assimilation were significantly up-regulated in K. mikimotoi after co-cultured with P. shikokuense. However, genes involved in DNA replication and cell cycle were significantly down-regulated. These results suggested that co-culture with P. shikokuense stimulated cell metabolism and nutrients competition activity of K. mikimotoi, and inhibited cell cycle. In contrast, genes involved in energy metabolism, cell cycle and nutrients uptake and assimilation were dramatically down-regulated in P. shikokuense under co-culture with K. mikimotoi, indicating that K. mikimotoi could highly affect the cellular activity of P. shikokuense. In addition, the expression of PLA2G12 (Group XII secretory phospholipase A2) that can catalyze the accumulation of linoleic acid or linolenic acid, and nitrate reductase that may be involved in nitric oxide production were significantly increased in K. mikimotoi, suggesting that PLA2G12 and nitrate reductase may play important roles in the allelopathy of K. mikimotoi. Our findings shed new light on the interspecies competition between K. mikimotoi and P. shikokuense, and provide a novel strategy for studying interspecific competition in complex systems.
Collapse
Affiliation(s)
- Jian-Wei Zheng
- Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms of Guangdong Higher Education Institute, College of Life Science and Technology, Jinan University, Guangzhou 510632, China; College of Food Science and Engineering, Foshan University of Science and Technology, Foshan 528231, China
| | - Guo-Hui He
- Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms of Guangdong Higher Education Institute, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Rui-Xia Xu
- Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms of Guangdong Higher Education Institute, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Xiang Wang
- Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms of Guangdong Higher Education Institute, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Hong-Ye Li
- Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms of Guangdong Higher Education Institute, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Wei-Dong Yang
- Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms of Guangdong Higher Education Institute, College of Life Science and Technology, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
4
|
Jacquet P, Billot R, Shimon A, Hoekstra N, Bergonzi C, Jenks A, Chabrière E, Daudé D, Elias MH. Changes in Active Site Loop Conformation Relate to the Transition toward a Novel Enzymatic Activity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.22.541809. [PMID: 37292757 PMCID: PMC10245850 DOI: 10.1101/2023.05.22.541809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Enzymatic promiscuity, the ability of enzymes to catalyze multiple, distinct chemical reactions, has been well documented and is hypothesized to be a major driver for the emergence of new enzymatic functions. Yet, the molecular mechanisms involved in the transition from one activity to another remain debated and elusive. Here, we evaluated the redesign of the active site binding cleft of the lactonase SsoPox using structure-based design and combinatorial libraries. We created variants with largely improved catalytic abilities against phosphotriesters, the best ones being > 1,000-fold better compared to the wild-type enzyme. The observed shifts in activity specificity are large, ~1,000,000-fold and beyond, since some variants completely lost their initial activity. The selected combinations of mutations have considerably reshaped the active site cavity via side chain changes but mostly through large rearrangements of the active site loops, as revealed by a suite of crystal structures. This suggests that specific active site loop configuration is critical to the lactonase activity. Interestingly, analysis of high-resolution structures hints at the potential role of conformational sampling and its directionality in defining an enzyme activity profile.
Collapse
Affiliation(s)
- Pauline Jacquet
- Gene&GreenTK, 19-21 Bd Jean Moulin, 13005, Marseille, France
| | - Raphaël Billot
- Gene&GreenTK, 19-21 Bd Jean Moulin, 13005, Marseille, France
| | - Amir Shimon
- University of Minnesota, Department of Biochemistry, Molecular Biology and Biophysics & Biotechnology Institute, St. Paul, MN, 55108, USA
| | - Nathan Hoekstra
- University of Minnesota, Department of Biochemistry, Molecular Biology and Biophysics & Biotechnology Institute, St. Paul, MN, 55108, USA
| | - Céline Bergonzi
- University of Minnesota, Department of Biochemistry, Molecular Biology and Biophysics & Biotechnology Institute, St. Paul, MN, 55108, USA
| | - Anthony Jenks
- University of Minnesota, Department of Biochemistry, Molecular Biology and Biophysics & Biotechnology Institute, St. Paul, MN, 55108, USA
| | - Eric Chabrière
- Gene&GreenTK, 19-21 Bd Jean Moulin, 13005, Marseille, France
- Aix Marseille University, IRD, APHM, MEPHI, IHU Méditerranée Infection, Marseille 13005, France
| | - David Daudé
- Gene&GreenTK, 19-21 Bd Jean Moulin, 13005, Marseille, France
| | - Mikael H. Elias
- University of Minnesota, Department of Biochemistry, Molecular Biology and Biophysics & Biotechnology Institute, St. Paul, MN, 55108, USA
| |
Collapse
|
5
|
Wu C, Guo D. Computational Docking Reveals Co-Evolution of C4 Carbon Delivery Enzymes in Diverse Plants. Int J Mol Sci 2022; 23:12688. [PMID: 36293547 PMCID: PMC9604239 DOI: 10.3390/ijms232012688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 10/14/2022] [Accepted: 10/19/2022] [Indexed: 11/16/2022] Open
Abstract
Proteins are modular functionalities regulating multiple cellular activities in prokaryotes and eukaryotes. As a consequence of higher plants adapting to arid and thermal conditions, C4 photosynthesis is the carbon fixation process involving multi-enzymes working in a coordinated fashion. However, how these enzymes interact with each other and whether they co-evolve in parallel to maintain interactions in different plants remain elusive to date. Here, we report our findings on the global protein co-evolution relationship and local dynamics of co-varying site shifts in key C4 photosynthetic enzymes. We found that in most of the selected key C4 photosynthetic enzymes, global pairwise co-evolution events exist to form functional couplings. Besides, protein-protein interactions between these enzymes may suggest their unknown functionalities in the carbon delivery process. For PEPC and PPCK regulation pairs, pocket formation at the interactive interface are not necessary for their function. This feature is distinct from another well-known regulation pair in C4 photosynthesis, namely, PPDK and PPDK-RP, where the pockets are necessary. Our findings facilitate the discovery of novel protein regulation types and contribute to expanding our knowledge about C4 photosynthesis.
Collapse
Affiliation(s)
| | - Dianjing Guo
- State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| |
Collapse
|
6
|
Draft Genome Sequence from a Putative New Genus and Species in the Family M1A02 within the Phylum Planctomycetes, Isolated from Benthic Pinnacle Mats in Lake Untersee, Antarctica. Microbiol Resour Announc 2022; 11:e0119221. [PMID: 35442084 PMCID: PMC9119077 DOI: 10.1128/mra.01192-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Here, we report the draft genome sequence for a new putative genus and species in the family M1A02 within the order Phycisphaerales. Isolated from the metagenome of a benthic pinnacle-shaped mat in the Antarctic Lake Untersee, the members of this family have been found in biofilms and freshwater environments.
Collapse
|
7
|
Santana de Carvalho D, Trovatti Uetanabaro AP, Kato RB, Aburjaile FF, Jaiswal AK, Profeta R, De Oliveira Carvalho RD, Tiwar S, Cybelle Pinto Gomide A, Almeida Costa E, Kukharenko O, Orlovska I, Podolich O, Reva O, Ramos PIP, De Carvalho Azevedo VA, Brenig B, Andrade BS, de Vera JPP, Kozyrovska NO, Barh D, Góes-Neto A. The Space-Exposed Kombucha Microbial Community Member Komagataeibacter oboediens Showed Only Minor Changes in Its Genome After Reactivation on Earth. Front Microbiol 2022; 13:782175. [PMID: 35369445 PMCID: PMC8970348 DOI: 10.3389/fmicb.2022.782175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 02/01/2022] [Indexed: 11/23/2022] Open
Abstract
Komagataeibacter is the dominant taxon and cellulose-producing bacteria in the Kombucha Microbial Community (KMC). This is the first study to isolate the K. oboediens genome from a reactivated space-exposed KMC sample and comprehensively characterize it. The space-exposed genome was compared with the Earth-based reference genome to understand the genome stability of K. oboediens under extraterrestrial conditions during a long time. Our results suggest that the genomes of K. oboediens IMBG180 (ground sample) and K. oboediens IMBG185 (space-exposed) are remarkably similar in topology, genomic islands, transposases, prion-like proteins, and number of plasmids and CRISPR-Cas cassettes. Nonetheless, there was a difference in the length of plasmids and the location of cas genes. A small difference was observed in the number of protein coding genes. Despite these differences, they do not affect any genetic metabolic profile of the cellulose synthesis, nitrogen-fixation, hopanoid lipids biosynthesis, and stress-related pathways. Minor changes are only observed in central carbohydrate and energy metabolism pathways gene numbers or sequence completeness. Altogether, these findings suggest that K. oboediens maintains its genome stability and functionality in KMC exposed to the space environment most probably due to the protective role of the KMC biofilm. Furthermore, due to its unaffected metabolic pathways, this bacterial species may also retain some promising potential for space applications.
Collapse
Affiliation(s)
- Daniel Santana de Carvalho
- Laboratory of Molecular and Computational Biology of Fungi, Department of Microbiology, Department of Genetics, Ecology and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
- Laboratory of Cellular and Molecular Genetics, Department of Genetics, Ecology and Evolution, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Ana Paula Trovatti Uetanabaro
- Laboratory of Molecular and Computational Biology of Fungi, Department of Microbiology, Department of Genetics, Ecology and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
- Postgraduate Program in Biology and Biotechnology of Microorganisms, Department of Biological Sciences, State University of Santa Cruz, Ilhéus, Brazil
| | - Rodrigo Bentes Kato
- Laboratory of Molecular and Computational Biology of Fungi, Department of Microbiology, Department of Genetics, Ecology and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
- Laboratory of Cellular and Molecular Genetics, Department of Genetics, Ecology and Evolution, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Flávia Figueira Aburjaile
- Laboratory of Cellular and Molecular Genetics, Department of Genetics, Ecology and Evolution, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Arun Kumar Jaiswal
- Laboratory of Cellular and Molecular Genetics, Department of Genetics, Ecology and Evolution, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Rodrigo Profeta
- Laboratory of Cellular and Molecular Genetics, Department of Genetics, Ecology and Evolution, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Rodrigo Dias De Oliveira Carvalho
- Laboratory of Cellular and Molecular Genetics, Department of Genetics, Ecology and Evolution, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Sandeep Tiwar
- Laboratory of Cellular and Molecular Genetics, Department of Genetics, Ecology and Evolution, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Anne Cybelle Pinto Gomide
- Laboratory of Cellular and Molecular Genetics, Department of Genetics, Ecology and Evolution, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Eduardo Almeida Costa
- Computational Biology and Biotechnological Information Management Center (NBCGIB), State University of Santa Cruz, Ilhéus, Brazil
| | - Olga Kukharenko
- Institute of Molecular Biology and Genetics of NASU, Kyiv, Ukraine
| | - Iryna Orlovska
- Institute of Molecular Biology and Genetics of NASU, Kyiv, Ukraine
| | - Olga Podolich
- Institute of Molecular Biology and Genetics of NASU, Kyiv, Ukraine
| | - Oleg Reva
- Department of Biochemistry, Genetics and Microbiology, Centre for Bioinformatics and Computational Biology, University of Pretoria, Pretoria, South Africa
| | - Pablo Ivan P. Ramos
- Center for Data and Knowledge Integration for Health (CIDACS), Institute Gonçalo Moniz, Oswaldo Cruz Foundation (FIOCRUZ-Bahia), Salvador, Brazil
| | - Vasco Ariston De Carvalho Azevedo
- Laboratory of Cellular and Molecular Genetics, Department of Genetics, Ecology and Evolution, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Bertram Brenig
- Institute of Veterinary Medicine, Burckhardtweg, University of Göttingen, Göttingen, Germany
| | - Bruno Silva Andrade
- Laboratory of Bioinformatics and Computational Chemistry, Department of Biological Sciences, State University of Southwest Bahia (UESB), Jequié, Brazil
| | - Jean-Pierre P. de Vera
- German Aerospace Center (DLR) Berlin, Institute of Planetary Research, Planetary Laboratories, Astrobiological Laboratories, Berlin, Germany
| | | | - Debmalya Barh
- Laboratory of Cellular and Molecular Genetics, Department of Genetics, Ecology and Evolution, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- Centre for Genomics and Applied Gene Technology, Institute of Integrative Omics and Applied Biotechnology, Purba Medinipur, India
| | - Aristóteles Góes-Neto
- Laboratory of Molecular and Computational Biology of Fungi, Department of Microbiology, Department of Genetics, Ecology and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
8
|
Verma N, Dollinger P, Kovacic F, Jaeger KE, Gohlke H. The Membrane-Integrated Steric Chaperone Lif Facilitates Active Site Opening of Pseudomonas aeruginosa Lipase A. J Comput Chem 2019; 41:500-512. [PMID: 31618459 DOI: 10.1002/jcc.26085] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 09/22/2019] [Accepted: 09/25/2019] [Indexed: 12/19/2022]
Abstract
Lipases are essential and widely used biocatalysts. Hence, the production of lipases requires a detailed understanding of the molecular mechanism of its folding and secretion. Lipase A from Pseudomonas aeruginosa, PaLipA, constitutes a prominent example that has additional relevance because of its role as a virulence factor in many diseases. PaLipA requires the assistance of a membrane-integrated steric chaperone, the lipase-specific foldase Lif, to achieve its enzymatically active state. However, the molecular mechanism of how Lif activates its cognate lipase has remained elusive. Here, we show by molecular dynamics simulations at the atomistic level and potential of mean force computations that Lif catalyzes the activation process of PaLipA by structurally stabilizing an intermediate PaLipA conformation, particularly a β-sheet in the region of residues 17-30, such that the opening of PaLipA's lid domain is facilitated. This opening allows substrate access to PaLipA's catalytic site. A surprising and so far not fully understood aspect of our study is that the open state of PaLipA is unstable compared to the closed one according to our computational and in vitro biochemical results. We thus speculate that further interactions of PaLipA with the Xcp secretion machinery and/or components of the extracellular matrix contribute to the remaining activity of secreted PaLipA. © 2019 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Neha Verma
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Universitätstr. 1, 40225, Düsseldorf, Germany
| | - Peter Dollinger
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, Forschungszentrum Jülich GmbH, 52426, Jülich, Germany
| | - Filip Kovacic
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, Forschungszentrum Jülich GmbH, 52426, Jülich, Germany
| | - Karl-Erich Jaeger
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, Forschungszentrum Jülich GmbH, 52426, Jülich, Germany.,Institute of Bio- and Geosciences IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, 52426, Jülich, Germany
| | - Holger Gohlke
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Universitätstr. 1, 40225, Düsseldorf, Germany.,John von Neumann Institute for Computing (NIC), Jülich Supercomputing Centre (JSC) and Institute for Complex Systems-Structural Biochemistry (ICS-6), Forschungszentrum Jülich GmbH, 52426, Jülich, Germany
| |
Collapse
|
9
|
Shao Z, Wang W, Zhang P, Yao J, Wang F, Duan D. Genome-wide identification of genes involved in carbon fixation in Saccharina japonica and responses of putative C 4-related genes to bicarbonate concentration and light intensity. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 137:75-83. [PMID: 30743083 DOI: 10.1016/j.plaphy.2019.01.032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 01/28/2019] [Accepted: 01/30/2019] [Indexed: 06/09/2023]
Abstract
Brown algae play a dominant role in the primary productivity of coastal ecosystems and may have an efficient carbon fixation. In this work, 56 genes involved in inorganic carbon fixation were identified from the Saccharina japonica genome. Sequence structure analysis of these genes showed the existence of corresponding function domains and active amino acid sites highly conserved with other stramenopile species. The predicted subcellular localizations showed that Calvin cycle-related enzymes predominantly reside in the plastid and that putative C4-related enzymes are mainly distributed in the mitochondrion. We determined the transcriptional profiles and enzymatic activities of these C4-related enzymes in response to the KHCO3 concentrations and light intensities. Pyruvate orthophosphate dikinase (PPDK) presented the greatest response to low HCO3- concentrations and high light intensity. Phosphoenolpyruvate carboxykinase (PEPCK) was up-regulated at low HCO3- concentrations to compensate for ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) and might be the crucial decarboxylase in this kelp. We propose that S. japonica might possess a PPDK- and PEPCK-dependent C4-like pathway that enables its rapid growth in natural coastal environments.
Collapse
Affiliation(s)
- Zhanru Shao
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, No.7 Nanhai Road, Qingdao, 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, No.1 Wenhai Road, Jimo, Qingdao, 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, No.7 Nanhai Road, Qingdao, 266071, China
| | - Wenli Wang
- State Key Laboratory of Bioactive Seaweed Substances, Qingdao Brightmoon Seaweed Group Co Ltd, No.777 Mingyue Road, Qingdao, 266400, China
| | - Pengyan Zhang
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, No.7 Nanhai Road, Qingdao, 266071, China; Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, No.106 Nanjing Road, Qingdao, 266071, China
| | - Jianting Yao
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, No.7 Nanhai Road, Qingdao, 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, No.1 Wenhai Road, Jimo, Qingdao, 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, No.7 Nanhai Road, Qingdao, 266071, China
| | - Fahe Wang
- State Key Laboratory of Bioactive Seaweed Substances, Qingdao Brightmoon Seaweed Group Co Ltd, No.777 Mingyue Road, Qingdao, 266400, China
| | - Delin Duan
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, No.7 Nanhai Road, Qingdao, 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, No.1 Wenhai Road, Jimo, Qingdao, 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, No.7 Nanhai Road, Qingdao, 266071, China; State Key Laboratory of Bioactive Seaweed Substances, Qingdao Brightmoon Seaweed Group Co Ltd, No.777 Mingyue Road, Qingdao, 266400, China.
| |
Collapse
|
10
|
Minges A, Janßen D, Offermann S, Groth G. Efficient In Vivo Screening Method for the Identification of C 4 Photosynthesis Inhibitors Based on Cell Suspensions of the Single-Cell C 4 Plant Bienertia sinuspersici. FRONTIERS IN PLANT SCIENCE 2019; 10:1350. [PMID: 31736996 PMCID: PMC6831552 DOI: 10.3389/fpls.2019.01350] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 10/01/2019] [Indexed: 05/17/2023]
Abstract
The identification of novel herbicides is of crucial importance to modern agriculture. We developed an efficient in vivo assay based on oxygen evolution measurements using suspensions of chlorenchyma cells isolated from the single-cell C4 plant Bienertia sinuspersici to identify and characterize inhibitors of C4 photosynthesis. This novel approach fills the gap between conventional in vitro assays for inhibitors targeting C4 key enzymes and in vivo experiments on whole plants. The assay addresses inhibition of the target enzymes in a plant context thereby taking care of any reduced target inhibition due to metabolization or inadequate uptake of small molecule inhibitors across plant cell walls and membranes. Known small molecule inhibitors targeting C4 photosynthesis were used to validate the approach. To this end, we tested pyruvate phosphate dikinase inhibitor bisindolylmaleimide IV and phosphoenolpyruvate carboxylase inhibitor okanin. Both inhibitors show inhibition of plant photosynthesis at half-maximal inhibitory concentrations in the sub-mM range and confirm their potential to act as a new class of C4 selective inhibitors.
Collapse
Affiliation(s)
- Alexander Minges
- Cluster of Excellence on Plant Sciences (CEPLAS), Institute of Biochemical Plant Physiology, Heinrich Heine University, Düsseldorf, Germany
| | - Dominik Janßen
- Cluster of Excellence on Plant Sciences (CEPLAS), Institute of Biochemical Plant Physiology, Heinrich Heine University, Düsseldorf, Germany
| | | | - Georg Groth
- Cluster of Excellence on Plant Sciences (CEPLAS), Institute of Biochemical Plant Physiology, Heinrich Heine University, Düsseldorf, Germany
- *Correspondence: Georg Groth,
| |
Collapse
|
11
|
Pagani G, Gohlke H. On the contributing role of the transmembrane domain for subunit-specific sensitivity of integrin activation. Sci Rep 2018; 8:5733. [PMID: 29636500 PMCID: PMC5893634 DOI: 10.1038/s41598-018-23778-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 03/20/2018] [Indexed: 12/20/2022] Open
Abstract
Integrins are α/β heterodimeric transmembrane adhesion receptors. Evidence exists that their transmembrane domain (TMD) separates upon activation. Subunit-specific differences in activation sensitivity of integrins were reported. However, whether sequence variations in the TMD lead to differential TMD association has remained elusive. Here, we show by molecular dynamics simulations and association free energy calculations on TMDs of integrin αIIbβ3, αvβ3, and α5β1 that αIIbβ3 TMD is most stably associated; this difference is related to interaction differences across the TMDs. The order of TMD association stability is paralleled by the basal activity of these integrins, which suggests that TMD differences can have a decisive effect on integrin conformational free energies. We also identified a specific order of clasp disintegration upon TMD dissociation, which suggests that the closed state of integrins may comprise several microstates. Our results provide unprecedented insights into a possibly contributing role of TMD towards subunit-specific sensitivity of integrin activation.
Collapse
Affiliation(s)
- Giulia Pagani
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich-Heine-Universität Düsseldorf, 40225, Düsseldorf, Germany
| | - Holger Gohlke
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich-Heine-Universität Düsseldorf, 40225, Düsseldorf, Germany.
- John von Neumann Institute for Computing (NIC), Jülich Supercomputing Centre (JSC) & Institute for Complex Systems - Structural Biochemistry (ICS 6), Forschungszentrum Jülich GmbH, 52425, Jülich, Germany.
| |
Collapse
|
12
|
Milić D, Dick M, Mulnaes D, Pfleger C, Kinnen A, Gohlke H, Groth G. Recognition motif and mechanism of ripening inhibitory peptides in plant hormone receptor ETR1. Sci Rep 2018; 8:3890. [PMID: 29497085 PMCID: PMC5832771 DOI: 10.1038/s41598-018-21952-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 02/13/2018] [Indexed: 12/21/2022] Open
Abstract
Synthetic peptides derived from ethylene-insensitive protein 2 (EIN2), a central regulator of ethylene signalling, were recently shown to delay fruit ripening by interrupting protein-protein interactions in the ethylene signalling pathway. Here, we show that the inhibitory peptide NOP-1 binds to the GAF domain of ETR1 - the prototype of the plant ethylene receptor family. Site-directed mutagenesis and computational studies reveal the peptide interaction site and a plausible molecular mechanism for the ripening inhibition.
Collapse
Affiliation(s)
- Dalibor Milić
- Institute of Biochemical Plant Physiology and Bioeconomy Science Center (BioSC), Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Department of Structural and Computational Biology, Max F. Perutz Laboratories, University of Vienna, Vienna Biocenter, Vienna, Austria
| | - Markus Dick
- Institute of Pharmaceutical and Medicinal Chemistry and Bioeconomy Science Center (BioSC), Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California, USA
| | - Daniel Mulnaes
- Institute of Pharmaceutical and Medicinal Chemistry and Bioeconomy Science Center (BioSC), Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Christopher Pfleger
- Institute of Pharmaceutical and Medicinal Chemistry and Bioeconomy Science Center (BioSC), Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Anna Kinnen
- Institute of Biochemical Plant Physiology and Bioeconomy Science Center (BioSC), Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Holger Gohlke
- Institute of Pharmaceutical and Medicinal Chemistry and Bioeconomy Science Center (BioSC), Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
- John von Neumann Institute for Computing (NIC), Jülich Supercomputing Centre (JSC) & Institute for Complex Systems - Structural Biochemistry (ICS 6), Forschungszentrum Jülich GmbH, Jülich, Germany.
| | - Georg Groth
- Institute of Biochemical Plant Physiology and Bioeconomy Science Center (BioSC), Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
| |
Collapse
|
13
|
On the potential alternate binding change mechanism in a dimeric structure of Pyruvate Phosphate Dikinase. Sci Rep 2017; 7:8020. [PMID: 28808308 PMCID: PMC5556012 DOI: 10.1038/s41598-017-08521-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 07/12/2017] [Indexed: 11/22/2022] Open
Abstract
The pyruvate phosphate dikinase (PPDK) reaction mechanism is characterized by a distinct spatial separation of reaction centers and large conformational changes involving an opening-closing motion of the nucleotide-binding domain (NBD) and a swiveling motion of the central domain (CD). However, why PPDK is active only in a dimeric form and to what extent an alternate binding change mechanism could underlie this fact has remained elusive. We performed unbiased molecular dynamics simulations, configurational free energy computations, and rigidity analysis to address this question. Our results support the hypothesis that PPDK dimerization influences the opening-closing motion of the NBDs, and that this influence is mediated via the CDs of both chains. Such an influence would be a prerequisite for an alternate binding change mechanism to occur. To the best of our knowledge, this is the first time that a possible explanation has been suggested as to why only dimeric PPDK is active.
Collapse
|
14
|
Minges A, Höppner A, Groth G. Trapped intermediate state of plant pyruvate phosphate dikinase indicates substeps in catalytic swiveling domain mechanism. Protein Sci 2017; 26:1667-1673. [PMID: 28470715 PMCID: PMC5521584 DOI: 10.1002/pro.3184] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 04/26/2017] [Accepted: 04/26/2017] [Indexed: 12/18/2022]
Abstract
Pyruvate phosphate dikinase (PPDK) is an essential enzyme of both the C4 photosynthetic pathway and cellular energy metabolism of some bacteria and unicellular protists. In C4 plants, it catalyzes the ATP- and Pi -dependent formation of phosphoenolpyruvate (PEP) while in bacteria and protozoa the ATP-forming direction is used. PPDK is composed out of three distinct domains and exhibits one of the largest single domain movements known today during its catalytic cycle. However, little information about potential intermediate steps of this movement was available. A recent study resolved a discrete intermediate step of PPDK's swiveling movement, shedding light on the details of this intriguing mechanism. Here we present an additional structural intermediate that possibly represents another crucial step in the catalytic cycle of PPDK, providing means to get a more detailed understanding of PPDK's mode of function.
Collapse
Affiliation(s)
- Alexander Minges
- Cluster of Excellence on Plant Sciences (CEPLAS), Institute of Biochemical Plant Physiology, Heinrich Heine University DüsseldorfDüsseldorf40204Germany
| | - Astrid Höppner
- X‐ray Facility and Crystal FarmHeinrich Heine University DüsseldorfDüsseldorf40204Germany
| | - Georg Groth
- Cluster of Excellence on Plant Sciences (CEPLAS), Institute of Biochemical Plant Physiology, Heinrich Heine University DüsseldorfDüsseldorf40204Germany
| |
Collapse
|
15
|
Small-molecule inhibition of pyruvate phosphate dikinase targeting the nucleotide binding site. PLoS One 2017; 12:e0181139. [PMID: 28700696 PMCID: PMC5507339 DOI: 10.1371/journal.pone.0181139] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 06/27/2017] [Indexed: 01/27/2023] Open
Abstract
Pyruvate phosphate dikinase (PPDK) is an essential enzyme of C4 photosynthesis in plants, catalyzing the ATP-driven conversion of pyruvate to phosphoenolpyruvate (PEP). It is further used by some bacteria and unicellular protists in the reverse, ATP-forming direction. Many weed species use C4 photosynthesis in contrast to world’s major crops, which are C3 plants. Hence inhibitors of PPDK may be used as C4-specific herbicides. By screening a library of 80 commercially available kinase inhibitors, we identified compounds derived from bisindolylmaleimide (bisindolylmaleimide IV, IC50 = 0.76 ± 0.13 μM) and indirubin (indirubin-3’-monoxime, IC50 = 4.2 ± 0.9 μM) that showed high inhibitory potency towards PPDK and are among the most effective PPDK inhibitors described today. Physiological studies on leaf tissues of a C4 model plant confirmed in vivo inhibition of C4-driven photosynthesis by these substances. Moreover, comparative docking studies of non-inhibitory bisindolylmaleimide derivatives suggest that the selectivity towards PPDK may be increased by addition of functional groups to the core structure.
Collapse
|
16
|
Hermans SM, Pfleger C, Nutschel C, Hanke CA, Gohlke H. Rigidity theory for biomolecules: concepts, software, and applications. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE 2017. [DOI: 10.1002/wcms.1311] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Susanne M.A. Hermans
- Institute for Pharmaceutical and Medicinal Chemistry; Heinrich Heine University Düsseldorf; Düsseldorf Germany
| | - Christopher Pfleger
- Institute for Pharmaceutical and Medicinal Chemistry; Heinrich Heine University Düsseldorf; Düsseldorf Germany
| | - Christina Nutschel
- Institute for Pharmaceutical and Medicinal Chemistry; Heinrich Heine University Düsseldorf; Düsseldorf Germany
| | - Christian A. Hanke
- Institute for Pharmaceutical and Medicinal Chemistry; Heinrich Heine University Düsseldorf; Düsseldorf Germany
| | - Holger Gohlke
- Institute for Pharmaceutical and Medicinal Chemistry; Heinrich Heine University Düsseldorf; Düsseldorf Germany
| |
Collapse
|