1
|
Krishna S, Jung ST, Lee EY. Escherichia coli and Pichia pastoris: microbial cell-factory platform for -full-length IgG production. Crit Rev Biotechnol 2024:1-23. [PMID: 38797692 DOI: 10.1080/07388551.2024.2342969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 03/18/2024] [Indexed: 05/29/2024]
Abstract
Owing to the unmet demand, the pharmaceutical industry is investigating an alternative host to mammalian cells to produce antibodies for a variety of therapeutic and research applications. Regardless of some disadvantages, Escherichia coli and Pichia pastoris are the preferred microbial hosts for antibody production. Despite the fact that the production of full-length antibodies has been successfully demonstrated in E. coli, which has mostly been used to produce antibody fragments, such as: antigen-binding fragments (Fab), single-chain fragment variable (scFv), and nanobodies. In contrast, Pichia, a eukaryotic microbial host, is mostly used to produce glycosylated full-length antibodies, though hypermannosylated glycan is a major challenge. Advanced strategies, such as the introduction of human-like glycosylation in endotoxin-edited E. coli and cell-free system-based glycosylation, are making progress in creating human-like glycosylation profiles of antibodies in these microbes. This review begins by explaining the structural and functional requirements of antibodies and continues by describing and analyzing the potential of E. coli and P. pastoris as hosts for providing a favorable environment to create a fully functional antibody. In addition, authors compare these microbes on certain features and predict their future in antibody production. Briefly, this review analyzes, compares, and highlights E. coli and P. pastoris as potential hosts for antibody production.
Collapse
Affiliation(s)
- Shyam Krishna
- Department of Chemical Engineering (BK21 FOUR Integrated Engineering Program), Kyung Hee University, Yongin-si, Gyeonggi-do, Republic of Korea
| | - Sang Taek Jung
- BK21 Graduate Program, Department of Biomedical Sciences, Graduate School, Korea University, Seoul, Republic of Korea
| | - Eun Yeol Lee
- Department of Chemical Engineering (BK21 FOUR Integrated Engineering Program), Kyung Hee University, Yongin-si, Gyeonggi-do, Republic of Korea
| |
Collapse
|
2
|
Batalha S, Gomes CM, Brito C. Immune microenvironment dynamics of HER2 overexpressing breast cancer under dual anti-HER2 blockade. Front Immunol 2023; 14:1267621. [PMID: 38022643 PMCID: PMC10643871 DOI: 10.3389/fimmu.2023.1267621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction The clinical prognosis of the HER2-overexpressing (HER2-OE) subtype of breast cancer (BC) is influenced by the immune infiltrate of the tumor. Specifically, monocytic cells, which are promoters of pro-tumoral immunosuppression, and NK cells, whose basal cytotoxic function may be enhanced with therapeutic antibodies. One of the standards of care for HER2+ BC patients includes the combination of the anti-HER2 antibodies trastuzumab and pertuzumab. This dual combination was a breakthrough against trastuzumab resistance; however, this regimen does not yield complete clinical benefit for a large fraction of patients. Further therapy refinement is still hampered by the lack of knowledge on the immune mechanism of action of this antibody-based dual HER2 blockade. Methods To explore how the dual antibody challenge influences the phenotype and function of immune cells infiltrating the HER2-OE BC microenvironment, we developed in vitro 3D heterotypic cell models of this subtype. The models comprised aggregates of HER2+ BC cell lines and human peripheral blood mononuclear cells. Cells were co-encapsulated in a chemically inert alginate hydrogel and maintained in agitation-based culture system for up to 7 days. Results The 3D models of the HER2-OE immune microenvironment retained original BC molecular features; the preservation of the NK cell compartment was achieved upon optimization of culture time and cytokine supplementation. Challenging the models with the standard-of-care combination of trastuzumab and pertuzumab resulted in enhanced immune cytotoxicity compared with trastuzumab alone. Features of the response to therapy within the immune tumor microenvironment were recapitulated, including induction of an immune effector state with NK cell activation, enhanced cell apoptosis and decline of immunosuppressive PD-L1+ immune cells. Conclusions This work presents a unique human 3D model for the study of immune effects of anti-HER2 biologicals, which can be used to test novel therapy regimens and improve anti-tumor immune function.
Collapse
Affiliation(s)
- Sofia Batalha
- iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Catarina Monteiro Gomes
- iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Catarina Brito
- iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| |
Collapse
|
3
|
Trzos S, Link-Lenczowski P, Pocheć E. The role of N-glycosylation in B-cell biology and IgG activity. The aspects of autoimmunity and anti-inflammatory therapy. Front Immunol 2023; 14:1188838. [PMID: 37575234 PMCID: PMC10415207 DOI: 10.3389/fimmu.2023.1188838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 06/28/2023] [Indexed: 08/15/2023] Open
Abstract
The immune system is strictly regulated by glycosylation through the addition of highly diverse and dynamically changing sugar structures (glycans) to the majority of immune cell receptors. Although knowledge in the field of glycoimmunology is still limited, numerous studies point to the key role of glycosylation in maintaining homeostasis, but also in reflecting its disruption. Changes in oligosaccharide patterns can lead to impairment of both innate and acquired immune responses, with important implications in the pathogenesis of diseases, including autoimmunity. B cells appear to be unique within the immune system, since they exhibit both innate and adaptive immune activity. B cell surface is rich in glycosylated proteins and lectins which recognise glycosylated ligands on other cells. Glycans are important in the development, selection, and maturation of B cells. Changes in sialylation and fucosylation of cell surface proteins affect B cell signal transduction through BCRs, CD22 inhibitory coreceptor and Siglec-G. Plasmocytes, as the final stage of B cell differentiation, produce and secrete immunoglobulins (Igs), of which IgGs are the most abundant N-glycosylated proteins in human serum with the conserved N-glycosylation site at Asn297. N-oligosaccharide composition of the IgG Fc region affects its secretion, structure, half-life and effector functions (ADCC, CDC). IgG N-glycosylation undergoes little change during homeostasis, and may gradually be modified with age and during ongoing inflammatory processes. Hyperactivated B lymphocytes secrete autoreactive antibodies responsible for the development of autoimmunity. The altered profile of IgG N-glycans contributes to disease progression and remission and is sensitive to the application of therapeutic substances and immunosuppressive agents. In this review, we focus on the role of N-glycans in B-cell biology and IgG activity, the rearrangement of IgG oligosaccharides in aging, autoimmunity and immunosuppressive therapy.
Collapse
Affiliation(s)
- Sara Trzos
- Department of Glycoconjugate Biochemistry, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Krakow, Poland
- Doctoral School of Exact and Natural Sciences, Faculty of Biology, Jagiellonian University, Krakow, Poland
| | - Paweł Link-Lenczowski
- Department of Medical Physiology, Faculty of Health Sciences, Jagiellonian University Medical College, Krakow, Poland
| | - Ewa Pocheć
- Department of Glycoconjugate Biochemistry, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Krakow, Poland
| |
Collapse
|
4
|
Grandits M, Grünwald-Gruber C, Gastine S, Standing JF, Reljic R, Teh AYH, Ma JKC. Improving the efficacy of plant-made anti-HIV monoclonal antibodies for clinical use. FRONTIERS IN PLANT SCIENCE 2023; 14:1126470. [PMID: 36923134 PMCID: PMC10009187 DOI: 10.3389/fpls.2023.1126470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 02/01/2023] [Indexed: 06/18/2023]
Abstract
Introduction Broadly neutralising antibodies are promising candidates for preventing and treating Human Immunodeficiency Virus/Acquired Immunodeficiency Syndrome (HIV/AIDS), as an alternative to or in combination with antiretroviral therapy (ART). These mAbs bind to sites on the virus essential for virus attachment and entry, thereby inhibiting entry into the host cell. However, the cost and availability of monoclonal antibodies, especially combinations of antibodies, hampers implementation of anti-HIV bNAb therapies in low- to middle- income countries (LMICs) where HIV-1 prevalence is highest. Methods We have produced three HIV broadly neutralizing antibodies (bNAbs), 10-1074, VRC01 and 3BNC117 in the Nicotiana benthamiana transient expression system. The impact of specific modifications to enhance potency and efficacy were assessed. To prolong half-life and increase bioavailability, a M252Y/S254T/T256E (YTE) or M428L/N434S (LS) mutation was introduced. To increase antibody dependent cellular cytotoxicity (ADCC), we expressed an afucosylated version of each antibody using a glycoengineered plant line. Results The majority of bNAbs and their variants could be expressed at yields of up to 47 mg/kg. Neither the expression system nor the modifications impacted the neutralization potential of the bNAbs. Afucosylated bNAbs exhibit enhanced ability to bind to FcγRIIIa and trigger ADCC, regardless of the presence of Fc amino acid mutations. Lastly, we demonstrated that Fc-modified variants expressed in plants show enhanced binding to FcRn, which results in a favourable in vivo pharmacokinetic profile compared to their unmodified counterparts. Conclusion Tobacco plants are suitable expression hosts for anti-HIV bNAbs with increased efficacy and an improved pharmacokinetic profile.
Collapse
Affiliation(s)
- Melanie Grandits
- Molecular Immunology Unit, Institute for Infection and Immunity, St. George's University of London, London, United Kingdom
| | - Clemens Grünwald-Gruber
- Core Facility Mass Spectrometry, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Silke Gastine
- Infection, Immunity and Inflammation Research and Teaching Department, University College London (UCL) Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Joseph F. Standing
- Infection, Immunity and Inflammation Research and Teaching Department, University College London (UCL) Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Rajko Reljic
- Molecular Immunology Unit, Institute for Infection and Immunity, St. George's University of London, London, United Kingdom
| | - Audrey Y-H. Teh
- Molecular Immunology Unit, Institute for Infection and Immunity, St. George's University of London, London, United Kingdom
| | - Julian K-C. Ma
- Molecular Immunology Unit, Institute for Infection and Immunity, St. George's University of London, London, United Kingdom
| |
Collapse
|
5
|
Spanov B, Olaleye O, Mesurado T, Govorukhina N, Jungbauer A, van de Merbel NC, Lingg N, Bischoff R. Pertuzumab Charge Variant Analysis and Complementarity-Determining Region Stability Assessment to Deamidation. Anal Chem 2023; 95:3951-3958. [PMID: 36795375 PMCID: PMC9979147 DOI: 10.1021/acs.analchem.2c03275] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Pertuzumab is a monoclonal antibody used for the treatment of HER2-positive breast cancer in combination with trastuzumab. Charge variants of trastuzumab have been extensively described in the literature; however, little is known about the charge heterogeneity of pertuzumab. Here, changes in the ion-exchange profile of pertuzumab were evaluated by pH gradient cation-exchange chromatography after stressing it for up to 3 weeks at physiological and elevated pH and 37 °C. Isolated charge variants arising under stress conditions were characterized by peptide mapping. The results of peptide mapping showed that deamidation in the Fc domain and N-terminal pyroglutamate formation in the heavy chain are the main contributors to charge heterogeneity. The heavy chain CDR2, which is the only CDR containing asparagine residues, was quite resistant to deamidation under stress conditions according to peptide mapping results. Using surface plasmon resonance, it was shown that the affinity of pertuzumab for the HER2 target receptor does not change under stress conditions. Peptide mapping analysis of clinical samples showed an average of 2-3% deamidation in the heavy chain CDR2, 20-25% deamidation in the Fc domain, and 10-15% N-terminal pyroglutamate formation in the heavy chain. These findings suggest that in vitro stress studies are able to predict in vivo modifications.
Collapse
Affiliation(s)
- Baubek Spanov
- Department
of Analytical Biochemistry, Groningen Research Institute of Pharmacy, University of Groningen, A Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Oladapo Olaleye
- Department
of Analytical Biochemistry, Groningen Research Institute of Pharmacy, University of Groningen, A Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Tomés Mesurado
- Department
of Biotechnology, Institute of Bioprocess Science and Engineering, University of Natural Resources and Life Sciences,
Vienna, Muthgasse 18, Vienna 1190, Austria
| | - Natalia Govorukhina
- Department
of Analytical Biochemistry, Groningen Research Institute of Pharmacy, University of Groningen, A Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Alois Jungbauer
- Department
of Biotechnology, Institute of Bioprocess Science and Engineering, University of Natural Resources and Life Sciences,
Vienna, Muthgasse 18, Vienna 1190, Austria
| | - Nico C. van de Merbel
- Department
of Analytical Biochemistry, Groningen Research Institute of Pharmacy, University of Groningen, A Deusinglaan 1, 9713 AV Groningen, The Netherlands,Bioanalytical
Laboratory, ICON, Amerikaweg 18, 9407 TK Assen, The Netherlands
| | - Nico Lingg
- Department
of Biotechnology, Institute of Bioprocess Science and Engineering, University of Natural Resources and Life Sciences,
Vienna, Muthgasse 18, Vienna 1190, Austria
| | - Rainer Bischoff
- Department
of Analytical Biochemistry, Groningen Research Institute of Pharmacy, University of Groningen, A Deusinglaan 1, 9713 AV Groningen, The Netherlands,
| |
Collapse
|
6
|
Dammen-Brower K, Epler P, Zhu S, Bernstein ZJ, Stabach PR, Braddock DT, Spangler JB, Yarema KJ. Strategies for Glycoengineering Therapeutic Proteins. Front Chem 2022; 10:863118. [PMID: 35494652 PMCID: PMC9043614 DOI: 10.3389/fchem.2022.863118] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 03/25/2022] [Indexed: 12/14/2022] Open
Abstract
Almost all therapeutic proteins are glycosylated, with the carbohydrate component playing a long-established, substantial role in the safety and pharmacokinetic properties of this dominant category of drugs. In the past few years and moving forward, glycosylation is increasingly being implicated in the pharmacodynamics and therapeutic efficacy of therapeutic proteins. This article provides illustrative examples of drugs that have already been improved through glycoengineering including cytokines exemplified by erythropoietin (EPO), enzymes (ectonucleotide pyrophosphatase 1, ENPP1), and IgG antibodies (e.g., afucosylated Gazyva®, Poteligeo®, Fasenra™, and Uplizna®). In the future, the deliberate modification of therapeutic protein glycosylation will become more prevalent as glycoengineering strategies, including sophisticated computer-aided tools for "building in" glycans sites, acceptance of a broad range of production systems with various glycosylation capabilities, and supplementation methods for introducing non-natural metabolites into glycosylation pathways further develop and become more accessible.
Collapse
Affiliation(s)
- Kris Dammen-Brower
- Translational Tissue Engineering Center, Johns Hopkins School of Medicine, Baltimore, MD, United States
- Department of Biomedical Engineering, The Johns Hopkins University, Baltimore, MD, United States
| | - Paige Epler
- Translational Tissue Engineering Center, Johns Hopkins School of Medicine, Baltimore, MD, United States
- Department of Biomedical Engineering, The Johns Hopkins University, Baltimore, MD, United States
| | - Stanley Zhu
- Translational Tissue Engineering Center, Johns Hopkins School of Medicine, Baltimore, MD, United States
- Department of Biomedical Engineering, The Johns Hopkins University, Baltimore, MD, United States
| | - Zachary J. Bernstein
- Translational Tissue Engineering Center, Johns Hopkins School of Medicine, Baltimore, MD, United States
- Department of Biomedical Engineering, The Johns Hopkins University, Baltimore, MD, United States
| | - Paul R. Stabach
- Department of Pathology, Yale University School of Medicine, New Haven, CT, United States
| | - Demetrios T. Braddock
- Department of Pathology, Yale University School of Medicine, New Haven, CT, United States
| | - Jamie B. Spangler
- Translational Tissue Engineering Center, Johns Hopkins School of Medicine, Baltimore, MD, United States
- Department of Biomedical Engineering, The Johns Hopkins University, Baltimore, MD, United States
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD, United States
- Department of Oncology, Johns Hopkins School of Medicine, Baltimore, MD, United States
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, United States
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins School of Medicine, Baltimore, MD, United States
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | - Kevin J. Yarema
- Translational Tissue Engineering Center, Johns Hopkins School of Medicine, Baltimore, MD, United States
- Department of Biomedical Engineering, The Johns Hopkins University, Baltimore, MD, United States
| |
Collapse
|
7
|
Wolf B, Piksa M, Beley I, Patoux A, Besson T, Cordier V, Voedisch B, Schindler P, Stöllner D, Perrot L, von Gunten S, Brees D, Kammüller M. Therapeutic antibody glycosylation impacts antigen recognition and immunogenicity. Immunology 2022; 166:380-407. [PMID: 35416297 DOI: 10.1111/imm.13481] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 02/01/2022] [Accepted: 02/23/2022] [Indexed: 11/30/2022] Open
Abstract
In this study we show that glycosylation is relevant for immune recognition of therapeutic antibodies, and that defined glycan structures can modulate immunogenicity. Concerns regarding immunogenicity arise from the high heterogeneity in glycosylation that is difficult to control and can deviate from human glycosylation if produced in non-human cell lines. While non-human glycosylation is thought to cause hypersensitivity reactions and immunogenicity, less is known about effects of Fc-associated glycan structures on immune cell responses. We postulated that glycosylation influences antigen recognition and subsequently humoral responses to therapeutic antibodies by modulating 1) recognition and uptake by dendritic cells (DCs), and 2) antigen routing, processing and presentation. Here, we compared different glycosylation variants of the antibody rituximab (RTX) in in vitro assays using human DCs and T cells as well as in in vivo studies. We found that human DCs bind and internalize unmodified RTX stronger compared to its aglycosylated form suggesting that glycosylation mediates uptake after recognition by glycan-specific receptors. Furthermore, we show that DC-uptake of RTX increases or decreases if glycosylation is selectively modified to recognize activating (by mannosylation) or inhibitory lectin receptors (by sialylation). Moreover, glycosylation seems to influence antigen presentation by DCs because specific glycovariants tend to induce either stronger or weaker T cell activation. Finally, we demonstrate that antibody glycosylation impacts anti-drug antibody (ADA) responses to RTX in vivo. Hence, defined glycan structures can modulate immune recognition and alter ADA responses. Glyco-engineering may help to decrease clinical immunogenicity and ADA-associated adverse events such as hypersensitivity reactions.
Collapse
Affiliation(s)
- Babette Wolf
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Mateusz Piksa
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Isabelle Beley
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Agnes Patoux
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Thierry Besson
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Valerie Cordier
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Bernd Voedisch
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | | | | | - Ludovic Perrot
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | | | - Dominique Brees
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | | |
Collapse
|
8
|
Tikhonov A, Smoldovskaya O, Feyzkhanova G, Kushlinskii N, Rubina A. Glycan-specific antibodies as potential cancer biomarkers: a focus on microarray applications. Clin Chem Lab Med 2021; 58:1611-1622. [PMID: 32324152 DOI: 10.1515/cclm-2019-1161] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Accepted: 03/10/2020] [Indexed: 02/06/2023]
Abstract
Glycosylation is one of the most common posttranslational modifications of proteins and lipids. In the case of tumors, cell transformation accompanied by aberrant glycosylation results in the expression of tumor-associated glycans that promote tumor invasion. As part of the innate immunity, anti-glycan antibodies recognize tumor-associated glycans, and these antibodies can be present in the bloodstream in the early stages of cancer. Recently, anti-glycan antibody profiles have been of interest in various cancer studies. Novel advantages in the field of analytical techniques have simplified the analysis of anti-glycan antibodies and made it easier to have more comprehensive knowledge about their functions. One of the robust approaches for studying anti-glycan antibodies engages in microarray technology. The analysis of glycan microarrays can provide more expanded information to simultaneously specify or suggest the role of antibodies to a wide variety of glycans in the progression of different diseases, therefore making it possible to identify new biomarkers for diagnosing cancer and/or the state of the disease. Thus, in this review, we discuss antibodies to various glycans, their application for diagnosing cancer and one of the most promising tools for the investigation of these molecules, microarrays.
Collapse
Affiliation(s)
- Aleksei Tikhonov
- Laboratory of Biological Microchips, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Olga Smoldovskaya
- Laboratory of Biological Microchips, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Guzel Feyzkhanova
- Laboratory of Biological Microchips, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Nikolay Kushlinskii
- Laboratory of Clinical Biochemistry, Federal State Budgetary Institution «N.N. Blokhin National Medical Research Center of Oncology» оf the Ministry of Health of the Russian Federation, Moscow, Russia
| | - Alla Rubina
- Laboratory of Biological Microchips, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
9
|
Nguyen NTB, Lin J, Tay SJ, Mariati, Yeo J, Nguyen-Khuong T, Yang Y. Multiplexed engineering glycosyltransferase genes in CHO cells via targeted integration for producing antibodies with diverse complex-type N-glycans. Sci Rep 2021; 11:12969. [PMID: 34155258 PMCID: PMC8217518 DOI: 10.1038/s41598-021-92320-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 06/09/2021] [Indexed: 02/05/2023] Open
Abstract
Therapeutic antibodies are decorated with complex-type N-glycans that significantly affect their biodistribution and bioactivity. The N-glycan structures on antibodies are incompletely processed in wild-type CHO cells due to their limited glycosylation capacity. To improve N-glycan processing, glycosyltransferase genes have been traditionally overexpressed in CHO cells to engineer the cellular N-glycosylation pathway by using random integration, which is often associated with large clonal variations in gene expression levels. In order to minimize the clonal variations, we used recombinase-mediated-cassette-exchange (RMCE) technology to overexpress a panel of 42 human glycosyltransferase genes to screen their impact on antibody N-linked glycosylation. The bottlenecks in the N-glycosylation pathway were identified and then released by overexpressing single or multiple critical genes. Overexpressing B4GalT1 gene alone in the CHO cells produced antibodies with more than 80% galactosylated bi-antennary N-glycans. Combinatorial overexpression of B4GalT1 and ST6Gal1 produced antibodies containing more than 70% sialylated bi-antennary N-glycans. In addition, antibodies with various tri-antennary N-glycans were obtained for the first time by overexpressing MGAT5 alone or in combination with B4GalT1 and ST6Gal1. The various N-glycan structures and the method for producing them in this work provide opportunities to study the glycan structure-and-function and develop novel recombinant antibodies for addressing different therapeutic applications.
Collapse
Affiliation(s)
- Ngan T. B. Nguyen
- grid.452198.30000 0004 0485 9218Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Jianer Lin
- grid.452198.30000 0004 0485 9218Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Shi Jie Tay
- grid.452198.30000 0004 0485 9218Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Mariati
- grid.452198.30000 0004 0485 9218Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Jessna Yeo
- grid.452198.30000 0004 0485 9218Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Terry Nguyen-Khuong
- grid.452198.30000 0004 0485 9218Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Yuansheng Yang
- grid.452198.30000 0004 0485 9218Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| |
Collapse
|
10
|
Donini R, Haslam SM, Kontoravdi C. Glycoengineering Chinese hamster ovary cells: a short history. Biochem Soc Trans 2021; 49:915-931. [PMID: 33704400 PMCID: PMC8106501 DOI: 10.1042/bst20200840] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/26/2021] [Accepted: 02/08/2021] [Indexed: 12/25/2022]
Abstract
Biotherapeutic glycoproteins have revolutionised the field of pharmaceuticals, with new discoveries and continuous improvements underpinning the rapid growth of this industry. N-glycosylation is a critical quality attribute of biotherapeutic glycoproteins that influences the efficacy, half-life and immunogenicity of these drugs. This review will focus on the advances and future directions of remodelling N-glycosylation in Chinese hamster ovary (CHO) cells, which are the workhorse of recombinant biotherapeutic production, with particular emphasis on antibody products, using strategies such as cell line and protein backbone engineering.
Collapse
Affiliation(s)
- Roberto Donini
- Department of Life Sciences, Imperial College London, London SW7 2AZ, U.K
- Department of Chemical Engineering, Imperial College London, London SW7 2AZ, U.K
| | - Stuart M. Haslam
- Department of Life Sciences, Imperial College London, London SW7 2AZ, U.K
| | - Cleo Kontoravdi
- Department of Chemical Engineering, Imperial College London, London SW7 2AZ, U.K
| |
Collapse
|
11
|
Zhou X, Motta F, Selmi C, Ridgway WM, Gershwin ME, Zhang W. Antibody glycosylation in autoimmune diseases. Autoimmun Rev 2021; 20:102804. [PMID: 33727152 DOI: 10.1016/j.autrev.2021.102804] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 02/13/2021] [Indexed: 02/07/2023]
Abstract
The glycosylation of the fragment crystallizable (Fc) region of immunoglobulins (Ig) is critical for the modulation of antibody effects on inflammation. Moreover, antibody glycosylation may induce pathologic modifications and ultimately contribute to the development of autoimmune diseases. Thanks to progress in the analysis of glycosylation, more data are available on IgG and its subclass structures in the context of autoimmune diseases. In this review, we focused on the impact of Ig glycosylation in autoimmunity, describing how it modulates the immune response and how glycome profiles can be used as biomarkers of disease activity. The analysis of antibody glycosylation demonstrated specific features in human autoimmune and chronic inflammatory conditions, including rheumatoid arthritis, systemic lupus erythematosus, inflammatory bowel disease and autoimmune liver diseases, among others. Within the same disease, different patterns are associated with disease severity and treatment options. Future research may increase the information available on the distinct glycome profiles and expand their potential role as biomarkers and as targets for treatment, ultimately favoring an individualized approach.
Collapse
Affiliation(s)
- Xing Zhou
- Division of Rheumatology, Allergy and Clinical Immunology, University of California, Davis, CA 95616, USA; Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Francesca Motta
- Division of Rheumatology and Clinical Immunology, Humanitas Clinical and Research Center-IRCCS, Rozzano, Milan, Italy; Department of Biomedical Sciences, Humanitas University, Rozzano, Milan, Italy
| | - Carlo Selmi
- Division of Rheumatology and Clinical Immunology, Humanitas Clinical and Research Center-IRCCS, Rozzano, Milan, Italy; Department of Biomedical Sciences, Humanitas University, Rozzano, Milan, Italy
| | - William M Ridgway
- Division of Rheumatology, Allergy and Clinical Immunology, University of California, Davis, CA 95616, USA
| | - M Eric Gershwin
- Division of Rheumatology, Allergy and Clinical Immunology, University of California, Davis, CA 95616, USA.
| | - Weici Zhang
- Division of Rheumatology, Allergy and Clinical Immunology, University of California, Davis, CA 95616, USA.
| |
Collapse
|
12
|
Boruah BM, Kadirvelraj R, Liu L, Ramiah A, Li C, Zong G, Bosman GP, Yang JY, Wang LX, Boons GJ, Wood ZA, Moremen KW. Characterizing human α-1,6-fucosyltransferase (FUT8) substrate specificity and structural similarities with related fucosyltransferases. J Biol Chem 2020; 295:17027-17045. [PMID: 33004438 PMCID: PMC7863877 DOI: 10.1074/jbc.ra120.014625] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 09/28/2020] [Indexed: 12/18/2022] Open
Abstract
Mammalian Asn-linked glycans are extensively processed as they transit the secretory pathway to generate diverse glycans on cell surface and secreted glycoproteins. Additional modification of the glycan core by α-1,6-fucose addition to the innermost GlcNAc residue (core fucosylation) is catalyzed by an α-1,6-fucosyltransferase (FUT8). The importance of core fucosylation can be seen in the complex pathological phenotypes of FUT8 null mice, which display defects in cellular signaling, development, and subsequent neonatal lethality. Elevated core fucosylation has also been identified in several human cancers. However, the structural basis for FUT8 substrate specificity remains unknown.Here, using various crystal structures of FUT8 in complex with a donor substrate analog, and with four distinct glycan acceptors, we identify the molecular basis for FUT8 specificity and activity. The ordering of three active site loops corresponds to an increased occupancy for bound GDP, suggesting an induced-fit folding of the donor-binding subsite. Structures of the various acceptor complexes were compared with kinetic data on FUT8 active site mutants and with specificity data from a library of glycan acceptors to reveal how binding site complementarity and steric hindrance can tune substrate affinity. The FUT8 structure was also compared with other known fucosyltransferases to identify conserved and divergent structural features for donor and acceptor recognition and catalysis. These data provide insights into the evolution of modular templates for donor and acceptor recognition among GT-B fold glycosyltransferases in the synthesis of diverse glycan structures in biological systems.
Collapse
Affiliation(s)
- Bhargavi M Boruah
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | - Renuka Kadirvelraj
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, USA
| | - Lin Liu
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | - Annapoorani Ramiah
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | - Chao Li
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland, USA
| | - Guanghui Zong
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland, USA
| | - Gerlof P Bosman
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, and Utrecht Institute for Pharmaceutical Sciences, Utrecht, The Netherlands
| | - Jeong-Yeh Yang
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | - Lai-Xi Wang
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland, USA
| | - Geert-Jan Boons
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA; Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, and Utrecht Institute for Pharmaceutical Sciences, Utrecht, The Netherlands
| | - Zachary A Wood
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, USA.
| | - Kelley W Moremen
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA; Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, USA.
| |
Collapse
|
13
|
Zhao Y, Raidas S, Mao Y, Li N. Glycine additive facilitates site-specific glycosylation profiling of biopharmaceuticals by ion-pairing hydrophilic interaction chromatography mass spectrometry. Anal Bioanal Chem 2020; 413:1267-1277. [PMID: 33244686 DOI: 10.1007/s00216-020-03089-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 11/19/2020] [Accepted: 11/21/2020] [Indexed: 11/28/2022]
Abstract
Many biotherapeutics such as monoclonal antibodies (mAb) and Fc-domain fusion proteins contain heterogeneous glycan contents at one or multiple glycosylation site(s). Site-specific glycan profile characterization is critical for monitoring the quality of these molecules during different stages of drug development. Hydrophilic interaction chromatography (HILIC) as an orthogonal separation method to reversed-phase liquid chromatography (RPLC) can achieve better glycopeptide identification due to the effective separation between individual glycoforms as well as the separation of glycopeptides from high-abundance non-glycosylated peptides, which can be further improved by modifying the mobile phases with ion-pairing agents (IP-HILIC). However, an online IP-HILIC coupled to mass spectrometry (MS) detection may suffer from the suppression of mass spectrometry signal during electrospray ionization due to the trifluoroacetic acid (TFA), commonly used as an ion-pairing agent. Here, we reported an optimized experimental condition for IP-HILIC-MS where glycine is added in the TFA-containing mobile phases to enhance the MS detection sensitivity for glycopeptides up to ~ 50-fold by eliminating the ion-suppression effect of an ion-pairing agent while still retaining excellent separation capacity. We demonstrated that with enhanced detection sensitivity, IP-HILIC-MS can confidently identify an increased number of site-specific N-linked glycans for IgG1, and IgG4 mAbs as well as an Fc-domain fusion protein (containing five N-glycosylation sites) through MS/MS-based search in the data-dependent acquisition mode, meanwhile, achieve comparable quantitative results compared with the traditional methods. We also demonstrated that IP-HILIC-MS can be used to identify low-level O-glycosylation and non-consensus N-glycosylation on mAbs without any enrichment prior to LC-MS analysis. Graphical abstract.
Collapse
Affiliation(s)
- Yunlong Zhao
- Analytical Chemistry, Regeneron Pharmaceuticals, Inc., 777 Old Saw Mill River Road, Tarrytown, NY, 10591, USA
| | - Shivkumar Raidas
- Analytical Chemistry, Regeneron Pharmaceuticals, Inc., 777 Old Saw Mill River Road, Tarrytown, NY, 10591, USA
| | - Yuan Mao
- Analytical Chemistry, Regeneron Pharmaceuticals, Inc., 777 Old Saw Mill River Road, Tarrytown, NY, 10591, USA.
| | - Ning Li
- Analytical Chemistry, Regeneron Pharmaceuticals, Inc., 777 Old Saw Mill River Road, Tarrytown, NY, 10591, USA
| |
Collapse
|
14
|
A Markov model of glycosylation elucidates isozyme specificity and glycosyltransferase interactions for glycoengineering. CURRENT RESEARCH IN BIOTECHNOLOGY 2020; 2:22-36. [PMID: 32285041 DOI: 10.1016/j.crbiot.2020.01.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Glycosylated biopharmaceuticals are important in the global pharmaceutical market. Despite the importance of their glycan structures, our limited knowledge of the glycosylation machinery still hinders controllability of this critical quality attribute. To facilitate discovery of glycosyltransferase specificity and predict glycoengineering efforts, here we extend the approach to model N-linked protein glycosylation as a Markov process. Our model leverages putative glycosyltransferase (GT) specificity to define the biosynthetic pathways for all measured glycans, and the Markov chain modelling is used to learn glycosyltransferase isoform activities and predict glycosylation following glycosyltransferase knock-in/knockout. We apply our methodology to four different glycoengineered therapeutics (i.e., Rituximab, erythropoietin, Enbrel, and alpha-1 antitrypsin) produced in CHO cells. Our model accurately predicted N-linked glycosylation following glycoengineering and further quantified the impact of glycosyltransferase mutations on reactions catalyzed by other glycosyltransferases. By applying these learned GT-GT interaction rules identified from single glycosyltransferase mutants, our model further predicts the outcome of multi-gene glycosyltransferase mutations on the diverse biotherapeutics. Thus, this modeling approach enables rational glycoengineering and the elucidation of relationships between glycosyltransferases, thereby facilitating biopharmaceutical research and aiding the broader study of glycosylation to elucidate the genetic basis of complex changes in glycosylation.
Collapse
|
15
|
Ząbczyńska M, Polak K, Kozłowska K, Sokołowski G, Pocheć E. The Contribution of IgG Glycosylation to Antibody-Dependent Cell-Mediated Cytotoxicity (ADCC) and Complement-Dependent Cytotoxicity (CDC) in Hashimoto's Thyroiditis: An in Vitro Model of Thyroid Autoimmunity. Biomolecules 2020; 10:biom10020171. [PMID: 31979029 PMCID: PMC7072644 DOI: 10.3390/biom10020171] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 01/13/2020] [Accepted: 01/21/2020] [Indexed: 12/12/2022] Open
Abstract
Antibody-dependent cell-mediated cytotoxicity (ADCC) and complement-dependent cytotoxicity (CDC) are involved in destruction of thyroid tissue in Hashimoto’s thyroiditis (HT). N-glycosylation of the Fc fragment affects the effector functions of IgG by enhancing or suppressing the cytotoxicity effect. The aim of the present study was to assess the impact of HT-specific IgG glycosylation in ADCC and CDC, using in vitro models. The normal thyroid Nthy-ori 3-1 cell line and thyroid carcinoma FTC-133 cells were used as the target cells. Peripheral blood mononuclear cells (PBMCs) from healthy donors and the HL-60 human promyelotic leukemia cell line served as the effector cells. IgG was isolated from sera of HT and healthy donors and then treated with α2-3,6,8-neuraminidase to cut off sialic acids (SA) from N-glycans. We observed more intensive cytotoxicity in the presence of IgG from HT patients than in the presence of IgG from healthy donors. Removal of SA from IgG N-glycans increased ADCC intensity and reduced CDC. We conclude that the enhanced thyrocyte lysis resulted from the higher anti-TPO content in the whole IgG pool of HT donors and from altered IgG glycosylation in HT autoimmunity.
Collapse
Affiliation(s)
- Marta Ząbczyńska
- Department of Glycoconjugate Biochemistry, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Gronostajowa 9, 30-387 Kraków, Poland; (M.Z.); (K.P.); (K.K.)
| | - Katarzyna Polak
- Department of Glycoconjugate Biochemistry, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Gronostajowa 9, 30-387 Kraków, Poland; (M.Z.); (K.P.); (K.K.)
| | - Kamila Kozłowska
- Department of Glycoconjugate Biochemistry, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Gronostajowa 9, 30-387 Kraków, Poland; (M.Z.); (K.P.); (K.K.)
| | - Grzegorz Sokołowski
- Department of Endocrinology, University Hospital in Kraków, Kopernika 17, 31-501 Kraków, Poland;
| | - Ewa Pocheć
- Department of Glycoconjugate Biochemistry, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Gronostajowa 9, 30-387 Kraków, Poland; (M.Z.); (K.P.); (K.K.)
- Correspondence: ; Tel.: +48-12-664-6467
| |
Collapse
|
16
|
Antibody glycosylation: impact on antibody drug characteristics and quality control. Appl Microbiol Biotechnol 2020; 104:1905-1914. [DOI: 10.1007/s00253-020-10368-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 01/02/2020] [Accepted: 01/09/2020] [Indexed: 12/21/2022]
|
17
|
Deligne C, Gros L. [Anti-tumor monoclonal antibodies: new insights to elicit a long-term immune response]. Med Sci (Paris) 2020; 35:982-989. [PMID: 31903903 DOI: 10.1051/medsci/2019194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Tumor-targeting monoclonal antibodies (mAbs) are now widely used for the treatment of cancer patients and their numbers are constantly increasing. Over the past ten years, numerous studies have demonstrated that the anti-tumor role of these antibodies far exceeds that of passive therapies as it was initially described, with the possibility of recruiting innate immune cells to promote activation of the early stages of immune response and to generate a long-term protective anti-tumor memory immune response. Understanding these mechanisms has recently led to the clinical development of a new generation of anti-tumor antibodies modified to increase their ability to interact with immune cells. Finally, the first preclinical and clinical studies have recently demonstrated the interest of developing therapeutic combinations combining anti-tumor mAbs with immune-, chemo- or radiotherapy, to reinforce their immunomodulatory potential and ensure effective and durable anti-tumor protection.
Collapse
Affiliation(s)
- Claire Deligne
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, Royaume-Uni
| | - Laurent Gros
- IRCM, Institut de Recherche en Cancérologie de Montpellier, Inserm U1194, Université Montpellier, Institut Régional du Cancer de Montpellier, F-34298 Montpellier, France
| |
Collapse
|
18
|
Ishii K, Morii N, Yamashiro H. Pertuzumab in the treatment of HER2-positive breast cancer: an evidence-based review of its safety, efficacy, and place in therapy. CORE EVIDENCE 2019; 14:51-70. [PMID: 31802990 PMCID: PMC6827570 DOI: 10.2147/ce.s217848] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 08/01/2019] [Indexed: 12/23/2022]
Abstract
Human epidermal growth factor receptor 2 (HER2)-positive breast cancer is a distinct subset of breast cancer that results from overexpression of HER2 protein. Pertuzumab-a recombinant humanized monoclonal antibody that binds to the extracellular dimerization domain II of HER2-was recently approved for adjuvant therapy and neoadjuvant therapy of HER2-positive early breast cancer. As pertuzumab and trastuzumab bind to different domains of the extracellular dimerization domain of HER2, a combination therapy of pertuzumab and trastuzumab is beneficial for the treatment of metastatic cancer, advanced local cancer, or early cancer by dual HER2 blockage. Many clinical trials have been performed using pertuzumab for breast cancer patients; these include the CLEOPATRA trial for palliative therapy, the APHINITY trial for adjuvant therapy, and the NeoSphere and the TRYPHAENA trials for neoadjuvant therapy. These trials revealed pertuzumab to be a safe and effective drug regardless of the patient age and hormone receptor status. Notably, pertuzumab use was associated with severe cardiac toxicity in some cases; however, the risk of pertuzumab-induced cardiac dysfunction was low. The most common adverse effect associated with pertuzumab-use was diarrhea, but most cases were not severe. Several different chemotherapeutic agents have been investigated to determine optimal chemotherapeutic combinations for dual HER2 blockage. Some exploratory analyses indicate that pertuzumab treatment offered little benefit to patients with node-negative and small primary tumors; pertuzumab treatment was also found not be cost-effective. Further research will reveal the appropriate usage of pertuzumab for treating a subset of eligible patients.
Collapse
Affiliation(s)
- Kei Ishii
- Department of Breast Surgery, Tenri Hospital, Tenri, Japan
| | - Nao Morii
- Department of Breast Surgery, Tenri Hospital, Tenri, Japan
| | | |
Collapse
|
19
|
Syed MM, Doshi PJ, Dhavale DD, Doshi JB, Kate SL, Kulkarni G, Sharma N, Uppuladinne M, Sonavane U, Joshi R, Kulkarni MV. Potential of isoquercitrin as antisickling agent: a multi-spectroscopic, thermophoresis and molecular modeling approach. J Biomol Struct Dyn 2019; 38:2717-2736. [PMID: 31315526 DOI: 10.1080/07391102.2019.1645735] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Sickle cell disease is an inherited disease caused by point mutation in hemoglobin (β-globin gene). Under oxygen saturation, sickle hemoglobin form polymers, leading to rigid erythrocytes. The transition of the blood vessels is altered and initiated by the adhesion of erythrocytes, neutrophils and endothelial cells. Sickle Hemoglobin (HbS) polymerization is a major cause in red blood cells (RBC), promoting sickling and destruction of RBCs. Isoquercitrin, a medicinal bioactive compound found in various medicinal plants, has multiple health benefits. The present study examines the potential of isoquercitrin as an anti-sickle agent, showing a significant decrease in the rate of polymerization as well as sickling of RBCs. Isoquercitrin-induced graded alteration in absorbance and fluorescence of HbS, confirmed their interaction. A negative value of ΔG° strongly suggests that it is a spontaneous exothermic reaction induced by entropy. Negative ΔH° and positive ΔS° predicted that hydrogen and hydrophobic binding forces interfered with a hydrophobic microenvironment of β6Val leading to polymerization inhibition of HbS. HbS-Isoquercitrin complex exhibits helical structural changes leading to destabilization of the HbS polymer as confirmed by CD spectroscopy. MST and DSC results indicate greater changes in thermophoretic mobility and thermal stability of sickle hemoglobin in the presence of isoquercitrin, respectively. These findings were also supported by molecular simulation studies using DOCK6 and GROMACS. Hence, we can conclude that isoquercitrin interacts with HbS through hydrogen bonding, which leads to polymerization inhibition. Consequently, isoquercitrin could potentially be used as a medication for the treatment of sickle cell disease.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Muntjeeb M Syed
- Department of Chemistry, Savitribai Phule Pune University (Formerly University of Pune), Pune, India
| | - Pooja J Doshi
- Department of Chemistry, Savitribai Phule Pune University (Formerly University of Pune), Pune, India
| | - Dilip D Dhavale
- Department of Chemistry, Savitribai Phule Pune University (Formerly University of Pune), Pune, India
| | | | - Sudam L Kate
- College of Ayurveda and Research Centre Hadapsar, Maharashtra Arogya Mandal's Sumatibhai Shah Ayurved Mahavidyalaya, Pune, India
| | - Girish Kulkarni
- College of Ayurveda and Research Centre Hadapsar, Maharashtra Arogya Mandal's Sumatibhai Shah Ayurved Mahavidyalaya, Pune, India
| | - Neeru Sharma
- HPC Medical and Bioinformatics Applications Group, Centre for Development of Advanced Computing, Savitribai Phule Pune University Campus, Pune, India
| | - Mallikarjunachari Uppuladinne
- HPC Medical and Bioinformatics Applications Group, Centre for Development of Advanced Computing, Savitribai Phule Pune University Campus, Pune, India
| | - Uddhavesh Sonavane
- HPC Medical and Bioinformatics Applications Group, Centre for Development of Advanced Computing, Savitribai Phule Pune University Campus, Pune, India
| | - Rajendra Joshi
- HPC Medical and Bioinformatics Applications Group, Centre for Development of Advanced Computing, Savitribai Phule Pune University Campus, Pune, India
| | - Mohan V Kulkarni
- Department of Chemistry, Savitribai Phule Pune University (Formerly University of Pune), Pune, India
| |
Collapse
|
20
|
Wei Q, Tian H, Zhang F, Sai W, Ge Y, Gao X, Yao W. Establishment of an HPLC-based method to identify key proteases of proteins in vitro. Anal Biochem 2019; 573:1-7. [PMID: 30849379 DOI: 10.1016/j.ab.2019.02.030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Revised: 02/27/2019] [Accepted: 02/27/2019] [Indexed: 02/03/2023]
Abstract
Given that the biological functions of proteins may decrease or even be lost due to degradation by proteases, it is of great significance to identify potential proteases that degrade protein drugs during systemic circulation. In this work, we describe a method based on high-performance liquid chromatography (HPLC) to identify key proteases that degrade therapeutic proteins in blood, including endopeptidases and exopeptidases. Here, the degradation of proteins was detected by competition with standard substrates of proteases and is shown as the relative residue rate. Four protein drugs were subjected to this method, and the results suggested that growth hormone was degraded by aminopeptidase N and kallikrein-related peptidase 5, pertuzumab was hardly degraded by the proteases, factor VII was degraded by carboxypeptidase B, neprilysin, dipeptidyl peptidase-4 and peptidyl dipeptidase A, and fibrinogen was degraded by carboxypeptidase B and kallikrein-related peptidase 5, findings consistent with the literature. The results were confirmed by microscale thermophoresis; additionally, activity detection in vitro substantiated that the degradation of factor VII decreased its activity. We demonstrate that this method can be used to identify key proteases of proteins with high accuracy, precision and durability.
Collapse
Affiliation(s)
- Qingqing Wei
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, China.
| | - Hong Tian
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, China.
| | - Fan Zhang
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, China.
| | - Wenbo Sai
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, China.
| | - Yang Ge
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, China.
| | - Xiangdong Gao
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, China.
| | - Wenbing Yao
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
21
|
Bheemareddy BR, Pulipeta M, Iyer P, Dirisala VR. Effect of the total galactose content on complement-dependent cytotoxicity of the therapeutic anti-CD20 IgG1 antibodies under temperature stress conditions. J Carbohydr Chem 2019. [DOI: 10.1080/07328303.2018.1541995] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
| | | | - Pradeep Iyer
- R&D Division, Hetero Biopharma Limited, Mahaboob Nagar, Telangana, India
| | - Vijaya R. Dirisala
- Department of Biotechnology, Vignan’s Foundation for Science, Technology and Research (VFSTR), Guntur, Andhra Pradesh, India
| |
Collapse
|
22
|
Hardiansyah D, Ng CM. Minimal physiologically-based pharmacokinetic model to investigate the effect of pH dependent FcRn affinity and the endothelial endocytosis on the pharmacokinetics of anti-VEGF humanized IgG1 antibody in cynomolgus monkey. Eur J Pharm Sci 2018; 125:130-141. [PMID: 30248389 DOI: 10.1016/j.ejps.2018.09.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 09/17/2018] [Accepted: 09/18/2018] [Indexed: 11/29/2022]
Abstract
In this study, we developed a first minimal physiologically-based pharmacokinetic (mPBPK) model to investigate the complex interaction effects of endocytosis rate/FcRn binding affinity at both acidic/physiological pH on the pharmacokinetics (PK) of the anti-VEGF IgG1 antibodies. The data used in this study were the PK of the native IgG and humanized anti-VEGF IgG1 antibodies with a wide range FcRn-binding at both acidic and physiological pH in the cynomolgus monkey. The basic structure of the developed mPBPK models consisted of plasma, tissue and lymph compartments. The tissue compartment was subdivided into vascular, endothelial and interstitial spaces. Non-equilibrium binding mechanism was used to describe the FcRn-IgG interaction in the endosome. The fittings in the final model with three pH systems in the endosome compartment showed a good fit based on the visualization of the fitted graphs and the coefficient of variations of the estimated parameters (CV < 50%). The quantitative endocytosis/FcRn binding affinity PK relationships was constructed using the final model to provide better understanding of complex interaction effects of endocytosis rate and FcRn binding on PK of anti-VEGF IgG1 antibodies. This result may serve as an important model-based drug discovery platform to guide the design and development of the future generation of anti-VEGF IgG1 or other therapeutic IgG1 antibodies. In addition, the mPBPK model developed in cynomolgus monkey was successfully used to predict the PK of the anti-VEGF IgG1 antibody (bevacizumab) in human subjects.
Collapse
Affiliation(s)
- Deni Hardiansyah
- College of Pharmacy, University of Kentucky, BioPharm Building, Room 341, 789 S. Limestone, Lexington, KY 40536, USA
| | - Chee Meng Ng
- College of Pharmacy, University of Kentucky, BioPharm Building, Room 341, 789 S. Limestone, Lexington, KY 40536, USA.
| |
Collapse
|
23
|
Buettner MJ, Shah SR, Saeui CT, Ariss R, Yarema KJ. Improving Immunotherapy Through Glycodesign. Front Immunol 2018; 9:2485. [PMID: 30450094 PMCID: PMC6224361 DOI: 10.3389/fimmu.2018.02485] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 10/08/2018] [Indexed: 01/04/2023] Open
Abstract
Immunotherapy is revolutionizing health care, with the majority of high impact "drugs" approved in the past decade falling into this category of therapy. Despite considerable success, glycosylation-a key design parameter that ensures safety, optimizes biological response, and influences the pharmacokinetic properties of an immunotherapeutic-has slowed the development of this class of drugs in the past and remains challenging at present. This article describes how optimizing glycosylation through a variety of glycoengineering strategies provides enticing opportunities to not only avoid past pitfalls, but also to substantially improve immunotherapies including antibodies and recombinant proteins, and cell-based therapies. We cover design principles important for early stage pre-clinical development and also discuss how various glycoengineering strategies can augment the biomanufacturing process to ensure the overall effectiveness of immunotherapeutics.
Collapse
Affiliation(s)
- Matthew J Buettner
- Department of Biomedical Engineering and the Translational Tissue Engineering Center, The Johns Hopkins University, Baltimore, MD, United States
| | - Sagar R Shah
- Department of Biomedical Engineering and the Translational Tissue Engineering Center, The Johns Hopkins University, Baltimore, MD, United States
| | - Christopher T Saeui
- Department of Biomedical Engineering and the Translational Tissue Engineering Center, The Johns Hopkins University, Baltimore, MD, United States.,Pharmacology/Toxicology Branch I, Division of Clinical Evaluation and Pharmacology/Toxicology, Office of Tissues and Advanced Therapies, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Bethesda, MD, United States
| | - Ryan Ariss
- Department of Biomedical Engineering and the Translational Tissue Engineering Center, The Johns Hopkins University, Baltimore, MD, United States
| | - Kevin J Yarema
- Department of Biomedical Engineering and the Translational Tissue Engineering Center, The Johns Hopkins University, Baltimore, MD, United States
| |
Collapse
|
24
|
Dalziel M, Beers SA, Cragg MS, Crispin M. Through the barricades: overcoming the barriers to effective antibody-based cancer therapeutics. Glycobiology 2018; 28:697-712. [PMID: 29800150 DOI: 10.1093/glycob/cwy043] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 04/30/2018] [Indexed: 02/06/2023] Open
Abstract
Since the turn of the century, cancer therapy has undergone a transformation in terms of new treatment modalities and renewed optimism in achieving long-lived tumor control and even cure. This is, in large part, thanks to the widespread incorporation of monoclonal antibodies (mAbs) into standard treatment regimens. These new therapies have, across many settings, significantly contributed to improved clinical responses, patient quality of life and survival. Moreover, the flexibility of the antibody platform has led to the development of a wide range of innovative and combinatorial therapies that continue to augment the clinician's armory. Despite these successes, there is a growing awareness that in many cases mAb therapy remains suboptimal, primarily due to inherent limitations imposed by the immune system's own homeostatic controls and the immunosuppressive tumor microenvironment. Here, we discuss the principal barriers that act to constrain the tumor-killing activity of antibody-based therapeutics, particularly those involving antibody glycans, using illustrative examples from both pre-clinical and market approved mAbs. We also discuss strategies that have been, or are in development to overcome these obstacles. Finally, we outline how the growing understanding of the biological terrain in which mAbs function is shaping innovation and regulation in cancer therapeutics.
Collapse
Affiliation(s)
- Martin Dalziel
- Oxford Glycobiology Institute, Department of Biochemistry, South Parks Road, Oxford, UK
| | - Stephen A Beers
- Antibody & Vaccine Group, Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, UK
| | - Mark S Cragg
- Antibody & Vaccine Group, Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, UK
| | - Max Crispin
- Centre for Biological Sciences, University of Southampton, Southampton, UK
- Institute for Life Sciences, Highfield Campus, University of Southampton, Southampton, UK
| |
Collapse
|
25
|
Wang Q, Chung CY, Chough S, Betenbaugh MJ. Antibody glycoengineering strategies in mammalian cells. Biotechnol Bioeng 2018; 115:1378-1393. [DOI: 10.1002/bit.26567] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 02/11/2018] [Accepted: 02/13/2018] [Indexed: 12/18/2022]
Affiliation(s)
- Qiong Wang
- Department of Chemical and Biomolecular Engineering; Johns Hopkins University; Baltimore Maryland
| | - Cheng-Yu Chung
- Department of Chemical and Biomolecular Engineering; Johns Hopkins University; Baltimore Maryland
| | - Sandra Chough
- Department of Chemical and Biomolecular Engineering; Johns Hopkins University; Baltimore Maryland
| | - Michael J. Betenbaugh
- Department of Chemical and Biomolecular Engineering; Johns Hopkins University; Baltimore Maryland
| |
Collapse
|
26
|
Itai S, Fujii Y, Kaneko MK, Yamada S, Nakamura T, Yanaka M, Saidoh N, Chang YW, Handa S, Takahashi M, Suzuki H, Harada H, Kato Y. H 2Mab-77 is a Sensitive and Specific Anti-HER2 Monoclonal Antibody Against Breast Cancer. Monoclon Antib Immunodiagn Immunother 2017; 36:143-148. [PMID: 28700270 PMCID: PMC6985780 DOI: 10.1089/mab.2017.0026] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Human epidermal growth factor receptor 2 (HER2) plays a critical role in the progression of breast cancers, and HER2 overexpression is associated with poor clinical outcomes. Trastuzumab is an anti-HER2 humanized antibody that leads to significant survival benefits in patients with HER2-positive metastatic breast cancers. In this study, we developed novel anti-HER2 monoclonal antibodies (mAbs) and characterized their efficacy in flow cytometry, Western blot, and immunohistochemical analyses. Initially, we expressed the full length or ectodomain of HER2 in LN229 glioblastoma cells and then immunized mice with ectodomain of HER2 or LN229/HER2, and performed the first screening by enzyme-linked immunosorbent assays using ectodomain of HER2. Subsequently, we selected mAbs according to their efficacy in flow cytometry (second screening), Western blot (third screening), and immunohistochemical analyses (fourth screening). Among 100 mAb clones, only three mAbs reacted with HER2 in Western blot, and clone H2Mab-77 (IgG1, kappa) was selected. Finally, immunohistochemical analyses with H2Mab-77 showed sensitive and specific reactions against breast cancer cells, warranting the use of H2Mab-77 to detect HER2 in pathological analyses of breast cancers.
Collapse
Affiliation(s)
- Shunsuke Itai
- 1 Department of Antibody Drug Development, Tohoku University Graduate School of Medicine , Aoba-ku, Sendai, Miyagi, Japan .,2 Department of Oral and Maxillofacial Surgery, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University , Yushima, Bunkyo-ku, Tokyo, Japan
| | - Yuki Fujii
- 3 Department of Regional Innovation, Tohoku University Graduate School of Medicine , Aoba-ku, Sendai, Miyagi, Japan
| | - Mika K Kaneko
- 1 Department of Antibody Drug Development, Tohoku University Graduate School of Medicine , Aoba-ku, Sendai, Miyagi, Japan
| | - Shinji Yamada
- 1 Department of Antibody Drug Development, Tohoku University Graduate School of Medicine , Aoba-ku, Sendai, Miyagi, Japan
| | - Takuro Nakamura
- 1 Department of Antibody Drug Development, Tohoku University Graduate School of Medicine , Aoba-ku, Sendai, Miyagi, Japan
| | - Miyuki Yanaka
- 1 Department of Antibody Drug Development, Tohoku University Graduate School of Medicine , Aoba-ku, Sendai, Miyagi, Japan
| | - Noriko Saidoh
- 1 Department of Antibody Drug Development, Tohoku University Graduate School of Medicine , Aoba-ku, Sendai, Miyagi, Japan
| | - Yao-Wen Chang
- 1 Department of Antibody Drug Development, Tohoku University Graduate School of Medicine , Aoba-ku, Sendai, Miyagi, Japan
| | - Saori Handa
- 1 Department of Antibody Drug Development, Tohoku University Graduate School of Medicine , Aoba-ku, Sendai, Miyagi, Japan
| | - Maki Takahashi
- 4 Department of Pathology and Laboratory Medicine, Sendai Medical Center , Miyagino, Miyagino-ku, Sendai, Miyagi, Japan
| | - Hiroyoshi Suzuki
- 4 Department of Pathology and Laboratory Medicine, Sendai Medical Center , Miyagino, Miyagino-ku, Sendai, Miyagi, Japan
| | - Hiroyuki Harada
- 2 Department of Oral and Maxillofacial Surgery, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University , Yushima, Bunkyo-ku, Tokyo, Japan
| | - Yukinari Kato
- 1 Department of Antibody Drug Development, Tohoku University Graduate School of Medicine , Aoba-ku, Sendai, Miyagi, Japan .,3 Department of Regional Innovation, Tohoku University Graduate School of Medicine , Aoba-ku, Sendai, Miyagi, Japan .,5 New Industry Creation Hatchery Center, Tohoku University , Aoba-ku, Sendai, Miyagi, Japan
| |
Collapse
|