1
|
Cai J, Yang Y, Zhang J, Bai Z, Zhang X, Li K, Shi M, Liu Z, Gao L, Wang J, Li J. Multilayer nanodrug delivery system with spatiotemporal drug release improves tumor microenvironment for synergistic anticancer therapy. Biofabrication 2024; 16:025012. [PMID: 38277678 DOI: 10.1088/1758-5090/ad22ef] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 01/26/2024] [Indexed: 01/28/2024]
Abstract
The inflammatory response is one of the general symptoms that accompany tumorigenesis, the pro-inflammatory factors cyclooxygenase-2 (COX-2) and COX-2-derived prostaglandin-2 (PGE-2) in the inflammatory environment surrounding tumors possess promoting tumor development, metastasis and angiogenesis effects. In addition, the hypoxic environment of tumors severely limits the effectiveness of photodynamic therapy (PDT). In this study, a universal extracellular-intracellular 'on-demand' release nanomedicine DOX@PDA-ICG@MnO2@GN-CEL was developed for the combined fight against malignant tumors using a spatiotemporal controlled gelatin coated polydopamine (PDA@GN) as the carrier and loaded with the chemotherapeutic drug doxorubicin (DOX), the photosensitizer indocyanine green (ICG), the PDT enhancer MnO2and the anti-inflammatory drug celecoxib (CEL) individually. Our results showed that DOX@PDA-ICG@MnO2@GN-CEL could release CEL extracellularly by matrix metalloproteinase-2 response and inhibit the COX-2/PGE-2 pathway, reduce chemotherapy resistance and attenuate the concurrent inflammation. After entering the tumor cells, the remaining DOX@PDA-ICG@MnO2released DOX, ICG and MnO2intracellularly through PDA acid response. MnO2promoted the degradation of endogenous H2O2to generate oxygen under acidic conditions to alleviate the tumor hypoxic environment, enhance PDT triggered by ICG. PDA and ICG exhibited photothermal therapy synergistically, and DOX exerted chemotherapy with reduced chemotherapy resistance. The dual responsive drug release switch enabled the chemotherapeutic, photothermal, photodynamic and anti-inflammatory drugs precisely acted on different sites of tumor tissues and realized a promising multimodal combination therapy.
Collapse
Affiliation(s)
- Jiahui Cai
- Nano-biotechnology Key Lab of Hebei Province, Hebei Key Laboratory of Applied Chemistry, College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, Hebei Province 066000, People's Republic of China
| | - Yibo Yang
- Nano-biotechnology Key Lab of Hebei Province, Hebei Key Laboratory of Applied Chemistry, College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, Hebei Province 066000, People's Republic of China
| | - Jia Zhang
- Nano-biotechnology Key Lab of Hebei Province, Hebei Key Laboratory of Applied Chemistry, College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, Hebei Province 066000, People's Republic of China
| | - Zhimin Bai
- Nano-biotechnology Key Lab of Hebei Province, Hebei Key Laboratory of Applied Chemistry, College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, Hebei Province 066000, People's Republic of China
| | - Xin Zhang
- Nano-biotechnology Key Lab of Hebei Province, Hebei Key Laboratory of Applied Chemistry, College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, Hebei Province 066000, People's Republic of China
| | - Kun Li
- Nano-biotechnology Key Lab of Hebei Province, Hebei Key Laboratory of Applied Chemistry, College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, Hebei Province 066000, People's Republic of China
| | - Ming Shi
- Nano-biotechnology Key Lab of Hebei Province, Hebei Key Laboratory of Applied Chemistry, College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, Hebei Province 066000, People's Republic of China
- Qinhuangdao Biopha Biotechnology Co., Ltd, Qinhuangdao, Hebei Province 066000, People's Republic of China
| | - Zhiwei Liu
- Nano-biotechnology Key Lab of Hebei Province, Hebei Key Laboratory of Applied Chemistry, College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, Hebei Province 066000, People's Republic of China
- Qinhuangdao Biopha Biotechnology Co., Ltd, Qinhuangdao, Hebei Province 066000, People's Republic of China
| | - Liming Gao
- The First Hospital of Qinhuangdao, Qinhuangdao, Hebei Province 066000, People's Republic of China
| | - Jidong Wang
- Nano-biotechnology Key Lab of Hebei Province, Hebei Key Laboratory of Applied Chemistry, College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, Hebei Province 066000, People's Republic of China
| | - Jian Li
- Nano-biotechnology Key Lab of Hebei Province, Hebei Key Laboratory of Applied Chemistry, College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, Hebei Province 066000, People's Republic of China
| |
Collapse
|
2
|
Yang C, Ding Y, Mao Z, Wang W. Nanoplatform-Mediated Autophagy Regulation and Combined Anti-Tumor Therapy for Resistant Tumors. Int J Nanomedicine 2024; 19:917-944. [PMID: 38293604 PMCID: PMC10826716 DOI: 10.2147/ijn.s445578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 01/04/2024] [Indexed: 02/01/2024] Open
Abstract
The overall cancer incidence and death toll have been increasing worldwide. However, the conventional therapies have some obvious limitations, such as non-specific targeting, systemic toxic effects, especially the multidrug resistance (MDR) of tumors, in which, autophagy plays a vital role. Therefore, there is an urgent need for new treatments to reduce adverse reactions, improve the treatment efficacy and expand their therapeutic indications more effectively and accurately. Combination therapy based on autophagy regulators is a very feasible and important method to overcome tumor resistance and sensitize anti-tumor drugs. However, the less improved efficacy, more systemic toxicity and other problems limit its clinical application. Nanotechnology provides a good way to overcome this limitation. Co-delivery of autophagy regulators combined with anti-tumor drugs through nanoplatforms provides a good therapeutic strategy for the treatment of tumors, especially drug-resistant tumors. Notably, the nanomaterials with autophagy regulatory properties have broad therapeutic prospects as carrier platforms, especially in adjuvant therapy. However, further research is still necessary to overcome the difficulties such as the safety, biocompatibility, and side effects of nanomedicine. In addition, clinical research is also indispensable to confirm its application in tumor treatment.
Collapse
Affiliation(s)
- Caixia Yang
- Department of Hepatobiliary and Pancreatic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People’s Republic of China
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou, Zhejiang, People’s Republic of China
| | - Yuan Ding
- Department of Hepatobiliary and Pancreatic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People’s Republic of China
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou, Zhejiang, People’s Republic of China
| | - Zhengwei Mao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, Zhejiang, People’s Republic of China
| | - Weilin Wang
- Department of Hepatobiliary and Pancreatic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People’s Republic of China
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou, Zhejiang, People’s Republic of China
| |
Collapse
|
3
|
Li J, Cao Y, Zhang X, An M, Liu Y. The Application of Nano-drug Delivery System With Sequential Drug Release Strategies in Cancer Therapy. Am J Clin Oncol 2023; 46:459-473. [PMID: 37533151 DOI: 10.1097/coc.0000000000001030] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2023]
Abstract
Currently, multidrug combinations are often used clinically to improve the efficacy of oncology chemotherapy, but multidrug combinations often lead to multidrug resistance and decreased performance, resulting in more severe side effects than monotherapy. Therefore, sequential drug release strategies in time and space as well as nano-carriers that respond to the tumor microenvironment have been developed. First, the advantage of the sequential release strategy is that they can load multiple drugs simultaneously to meet their spatiotemporal requirements and stability, thus exerting synergistic effects of two or more drugs. Second, in some cases, sequential drug delivery of different molecular targets can improve the sensitivity of cancer cells to drugs. Control the metabolism of cancer cells, and remodel tumor vasculature. Finally, some drug combinations with built-in release control are used for sequential administration. This paper focuses on the use of nanotechnology and built-in control device to construct drug delivery carriers with different stimulation responses, thus achieving the sequential release of drugs. Therefore, the nano-sequential delivery carrier provides a new idea and platform for the therapeutic effect of various drugs and the synergistic effect among drugs.
Collapse
Affiliation(s)
- Juan Li
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, Yinchuan, China
| | | | | | | | | |
Collapse
|
4
|
Yang G, Kim S, Oh JY, Kim D, Jin S, Choi E, Ryu JH. Surface protein-retractive and redox-degradable mesoporous organosilica nanoparticles for enhanced cancer therapy. J Colloid Interface Sci 2023; 649:1014-1022. [PMID: 37392681 DOI: 10.1016/j.jcis.2023.06.173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 06/25/2023] [Indexed: 07/03/2023]
Abstract
Targeted delivery along with controlled drug release is considered crucial in development of a drug delivery system (DDS) for efficient cancer treatment. In this paper, we present a strategy to obtain such a DDS by utilizing disulfide-incorporated mesoporous organosilica nanoparticles (MONs), which were engineered to minimize the surface interactions with proteins for better targeting and therapeutic performance. That is, after MONs were loaded with a chemodrug doxorubicin (DOX) through the inner pores, their outer surface was treated for conjugation to the glutathione-S-transferase (GST)-fused cell-specific affibody (Afb) (GST-Afb). These particles exhibited prompt responsivity to the SS bond-dissociating glutathione (GSH), which resulted in considerable degradation of the initial particle morphology and DOX release. As the protein adsorption to the MON surface appeared largely reduced, their targeting ability with GSH-stimulated therapeutic activities was demonstrated in vitro by employing two kinds of the GST-Afb protein, which target human cancer cells with the surface membrane receptor, HER2 or EGFR. Compared with unmodified control particles, the presented results show that our system can significantly enhance cancer-therapeutic outcomes of the loaded drug, offering a promising way of designing a more efficacious DDS.
Collapse
Affiliation(s)
- Gyeongseok Yang
- Department of Chemistry, School of Natural Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Sangpil Kim
- Department of Chemistry, School of Natural Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Jun Yong Oh
- Department of Chemistry, School of Natural Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Dohyun Kim
- Department of Chemistry, School of Natural Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Seongeon Jin
- Department of Chemistry, School of Natural Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Eunshil Choi
- Department of Chemistry, School of Natural Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea.
| | - Ja-Hyoung Ryu
- Department of Chemistry, School of Natural Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea.
| |
Collapse
|
5
|
Jackson N, Ortiz AC, Jerez A, Morales J, Arriagada F. Kinetics and Mechanism of Camptothecin Release from Transferrin-Gated Mesoporous Silica Nanoparticles through a pH-Responsive Surface Linker. Pharmaceutics 2023; 15:1590. [PMID: 37376039 DOI: 10.3390/pharmaceutics15061590] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/12/2023] [Accepted: 05/23/2023] [Indexed: 06/29/2023] Open
Abstract
Stimuli-responsive nanomaterials have emerged as a promising strategy for inclusion in anticancer therapy. In particular, pH-responsive silica nanocarriers have been studied to provide controlled drug delivery in acidic tumor microenvironments. However, the intracellular microenvironment that the nanosystem must face has an impact on the anticancer effect; therefore, the design of the nanocarrier and the mechanisms that govern drug release play a crucial role in optimizing efficacy. Here, we synthesized and characterized mesoporous silica nanoparticles with transferrin conjugated on their surface via a pH-sensitive imine bond (MSN-Tf) to assess camptothecin (CPT) loading and release. The results showed that CPT-loaded MSN-Tf (MSN-Tf@CPT) had a size of ca. 90 nm, a zeta potential of -18.9 mV, and a loaded content of 13.4%. The release kinetic data best fit a first-order model, and the predominant mechanism was Fickian diffusion. Additionally, a three-parameter model demonstrated the drug-matrix interaction and impact of transferrin in controlling the release of CPT from the nanocarrier. Taken together, these results provide new insights into the behavior of a hydrophobic drug released from a pH-sensitive nanosystem.
Collapse
Affiliation(s)
- Nicolás Jackson
- Institute of Pharmacy, Faculty of Sciences, Universidad Austral de Chile, Valdivia 5090000, Chile
| | - Andrea C Ortiz
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Lago Panguipulli 1390, Puerto Montt 5501842, Chile
| | - Alejandro Jerez
- Institute of Pharmacy, Faculty of Sciences, Universidad Austral de Chile, Valdivia 5090000, Chile
| | - Javier Morales
- Department of Pharmaceutical Science and Technology, Faculty of Chemical and Pharmaceutical Sciences, Universidad de Chile, Santiago 8380494, Chile
| | - Francisco Arriagada
- Institute of Pharmacy, Faculty of Sciences, Universidad Austral de Chile, Valdivia 5090000, Chile
| |
Collapse
|
6
|
Sun T, Jiang C. Stimuli-responsive drug delivery systems triggered by intracellular or subcellular microenvironments. Adv Drug Deliv Rev 2023; 196:114773. [PMID: 36906230 DOI: 10.1016/j.addr.2023.114773] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 03/01/2023] [Accepted: 03/05/2023] [Indexed: 03/11/2023]
Abstract
Drug delivery systems (DDS) triggered by local microenvironment represents the state-of-art of nanomedicine design, where the triggering hallmarks at intracellular and subcellular levels could be employed to exquisitely recognize the diseased sites, reduce side effects, and expand the therapeutic window by precisely tailoring the drug-release kinetics. Though with impressive progress, the DDS design functioning at microcosmic levels is fully challenging and underexploited. Here, we provide an overview describing the recent advances on stimuli-responsive DDSs triggered by intracellular or subcellular microenvironments. Instead of focusing on the targeting strategies as listed in previous reviews, we herein mainly highlight the concept, design, preparation and applications of stimuli-responsive systems in intracellular models. Hopefully, this review could give useful hints in developing nanoplatforms proceeding at a cellular level.
Collapse
Affiliation(s)
- Tao Sun
- Key Laboratory of Smart Drug Delivery (Ministry of Education), Minhang Hospital, State Key Laboratory of Medical Neurobiology, Department of Pharmaceutics, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, PR China
| | - Chen Jiang
- Key Laboratory of Smart Drug Delivery (Ministry of Education), Minhang Hospital, State Key Laboratory of Medical Neurobiology, Department of Pharmaceutics, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, PR China.
| |
Collapse
|
7
|
Abu Elella MH, Goda ES, Abdallah HM, Abdel-Aziz MM, Gamal H. Green engineering of TMC-CMS nanoparticles decorated graphene sheets for targeting M. tuberculosis. Carbohydr Polym 2023; 303:120443. [PMID: 36657855 DOI: 10.1016/j.carbpol.2022.120443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/20/2022] [Accepted: 12/04/2022] [Indexed: 12/14/2022]
Abstract
Our current work intends to primarily engineer a new type of antibacterial composite by preparing a highly biocompatible graphene sheet decorated with TMC-CMS IPNs nanoparticles utilizing one-pot, green, cost-effective ultrasonication approach. The microstructure of as-formed materials was chemically confirmed using various analytical techniques such as 1H-NMR, FTIR, UV/vis, SEM, and TEM. TEM data has proved the formation of uniformly distributed TCNPs on graphene surfaces with a small particle size of ~22 nm compared with that of pure nanoparticles (~30 nm). The inhibitory activity of these developed materials was examined against the growth of three different M. tuberculosis pathogens and in a comparison with the isoniazid drug as a standard anti-tuberculosis drug. The TCNPs@GRP composite attained MIC values of 0.98, 3.9, and 7.81 μg/mL for inhibiting the growth of sensitive, MDR, and XDR M. tuberculosis pathogens compared to the bare TCNPs (7.81, 31.25, >125 μg/mL) and the isoniazid drug (0.24, 0, 0 μg/mL), respectively. This reveals a considerable synergism in the antituberculosis activity between TCNPs and graphene nanosheets. Cytotoxicity of the TCNPs@GRP was examined against normal lung cell lines (WI38) and was found to have cell viability of 100% with the concentration range of 0.98-7.81 μg/mL.
Collapse
Affiliation(s)
| | - Emad S Goda
- Organic Nanomaterials Lab, Department of Chemistry, Hannam University, Daejeon 34054, Republic of Korea; Gas Analysis and Fire Safety Laboratory, Chemistry Division, National Institute for Standards, 136, Giza 12211, Egypt.
| | - Heba M Abdallah
- Polymers and Pigments Department, Chemical Industries Research institute, National Research Center, Dokki, Giza 12622, Egypt
| | - Marwa M Abdel-Aziz
- Regional Center for Mycology and Biotechnology, Al-Azhar University, Cairo 11651, Egypt
| | - Heba Gamal
- Home Economy Department, Faculty of Specific Education, Alexandria University, Alexandria, Egypt
| |
Collapse
|
8
|
Kolay S, Mondal A, Ali SM, Santra S, Molla MR. Photoswitchable polyurethane based nanoaggregates for on-command release of noncovalent guest molecules. JOURNAL OF MACROMOLECULAR SCIENCE PART A-PURE AND APPLIED CHEMISTRY 2022. [DOI: 10.1080/10601325.2022.2132168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Soumya Kolay
- Department of Chemistry, University of Calcutta, Kolkata, India
| | - Arun Mondal
- Department of Chemistry, University of Calcutta, Kolkata, India
| | - Sk. Mursed Ali
- Department of Chemistry, University of Calcutta, Kolkata, India
| | - Subrata Santra
- Department of Chemistry, University of Calcutta, Kolkata, India
| | | |
Collapse
|
9
|
Iqubal MK, Kaur H, Md S, Alhakamy NA, Iqubal A, Ali J, Baboota S. A technical note on emerging combination approach involved in the onconanotherapeutics. Drug Deliv 2022; 29:3197-3212. [PMID: 36226570 PMCID: PMC9578464 DOI: 10.1080/10717544.2022.2132018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Cancer is the second cause of mortality worldwide, and the currently available conventional treatment approach is associated with serious side effects and poor clinical outcomes. Based on the outcome of the exploratory preclinical and clinical studies, it was found that therapeutic response increases multiple folds when anticancer drugs are used in combination. However, the conventional combination of anticancer drugs was associated with various limitations such as increased cost of treatment, systemic toxicity, drug resistance, and reduced pharmacokinetic attributes. Hence, attempts were made to formulate nanocarrier fabricated combinatorial drugs (NFCDs) to effectively manage and treat cancer. This approach offers several advantages, such as improved stability, lower drug exposure, targeted drug delivery, low side effects, and improved clinical outcome. Hence, in this review, first time, we have discussed the recent advancement and various types of nano carrier-based combinatorial drug delivery systems in a different type of cancer and highlighted the personalized combinatorial theranostic medicine as a futuristic anticancer treatment approach.
Collapse
Affiliation(s)
- Mohammad Kashif Iqubal
- Product Development Department, Sentiss Research Centre, Sentiss Pharma Pvt Ltd, Gurugram, India.,Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Harsimran Kaur
- Department of Pharmaceutics, Delhi Pharmaceutical Science and Research University, New Delhi, India
| | - Shadab Md
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Nabil A Alhakamy
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ashif Iqubal
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Javed Ali
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Sanjula Baboota
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| |
Collapse
|
10
|
Li J, Zhang Q, Cai J, Yang Y, Zhang J, Gao Y, Liu S, Li K, Shi M, Liu Z, Gao L. A Double-Chamber “Dandelion” Appearance Sequential Drug Delivery System for Synergistic Treatment of Malignant Tumors. Int J Nanomedicine 2022; 17:3821-3839. [PMID: 36072959 PMCID: PMC9444041 DOI: 10.2147/ijn.s369732] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 08/29/2022] [Indexed: 11/23/2022] Open
Abstract
Introduction During the combined treatment of tumors, the non-interfering transportation of drugs with different solubilities and the controllable sequential release are the main challenges. Here, we reported a double-chamber “Dandelion” -like sequential drug delivery system to realize the sequential release of different drugs for treating malignant tumors synergistically. Methods After synthesizing mesoporous silica nanoparticles (MSN) by template method, a hydrophilic chemotherapy drug doxorubicin (DOX) was loaded into the channels of mesoporous silica (MSN) and locked with polydopamine (PDA) coating. Next, β-cyclodextrin (β-CDs) was decorated on PDA by Michael addition reaction, and the hydrophobic photosensitizer chlorin e6 (Ce6) was encapsulated into the hydrophobic chambers of β-CDs. Finally, AS1411 was modified on the surface of PDA and obtained DOX@MSN@PDA-β-CD/Ce6-AS1411 nanoparticles (DMPCCA) through which orthogonal loading and effective controlled release of different drugs were realized. Results Under the sequential irradiations of 808 nm and 660 nm near-infrared (NIR) laser, PDA promoted the extensive release of Ce6 firstly while playing the effect of photothermal therapy (PTT), further to achieve the effect of photodynamic therapy (PDT) of Ce6. Meanwhile, the rapid release of DOX loaded in MSN channels showed a time lag of about 5 h after Ce6 release, through which it maximized the chemotherapeutic effect. Besides, the present drug loading nano-platform combined passive tumor-targeting effect given by EPR and active tumor-targeting effect endowed by AS1411 realized PTT-PDT-chemotherapy triple mode synergistic combination. Conclusion We offer a general solution to address the key limitations for the delivery and sequential release of different drugs with different solubilities.
Collapse
Affiliation(s)
- Jian Li
- College of Environmental & Chemical Engineering, Yanshan University, Qinhuangdao, People’s Republic of China
- Applied Chemistry Key Laboratory of Hebei Province, Yanshan University, Qinhuangdao, People’s Republic of China
- Key Laboratory of Nanobiotechnology of Hebei Province, Yanshan University, Qinhuangdao, People’s Republic of China
- Correspondence: Jian Li, College of Environment & Chemical Engineering, Yanshan University, No. 438 Hebei Street, Qinhuangdao, 066004, People’s Republic of China, Tel +86-335-8061569, Fax +86-335-8061569, Email
| | - Qing Zhang
- College of Environmental & Chemical Engineering, Yanshan University, Qinhuangdao, People’s Republic of China
- Applied Chemistry Key Laboratory of Hebei Province, Yanshan University, Qinhuangdao, People’s Republic of China
- Key Laboratory of Nanobiotechnology of Hebei Province, Yanshan University, Qinhuangdao, People’s Republic of China
| | - Jiahui Cai
- College of Environmental & Chemical Engineering, Yanshan University, Qinhuangdao, People’s Republic of China
- Applied Chemistry Key Laboratory of Hebei Province, Yanshan University, Qinhuangdao, People’s Republic of China
- Key Laboratory of Nanobiotechnology of Hebei Province, Yanshan University, Qinhuangdao, People’s Republic of China
| | - Yibo Yang
- College of Environmental & Chemical Engineering, Yanshan University, Qinhuangdao, People’s Republic of China
- Applied Chemistry Key Laboratory of Hebei Province, Yanshan University, Qinhuangdao, People’s Republic of China
- Key Laboratory of Nanobiotechnology of Hebei Province, Yanshan University, Qinhuangdao, People’s Republic of China
| | - Jia Zhang
- College of Environmental & Chemical Engineering, Yanshan University, Qinhuangdao, People’s Republic of China
- Applied Chemistry Key Laboratory of Hebei Province, Yanshan University, Qinhuangdao, People’s Republic of China
- Key Laboratory of Nanobiotechnology of Hebei Province, Yanshan University, Qinhuangdao, People’s Republic of China
| | - Yanting Gao
- College of Environmental & Chemical Engineering, Yanshan University, Qinhuangdao, People’s Republic of China
- Applied Chemistry Key Laboratory of Hebei Province, Yanshan University, Qinhuangdao, People’s Republic of China
- Key Laboratory of Nanobiotechnology of Hebei Province, Yanshan University, Qinhuangdao, People’s Republic of China
| | - Shihe Liu
- College of Environmental & Chemical Engineering, Yanshan University, Qinhuangdao, People’s Republic of China
- Applied Chemistry Key Laboratory of Hebei Province, Yanshan University, Qinhuangdao, People’s Republic of China
- Key Laboratory of Nanobiotechnology of Hebei Province, Yanshan University, Qinhuangdao, People’s Republic of China
| | - Kun Li
- College of Environmental & Chemical Engineering, Yanshan University, Qinhuangdao, People’s Republic of China
- Applied Chemistry Key Laboratory of Hebei Province, Yanshan University, Qinhuangdao, People’s Republic of China
- Key Laboratory of Nanobiotechnology of Hebei Province, Yanshan University, Qinhuangdao, People’s Republic of China
| | - Ming Shi
- College of Environmental & Chemical Engineering, Yanshan University, Qinhuangdao, People’s Republic of China
- Applied Chemistry Key Laboratory of Hebei Province, Yanshan University, Qinhuangdao, People’s Republic of China
- Key Laboratory of Nanobiotechnology of Hebei Province, Yanshan University, Qinhuangdao, People’s Republic of China
| | - Zhiwei Liu
- College of Environmental & Chemical Engineering, Yanshan University, Qinhuangdao, People’s Republic of China
- Applied Chemistry Key Laboratory of Hebei Province, Yanshan University, Qinhuangdao, People’s Republic of China
- Key Laboratory of Nanobiotechnology of Hebei Province, Yanshan University, Qinhuangdao, People’s Republic of China
| | - Liming Gao
- Oncology Department, the First Hospital of Qinhuangdao, Qinhuangdao, People’s Republic of China
| |
Collapse
|
11
|
Papadimitriou L, Theodorou A, Papageorgiou M, Voutyritsa E, Papagiannaki A, Velonia K, Ranella A. pH responsive biohybrid BSA-poly(DPA) nanoparticles for interlysosomal drug delivery. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
12
|
Oh JY, Yang G, Choi E, Ryu JH. Mesoporous silica nanoparticle-supported nanocarriers with enhanced drug loading, encapsulation stability, and targeting efficiency. Biomater Sci 2022; 10:1448-1455. [DOI: 10.1039/d2bm00010e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
For efficient drug delivery, stable encapsulation of a large amount of anticancer drug is crucial, not to mention cell-specific delivery. Among many possible nanocarriers, mesoporous silica nanoparticles are versatile frameworks...
Collapse
|
13
|
Rahmani A, Rahimi F, Iranshahi M, Kahroba H, Zarebkohan A, Talebi M, Salehi R, Mousavi HZ. Co-delivery of doxorubicin and conferone by novel pH-responsive β-cyclodextrin grafted micelles triggers apoptosis of metastatic human breast cancer cells. Sci Rep 2021; 11:21425. [PMID: 34728703 PMCID: PMC8563731 DOI: 10.1038/s41598-021-00954-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 10/05/2021] [Indexed: 11/29/2022] Open
Abstract
Adjuvant-aided combination chemotherapy is one of the most effective ways of cancer treatment by overcoming the multidrug resistance (MDR) and reducing the side-effects of anticancer drugs. In this study, Conferone (Conf) was used as an adjuvant in combination with Doxorubicin (Dox) for inducing apoptosis to MDA-MB-231 cells. Herein, the novel biodegradable amphiphilic β-cyclodextrin grafted poly maleate-co-PLGA was synthesized by thiol-ene addition and ring-opening process. Micelles obtained from the novel copolymer showed exceptional properties such as small size of around 34.5 nm, CMC of 0.1 μg/mL, and cell internalization of around 100% at 30 min. These novel engineered micelles were used for combination delivery of doxorubicin-conferone with high encapsulation efficiency of near 100% for both drugs. Our results show that combination delivery of Dox and Conf to MDA-MB-231 cells had synergistic effects (CI < 1). According to cell cycle and Annexin-V apoptosis analysis, Dox-Conf loaded micelle significantly induce tumor cell apoptosis (more than 98% of cells population showed apoptosis at IC50 = 0.259 μg/mL). RT-PCR and western-blot tests show that Dox-Conf loaded βCD-g-PMA-co-PLGA micelle induced apoptosis via intrinsic pathway. Therefore, the unique design of multi-functional pH-sensitive micelles open a new perspective for the development of nanomedicine for combination chemo-adjuvant therapy against malignant cancer.
Collapse
Affiliation(s)
- Akram Rahmani
- Department of Applied Chemistry, Faculty of Chemistry, Semnan University, Semnan, Iran
| | - Fariborz Rahimi
- Department of Electrical Engineering, University of Bonab, Bonab, Iran
| | - Mehrdad Iranshahi
- Faculty of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Houman Kahroba
- Molecular Medicine Research Center, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Zarebkohan
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Talebi
- Department of Applied Cell Science, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Roya Salehi
- Drug Applied Research Center and Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Hassan Zavvar Mousavi
- Department of Chemistry, Faculty of Science, University of Guilan, P.O. Box 41335-1914, Rasht, Iran.
| |
Collapse
|
14
|
Hao D, Zhang Z, Ji Y. Responsive polymeric drug delivery systems for combination anticancer therapy: experimental design and computational insights. INT J POLYM MATER PO 2021. [DOI: 10.1080/00914037.2021.1960340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Dule Hao
- Jiangsu Province Hi-Tech Key Laboratory for Bio-medical Research, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, China
| | - Zheng Zhang
- Jiangsu Province Hi-Tech Key Laboratory for Bio-medical Research, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, China
| | - Yuanhui Ji
- Jiangsu Province Hi-Tech Key Laboratory for Bio-medical Research, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, China
| |
Collapse
|
15
|
Rastegari E, Hsiao YJ, Lai WY, Lai YH, Yang TC, Chen SJ, Huang PI, Chiou SH, Mou CY, Chien Y. An Update on Mesoporous Silica Nanoparticle Applications in Nanomedicine. Pharmaceutics 2021; 13:1067. [PMID: 34371758 PMCID: PMC8309088 DOI: 10.3390/pharmaceutics13071067] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/30/2021] [Accepted: 07/05/2021] [Indexed: 01/09/2023] Open
Abstract
The efficient and safe delivery of therapeutic drugs, proteins, and nucleic acids are essential for meaningful therapeutic benefits. The field of nanomedicine shows promising implications in the development of therapeutics by delivering diagnostic and therapeutic compounds. Nanomedicine development has led to significant advances in the design and engineering of nanocarrier systems with supra-molecular structures. Smart mesoporous silica nanoparticles (MSNs), with excellent biocompatibility, tunable physicochemical properties, and site-specific functionalization, offer efficient and high loading capacity as well as robust and targeted delivery of a variety of payloads in a controlled fashion. Such unique nanocarriers should have great potential for challenging biomedical applications, such as tissue engineering, bioimaging techniques, stem cell research, and cancer therapies. However, in vivo applications of these nanocarriers should be further validated before clinical translation. To this end, this review begins with a brief introduction of MSNs properties, targeted drug delivery, and controlled release with a particular emphasis on their most recent diagnostic and therapeutic applications.
Collapse
Grants
- MOST 108-2320-B-010 -019 -MY3; MOST 109-2327-B-010-007 Ministry of Science and Technology
- MOHW108-TDU-B-211-133001, MOHW109-TDU-B-211-114001 Ministry of Health and Welfare
- VN109-16 VGH, NTUH Joint Research Program
- VTA107-V1-5-1, VTA108-V1-5-3, VTA109-V1-4-1 VGH, TSGH, NDMC, AS Joint Research Program
- IBMS-CRC109-P04 AS Clinical Research Center
- the "Cancer Progression Research Center, National Yang-Ming University" from The Featured Areas Research Center Program within the framework of the Higher Education Sprout Project by the Ministry of Education (MOE) in Taiwan the "Cancer Progression Research Center, National Yang-Ming University" from The Featured Areas Research Center Program within the framework of the Higher Education Sprout Project by the Ministry of Education (MOE) in Taiwan
- and the Ministry of Education through the SPROUT Project- Center For Intelligent Drug Systems and Smart Bio-devices (IDS2B) of National Chiao Tung University and, Taiwan. and the Ministry of Education through the SPROUT Project- Center For Intelligent Drug Systems and Smart Bio-devices (IDS2B) of National Chiao Tung University and, Taiwan.
Collapse
Affiliation(s)
- Elham Rastegari
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan; (E.R.); (Y.-J.H.); (W.-Y.L.); (Y.-H.L.); (T.-C.Y.); (S.-J.C.)
- Institute of Pharmacology, National Yang-Ming Chiao Tung University, Taipei 11217, Taiwan
- School of Medicine, National Yang-Ming Chiao Tung University, Taipei 11217, Taiwan
| | - Yu-Jer Hsiao
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan; (E.R.); (Y.-J.H.); (W.-Y.L.); (Y.-H.L.); (T.-C.Y.); (S.-J.C.)
- School of Medicine, National Yang-Ming Chiao Tung University, Taipei 11217, Taiwan
| | - Wei-Yi Lai
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan; (E.R.); (Y.-J.H.); (W.-Y.L.); (Y.-H.L.); (T.-C.Y.); (S.-J.C.)
- Institute of Pharmacology, National Yang-Ming Chiao Tung University, Taipei 11217, Taiwan
- School of Medicine, National Yang-Ming Chiao Tung University, Taipei 11217, Taiwan
| | - Yun-Hsien Lai
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan; (E.R.); (Y.-J.H.); (W.-Y.L.); (Y.-H.L.); (T.-C.Y.); (S.-J.C.)
- Institute of Pharmacology, National Yang-Ming Chiao Tung University, Taipei 11217, Taiwan
- School of Medicine, National Yang-Ming Chiao Tung University, Taipei 11217, Taiwan
| | - Tien-Chun Yang
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan; (E.R.); (Y.-J.H.); (W.-Y.L.); (Y.-H.L.); (T.-C.Y.); (S.-J.C.)
- Institute of Pharmacology, National Yang-Ming Chiao Tung University, Taipei 11217, Taiwan
- School of Medicine, National Yang-Ming Chiao Tung University, Taipei 11217, Taiwan
| | - Shih-Jen Chen
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan; (E.R.); (Y.-J.H.); (W.-Y.L.); (Y.-H.L.); (T.-C.Y.); (S.-J.C.)
- Department of Ophthalmology, Taipei Veterans General Hospital, Taipei 11217, Taiwan
| | - Pin-I Huang
- Department of Oncology, Taipei Veterans General Hospital, Taipei Veterans General Hospital, Taipei 11217, Taiwan;
| | - Shih-Hwa Chiou
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan; (E.R.); (Y.-J.H.); (W.-Y.L.); (Y.-H.L.); (T.-C.Y.); (S.-J.C.)
- Institute of Pharmacology, National Yang-Ming Chiao Tung University, Taipei 11217, Taiwan
- School of Medicine, National Yang-Ming Chiao Tung University, Taipei 11217, Taiwan
- Department of Ophthalmology, Taipei Veterans General Hospital, Taipei 11217, Taiwan
| | - Chung-Yuan Mou
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Yueh Chien
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan; (E.R.); (Y.-J.H.); (W.-Y.L.); (Y.-H.L.); (T.-C.Y.); (S.-J.C.)
- Institute of Pharmacology, National Yang-Ming Chiao Tung University, Taipei 11217, Taiwan
- School of Medicine, National Yang-Ming Chiao Tung University, Taipei 11217, Taiwan
| |
Collapse
|
16
|
Huang WY, Hibino T, Suye SI, Fujita S. Electrospun collagen core/poly-l-lactic acid shell nanofibers for prolonged release of hydrophilic drug. RSC Adv 2021; 11:5703-5711. [PMID: 35423091 PMCID: PMC8694765 DOI: 10.1039/d0ra08353d] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 01/13/2021] [Indexed: 12/18/2022] Open
Abstract
The development of sustained control drug release for delivering hydrophilic drugs has been challenging due to a burst release. Nanofibers are used as materials that enable efficient drug delivery systems. In this study, we designed drug-encapsulated core-shell nanofibers comprising a hydrophilic core of collagen (Col) incorporated with berberine chloride (BC), an anti-inflammatory and anti-cancer agent used as a model drug, and a hydrophobic shell of poly-l-lactic acid (PLLA). Long-term drug release profiles under both the physiological and hydrolysis-accelerated conditions were measured and analyzed using a Korsmeyer-Peppas kinetics model. We found that the Col/PLLA core-shell fiber achieved a controllable long-term release of the hydrophilic drug incorporated inside the core by the slow degradation of the PLLA shell to prevent the burst release while PLLA monolithic fibers showed early release due to the dissolution of drug and the following rapid hydrolysis of fibers. As shown by the results of Col/PLLA core-shell fiber under a hydrolysis-accelerated condition to promote the release of drugs test, it would provide sustained release over 16 days under physiological conditions. Here, the development of the nanomaterial for the long-term drug release of hydrophilic drugs was achieved, leading to its potential medical application including cancer treatment.
Collapse
Affiliation(s)
- Wan-Ying Huang
- Department of Frontier Fiber Technology and Science, Graduate School of Engineering, University of Fukui 3-9-1 Bunkyo Fukui 910-8507 Japan
| | - Toshiya Hibino
- Department of Frontier Fiber Technology and Science, Graduate School of Engineering, University of Fukui 3-9-1 Bunkyo Fukui 910-8507 Japan
| | - Shin-Ichiro Suye
- Department of Frontier Fiber Technology and Science, Graduate School of Engineering, University of Fukui 3-9-1 Bunkyo Fukui 910-8507 Japan
- Life Science Innovation Center, University of Fukui Fukui 910-8507 Japan
| | - Satoshi Fujita
- Department of Frontier Fiber Technology and Science, Graduate School of Engineering, University of Fukui 3-9-1 Bunkyo Fukui 910-8507 Japan
- Life Science Innovation Center, University of Fukui Fukui 910-8507 Japan
| |
Collapse
|
17
|
Recent Advances and Challenges in Controlling the Spatiotemporal Release of Combinatorial Anticancer Drugs from Nanoparticles. Pharmaceutics 2020; 12:pharmaceutics12121156. [PMID: 33261219 PMCID: PMC7759840 DOI: 10.3390/pharmaceutics12121156] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/21/2020] [Accepted: 11/25/2020] [Indexed: 12/11/2022] Open
Abstract
To overcome cancer, various chemotherapeutic studies are in progress; among these, studies on nano-formulated combinatorial drugs (NFCDs) are being actively pursued. NFCDs function via a fusion technology that includes a drug delivery system using nanoparticles as a carrier and a combinatorial drug therapy using two or more drugs. It not only includes the advantages of these two technologies, such as ensuring stability of drugs, selectively transporting drugs to cancer cells, and synergistic effects of two or more drugs, but also has the additional benefit of enabling the spatiotemporal and controlled release of drugs. This spatial and temporal drug release from NFCDs depends on the application of nanotechnology and the composition of the combination drug. In this review, recent advances and challenges in the control of spatiotemporal drug release from NFCDs are provided. To this end, the types of combinatorial drug release for various NFCDs are classified in terms of time and space, and the detailed programming techniques used for this are described. In addition, the advantages of the time and space differences in drug release in terms of anticancer efficacy are introduced in depth.
Collapse
|
18
|
Huang R, Shen YW, Guan YY, Jiang YX, Wu Y, Rahman K, Zhang LJ, Liu HJ, Luan X. Mesoporous silica nanoparticles: facile surface functionalization and versatile biomedical applications in oncology. Acta Biomater 2020; 116:1-15. [PMID: 32911102 DOI: 10.1016/j.actbio.2020.09.009] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 09/03/2020] [Accepted: 09/03/2020] [Indexed: 12/20/2022]
Abstract
Mesoporous silica nanoparticles (MSNs) have received increasing interest due to their tunable particle size, large surface area, stable framework, and easy surface modification. They are increasingly being used in varying applications as delivery vehicles including bio-imaging, drug delivery, biosensors and tissue engineering etc. Precise structure control and the ability to modify surface properties of MSNs are important for their applications. This review summarises the different synthetic methods for the preparation of well-ordered MSNs with tunable pore volume as well as the approaches of drugs loading, especially highlighting the facile surface functionalization for various purposes and versatile biomedical applications in oncology. Finally, the challenges of clinical transformation of MSNs-based nanomedicines are further discussed.
Collapse
|
19
|
Ahmadi S, Rabiee N, Bagherzadeh M, Elmi F, Fatahi Y, Farjadian F, Baheiraei N, Nasseri B, Rabiee M, Dastjerd NT, Valibeik A, Karimi M, Hamblin MR. Stimulus-Responsive Sequential Release Systems for Drug and Gene Delivery. NANO TODAY 2020; 34:100914. [PMID: 32788923 PMCID: PMC7416836 DOI: 10.1016/j.nantod.2020.100914] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
In recent years, a range of studies have been conducted with the aim to design and characterize delivery systems that are able to release multiple therapeutic agents in controlled and programmed temporal sequences, or with spatial resolution inside the body. This sequential release occurs in response to different stimuli, including changes in pH, redox potential, enzyme activity, temperature gradients, light irradiation, and by applying external magnetic and electrical fields. Sequential release (SR)-based delivery systems, are often based on a range of different micro- or nanocarriers and may offer a silver bullet in the battle against various diseases, such as cancer. Their distinctive characteristic is the ability to release one or more drugs (or release drugs along with genes) in a controlled sequence at different times or at different sites. This approach can lengthen gene expression periods, reduce the side effects of drugs, enhance the efficacy of drugs, and induce an anti-proliferative effect on cancer cells due to the synergistic effects of genes and drugs. The key objective of this review is to summarize recent progress in SR-based drug/gene delivery systems for cancer and other diseases.
Collapse
Affiliation(s)
- Sepideh Ahmadi
- Student Research Committee, Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Navid Rabiee
- Department of Chemistry, Sharif University of Technology, Tehran, Iran
| | | | - Faranak Elmi
- Department of Biotechnology, School of Advanced Medical Science, Tabriz University of Medical Science, Tabriz, Iran
- Department of Biology, Faculty of science, Marand Branch, Islamic Azad University, Marand, Iran
| | - Yousef Fatahi
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Universal Scientific Education and Research Center (USERN), Tehran, Iran
| | - Fatemeh Farjadian
- Pharmaceutical Sciences Research Center, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Nafiseh Baheiraei
- Tissue Engineering and Applied Cell Sciences Division, Department of Hematology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Behzad Nasseri
- Chemical Engineering Department, Bioengineering Division and Bioengineering Centre, Hacettepe University, 06800, Ankara, Turkey
- Chemical Engineering and Applied Chemistry Department, Atilim University, 06830, Ankara, Turkey
| | - Mohammad Rabiee
- Biomaterial Group, Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Niloufar Tavakoli Dastjerd
- Department of Medical Biotechnology, School of Allied Medical Sciences, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Ali Valibeik
- Department of Clinical Biochemistry, School of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Mahdi Karimi
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran
- Research Center for Science and Technology in Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Applied Biotechnology Research Centre, Tehran Medical Science, Islamic Azad University, Tehran, Iran
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein 2028, South Africa
| |
Collapse
|
20
|
Dong L, Wang C, Zhen W, Jia X, An S, Xu Z, Zhang W, Jiang X. Biodegradable iron-coordinated hollow polydopamine nanospheres for dihydroartemisinin delivery and selectively enhanced therapy in tumor cells. J Mater Chem B 2020; 7:6172-6180. [PMID: 31559402 DOI: 10.1039/c9tb01397k] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
As the semisynthetic derivative and active metabolite of the effective anti-malarial drug artemisinin, dihydroartemisinin (DHA) has been investigated as an emerging therapeutic agent for tumor treatment based on the cytotoxicity of free-radicals originating from interactions with ferrous ions. Meanwhile, simultaneously delivering DHA and iron ions to tumors for selectively killing cancer cells is still a great challenge in DHA tumor therapy. Herein, we develop a facile yet efficient strategy based on iron-coordinated hollow polydopamine nanospheres to load DHA (DHA@HPDA-Fe). The as-prepared nanoagent is biodegradable and exhibits controllable release of DHA and Fe ions in tumor microenvironments, resulting in ferrous ion-enhanced production of cytotoxic reactive oxygen species (ROS) by DHA and thus effectively killing the tumor cells. In vivo therapy experiments indicated that the anti-tumor efficacy of DHA@HPDA-Fe was about 3.05 times greater than that of free DHA, and the tumor inhibition ratio was 88.7% compared with the control group, accompanied by negligible side effects, indicating that the proposed nanomedicine platform is promising for anti-tumor applications.
Collapse
Affiliation(s)
- Liang Dong
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China.
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Sharma J, Polizos G. Hollow Silica Particles: Recent Progress and Future Perspectives. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1599. [PMID: 32823994 PMCID: PMC7466709 DOI: 10.3390/nano10081599] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/11/2020] [Accepted: 08/12/2020] [Indexed: 01/17/2023]
Abstract
Hollow silica particles (or mesoporous hollow silica particles) are sought after for applications across several fields, including drug delivery, battery anodes, catalysis, thermal insulation, and functional coatings. Significant progress has been made in hollow silica particle synthesis and several new methods are being explored to use these particles in real-world applications. This review article presents a brief and critical discussion of synthesis strategies, characterization techniques, and current and possible future applications of these particles.
Collapse
Affiliation(s)
- Jaswinder Sharma
- Roll-to-Roll Manufacturing Group, Energy and Transportation Science Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | | |
Collapse
|
22
|
Sweat gland regeneration: Current strategies and future opportunities. Biomaterials 2020; 255:120201. [PMID: 32592872 DOI: 10.1016/j.biomaterials.2020.120201] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 04/21/2020] [Accepted: 06/09/2020] [Indexed: 12/13/2022]
Abstract
For patients with extensive skin defects, loss of sweat glands (SwGs) greatly decreases their quality of life. Indeed, difficulties in thermoregulation, ion reabsorption, and maintaining fluid balance might render them susceptible to hyperthermia, heatstroke, or even death. Despite extensive studies on the stem cell biology of the skin in recent years, in-situ regeneration of SwGs with both structural and functional fidelity is still challenging because of the limited regenerative capacity and cell fate control of resident progenitors. To overcome these challenges, one must consider both the intrinsic factors relevant to genetic and epigenetic regulation and cues from the cellular microenvironment. Here, we describe recent progress in molecular biology, developmental pathways, and cellular evolution associated with SwGdevelopment and maturation. This is followed by a summary of the current strategies used for cell-fate modulation, transmembrane drug delivery, and scaffold design associated with SwGregeneration. Finally, we offer perspectives for creating more sophisticated systems to accelerate patients' innate healing capacity and developing engineered skin constructs to treat or replace damaged tissues structurally and functionally.
Collapse
|
23
|
Habibi N, Quevedo DF, Gregory JV, Lahann J. Emerging methods in therapeutics using multifunctional nanoparticles. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2020; 12:e1625. [DOI: 10.1002/wnan.1625] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 12/16/2019] [Accepted: 02/04/2020] [Indexed: 01/12/2023]
Affiliation(s)
- Nahal Habibi
- Biointerfaces Institute, Department of Chemical Engineering University of Michigan Ann Arbor Michigan USA
| | - Daniel F. Quevedo
- Biointerfaces Institute, Department of Biomedical Engineering University of Michigan Ann Arbor Michigan USA
| | - Jason V. Gregory
- Biointerfaces Institute, Department of Chemical Engineering University of Michigan Ann Arbor Michigan USA
| | - Joerg Lahann
- Biointerfaces Institute, Department of Chemical Engineering University of Michigan Ann Arbor Michigan USA
- Biointerfaces Institute, Department of Biomedical Engineering University of Michigan Ann Arbor Michigan USA
- Biointerfaces Institute, Department of Materials Science and Engineering University of Michigan Ann Arbor Michigan USA
- Biointerfaces Institute, Department of Macromolecular Science and Engineering University of Michigan Ann Arbor Michigan USA
| |
Collapse
|
24
|
Palanikumar L, Al-Hosani S, Kalmouni M, Nguyen VP, Ali L, Pasricha R, Barrera FN, Magzoub M. pH-responsive high stability polymeric nanoparticles for targeted delivery of anticancer therapeutics. Commun Biol 2020; 3:95. [PMID: 32127636 PMCID: PMC7054360 DOI: 10.1038/s42003-020-0817-4] [Citation(s) in RCA: 134] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 02/10/2020] [Indexed: 01/22/2023] Open
Abstract
The practical application of nanoparticles (NPs) as chemotherapeutic drug delivery systems is often hampered by issues such as poor circulation stability and targeting inefficiency. Here, we have utilized a simple approach to prepare biocompatible and biodegradable pH-responsive hybrid NPs that overcome these issues. The NPs consist of a drug-loaded polylactic-co-glycolic acid (PLGA) core covalently 'wrapped' with a crosslinked bovine serum albumin (BSA) shell designed to minimize interactions with serum proteins and macrophages that inhibit target recognition. The shell is functionalized with the acidity-triggered rational membrane (ATRAM) peptide to facilitate internalization specifically into cancer cells within the acidic tumor microenvironment. Following uptake, the unique intracellular conditions of cancer cells degrade the NPs, thereby releasing the chemotherapeutic cargo. The drug-loaded NPs showed potent anticancer activity in vitro and in vivo while exhibiting no toxicity to healthy tissue. Our results demonstrate that the ATRAM-BSA-PLGA NPs are a promising targeted cancer drug delivery platform.
Collapse
Affiliation(s)
- L Palanikumar
- Biology Program, Division of Science, New York University Abu Dhabi, Abu Dhabi, UAE
| | - Sumaya Al-Hosani
- Biology Program, Division of Science, New York University Abu Dhabi, Abu Dhabi, UAE
| | - Mona Kalmouni
- Biology Program, Division of Science, New York University Abu Dhabi, Abu Dhabi, UAE
| | - Vanessa P Nguyen
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee at Knoxville, Knoxville, TN, USA
| | - Liaqat Ali
- Core Technology Platforms, New York University Abu Dhabi, Abu Dhabi, UAE
| | - Renu Pasricha
- Core Technology Platforms, New York University Abu Dhabi, Abu Dhabi, UAE
| | - Francisco N Barrera
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee at Knoxville, Knoxville, TN, USA
| | - Mazin Magzoub
- Biology Program, Division of Science, New York University Abu Dhabi, Abu Dhabi, UAE.
| |
Collapse
|
25
|
Dhandapani R, Sethuraman S, Subramanian A. Nanohybrids – cancer theranostics for tiny tumor clusters. J Control Release 2019; 299:21-30. [DOI: 10.1016/j.jconrel.2019.02.027] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 02/19/2019] [Accepted: 02/19/2019] [Indexed: 02/07/2023]
|
26
|
Rawal S, Patel MM. Threatening cancer with nanoparticle aided combination oncotherapy. J Control Release 2019; 301:76-109. [PMID: 30890445 DOI: 10.1016/j.jconrel.2019.03.015] [Citation(s) in RCA: 122] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 03/12/2019] [Accepted: 03/14/2019] [Indexed: 12/14/2022]
Abstract
Employing combination therapy has become obligatory in cancer cases exhibiting high tumor load, chemoresistant tumor population, and advanced disease stages. Realization of this fact has now led many of the combination oncotherapies to become an integral part of anticancer regimens. Combination oncotherapy may encompass a combination of anticancer agents belonging to a similar therapeutic category or that of different therapeutic categories (e.g. chemotherapy + gene therapy). Differences in the physicochemical properties, pharmacokinetics and biodistribution pattern of different payloads are the major constraints that are faced by combination chemotherapy. Concordant efforts in the field of nanotechnology and oncology have emerged with several approaches to solve the major issues encountered by combination therapy. Unique colloidal behaviors of various types of nanoparticles and differential targeting strategies have accorded an unprecedented ability to optimize combination oncotherapeutic delivery. Nanocarrier based delivery of the various types of payloads such as chemotherapeutic agents and other anticancer therapeutics such as small interfering ribonucleic acid (siRNA), chemosensitizers, radiosensitizers, and antiangiogenic agents have been addressed in the present review. Various nano-delivery systems like liposomes, polymeric nanoparticles, polymerosomes, dendrimers, micelles, lipid based nanoparticles, prodrug based nanocarriers, polymer-drug conjugates, polymer-lipid hybrid nanoparticles, carbon nanotubes, nanosponges, supramolecular nanocarriers and inorganic nanoparticles (gold nanoparticles, silver nanoparticles, magnetic nanoparticles and mesoporous silica based nanoparticles) that have been extensively explored for the formulation of multidrug delivery is an imperative part of discussion in the review. The present review features the outweighing benefits of combination therapy over mono-oncotherapy and discusses several existent nanoformulation strategies that facilitate a successful combination oncotherapy. Several obstacles that may impede in transforming nanotechnology-based combination oncotherapy from bench to bedside, and challenges associated therein have also been discussed in the present review.
Collapse
Affiliation(s)
- Shruti Rawal
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, SG Highway, Chharodi, Ahmedabad 382481, Gujarat, India
| | - Mayur M Patel
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, SG Highway, Chharodi, Ahmedabad 382481, Gujarat, India.
| |
Collapse
|
27
|
Hussain A, Guo S. NIR-triggered release of DOX from sophorolipid-coated mesoporous carbon nanoparticles with the phase-change material 1-tetradecanol to treat MCF-7/ADR cells. J Mater Chem B 2019; 7:974-985. [DOI: 10.1039/c8tb02673d] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
To prevent premature drug release from nanoparticles, it is vital to design and prepare controlled and site-specific drug release systems.
Collapse
Affiliation(s)
- Abid Hussain
- School of Pharmacy
- Shanghai Jiao Tong University
- China
| | - Shengrong Guo
- School of Pharmacy
- Shanghai Jiao Tong University
- China
| |
Collapse
|
28
|
Di Martino A, Trusova ME, Postnikov PS, Sedlarik V. Folic acid-chitosan-alginate nanocomplexes for multiple delivery of chemotherapeutic agents. J Drug Deliv Sci Technol 2018. [DOI: 10.1016/j.jddst.2018.06.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
29
|
Narayan R, Nayak UY, Raichur AM, Garg S. Mesoporous Silica Nanoparticles: A Comprehensive Review on Synthesis and Recent Advances. Pharmaceutics 2018; 10:E118. [PMID: 30082647 PMCID: PMC6160987 DOI: 10.3390/pharmaceutics10030118] [Citation(s) in RCA: 405] [Impact Index Per Article: 67.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 07/28/2018] [Accepted: 07/31/2018] [Indexed: 12/18/2022] Open
Abstract
Recent advancements in drug delivery technologies utilizing a variety of carriers have resulted in a path-breaking revolution in the approach towards diagnosis and therapy alike in the current times. Need for materials with high thermal, chemical and mechanical properties have led to the development of mesoporous silica nanoparticles (MSNs). These ordered porous materials have garnered immense attention as drug carriers owing to their distinctive features over the others. They can be synthesized using a relatively simple process, thus making it cost effective. Moreover, by controlling the parameters during the synthesis; the morphology, pore size and volume and particle size can be transformed accordingly. Over the last few years, a rapid increase in research on MSNs as drug carriers for the treatment of various diseases has been observed indicating its potential benefits in drug delivery. Their widespread application for the loading of small molecules as well as macromolecules such as proteins, siRNA and so forth, has made it a versatile carrier. In the recent times, researchers have sorted to several modifications in the framework of MSNs to explore its potential in drug resistant chemotherapy, antimicrobial therapy. In this review, we have discussed the synthesis of these multitalented nanoparticles and the factors influencing the size and morphology of this wonder carrier. The second part of this review emphasizes on the applications and the advances made in the MSNs to broaden the spectrum of its use especially in the field of biomedicine. We have also touched upon the lacunae in the thorough understanding of its interaction with a biological system which poses a major hurdle in the passage of this carrier to the clinical level. In the final part of this review, we have discussed some of the major patents filed in the field of MSNs for therapeutic purpose.
Collapse
Affiliation(s)
- Reema Narayan
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences,Manipal Academy of Higher Education, Manipal 576104, India.
| | - Usha Y Nayak
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences,Manipal Academy of Higher Education, Manipal 576104, India.
| | - Ashok M Raichur
- Department of Materials Engineering, Indian Institute of Science, Bengaluru 560012, India.
| | - Sanjay Garg
- School of Pharmacy and Medical Science, University of South Australia, Adelaide, SA 5000, Australia.
| |
Collapse
|
30
|
Palanikumar L, Kim J, Oh JY, Choi H, Park MH, Kim C, Ryu JH. Hyaluronic Acid-Modified Polymeric Gatekeepers on Biodegradable Mesoporous Silica Nanoparticles for Targeted Cancer Therapy. ACS Biomater Sci Eng 2018; 4:1716-1722. [DOI: 10.1021/acsbiomaterials.8b00218] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- L. Palanikumar
- Department of Chemistry, School of Natural Science, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Jimin Kim
- Department of Chemistry, School of Natural Science, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Jun Yong Oh
- Department of Chemistry, School of Natural Science, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Huyeon Choi
- Department of Chemistry, School of Natural Science, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Myoung-Hwan Park
- Department of Chemistry, Sahmyook University, Seoul 01795, Republic of Korea
| | - Chaekyu Kim
- Department of Chemistry, School of Natural Science, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Ja-Hyoung Ryu
- Department of Chemistry, School of Natural Science, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| |
Collapse
|
31
|
Huang T, Luan X, Xia Q, Pan S, An Q, Wu Y, Zhang Y. Molecularly Selective Regulation of Delivery Fluxes by Employing Supramolecular Interactions in Layer-by-Layer Films. Chem Asian J 2018; 13:1067-1073. [DOI: 10.1002/asia.201800276] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Indexed: 11/09/2022]
Affiliation(s)
- Tao Huang
- Beijing Key Laboratory of Materials Utilization of, Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials; School of Materials Science and Technology; China University of Geosciences; Beijing 100083 P.R. China
| | - Xinglong Luan
- Beijing Key Laboratory of Materials Utilization of, Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials; School of Materials Science and Technology; China University of Geosciences; Beijing 100083 P.R. China
- BOE Technology Group Co. Ltd.; No.9 Dize Road, BDA Beijing P.R. China
| | - Qi Xia
- Beijing Key Laboratory of Materials Utilization of, Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials; School of Materials Science and Technology; China University of Geosciences; Beijing 100083 P.R. China
| | - Shaofeng Pan
- Beijing Key Laboratory of Materials Utilization of, Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials; School of Materials Science and Technology; China University of Geosciences; Beijing 100083 P.R. China
| | - Qi An
- Beijing Key Laboratory of Materials Utilization of, Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials; School of Materials Science and Technology; China University of Geosciences; Beijing 100083 P.R. China
| | - Yaling Wu
- School of Chemistry and Molecular Engineering; Peking University; Beijing 100083 P.R. China
| | - Yihe Zhang
- Beijing Key Laboratory of Materials Utilization of, Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials; School of Materials Science and Technology; China University of Geosciences; Beijing 100083 P.R. China
| |
Collapse
|
32
|
Yavvari PS, Pal S, Kumar S, Kar A, Awasthi AK, Naaz A, Srivastava A, Bajaj A. Injectable, Self-Healing Chimeric Catechol-Fe(III) Hydrogel for Localized Combination Cancer Therapy. ACS Biomater Sci Eng 2017; 3:3404-3413. [DOI: 10.1021/acsbiomaterials.7b00741] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Prabhu S. Yavvari
- Department
of Chemistry, Indian Institute of Science Education and Research, Bhopal By-pass Road, Bhauri, Bhopal 462066, Madhya Pradesh, India
| | - Sanjay Pal
- Laboratory
of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, NCR Biotech Cluster, 3rd Milestone Faridabad-Gurgaon
Expressway, Faridabad 121001, Haryana India
- Kalinga Institute of Industrial Technology, KIIT Road, Patia, Bhubaneswar 751024, Odisha, India
| | - Sandeep Kumar
- Laboratory
of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, NCR Biotech Cluster, 3rd Milestone Faridabad-Gurgaon
Expressway, Faridabad 121001, Haryana India
- Manipal University, Madhav Nagar,
Near Tiger Circle, Manipal 576104, Karnataka, India
| | - Animesh Kar
- Laboratory
of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, NCR Biotech Cluster, 3rd Milestone Faridabad-Gurgaon
Expressway, Faridabad 121001, Haryana India
| | - Anand Kumar Awasthi
- Department
of Chemistry, Indian Institute of Science Education and Research, Bhopal By-pass Road, Bhauri, Bhopal 462066, Madhya Pradesh, India
| | - Aaliya Naaz
- Laboratory
of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, NCR Biotech Cluster, 3rd Milestone Faridabad-Gurgaon
Expressway, Faridabad 121001, Haryana India
| | - Aasheesh Srivastava
- Department
of Chemistry, Indian Institute of Science Education and Research, Bhopal By-pass Road, Bhauri, Bhopal 462066, Madhya Pradesh, India
| | - Avinash Bajaj
- Laboratory
of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, NCR Biotech Cluster, 3rd Milestone Faridabad-Gurgaon
Expressway, Faridabad 121001, Haryana India
| |
Collapse
|