1
|
De Filippo CA, Del Galdo S, Bianchi E, De Michele C, Capone B. Dilute suspensions of Janus rods: the role of bond and shape anisotropy. NANOSCALE 2024; 16:18545-18552. [PMID: 39283717 DOI: 10.1039/d4nr02397h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/11/2024]
Abstract
Nanometer-sized clusters are often targeted due to their potential applications as nanoreactors or storage/delivery devices. One route to assemble and stabilize finite structures consists of imparting directional bonding patterns between the nanoparticles. When only a portion of the particle surface is able to form an inter-particle bond, finite-size aggregates such as micelles and vesicles may form. Building on this approach, we combine particle shape anisotropy with the directionality of the bonding patterns and investigate the combined effect of particle elongation and surface patchiness on the low density assembly scenario. To this aim, we study the assembly of tip-functionalised Janus hard spherocylinders by means of Monte Carlo simulations. By exploring the effects of changing the interaction strength and range at different packing fractions, we highlight the role played by shape and bond anisotropy on the emerging aggregates (micelles, vesicles, elongated micelles, and lamellae). We observe that shape anisotropy plays a crucial role in suppressing phases that are typical to spherical Janus nanoparticles and that a careful tuning of the interaction parameters allows promoting the formation of spherical micelles. These finite-size spherical clusters composed of elongated particles might offer more interstitials and larger surface areas than those offered by micelles of spherical or almost-spherical units, thus enhancing their storage and catalytic properties.
Collapse
Affiliation(s)
| | - Sara Del Galdo
- Science Department, University of Roma Tre, Via della Vasca Navale 84, 00146, Rome, Italy.
| | - Emanuela Bianchi
- Institut für Theoretische Physik, TU Wien, Wiedner Hauptstraße 8-10, A-1040 Wien, Austria
- CNR-ISC, Uos Sapienza, Piazzale A. Moro 2, 00185 Roma, Italy
| | - Cristiano De Michele
- Physics Department, University of Roma "Sapienza", Piazzale Aldo Moro 2, 00186, Rome, Italy
| | - Barbara Capone
- Science Department, University of Roma Tre, Via della Vasca Navale 84, 00146, Rome, Italy.
| |
Collapse
|
2
|
Woźniak-Budych M, Staszak K, Wieszczycka K, Bajek A, Staszak M, Roszkowski S, Giamberini M, Tylkowski B. Microplastic label in microencapsulation field - Consequence of shell material selection. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133000. [PMID: 38029585 DOI: 10.1016/j.jhazmat.2023.133000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/10/2023] [Accepted: 11/11/2023] [Indexed: 12/01/2023]
Abstract
Plastics make our lives easier in many ways; however, if they are not appropriately disposed of or recycled, they may end up in the environment where they stay for centuries and degrade into smaller and smaller pieces, called microplastics. Each year, approximately 42000 tonnes of microplastics end up in the environment when products containing them are used. According to the European Chemicals Agency (ECHA) one of the significant sources of microplastics are microcapsules formulated in home care and consumer care products. As part of the EU's plastics strategy, ECHA has proposed new regulations to ban intentionally added microplastics starting from 2022. It means that the current cross-linked microcapsules widely applied in consumer goods must be transformed into biodegradable shell capsules. The aim of this review is to provide the readers with a comprehensive and in-depth understanding of recent developments in the art of microencapsulation. Thus, considering the chemical structure of the capsule shell's materials, we discuss whether microcapsules should also be categorized as microplastic and therefore, feared and avoided or whether they should be used despite the persisting concern.
Collapse
Affiliation(s)
- Marta Woźniak-Budych
- NanoBioMedical Centre, Adam Mickiewicz University, Wszechnicy Piastowskiej 3, 61-614 Poznan, Poland
| | - Katarzyna Staszak
- Institute of Technology and Chemical Engineering, Poznan University of Technology, Berdychowo 4, 60-965 Poznan, Poland
| | - Karolina Wieszczycka
- Institute of Technology and Chemical Engineering, Poznan University of Technology, Berdychowo 4, 60-965 Poznan, Poland
| | - Anna Bajek
- Tissue Engineering Department, Chair of Urology and Andrology, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, ul. Karlowicza str 24, 85-092 Bydgoszcz, Poland
| | - Maciej Staszak
- Institute of Technology and Chemical Engineering, Poznan University of Technology, Berdychowo 4, 60-965 Poznan, Poland
| | - Szymon Roszkowski
- Department of Geriatrics, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, ul. Jagiellonska 13/15, 85-067 Bydgoszcz, Poland
| | - Marta Giamberini
- Department of Chemical Engineering (DEQ), Universitat Rovira i Virgili, Av. Països Catalans, 26, 43007 Tarragona, Spain
| | - Bartosz Tylkowski
- Eurecat, Centre Tecnològic de Catalunya, Unitat de Tecnologia Química, Marcel·lí Domingo 2, 43007 Tarragona, Spain; Department of Clinical Neuropsychology, Faculty of Health Science, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, ul. Sklodowskiej Curie 9, 85-094 Bydgoszcz, Poland.
| |
Collapse
|
3
|
Abdurashitov AS, Proshin PI, Sukhorukov GB. Template-Free Manufacturing of Defined Structure and Size Polymeric Microparticles. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2976. [PMID: 37999330 PMCID: PMC10674349 DOI: 10.3390/nano13222976] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/13/2023] [Accepted: 11/17/2023] [Indexed: 11/25/2023]
Abstract
Complex-structured polymeric microparticles hold significant promise as an advance in next-generation medicine mostly due to demand from developing targeted drug delivery. However, the conventional methods for producing these microparticles of defined size, shape, and sophisticated composition often face challenges in scalability, reliance on specialized components such as micro-patterned templates, or limited control over particle size distribution and cargo (functional payload) release kinetics. In this study, we introduce a novel and reliably scalable approach for manufacturing microparticles of defined structures and sizes with variable parameters. The concept behind this method involves the deposition of a specific number of polymer layers on a substrate with low surface energy. Each layer can serve as either the carrier for cargo or a programmable shell-former with predefined permeability. Subsequently, this layered structure is precisely cut into desired-size blanks (particle precursors) using a laser. The manufacturing process is completed by applying heat to the substrate, which results in sealing the edges of the blanks. The combination of the high surface tension of the molten polymer and the low surface energy of the substrate enables the formation of discrete particles, each possessing semi-spherical or other designed geometries determined by their internal composition. Such anisotropic microparticles are envisaged to have versatile applications.
Collapse
Affiliation(s)
- Arkady S. Abdurashitov
- Vladimir Zelman Center for Neurobiology and Brain Rehabilitation, Skolkovo Institute of Science and Technology, Bolshoy Boulevard 30, p.1, 121205 Moscow, Russia;
| | - Pavel I. Proshin
- Vladimir Zelman Center for Neurobiology and Brain Rehabilitation, Skolkovo Institute of Science and Technology, Bolshoy Boulevard 30, p.1, 121205 Moscow, Russia;
| | - Gleb B. Sukhorukov
- Vladimir Zelman Center for Neurobiology and Brain Rehabilitation, Skolkovo Institute of Science and Technology, Bolshoy Boulevard 30, p.1, 121205 Moscow, Russia;
- School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, London E1 4NS, UK
- Life Improvement by Future Technologies (LIFT) Center, 143025 Moscow, Russia
| |
Collapse
|
4
|
Gong S, Lee Y, Choi J, Lee M, Chung KY, Jung HG, Jeong S, Kim HS. In Situ Mesopore Formation in SiO x Nanoparticles by Chemically Reinforced Heterointerface and Use of Chemical Prelithiation for Highly Reversible Lithium-Ion Battery Anode. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206238. [PMID: 36617520 DOI: 10.1002/smll.202206238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/28/2022] [Indexed: 06/17/2023]
Abstract
SiOx is a promising next-generation anode material for lithium-ion batteries. However, its commercial adoption faces challenges such as low electrical conductivity, large volume expansion during cycling, and low initial Coulombic efficiency. Herein, to overcome these limitations, an eco-friendly in situ methodology for synthesizing carbon-containing mesoporous SiOx nanoparticles wrapped in another carbon layers is developed. The chemical reactions of vinyl-terminated silanes are designed to be confined inside the cationic surfactant-derived emulsion droplets. The polyvinylpyrrolidone-based chemical functionalization of organically modified SiO2 nanoparticles leads to excellent dispersion stability and allows for intact hybridization with graphene oxide sheets. The formation of a chemically reinforced heterointerface enables the spontaneous generation of mesopores inside the thermally reduced SiOx nanoparticles. The resulting mesoporous SiOx -based nanocomposite anodes exhibit superior cycling stability (≈100% after 500 cycles at 0.5 A g-1 ) and rate capability (554 mAh g-1 at 2 A g-1 ), elucidating characteristic synergetic effects in mesoporous SiOx -based nanocomposite anodes. The practical commercialization potential with a significant enhancement in initial Coulombic efficiency through a chemical prelithiation reaction is also presented. The full cell employing the prelithiated anode demonstrated more than 2 times higher Coulombic efficiency and discharge capacity compared to the full cell with a pristine anode.
Collapse
Affiliation(s)
- Sanghyuk Gong
- Energy Storage Research Center, Korea Institute of Science and Technology, 5, Hwarang-ro 14-gil, Seongbuk-gu, 02792, Seoul, Republic of Korea
- Department of Materials Science and Engineering, Korea University, 145, Anam-ro, Seongbuk-gu, 02841, Seoul, Republic of Korea
| | - Yeongje Lee
- Department of Advanced Materials Engineering of Information and Electronics, Integrated Education Institute for Frontier Science & Technology (BK21 Four), Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, 17104, Yongin-si Geonggi, Republic of Korea
| | - Jinkwan Choi
- Energy Storage Research Center, Korea Institute of Science and Technology, 5, Hwarang-ro 14-gil, Seongbuk-gu, 02792, Seoul, Republic of Korea
- Department of Materials Science and Engineering, Korea University, 145, Anam-ro, Seongbuk-gu, 02841, Seoul, Republic of Korea
| | - Minah Lee
- Energy Storage Research Center, Korea Institute of Science and Technology, 5, Hwarang-ro 14-gil, Seongbuk-gu, 02792, Seoul, Republic of Korea
| | - Kyung Yoon Chung
- Energy Storage Research Center, Korea Institute of Science and Technology, 5, Hwarang-ro 14-gil, Seongbuk-gu, 02792, Seoul, Republic of Korea
- Division of Energy & Environment Technology, KIST School, Korea University of Science and Technology (UST), Hwarang-ro 14-gil-5, Seongbuk-gu, 02792, Seoul, South Korea
| | - Hun-Gi Jung
- Energy Storage Research Center, Korea Institute of Science and Technology, 5, Hwarang-ro 14-gil, Seongbuk-gu, 02792, Seoul, Republic of Korea
| | - Sunho Jeong
- Energy Storage Research Center, Korea Institute of Science and Technology, 5, Hwarang-ro 14-gil, Seongbuk-gu, 02792, Seoul, Republic of Korea
- Department of Advanced Materials Engineering of Information and Electronics, Integrated Education Institute for Frontier Science & Technology (BK21 Four), Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, 17104, Yongin-si Geonggi, Republic of Korea
- KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Hyung-Seok Kim
- Energy Storage Research Center, Korea Institute of Science and Technology, 5, Hwarang-ro 14-gil, Seongbuk-gu, 02792, Seoul, Republic of Korea
- KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul, 02447, Republic of Korea
- Division of Energy & Environment Technology, KIST School, Korea University of Science and Technology (UST), Hwarang-ro 14-gil-5, Seongbuk-gu, 02792, Seoul, South Korea
| |
Collapse
|
5
|
Bhattacharjee R, Negi A, Bhattacharya B, Dey T, Mitra P, Preetam S, Kumar L, Kar S, Das SS, Iqbal D, Kamal M, Alghofaili F, Malik S, Dey A, Jha SK, Ojha S, Paiva-Santos AC, Kesari KK, Jha NK. Nanotheranostics to Target Antibiotic-resistant Bacteria: Strategies and Applications. OPENNANO 2023. [DOI: 10.1016/j.onano.2023.100138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
|
6
|
Kim S, Lee Y, Park J, So Y, Jung HT, Ko MJ, Won JC, Jeong S, Kim YH. Green and Facile Synthesis of Hybrid Composites with Ultralow Dielectric Properties from Water-Soluble Polyimide and Dual-Porous Silica Nanoparticles. ACS APPLIED MATERIALS & INTERFACES 2023; 15:4408-4418. [PMID: 36520088 DOI: 10.1021/acsami.2c16197] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Here, we proposed an eco-friendly synthetic method for synthesizing hybrid composites with ultralow dielectric properties at high frequencies up to 28 GHz for true 5G communication from aqueous aromatic polyimide (PI) polymers and dual-porous silica nanoparticles (DPS). The "one-step" water-based emulsion template method was used to synthesize the macroporous silica nanoparticles (MPS). A substantially negative ζ potential was produced along the surface of MPS by the poly(vinylpyrrolidone)-based chemical functionalization, enabling excellent aqueous dispersion stability. The water-soluble poly(amic acid) (PAA), as a precursor to PI, was also "one-step" polymerized in an aqueous solution. The MPS were dispersed in a water-soluble PAA matrix to create the hybrid composite films using an entirely water-based approach. The compatibility between the PAA matrix and MPS was elucidated by investigating relatively diverse end-terminated PAAs (with either amine or carboxyl group). It was also discovered that, during a thermally activated imidization reaction, the MPS are in situ converted into the DPS with macro- and microporous structures (with a surface area of 1522.4 m2/g). The thermal, dielectric, mechanical, and morphological characteristics of each composite film were examined, while the amount of DPS in the PI matrix varied from 1 to 20 wt %. With the addition of 5 wt % DPS as an optimum condition, it showed ultralow dielectric properties, with the Dk and Df being 1.615 and 0.003 at a frequency of 28 GHz, respectively, and compatible mechanical properties, with the tensile strength and elastic modulus being 78.2 MPa and 0.32 GPa, respectively. These results can comprehensively satisfy various physical properties required as a substrate material for 5G communication devices.
Collapse
Affiliation(s)
- Sunkyu Kim
- Advanced Functional Polymers Center, Korea Research Institute of Chemical Technology, Daejeon 34114, Korea
- Department of Chemical Engineering, Hanyang University, Seoul 04763, Korea
| | - Yeongje Lee
- Department of Advanced Materials Engineering for Information and Electronics, Integrated Education Institute for Frontier Science and Technology (BK21 Four), Kyung Hee University, Yongin-si 17104, Korea
| | - Jongmin Park
- Advanced Functional Polymers Center, Korea Research Institute of Chemical Technology, Daejeon 34114, Korea
| | - Yujin So
- Advanced Functional Polymers Center, Korea Research Institute of Chemical Technology, Daejeon 34114, Korea
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology, Deajeon 34141, Korea
| | - Hee-Tae Jung
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology, Deajeon 34141, Korea
| | - Min Jae Ko
- Department of Chemical Engineering, Hanyang University, Seoul 04763, Korea
| | - Jong Chan Won
- Advanced Functional Polymers Center, Korea Research Institute of Chemical Technology, Daejeon 34114, Korea
- KRICT School, University of Science and Technology, Daejeon 34113, Korea
| | - Sunho Jeong
- Department of Advanced Materials Engineering for Information and Electronics, Integrated Education Institute for Frontier Science and Technology (BK21 Four), Kyung Hee University, Yongin-si 17104, Korea
- Energy Storage Research Center, Korea Institute of Science and Technology, 5, Hwarang-ro 14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Yun Ho Kim
- Advanced Functional Polymers Center, Korea Research Institute of Chemical Technology, Daejeon 34114, Korea
- KRICT School, University of Science and Technology, Daejeon 34113, Korea
| |
Collapse
|
7
|
Production and properties of epoxy matrix composite reinforced with hollow silica nanospheres (HSN): mechanical, thermal insulation, and sound insulation properties. JOURNAL OF POLYMER RESEARCH 2022. [DOI: 10.1007/s10965-022-03322-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
8
|
Yan J, Guo X, Guo H, Wan L, Guo T, Hu Z, Xu P, Chen H, Zhu S, Fei Q. Scalable Preparation of Sub-Millimeter Double-Shelled Al 2O 3 Hollow Spheres and Their Rapid Separation from Wastewater after Adsorption of Congo Red. ACS OMEGA 2022; 7:37629-37639. [PMID: 36312378 PMCID: PMC9607672 DOI: 10.1021/acsomega.2c04490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 10/04/2022] [Indexed: 06/16/2023]
Abstract
Porous double-shelled ceramic hollow spheres (PDSs) have attracted extensive attention due to their high specific surface areas and multifunctional designs. When used in wastewater treatment, millimeter or sub-millimeter spheres can be quickly separated from water by commercial sieves. However, the simple, scalable, and low-cost preparation of sub-millimeter PDSs in the solid phase remains a challenge. Herein, porous PDSs were facilely fabricated via a spheronization process utilizing pseudoboehmite powders and wet gelatin spheres as templates, which broke through the difficulty of preparing PDSs by one-step solid-state synthesis. Treating pseudoboehmite powder with nitric acid can improve the compressive strength of the PDSs. By controlling the rolling time and gelatin concentration of gelatin microspheres, the integrity, shell thickness, and double-shelled spacing of the gelatin microspheres were tuned. When the rolling time was 8-12 min, and the gelatin concentration in gelatin spheres was 250 g/L, and PDSs with a complete double-shelled structure, good mechanical property, and high specific surface area (327.5-509.6 m2/g) were obtained at 600 °C. The adsorption capacities of the PDSs for 100 mg/L Congo red solution (70.7 mg/g) were larger than those of single-shelled hollow spheres (49 mg/g), and larger diameters (608-862 μm) of the PDSs allow them to be rapidly separated from solution by a commercial sieve. This paper provides a facile and scalable method for the preparation of sub-millimeter PDSs and demonstrates their excellent adsorption capacity for Congo red solution.
Collapse
Affiliation(s)
- Jiawei Yan
- Jiangxi
Key Laboratory of Industrial Ceramics, Engineering Technology Research
Centre for Environmental Protection Materials and Equipment of Jiangxi
Province, Pingxiang University, Pingxiang337055, China
- Key
Laboratory for Anisotropy and Texture of Materials (Ministry of Education),
School of Materials Science and Engineering, Northeastern University, Shenyang110819, China
| | - Xinshuang Guo
- Jiangxi
Key Laboratory of Industrial Ceramics, Engineering Technology Research
Centre for Environmental Protection Materials and Equipment of Jiangxi
Province, Pingxiang University, Pingxiang337055, China
| | - Haifeng Guo
- Jiangxi
Key Laboratory of Industrial Ceramics, Engineering Technology Research
Centre for Environmental Protection Materials and Equipment of Jiangxi
Province, Pingxiang University, Pingxiang337055, China
| | - Li Wan
- Jiangxi
Key Laboratory of Industrial Ceramics, Engineering Technology Research
Centre for Environmental Protection Materials and Equipment of Jiangxi
Province, Pingxiang University, Pingxiang337055, China
- School
of Mechatronics Engineering, Nanchang University, Nanchang330031, China
| | - Tao Guo
- Jiangxi
Key Laboratory of Industrial Ceramics, Engineering Technology Research
Centre for Environmental Protection Materials and Equipment of Jiangxi
Province, Pingxiang University, Pingxiang337055, China
| | - Zhaolong Hu
- Jiangxi
Key Laboratory of Industrial Ceramics, Engineering Technology Research
Centre for Environmental Protection Materials and Equipment of Jiangxi
Province, Pingxiang University, Pingxiang337055, China
| | - Pengfei Xu
- Jiangxi
Key Laboratory of Industrial Ceramics, Engineering Technology Research
Centre for Environmental Protection Materials and Equipment of Jiangxi
Province, Pingxiang University, Pingxiang337055, China
| | - Huilong Chen
- Jiangxi
Key Laboratory of Industrial Ceramics, Engineering Technology Research
Centre for Environmental Protection Materials and Equipment of Jiangxi
Province, Pingxiang University, Pingxiang337055, China
| | - Shuning Zhu
- Jiangxi
Key Laboratory of Industrial Ceramics, Engineering Technology Research
Centre for Environmental Protection Materials and Equipment of Jiangxi
Province, Pingxiang University, Pingxiang337055, China
| | - Qianglong Fei
- Jiangxi
Key Laboratory of Industrial Ceramics, Engineering Technology Research
Centre for Environmental Protection Materials and Equipment of Jiangxi
Province, Pingxiang University, Pingxiang337055, China
| |
Collapse
|
9
|
Tian B, Cheng J, Zhang T, Liu Y, Chen D. Multifunctional chitosan-based film loaded with hops β-acids: Preparation, characterization, controlled release and antibacterial mechanism. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107337] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
10
|
Choi JH, Kumari N, Koo JH, Kumar A, Lee C, Shim JH, Wang Z, Oh SH, Lee IS. Ghost-Template-Faceted Synthesis of Tunable Amorphous Hollow Silica Nanostructures and Their Ordered Mesoscale Assembly. NANO LETTERS 2022; 22:1159-1166. [PMID: 35088595 DOI: 10.1021/acs.nanolett.1c04268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Despite the enormous applications of and fundamental scientific interest in amorphous hollow-silica nanostructures (h-SiNSs), their synthesis in crystal-like nonspherical polygonal architectures is challenging. Herein, we present a facile one-shot synthetic procedure for various unconventional h-SiNSs with controllable surface curvatures (concave, convex, or angular), symmetries (spherical, polygonal, or Janus), and interior architectures (open or closed walls) by the addition of a metal salt and implementing kinetic handles of silica precursor (silanes/ammonia) concentrations and reverse-micellar volume. During the silica growth, we identified the key role of transiently in situ crystallized metal coordination complexes as a nanopolyhedral "ghost template", which provides facet-selective interactions with amino-silica monomers and guides the differential silica growth that produces different h-SiNSs. Additionally, crystal-like well-defined polygonal h-SiNSs with flat surfaces, assembled as highly ordered close-packed octahedral mesoscale materials (ca. 3 μm) where h-SiNSs with different nanoarchitectures act as building units (ca. 150 nm) to construct customizable cavities and nanospaces, differ from conventionally assembled materials.
Collapse
Affiliation(s)
- Jeong Hun Choi
- Creative Research Initiative Center for Nanospace-confined Chemical Reactions (NCCR), Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
| | - Nitee Kumari
- Creative Research Initiative Center for Nanospace-confined Chemical Reactions (NCCR), Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
| | - Jung Hun Koo
- Creative Research Initiative Center for Nanospace-confined Chemical Reactions (NCCR), Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
| | - Amit Kumar
- Creative Research Initiative Center for Nanospace-confined Chemical Reactions (NCCR), Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
| | - Changhoon Lee
- Max Planck POSTECH Center for Complex Phase of Materials, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
| | - Ji Hoon Shim
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
| | - Zhipeng Wang
- Department of Energy Science, Sungkyunkwan University (SKKU), Suwon 16419, Korea
| | - Sang Ho Oh
- Department of Energy Science, Sungkyunkwan University (SKKU), Suwon 16419, Korea
| | - In Su Lee
- Creative Research Initiative Center for Nanospace-confined Chemical Reactions (NCCR), Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
- Institute for Convergence Research and Education in Advanced Technology (I-CREATE), Yonsei University, Seoul 03722, Korea
| |
Collapse
|
11
|
Wu Z, Yang F, Li X, Carroll A, Loa-Kum-Cheung W, Shewan HM, Stokes JR, Zhao D, Li Q. Solid and hollow nanoparticles templated using non-ionic surfactant-based reverse micelles and vesicles. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2021.127917] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
12
|
Prada A, González RI, Camarada MB, Allende S, Torres A, Sepúlveda J, Rojas-Nunez J, Baltazar SE. Nanoparticle Shape Influence over Poly(lactic acid) Barrier Properties by Molecular Dynamics Simulations. ACS OMEGA 2022; 7:2583-2590. [PMID: 35252636 PMCID: PMC8890032 DOI: 10.1021/acsomega.1c04589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 12/29/2021] [Indexed: 06/14/2023]
Abstract
Climate change is leading us to search for new materials that allow a more sustainable environmental situation in the long term. Poly(lactic acid) (PLA) has been proposed as a substitute for traditional plastics due to its high biodegradability. Various components have been added to improve their mechanical, thermal, and barrier properties. The modification of the PLA barrier properties by introducing nanoparticles with different shapes is an important aspect to control the molecular diffusion of oxygen and other gas compounds. In this work, we have described changes in oxygen diffusion by introducing nanoparticles of different shapes through molecular dynamics simulations. Our model illustrates that the existence of curved surfaces and the deposition of PLA around them by short chains generate small holes where oxygen accumulates, forming clusters and reducing their mobility. From the several considered shapes, the sphere is the most suitable structure to improve the barrier properties of the PLA.
Collapse
Affiliation(s)
- Alejandro Prada
- Departamento de Computación e
Ingenierías, Facultad de Ciencias de la Ingeniería, Universidad
Católica del Maule, Talca 3480112, Chile
- Center for the Development of Nanoscience
and Nanotechnology (CEDENNA), Santiago 9170124,
Chile
| | - Rafael I. González
- Center for the Development of Nanoscience
and Nanotechnology (CEDENNA), Santiago 9170124,
Chile
- Centro de Nanotecnología Aplicada,
Facultad de Ciencias, Universidad Mayor, Santiago 9170124,
Chile
| | - María B. Camarada
- Facultad de Química y Farmacia, Departamento de
Química Inorgánica, Pontificia Universidad Católica de
Chile, Santiago 9170124, Chile
- Centro Investigación en Nanotecnología y
Materiales Avanzados, CIEN-UC, Pontificia Universidad Católica de
Chile, Santiago 9170124, Chile
| | - Sebastián Allende
- Center for the Development of Nanoscience
and Nanotechnology (CEDENNA), Santiago 9170124,
Chile
- Departamento de Física, Universidad de
Santiago de Chile (USACH), Santiago 9170124,
Chile
| | - Alejandra Torres
- Center for the Development of Nanoscience
and Nanotechnology (CEDENNA), Santiago 9170124,
Chile
- Packaging Innovation Center (LABEN), Food Science and
Technology Department, Technology Faculty, University of Santiago de
Chile, Santiago 9170124, Chile
| | - Javiera Sepúlveda
- Center for the Development of Nanoscience
and Nanotechnology (CEDENNA), Santiago 9170124,
Chile
- Packaging Innovation Center (LABEN), Food Science and
Technology Department, Technology Faculty, University of Santiago de
Chile, Santiago 9170124, Chile
| | - Javier Rojas-Nunez
- Center for the Development of Nanoscience
and Nanotechnology (CEDENNA), Santiago 9170124,
Chile
- Departamento de Física, Universidad de
Santiago de Chile (USACH), Santiago 9170124,
Chile
| | - Samuel E. Baltazar
- Center for the Development of Nanoscience
and Nanotechnology (CEDENNA), Santiago 9170124,
Chile
- Departamento de Física, Universidad de
Santiago de Chile (USACH), Santiago 9170124,
Chile
| |
Collapse
|
13
|
Aşkun M, Sagdic K, Inci F, Öztürk B. Olefin Metathesis in Confined Spaces: The Encapsulation of Hoveyda-Grubbs Catalyst in Peanut, Square, and Capsule Shaped Hollow Silica Gels. Catal Sci Technol 2022. [DOI: 10.1039/d2cy01291j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this study, Hoveyda-Grubbs 2nd generation (HG2) catalyst was encapsulated in hollow mesoporous silica gels with various morphologies (peanut, square, and capsule) by reducing the pore size of the mesoporous...
Collapse
|
14
|
Bonhomme O, Sanchez L, Benichou E, Brevet PF. Multistep Micellization of Standard Surfactants Evidenced by Second Harmonic Scattering. J Phys Chem B 2021; 125:10876-10881. [PMID: 34530611 DOI: 10.1021/acs.jpcb.1c06673] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Processes involving in solution a reduced number of molecules are difficult to identify and characterize. Here, we show that micellization of standard surfactants, namely sodium dodecyl sulfate and trimethyl tetradecyl ammonium bromide, two nonefficient compounds for quadratic nonlinear optics, can be investigated by second harmonic scattering (SHS). In particular, the formation of aggregates at concentrations smaller than the critical micellar concentration is evidenced through a nonmonotonic behavior of the SHS intensity as a function of the surfactant concentration. A simple model based on chemical equilibria between monomers and micelles is proposed to account for the experimental observations. Signature of long-range molecular orientation correlation is revealed by polarization resolved experiments and is discussed regarding micellization and charge-induced effects.
Collapse
Affiliation(s)
- O Bonhomme
- University of Lyon, Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, F-69622 Villeurbanne, France
| | - L Sanchez
- University of Lyon, Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, F-69622 Villeurbanne, France
| | - E Benichou
- University of Lyon, Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, F-69622 Villeurbanne, France
| | - P F Brevet
- University of Lyon, Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, F-69622 Villeurbanne, France
| |
Collapse
|
15
|
Design of Co3O4@SiO2 Nanorattles for Catalytic Toluene Combustion Based on Bottom-Up Strategy Involving Spherical Poly(styrene-co-acrylic Acid) Template. Catalysts 2021. [DOI: 10.3390/catal11091097] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Bearing in mind the need to develop optimal transition metal oxide-based catalysts for the combustion of volatile organic compounds (VOCs), yolk-shell materials were proposed. The constructed composites contained catalytically active Co3O4 nanoparticles, protected against aggregation and highly dispersed in a shell made of porous SiO2, forming a specific type of nanoreactor. The bottom-up synthesis started with obtaining spherical poly(styrene-co-acrylic acid) copolymer (PS30) cores, which were then covered with the SiO2 layer. The Co3O4 active phase was deposited by impregnation using the PS30@SiO2 composite as well as hollow SiO2 spheres with the removed copolymer core. Structure (XRD), morphology (SEM), chemical composition (XRF), state of the active phase (UV-Vis-DR and XPS) and reducibility (H2-TPR) of the obtained catalysts were studied. It was proven that the introduction of Co3O4 nanoparticles into the empty SiO2 spheres resulted in their loose distribution, which facilitated the access of reagents to active sites and, on the other hand, promoted the involvement of lattice oxygen in the catalytic process. As a result, the catalysts obtained in this way showed a very high activity in the combustion of toluene, which significantly exceeded that achieved over a standard silica gel supported Co3O4 catalyst.
Collapse
|
16
|
Arora G, Yadav M, Gaur R, Gupta R, Yadav P, Dixit R, Sharma RK. Fabrication, functionalization and advanced applications of magnetic hollow materials in confined catalysis and environmental remediation. NANOSCALE 2021; 13:10967-11003. [PMID: 34160507 DOI: 10.1039/d1nr01010g] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Magnetic hollow-structured functional hybrid materials with unique architectures and preeminent properties have always been an area of extensive research. They represent a subtle collaboration of hollow architecture, mesoporous nanostructure and magnetic character. Owing to the merits of a large void space, low density, high specific surface area, well-defined active sites and facile magnetic recovery, these materials present promising application projections in numerous fields, such as drug delivery, adsorption, storage, catalysis and many others. In this review, recent progress in the design, synthesis, functionalization and applications of magnetic hollow-meso/nanostructured materials are discussed. The first part of the review has been dedicated to the preparation and functionalization of the materials. The synthetic protocols have been broadly classified into template-assisted and template-free methods and major trends in their synthesis have been elaborated in detail. Furthermore, the benefits and drawbacks of each method are compared. The later part summarizes the application aspects of confined catalysis in organic transformations and environmental remediation such as degradation of organic pollutants, dyes and antibiotics and adsorption of heavy metal ions. Finally, an outlook of future directions in this research field is highlighted.
Collapse
Affiliation(s)
- Gunjan Arora
- Green Chemistry Network Centre, Department of Chemistry, University of Delhi, Delhi-110007, India.
| | | | | | | | | | | | | |
Collapse
|
17
|
Jang E. Effect of Alcohol Chain Length on Formation of Cetyltrimethylammonium Bromide‐templated Mesoporous Silica Layer on Gold Nanorods. B KOREAN CHEM SOC 2021. [DOI: 10.1002/bkcs.12283] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Eue‐Soon Jang
- Department of Applied Chemistry Kumoh National Institute of Technology, Daehak‐ro 61, Gumi Gyeongbuk South Korea
| |
Collapse
|
18
|
Curley R, Banta RA, Garvey S, Holmes JD, Flynn EJ. Spherical silica particle production by combined biomimetic-Stöber synthesis using renewable sodium caseinate without petrochemical agents. APPLIED NANOSCIENCE 2021. [DOI: 10.1007/s13204-021-01762-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
19
|
Tóth ZR, Pap Z, Kiss J, Baia L, Gyulavári T, Czekes Z, Todea M, Magyari K, Kovács G, Hernadi K. Shape tailoring of AgBr microstructures: effect of the cations of different bromide sources and applied surfactants. RSC Adv 2021; 11:9709-9720. [PMID: 35423471 PMCID: PMC8695391 DOI: 10.1039/d0ra09144h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 02/01/2021] [Indexed: 11/21/2022] Open
Abstract
Investigations regarding AgBr-based photocatalysts came to the center of attention due to their high photosensitivity. The present research focuses on the systematic investigation regarding the effect of different alkali metal cation radii and surfactants/capping agents applied during the synthesis of silver-halides. Their morpho-structural and optical properties were determined via X-ray diffractometry, diffuse reflectance spectroscopy, scanning electron microscopy, infrared spectroscopy, and contact angle measurements. The semiconductors' photocatalytic activities were investigated using methyl orange as the model contaminant under visible light irradiation. The correlation between the photocatalytic activity and the obtained optical and morpho-structural properties was analyzed using generalized linear models. Moreover, since the (photo)stability of Ag-based photoactive materials is a crucial issue, the stability of catalysts was also investigated after the degradation process. It was concluded that (i) the photoactivity of the samples could be fine-tuned using different precursors and surfactants, (ii) the as-obtained AgBr microcrystals were transformed into other Ag-containing composites during/after the degradation, and (iii) elemental bromide did not form during the degradation process. Thus, the proposed mechanisms in the literature (for the degradation of MO using AgBr) must be reconsidered. Systematic investigation of the effect of different alkali metal cation radii and shape-tailoring agents applied during the synthesis of AgBr-based photocatalysts.![]()
Collapse
Affiliation(s)
- Zsejke-Réka Tóth
- Department of Applied and Environmental Chemistry, University of Szeged Rerrich Béla tér 1 HU-6720 Szeged Hungary .,Nanostructured Materials and Bio-Nano-Interfaces Center, Institute for Interdisciplinary Research on Bio-Nano-Sciences, Babeş-Bolyai University Treboniu Laurian 42 RO-400271 Cluj-Napoca Romania
| | - Zsolt Pap
- Nanostructured Materials and Bio-Nano-Interfaces Center, Institute for Interdisciplinary Research on Bio-Nano-Sciences, Babeş-Bolyai University Treboniu Laurian 42 RO-400271 Cluj-Napoca Romania .,Institute of Environmental Science and Technology, University of Szeged Tisza Lajos krt. 103 HU-6720 Szeged Hungary.,Institute of Research-Development-Innovation in Applied Natural Sciences, Babes-Bolyai University Fântânele 30 RO-400294 Cluj-Napoca Romania
| | - János Kiss
- Department of Applied and Environmental Chemistry, University of Szeged Rerrich Béla tér 1 HU-6720 Szeged Hungary
| | - Lucian Baia
- Nanostructured Materials and Bio-Nano-Interfaces Center, Institute for Interdisciplinary Research on Bio-Nano-Sciences, Babeş-Bolyai University Treboniu Laurian 42 RO-400271 Cluj-Napoca Romania .,Faculty of Physics, Babeş-Bolyai University M. Kogălniceanu 1 RO-400084 Cluj-Napoca Romania
| | - Tamás Gyulavári
- Department of Applied and Environmental Chemistry, University of Szeged Rerrich Béla tér 1 HU-6720 Szeged Hungary
| | - Zsolt Czekes
- Nanostructured Materials and Bio-Nano-Interfaces Center, Institute for Interdisciplinary Research on Bio-Nano-Sciences, Babeş-Bolyai University Treboniu Laurian 42 RO-400271 Cluj-Napoca Romania .,Hungarian Department of Biology and Ecology, Babeş-Bolyai University Clinicilor 5-7 RO-400006 Cluj-Napoca Romania
| | - Milica Todea
- Nanostructured Materials and Bio-Nano-Interfaces Center, Institute for Interdisciplinary Research on Bio-Nano-Sciences, Babeş-Bolyai University Treboniu Laurian 42 RO-400271 Cluj-Napoca Romania .,Iuliu Hatieganu University of Medicine and Pharmacy, Faculty of Medicine Victor Babeş 8 RO-400012 Cluj-Napoca Romania
| | - Klára Magyari
- Nanostructured Materials and Bio-Nano-Interfaces Center, Institute for Interdisciplinary Research on Bio-Nano-Sciences, Babeş-Bolyai University Treboniu Laurian 42 RO-400271 Cluj-Napoca Romania .,Institute of Environmental Science and Technology, University of Szeged Tisza Lajos krt. 103 HU-6720 Szeged Hungary
| | - Gábor Kovács
- Department of Applied and Environmental Chemistry, University of Szeged Rerrich Béla tér 1 HU-6720 Szeged Hungary .,Nanostructured Materials and Bio-Nano-Interfaces Center, Institute for Interdisciplinary Research on Bio-Nano-Sciences, Babeş-Bolyai University Treboniu Laurian 42 RO-400271 Cluj-Napoca Romania .,Institute of Environmental Science and Technology, University of Szeged Tisza Lajos krt. 103 HU-6720 Szeged Hungary
| | - Klara Hernadi
- Department of Applied and Environmental Chemistry, University of Szeged Rerrich Béla tér 1 HU-6720 Szeged Hungary .,Institute of Physical Metallurgy, Metal Forming and Nanotechnology, University of Miskolc 3515 Miskolc-Egyetemváros Hungary
| |
Collapse
|
20
|
Della Rosa G, Di Corato R, Carpi S, Polini B, Taurino A, Tedeschi L, Nieri P, Rinaldi R, Aloisi A. Tailoring of silica-based nanoporous pod by spermidine multi-activity. Sci Rep 2020; 10:21142. [PMID: 33273530 PMCID: PMC7712788 DOI: 10.1038/s41598-020-77957-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 11/17/2020] [Indexed: 11/20/2022] Open
Abstract
Ubiquitous in nature, polyamines (PAs) are a class of low-molecular aliphatic amines critically involved in cell growth, survival and differentiation. The polycation behavior is validated as a successful strategy in delivery systems to enhance oligonucleotide loading and cellular uptake. In this study, the chemical features and the functional roles of the PA spermidine are synergistically exploited in the synthesis and bioactive functionalization of SiO2-based structures. Inspired by biosilicification, the role of spermidine is assessed both as catalyst and template in a biomimetic one-pot synthesis of dense silica-based particles (SPs) and as a competitive agent in an interfacial reassembly strategy, to empty out SPs and generate spermidine-decorated hollow silica nanoporous pods (spd-SNPs). Spermidine bioactivity is then employed for targeting tumor cell over-expressed polyamine transport system (PTS) and for effective delivery of functional miRNA into melanoma cells. Spermidine decoration promotes spd-SNP cell internalization mediated by PTS and along with hollow structure enhances oligonucleotide loading. Accordingly, the functional delivery of the tumor suppressor miR-34a 3p resulted in intracellular accumulation of histone-complexed DNA fragments associated with apoptosis. Overall, the results highlight the potential of spd-SNP as a multi-agent anticancer therapy.
Collapse
Affiliation(s)
- Giulia Della Rosa
- Mathematics and Physics "E. De Giorgi" Department, University of Salento, Via Arnesano, 73100, Lecce, Italy
- Department of Neuroscience and Brain Technologies (NBT), Istituto Italiano di Tecnologia (IIT), Via Morego, 16163, Genova, Italy
| | - Riccardo Di Corato
- Mathematics and Physics "E. De Giorgi" Department, University of Salento, Via Arnesano, 73100, Lecce, Italy
- Center for Biomolecular Nanotechnologies (CBN), Istituto Italiano di Tecnologia (IIT), Via Barsanti, Arnesano, 73010, Lecce, Italy
- Institute for Microelectronics and Microsystems (IMM), CNR, Via Monteroni, 73100, Lecce, Italy
| | - Sara Carpi
- Department of Pharmacy, University of Pisa, Via Bonanno Pisano, 56126, Pisa, Italy
- Centro Interdipartimentale di Farmacologia Marina, MARine PHARMA Center, University of Pisa, Via Bonanno Pisano, 56126, Pisa, Italy
| | - Beatrice Polini
- Department of Pharmacy, University of Pisa, Via Bonanno Pisano, 56126, Pisa, Italy
| | - Antonietta Taurino
- Institute for Microelectronics and Microsystems (IMM), CNR, Via Monteroni, 73100, Lecce, Italy
| | - Lorena Tedeschi
- Oligonucleotides Laboratory, Institute of Clinical Physiology (IFC), CNR, Via Moruzzi, 56124, Pisa, Italy
| | - Paola Nieri
- Department of Pharmacy, University of Pisa, Via Bonanno Pisano, 56126, Pisa, Italy
- Centro Interdipartimentale di Farmacologia Marina, MARine PHARMA Center, University of Pisa, Via Bonanno Pisano, 56126, Pisa, Italy
| | - Rosaria Rinaldi
- Mathematics and Physics "E. De Giorgi" Department, University of Salento, Via Arnesano, 73100, Lecce, Italy
- Institute for Microelectronics and Microsystems (IMM), CNR, Via Monteroni, 73100, Lecce, Italy
- ISUFI, University of Salento, Via Monteroni, 73100, Lecce, Italy
| | - Alessandra Aloisi
- Institute for Microelectronics and Microsystems (IMM), CNR, Via Monteroni, 73100, Lecce, Italy.
| |
Collapse
|
21
|
The Design of Anionic Surfactant-Based Amino-Functionalized Mesoporous Silica Nanoparticles and their Application in Transdermal Drug Delivery. Pharmaceutics 2020; 12:pharmaceutics12111035. [PMID: 33138139 PMCID: PMC7693828 DOI: 10.3390/pharmaceutics12111035] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 10/15/2020] [Accepted: 10/20/2020] [Indexed: 12/17/2022] Open
Abstract
Melanoma remains the most lethal form of skin cancer and most challenging to treat despite advances in the oncology field. Our work describes the utilization of nanotechnology to target melanoma locally in an attempt to provide an advanced and efficient quality of therapy. Amino-functionalized mesoporous silica nanoparticles (MSN-NH2) were developed in situ through the utilization of anionic surfactant and different volumes of 3-aminopropyltriethoxysilane (APTES) as a co-structure directing agent (CSDA). Prepared particles were characterized for their morphology, particles size, 5-flurouracol (5-FU) and dexamethasone (DEX) loading capacity and release, skin penetration, and cytotoxicity in vitro in HT-144 melanoma cells. Results of transmission electron microscopy (TEM) and nitrogen adsorption-desorption isotherm showed that using different volumes of APTES during the functionalization process had an impact on the internal and external morphology of the particles, as well as particle size. However, changing the volume of APTES did not affect the diameter of formed mesochannels, which was about 4 nm. MSN-NH2 showed a relatively high loading capacity of 5-FU (12.6 ± 5.5) and DEX (44.72 ± 4.21) when using drug: MSN-NH2 ratios of 5:1 for both drugs. The release profile showed that around 83% of 5-FU and 21% of DEX were released over 48 h in pH 7.4. The skin permeability study revealed that enhancement ratio of 5-Fu and DEX using MSN-NH2 were 4.67 and 5.68, respectively, relative to their free drugs counterparts. In addition, the accumulation of drugs in skin layers where melanoma cells usually reside were enhanced approximately 10 times with 5-FU and 5 times with DEX when delivering drugs using MSN-NH2 compared to control. MSN-NH2 alone was nontoxic to melanoma cells when incubated for 48 h in the range of 0 to 468 µg/mL. The combination of 5-FU MSN-NH2 and DEX MSN-NH2 showed significant increase in toxicity compared to their free dug counterparts and exhibited a synergetic effect as well as the ability to circumvent DEX induced 5-FU resistance in melanoma cells.
Collapse
|
22
|
Guo X, Lyu B, Gao D, Cheng K, Ma J, Yang N, Yu Y, Zhao S, Shi L, Kou M. Water vapor permeability and self‐cleaning properties of solvent‐free polyurethane improved by hollow nano‐TiO
2
spheres. J Appl Polym Sci 2020. [DOI: 10.1002/app.49638] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Xu Guo
- College of Bioresources Chemical and Materials Engineering Shaannxi University of Science and Technology Xi'an China
- National Demonstration Center for Experimental Light Chemistry Engineering Education (Shaanxi University of Science and Technology) Xi'an China
| | - Bin Lyu
- College of Bioresources Chemical and Materials Engineering Shaannxi University of Science and Technology Xi'an China
- National Demonstration Center for Experimental Light Chemistry Engineering Education (Shaanxi University of Science and Technology) Xi'an China
| | - Dangge Gao
- College of Bioresources Chemical and Materials Engineering Shaannxi University of Science and Technology Xi'an China
- National Demonstration Center for Experimental Light Chemistry Engineering Education (Shaanxi University of Science and Technology) Xi'an China
| | - Kun Cheng
- College of Bioresources Chemical and Materials Engineering Shaannxi University of Science and Technology Xi'an China
- National Demonstration Center for Experimental Light Chemistry Engineering Education (Shaanxi University of Science and Technology) Xi'an China
| | - Jianzhong Ma
- College of Bioresources Chemical and Materials Engineering Shaannxi University of Science and Technology Xi'an China
- National Demonstration Center for Experimental Light Chemistry Engineering Education (Shaanxi University of Science and Technology) Xi'an China
| | - Na Yang
- College of Bioresources Chemical and Materials Engineering Shaannxi University of Science and Technology Xi'an China
- National Demonstration Center for Experimental Light Chemistry Engineering Education (Shaanxi University of Science and Technology) Xi'an China
| | - Yajin Yu
- College of Bioresources Chemical and Materials Engineering Shaannxi University of Science and Technology Xi'an China
- National Demonstration Center for Experimental Light Chemistry Engineering Education (Shaanxi University of Science and Technology) Xi'an China
| | | | - Lei Shi
- Zhejiang Hexin Holdings Ltd. Zhejiang China
| | - Mengnan Kou
- College of Bioresources Chemical and Materials Engineering Shaannxi University of Science and Technology Xi'an China
- National Demonstration Center for Experimental Light Chemistry Engineering Education (Shaanxi University of Science and Technology) Xi'an China
| |
Collapse
|
23
|
Selvarajan V, Obuobi S, Ee PLR. Silica Nanoparticles-A Versatile Tool for the Treatment of Bacterial Infections. Front Chem 2020; 8:602. [PMID: 32760699 PMCID: PMC7374024 DOI: 10.3389/fchem.2020.00602] [Citation(s) in RCA: 116] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 06/09/2020] [Indexed: 12/25/2022] Open
Abstract
The rapid emergence of drug resistance continues to outpace the development of new antibiotics in the treatment of infectious diseases. Conventional therapy is currently limited by drug access issues such as low intracellular drug accumulations, drug efflux by efflux pumps and/or enzymatic degradation. To improve access, targeted delivery using nanocarriers could provide the quantum leap in intracellular drug transport and retention. Silica nanoparticles (SiNPs) with crucial advantages such as large surface area, ease-of-functionalization, and biocompatibility, are one of the most commonly used nanoparticles in drug delivery applications. A porous variant, called the mesoporous silica nanoparticles (MSN), also confers additional amenities such as tunable pore size and volume, leading to high drug loading capacity. In the context of bacterial infections, SiNPs and its variants can act as a powerful tool for the targeted delivery of antimicrobials, potentially reducing the impact of high drug dosage and its side effects. In this review, we will provide an overview of SiNPs synthesis, its structural proficiency which is critical in loading and conjugation of antimicrobials and its role in different antimicrobial applications with emphasis on intracellular drug targeting in anti-tuberculosis therapy, nitric oxide delivery, and metal nanocomposites. The role of SiNPs in antibiofilm coatings will also be covered in the context of nosocomial infections and surgical implants.
Collapse
Affiliation(s)
- Vanitha Selvarajan
- Department of Pharmacy, National University of Singapore, Singapore, Singapore
| | - Sybil Obuobi
- Drug Transport and Delivery Research Group, Department of Pharmacy, UIT The Arctic University of Norway, Tromsø, Norway
| | - Pui Lai Rachel Ee
- Department of Pharmacy, National University of Singapore, Singapore, Singapore
- NUS Graduate School for Integrative Sciences and Engineering, Singapore, Singapore
| |
Collapse
|
24
|
Zhang K, Wang M, Wu M, Wu Q, Liu J, Yang J, Zhang J. One-Step Production of Amine-Functionalized Hollow Mesoporous Silica Microspheres via Phase Separation-Induced Cavity in Miniemulsion System for Opaque and Matting Coating. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b04642] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
| | | | - Mingyuan Wu
- Anhui Province Key Laboratory of Environment-Friendly Polymer Materials, Hefei 230601, China
| | - Qingyun Wu
- Anhui Province Key Laboratory of Environment-Friendly Polymer Materials, Hefei 230601, China
| | - Jiuyi Liu
- Anhui Province Key Laboratory of Environment-Friendly Polymer Materials, Hefei 230601, China
| | - Jianjun Yang
- Anhui Province Key Laboratory of Environment-Friendly Polymer Materials, Hefei 230601, China
| | - Jianan Zhang
- Anhui Province Key Laboratory of Environment-Friendly Polymer Materials, Hefei 230601, China
| |
Collapse
|
25
|
Mandal S, Adhikari S, Pu S, Wang X, Kim DH, Patel RK. Interactive Fe 2O 3/porous SiO 2 nanospheres for photocatalytic degradation of organic pollutants: Kinetic and mechanistic approach. CHEMOSPHERE 2019; 234:596-607. [PMID: 31229721 DOI: 10.1016/j.chemosphere.2019.06.092] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 05/28/2019] [Accepted: 06/12/2019] [Indexed: 06/09/2023]
Abstract
A uniformly distributed mesoporous silica nanospheres has been successfully synthesized. Silica nanospheres have been loaded with different content of Fe2O3 nanoparticles synthesized by the sol-gel process followed by calcination to form the Fe2O3 supported on silica nanospheres composite. The as-synthesized photocatalyst has been characterized for crystal structure, morphology, stability, surface area and also surface composition was determined. The photocatalytic oxidation ability of the composite photocatalyst was evaluated by degrading aqueous solutions of Methylene Blue and Congo red dyes under visible light having intense absorption in the wavelength range between 550 and 560 nm. The prime significance of silica is to act as catalyst support for uniform distribution of hematite particles for enhanced catalytic reactivity. Highest degradation has been achieved with 20 wt % loading of hematite nanoparticles indicating the less agglomeration and availability of more catalytic sites. Furthermore, colorless organic pollutants 2-chlorophenol and 2, 4-dichlorophenol have been degraded with high efficiency in the presence of H2O2 oxidizer. The scavenger experiments confirmed that hydroxyl radicals are the majorly participating species in this catalytic system. The composite system also shows good recyclability of the materials and advocates the promising nature of the designed system for multiple hazardous environmental contaminants.
Collapse
Affiliation(s)
- Sandip Mandal
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection (Chengdu University of Technology), 1#, Dongsanlu, Erxianqiao, Chengdu, 610059, Sichuan, PR China; Department of Chemistry, National Institute of Technology, Rourkela, 769008, Odisha, India.
| | - Sangeeta Adhikari
- School of Chemical Engineering, Chonnam National University, Gwangju, 61186, South Korea
| | - Shengyan Pu
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection (Chengdu University of Technology), 1#, Dongsanlu, Erxianqiao, Chengdu, 610059, Sichuan, PR China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, PR China.
| | - Xiaoke Wang
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection (Chengdu University of Technology), 1#, Dongsanlu, Erxianqiao, Chengdu, 610059, Sichuan, PR China
| | - Do-Heyoung Kim
- School of Chemical Engineering, Chonnam National University, Gwangju, 61186, South Korea
| | - Raj Kishore Patel
- Department of Chemistry, National Institute of Technology, Rourkela, 769008, Odisha, India
| |
Collapse
|
26
|
Li H, Pan Y, Farmakes J, Xiao F, Liu G, Chen B, Zhu X, Rao J, Yang Z. A sulfonated mesoporous silica nanoparticle for enzyme protection against denaturants and controlled release under reducing conditions. J Colloid Interface Sci 2019; 556:292-300. [DOI: 10.1016/j.jcis.2019.08.063] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 08/15/2019] [Accepted: 08/16/2019] [Indexed: 01/23/2023]
|
27
|
Anh Cao KL, Arif AF, Kamikubo K, Izawa T, Iwasaki H, Ogi T. Controllable Synthesis of Carbon-Coated SiO x Particles through a Simultaneous Reaction between the Hydrolysis-Condensation of Tetramethyl Orthosilicate and the Polymerization of 3-Aminophenol. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:13681-13692. [PMID: 31558027 DOI: 10.1021/acs.langmuir.9b02599] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Core-shell particles are desirable for many applications, but the precise design and control of their structure remains a great challenge. In this work, we developed a strategy to fabricate carbon-coated SiOx (SiOx@C) core-shell particles via a sol-gel method using the simultaneous hydrolysis-condensation of tetramethyl orthosilicate (TMOS), the polymerization of 3-aminophenol and formaldehyde in the presence of ammonia as a basic catalyst, and cetyltrimethylammonium bromide (CTAB) as a cationic surfactant in the mixed solution of water and methanol followed by the carbonization process. Results from this study provide new insight into the design of core-shell particles by using TMOS as an effective silica precursor for the first time with a well-controlled reaction rate and spherical morphology. To obtain an in-depth understanding of the formation of core-shell structure, a possible mechanism is also proposed in this article. When tested as an anode material for lithium ion batteries (LIBs), the obtained SiOx@C particles delivered a reversible capacity of 509.2 mAh g-1 at a current density of 100 mA g-1. This electrochemical performance is significantly better than those of similar composites without the core-shell structure. The capacity retention after 100 cycles was approximately 80%. These results suggest great promise for the proposed SiOx@C particles with core-shell structure, which may have potential applications in the improvement of various energy-storage materials.
Collapse
Affiliation(s)
- Kiet Le Anh Cao
- Department of Chemical Engineering, Graduate School of Engineering , Hiroshima University , 1-4-1 Kagamiyama, Higashi-Hiroshima , Hiroshima 739-8527 , Japan
| | - Aditya F Arif
- Department of Chemical Engineering, Graduate School of Engineering , Hiroshima University , 1-4-1 Kagamiyama, Higashi-Hiroshima , Hiroshima 739-8527 , Japan
- Department of New Investment , P. T. Rekayasa Industri Holding Company , Jl. Kalibata Timur I No. 36 , Jakarta 12740 , Indonesia
| | - Kazuki Kamikubo
- Department of Chemical Engineering, Graduate School of Engineering , Hiroshima University , 1-4-1 Kagamiyama, Higashi-Hiroshima , Hiroshima 739-8527 , Japan
| | - Takafumi Izawa
- Department of Chemical Engineering, Graduate School of Engineering , Hiroshima University , 1-4-1 Kagamiyama, Higashi-Hiroshima , Hiroshima 739-8527 , Japan
- Battery Materials Research Laboratory , Kurashiki Research Center , Kuraray Co., Ltd., 2045-1 Sakazu , Kurashiki , Okayama 710-0801 , Japan
| | - Hideharu Iwasaki
- Battery Materials Research Laboratory , Kurashiki Research Center , Kuraray Co., Ltd., 2045-1 Sakazu , Kurashiki , Okayama 710-0801 , Japan
| | - Takashi Ogi
- Department of Chemical Engineering, Graduate School of Engineering , Hiroshima University , 1-4-1 Kagamiyama, Higashi-Hiroshima , Hiroshima 739-8527 , Japan
| |
Collapse
|
28
|
FrozandehMehr E, Tarlani A, Farhadi S. Cetyltrimethylammonium Bromide (CTAB) Bloated Micelles and Merged CTAB/Bolaamphiphiles Self-Assembled Vesicles toward the Generation of Highly Porous Alumina as Efficacious Inorganic Adsorbents. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:11188-11199. [PMID: 31373498 DOI: 10.1021/acs.langmuir.9b01934] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Herein, in a new approach, highly porous alumina materials (HiPAs) have been synthesized through cetyltrimethylammonium bromide (CTAB) bloated micelles or merged CTAB/dicarboxylic acid vesicular aggregates (di-acids with 8, 10, and 12 carbon atoms) as novel templates and characterized by N2 sorption, low- and wide-angle XRD (X-ray diffraction), FE-SEM (field emission scanning electron microscopy), TEM (transmission electron microscopy), HR-TEM (high-resolution transmission electron microscopy), DLS (dynamic light scattering), and AFM (atomic force microscopy) analyses. In the absence of dicarboxylic acids, CTAB bloated micelles in ethanol-aqueous solutions were conductive to the formation of mesoporous γ-alumina hollow spheres (HiPA-CT) with high surface area (394 m2 g-1) and ultralarge pore volume (1.8 cm3 g-1). Notably, merged giant vesicular assemblies formed between dicarboxylic acids and CTAB endowed the mesoporous alumina nanoparticle aggregates with tunable and unprecedented pore features (surface area of 415-735 m2 g-1 and ultrahigh pore volume of 1.37-2.57 cm3 g-1), in which their pinnacle was obtained via CTAB/10 (HiPA-CT-10). Due to the tailored porosity, the HiPA-CT and HiPA-CT-10 were exploited for ciprofloxacin (CIP) adsorption experiments. The adsorption efficiency attained a climax at pH 6. At CIP concentrations below 1 ppm, 91 and 86% of CIP were removed by HiPA-CT and HiPA-CT-10, respectively. The maximum adsorption capacities of HiPA-CT and HiPA-CT-10 are 120 and 184 mg g-1, respectively, in which the latter is surpassing those of inorganic antibiotic adsorbents reported so far. The kinetic results showed that the removal of CIP by HiPA-CT was faster due to the presence of macropores and more accessible active sites on mesoporous surfaces. The reusability test was acceptable after eight runs. The results signify that these novel materials have high potential for reducing our environmental concerns.
Collapse
Affiliation(s)
- Ehsan FrozandehMehr
- Department of Chemistry , Lorestan University , Khoramabad 68135-465 , Iran
- Chemistry & Chemical Engineering Research Center of Iran (CCERCI) , Pajohesh Blvd., 17th km of Tehran-Karaj Highway , Tehran 14968-13151 , Iran
| | - Aliakbar Tarlani
- Chemistry & Chemical Engineering Research Center of Iran (CCERCI) , Pajohesh Blvd., 17th km of Tehran-Karaj Highway , Tehran 14968-13151 , Iran
| | - Saeed Farhadi
- Department of Chemistry , Lorestan University , Khoramabad 68135-465 , Iran
| |
Collapse
|
29
|
Gould OC, Box SJ, Boott CE, Ward AD, Winnik MA, Miles MJ, Manners I. Manipulation and Deposition of Complex, Functional Block Copolymer Nanostructures Using Optical Tweezers. ACS NANO 2019; 13:3858-3866. [PMID: 30794379 PMCID: PMC6482436 DOI: 10.1021/acsnano.9b00342] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 02/22/2019] [Indexed: 05/23/2023]
Abstract
Block copolymer self-assembly has enabled the creation of a range of solution-phase nanostructures with applications from optoelectronics and biomedicine to catalysis. However, to incorporate such materials into devices a method that facilitates their precise manipulation and deposition is desirable. Herein we describe how optical tweezers can be used to trap, manipulate, and pattern individual cylindrical micelles and larger hybrid micellar materials. Through the combination of TIRF imaging and optical trapping we can precisely control the three-dimensional motion of individual cylindrical block copolymer micelles in solution, enabling the creation of customizable arrays. We also demonstrate that dynamic holographic assembly enables the creation of ordered customizable arrays of complex hybrid block copolymer structures. By creating a program which automatically identifies, traps, and then deposits multiple assemblies simultaneously we have been able to dramatically speed up this normally slow process, enabling the fabrication of arrays of hybrid structures containing hundreds of assemblies in minutes rather than hours.
Collapse
Affiliation(s)
- Oliver
E. C. Gould
- School
of Chemistry, University of Bristol, Bristol BS8 1TS, United Kingdom
| | - Stuart J. Box
- School
of Physics, University of Bristol, Bristol BS8 1TL, United Kingdom
| | - Charlotte E. Boott
- School
of Chemistry, University of Bristol, Bristol BS8 1TS, United Kingdom
| | - Andrew D. Ward
- Central
Laser Facility, Rutherford Appleton Laboratories, Oxford OX11 0QX, United Kingdom
| | - Mitchell A. Winnik
- Department
of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Mervyn J. Miles
- School
of Physics, University of Bristol, Bristol BS8 1TL, United Kingdom
| | - Ian Manners
- School
of Chemistry, University of Bristol, Bristol BS8 1TS, United Kingdom
- Department
of Chemistry, University of Victoria, Victoria, British Columbia V8W 3V6, Canada
| |
Collapse
|
30
|
Yao Y, Wang H, Wang R, Chai Y. Novel cellulose-gelatin composite films made from self-dispersed microgels: Structure and properties. Int J Biol Macromol 2019; 123:991-1001. [DOI: 10.1016/j.ijbiomac.2018.11.184] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 10/30/2018] [Accepted: 11/18/2018] [Indexed: 12/26/2022]
|
31
|
Ravindran Girija A, Balasubramanian S. Theragnostic potentials of core/shell mesoporous silica nanostructures. Nanotheranostics 2019; 3:1-40. [PMID: 30662821 PMCID: PMC6328307 DOI: 10.7150/ntno.27877] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 09/22/2018] [Indexed: 12/14/2022] Open
Abstract
Theragnostics is considered as an emerging treatment strategy that integrates therapeutics and diagnostics thus allowing delivery of therapeutics and simultaneous monitoring of the progression of treatment. Among the different types of inorganic nanomaterials that are being used for nanomedicine, core shell mesoporous silica nanoparticles have emerged as promising multifunctional nanoplatform for theragnostic application. Research in the design of core/shell mesoporous silica nanoparticles is steadily diversifying owing to the various interesting properties of these nanomaterials that are advantageous for advanced biomedical applications. Core/shell mesoporous silica nanoparticles, have garnered substantial attention in recent years because of their exceptional properties including large surface area, low density, ease of functionalization, high loading capacity of drugs, control of the morphology, particle size, tunable hollow interior space and mesoporous shell and possibility of incorporating multifunctional interior core material. In the past decade researcher's demonstrated tremendous development in design of functionalized core/shell mesoporous silica nanoparticles with different inorganic functional nanomaterial incorporated into mesoporous nanosystem for simultaneous therapeutic and diagnostic (theragnostic) applications in cancer. In this review, we recapitulate the progress in commonly used synthetic strategies and theragnostic applications of core/shell mesoporous silica nanoparticles with special emphasis on therapeutic and diagnostic modalities. Finally, we discuss the challenges and some perspectives on the future research and development of theragnostic core/shell mesoporous silica nanoparticles.
Collapse
Affiliation(s)
- Aswathy Ravindran Girija
- Future Industries Institute, University of South Australia Mawson Lakes Campus, Mawson Lakes 5095, SA, Australia
| | - Sivakumar Balasubramanian
- School of Engineering, University of South Australia Mawson Lakes Campus, Mawson Lakes 5095, SA, Australia
| |
Collapse
|
32
|
Fan W, Jin Y, Huang Y, Pan J, Du W, Pu Z. Room‐temperature self‐healing and reprocessing of Diselenide‐containing waterborne polyurethanes under visible light. J Appl Polym Sci 2018. [DOI: 10.1002/app.47071] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Wuhou Fan
- National Engineering Laboratory for Clean Technology of Leather ManufactureSichuan University Chengdu, 610065 People's Republic of China
- The Key Laboratory of Leather Chemistry and Engineering of Ministry of EducationSichuan University, Ministry of Education Chengdu, 610065 People's Republic of China
- High‐tech Organic Fibers Key Laboratory of Sichuan ProvinceSichuan Textile Scientific Research Institute Chengdu 610072 People's Republic of China
| | - Yong Jin
- National Engineering Laboratory for Clean Technology of Leather ManufactureSichuan University Chengdu, 610065 People's Republic of China
- The Key Laboratory of Leather Chemistry and Engineering of Ministry of EducationSichuan University, Ministry of Education Chengdu, 610065 People's Republic of China
| | - Yuhua Huang
- High‐tech Organic Fibers Key Laboratory of Sichuan ProvinceSichuan Textile Scientific Research Institute Chengdu 610072 People's Republic of China
| | - Jiezhou Pan
- National Engineering Laboratory for Clean Technology of Leather ManufactureSichuan University Chengdu, 610065 People's Republic of China
- The Key Laboratory of Leather Chemistry and Engineering of Ministry of EducationSichuan University, Ministry of Education Chengdu, 610065 People's Republic of China
| | - Weining Du
- National Engineering Laboratory for Clean Technology of Leather ManufactureSichuan University Chengdu, 610065 People's Republic of China
- The Key Laboratory of Leather Chemistry and Engineering of Ministry of EducationSichuan University, Ministry of Education Chengdu, 610065 People's Republic of China
| | - Zongyao Pu
- High‐tech Organic Fibers Key Laboratory of Sichuan ProvinceSichuan Textile Scientific Research Institute Chengdu 610072 People's Republic of China
| |
Collapse
|
33
|
Shere I, Malani A. Polymerization kinetics of a multi-functional silica precursor studied using a novel Monte Carlo simulation technique. Phys Chem Chem Phys 2018; 20:3554-3570. [PMID: 29337324 DOI: 10.1039/c7cp07737h] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Silica polymerization has been extensively used to synthesize various fascinating materials for industrial and technological applications. The polymerization protocol is modified by altering several parameters (such as the concentration of the precursor, temperature, pH) heuristically to obtain the desired end product. To properly understand the effect of such parameters, knowledge of molecular events occurring during the process of polymerization is essential. In this work, we developed algorithms to capture molecular events such as translation, rotation, and reactions using the reaction ensemble Monte Carlo (REMC) technique. Our algorithms simulate molecular events in accordance with physical time by correctly scaling the movements of a cluster with the monomer, thereby capturing the kinetics of the process. We studied the polymerization of the four coordinated silica (f4) precursor using our algorithm and observed excellent agreement between simulation results and experimental data. The algorithm was also used to study the polymerization of the three coordinated silica (f3) precursor and it was found that our simulations capture experimental kinetics well, thereby confirming that the developed algorithms are robust. We studied the effect of the functionality of the precursor on polymerization kinetics and the resulting structure by simulating silica systems having a mixture of two, three and four functional (f2, f3, and f4) silica precursors. We observed that network formation and cluster size decrease with the increase in the concentration of the f2 precursor. The radius of gyration (Rg) of the system initially increases due to network formation and decreases later due to the collapse of a large cluster. The Rg is directly correlated with the total number of primitive rings present in the system. The molecular level understanding obtained will be useful in the design of tailored silica nanoparticles.
Collapse
Affiliation(s)
- Inderdip Shere
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai 400076, India.
| | | |
Collapse
|
34
|
Microfluidic-assisted Formation of Highly Monodisperse and Mesoporous Silica Soft Microcapsules. Sci Rep 2017; 7:16326. [PMID: 29180632 PMCID: PMC5703880 DOI: 10.1038/s41598-017-16554-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 11/14/2017] [Indexed: 12/04/2022] Open
Abstract
The fabrication of mesoporous silica microcapsules with a highly controlled particle size ranging in the micrometer size presents a major challenge in many academic and industrial research areas, such as for the developement of smart drug delivery systems with a well controlled loading and release of (bio)active molecules. Many studies based on the solvent evaporation or solvent diffusion methods have been developed during the last two decades in order to control the particle size, which is often found to range at a sub-micrometer scale. Droplet-based microfluidics proved during the last decade a powerful tool to produce highly monodisperse and mesoporous silica solid microspheres with a controllable size in the micrometer range. We show in the present study, in contrast with previous microfluidic-assisted approaches, that a better control of the diffusion of the silica precursor sol in a surrounding perfluorinated oil phase during the silica formation process allows for the formation of highly monodisperse mesoporous silica microcapsules with a diameter ranging in the 10 micrometer range. We show also, using optical, scanning and transmission electron microscopies, small angle x-ray diffraction and BET measurements, that the synthesized mesoporous silica microcapsules exhibit a soft-like thin shell with a thickness of about 1 μm, across which 5.9 nm sized mesopores form a well-ordered hexagonal 2D network. We suggest and validate experimentally a model where the formation of such microcapsules is controlled by the solvent evaporation process at the droplet-air interface.
Collapse
|
35
|
Ultrafast Synthesis of Multifunctional Submicrometer Hollow Silica Spheres in Microfluidic Spiral Channels. Sci Rep 2017; 7:12616. [PMID: 28974729 PMCID: PMC5626769 DOI: 10.1038/s41598-017-12856-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 09/14/2017] [Indexed: 11/29/2022] Open
Abstract
We demonstrate a facile and ultrafast approach for the synthesis of multifunctional submicrometer hollow silica spheres (smHSSs) using microfluidic spiral channels with enhanced mixing performance, introduced by the transverse Dean flows cross the channel as a result of centrifugal effects. Formation of smHSSs is initiated by the hydrolysis of tetraethyl orthosilicate (TEOS) at the interface of two laminar reactant flows. Complete mixing of the flows further facilitates the subsequent condensation of hydrolyzed TEOS, which builds up the shell layer of smHSSs. The average size of the as-synthesized smHSSs is 804.7 nm, and the thickness of the shell layer is ~20 nm. Multifunctional smHSSs integrated with proteins, fluorescent dyes, quantum dots, and magnetic nanoparticles can be further produced via this general platform. Their applications in cell imaging, organic dye adsorption, and drug delivery are examined.
Collapse
|