1
|
Theusch E, Ting FY, Qin Y, Stevens K, Naidoo D, King SM, Yang NV, Orr J, Han BY, Cyster JG, Chen YDI, Rotter JI, Krauss RM, Medina MW. Participant-derived cell line transcriptomic analyses and mouse studies reveal a role for ZNF335 in plasma cholesterol statin response. Genome Med 2024; 16:93. [PMID: 39061094 PMCID: PMC11282643 DOI: 10.1186/s13073-024-01366-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 07/18/2024] [Indexed: 07/28/2024] Open
Abstract
BACKGROUND Statins lower circulating low-density lipoprotein cholesterol (LDLC) levels and reduce cardiovascular disease risk. Though highly efficacious in general, there is considerable inter-individual variation in statin efficacy that remains largely unexplained. METHODS To identify novel genes that may modulate statin-induced LDLC lowering, we used RNA-sequencing data from 426 control- and 2 µM simvastatin-treated lymphoblastoid cell lines (LCLs) derived from European and African American ancestry participants of the Cholesterol and Pharmacogenetics (CAP) 40 mg/day 6-week simvastatin clinical trial (ClinicalTrials.gov Identifier: NCT00451828). We correlated statin-induced changes in LCL gene expression with plasma LDLC statin response in the corresponding CAP participants. For the most correlated gene identified (ZNF335), we followed up in vivo by comparing plasma cholesterol levels, lipoprotein profiles, and lipid statin response between wild-type mice and carriers of a hypomorphic (partial loss of function) missense mutation in Zfp335 (the mouse homolog of ZNF335). RESULTS The statin-induced expression changes of 147 human LCL genes were significantly correlated to the plasma LDLC statin responses of the corresponding CAP participants in vivo (FDR = 5%). The two genes with the strongest correlations were zinc finger protein 335 (ZNF335 aka NIF-1, rho = 0.237, FDR-adj p = 0.0085) and CCR4-NOT transcription complex subunit 3 (CNOT3, rho = 0.233, FDR-adj p = 0.0085). Chow-fed mice carrying a hypomorphic missense (R1092W; aka bloto) mutation in Zfp335 had significantly lower non-HDL cholesterol levels than wild-type C57BL/6J mice in a sex combined model (p = 0.04). Furthermore, male (but not female) mice carrying the Zfp335R1092W allele had significantly lower total and HDL cholesterol levels than wild-type mice. In a separate experiment, wild-type mice fed a control diet for 4 weeks and a matched simvastatin diet for an additional 4 weeks had significant statin-induced reductions in non-HDLC (-43 ± 18% and -23 ± 19% for males and females, respectively). Wild-type male (but not female) mice experienced significant reductions in plasma LDL particle concentrations, while male mice carrying Zfp335R1092W allele(s) exhibited a significantly blunted LDL statin response. CONCLUSIONS Our in vitro and in vivo studies identified ZNF335 as a novel modulator of plasma cholesterol levels and statin response, suggesting that variation in ZNF335 activity could contribute to inter-individual differences in statin clinical efficacy.
Collapse
Affiliation(s)
- Elizabeth Theusch
- Department of Pediatrics, University of California San Francisco, Oakland, CA, USA.
| | - Flora Y Ting
- Department of Pediatrics, University of California San Francisco, Oakland, CA, USA
| | - Yuanyuan Qin
- Department of Pediatrics, University of California San Francisco, Oakland, CA, USA
| | - Kristen Stevens
- Department of Pediatrics, University of California San Francisco, Oakland, CA, USA
| | - Devesh Naidoo
- Department of Pediatrics, University of California San Francisco, Oakland, CA, USA
| | - Sarah M King
- Department of Pediatrics, University of California San Francisco, Oakland, CA, USA
| | - Neil V Yang
- Department of Pediatrics, University of California San Francisco, Oakland, CA, USA
| | - Joseph Orr
- Department of Pediatrics, University of California San Francisco, Oakland, CA, USA
| | - Brenda Y Han
- Howard Hughes Medical Institute, Department of Microbiology and Immunology, University of California San Francisco, San Francisco, CA, USA
| | - Jason G Cyster
- Howard Hughes Medical Institute, Department of Microbiology and Immunology, University of California San Francisco, San Francisco, CA, USA
| | - Yii-Der I Chen
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Jerome I Rotter
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Ronald M Krauss
- Department of Pediatrics, University of California San Francisco, Oakland, CA, USA
- Department of Medicine, University of California San Francisco, Oakland, CA, USA
| | - Marisa W Medina
- Department of Pediatrics, University of California San Francisco, Oakland, CA, USA.
| |
Collapse
|
2
|
Yang NV, Rogers S, Guerra R, Pagliarini DJ, Theusch E, Krauss RM. TOMM40 and TOMM22 of the Translocase Outer Mitochondrial Membrane Complex rescue statin-impaired mitochondrial dynamics, morphology, and mitophagy in skeletal myotubes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.24.546411. [PMID: 37425714 PMCID: PMC10327005 DOI: 10.1101/2023.06.24.546411] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Background Statins are the drugs most commonly used for lowering plasma low-density lipoprotein (LDL) cholesterol levels and reducing cardiovascular disease risk. Although generally well tolerated, statins can induce myopathy, a major cause of non-adherence to treatment. Impaired mitochondrial function has been implicated as a cause of statin-induced myopathy, but the underlying mechanism remains unclear. We have shown that simvastatin downregulates transcription of TOMM40 and TOMM22 , genes that encode major subunits of the translocase of outer mitochondrial membrane (TOM) complex which is responsible for importing nuclear-encoded proteins and maintaining mitochondrial function. We therefore investigated the role of TOMM40 and TOMM22 in mediating statin effects on mitochondrial function, dynamics, and mitophagy. Methods Cellular and biochemical assays and transmission electron microscopy were used to investigate effects of simvastatin and TOMM40 and TOMM22 expression on measures of mitochondrial function and dynamics in C2C12 and primary human skeletal cell myotubes. Results Knockdown of TOMM40 and TOMM22 in skeletal cell myotubes impaired mitochondrial oxidative function, increased production of mitochondrial superoxide, reduced mitochondrial cholesterol and CoQ levels, disrupted mitochondrial dynamics and morphology, and increased mitophagy, with similar effects resulting from simvastatin treatment. Overexpression of TOMM40 and TOMM22 in simvastatin-treated muscle cells rescued statin effects on mitochondrial dynamics, but not on mitochondrial function or cholesterol and CoQ levels. Moreover, overexpression of these genes resulted in an increase in number and density of cellular mitochondria. Conclusion These results confirm that TOMM40 and TOMM22 are central in regulating mitochondrial homeostasis and demonstrate that downregulation of these genes by statin treatment mediates disruption of mitochondrial dynamics, morphology, and mitophagy, effects that may contribute to statin-induced myopathy. GRAPHICAL ABSTRACT
Collapse
|
3
|
Theusch E, Ting FY, Qin Y, Stevens K, Naidoo D, King SM, Yang N, Orr J, Han BY, Cyster JG, Chen YDI, Rotter JI, Krauss RM, Medina MW. Participant-derived cell line transcriptomic analyses and mouse studies reveal a role for ZNF335 in plasma cholesterol statin response. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.14.544860. [PMID: 37397985 PMCID: PMC10312755 DOI: 10.1101/2023.06.14.544860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Background Statins lower circulating low-density lipoprotein cholesterol (LDLC) levels and reduce cardiovascular disease risk. Though highly efficacious in general, there is considerable inter-individual variation in statin efficacy that remains largely unexplained. Methods To identify novel genes that may modulate statin-induced LDLC lowering, we used RNA-sequencing data from 426 control- and 2 μM simvastatin-treated lymphoblastoid cell lines (LCLs) derived from European and African American ancestry participants of the Cholesterol and Pharmacogenetics (CAP) 40 mg/day 6-week simvastatin clinical trial (ClinicalTrials.gov Identifier: NCT00451828). We correlated statin-induced changes in LCL gene expression with plasma LDLC statin response in the corresponding CAP participants. For the most correlated gene identified (ZNF335), we followed up in vivo by comparing plasma cholesterol levels, lipoprotein profiles, and lipid statin response between wild-type mice and carriers of a hypomorphic (partial loss of function) missense mutation in Zfp335 (the mouse homolog of ZNF335). Results The statin-induced expression changes of 147 human LCL genes were significantly correlated to the plasma LDLC statin responses of the corresponding CAP participants in vivo (FDR=5%). The two genes with the strongest correlations were zinc finger protein 335 (ZNF335 aka NIF-1, rho=0.237, FDR-adj p=0.0085) and CCR4-NOT transcription complex subunit 3 (CNOT3, rho=0.233, FDR-adj p=0.0085). Chow-fed mice carrying a hypomorphic missense (R1092W; aka bloto) mutation in Zfp335 had significantly lower non-HDL cholesterol levels than wild type C57BL/6J mice in a sex combined model (p=0.04). Furthermore, male (but not female) mice carrying the Zfp335R1092W allele had significantly lower total and HDL cholesterol levels than wild-type mice. In a separate experiment, wild-type mice fed a control diet for 4 weeks and a matched simvastatin diet for an additional 4 weeks had significant statin-induced reductions in non-HDLC (-43±18% and -23±19% for males and females, respectively). Wild-type male (but not female) mice experienced significant reductions in plasma LDL particle concentrations, while male mice carrying Zfp335R1092W allele(s) exhibited a significantly blunted LDL statin response. Conclusions Our in vitro and in vivo studies identified ZNF335 as a novel modulator of plasma cholesterol levels and statin response, suggesting that variation in ZNF335 activity could contribute to inter-individual differences in statin clinical efficacy.
Collapse
Affiliation(s)
- Elizabeth Theusch
- Department of Pediatrics, University of California San Francisco, Oakland, CA USA
| | - Flora Y. Ting
- Department of Pediatrics, University of California San Francisco, Oakland, CA USA
| | - Yuanyuan Qin
- Department of Pediatrics, University of California San Francisco, Oakland, CA USA
| | - Kristen Stevens
- Department of Pediatrics, University of California San Francisco, Oakland, CA USA
| | - Devesh Naidoo
- Department of Pediatrics, University of California San Francisco, Oakland, CA USA
| | - Sarah M. King
- Department of Pediatrics, University of California San Francisco, Oakland, CA USA
| | - Neil Yang
- Department of Pediatrics, University of California San Francisco, Oakland, CA USA
| | - Joseph Orr
- Department of Pediatrics, University of California San Francisco, Oakland, CA USA
| | - Brenda Y. Han
- Howard Hughes Medical Institute, Department of Microbiology and Immunology, University of California San Francisco, San Francisco, CA USA
| | - Jason G. Cyster
- Howard Hughes Medical Institute, Department of Microbiology and Immunology, University of California San Francisco, San Francisco, CA USA
| | - Yii-Der I. Chen
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA USA
| | - Jerome I. Rotter
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA USA
| | - Ronald M. Krauss
- Department of Pediatrics, University of California San Francisco, Oakland, CA USA
- Department of Medicine, University of California San Francisco, Oakland, CA USA
| | - Marisa W. Medina
- Department of Pediatrics, University of California San Francisco, Oakland, CA USA
| |
Collapse
|
4
|
Muñoz A, Theusch E, Kuang YL, Nalula G, Peaslee C, Dorlhiac G, Landry MP, Streets A, Krauss RM, Iribarren C, Mattis AN, Medina MW. Undifferentiated Induced Pluripotent Stem Cells as a Genetic Model for Nonalcoholic Fatty Liver Disease. Cell Mol Gastroenterol Hepatol 2022; 14:1174-1176.e6. [PMID: 35863744 PMCID: PMC9608362 DOI: 10.1016/j.jcmgh.2022.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/11/2022] [Accepted: 07/12/2022] [Indexed: 01/31/2023]
Affiliation(s)
- Antonio Muñoz
- Department of Pediatrics, University of California San Francisco, San Francisco, California
| | - Elizabeth Theusch
- Department of Pediatrics, University of California San Francisco, San Francisco, California
| | - Yu-Lin Kuang
- Department of Pediatrics, University of California San Francisco, San Francisco, California
| | - Gilbert Nalula
- Department of Pediatrics, University of California San Francisco, San Francisco, California
| | - Caitlin Peaslee
- Department of Pathology, University of California San Francisco, San Francisco, California
| | - Gabriel Dorlhiac
- Biophysics Graduate Group, University of California Berkeley, Berkeley, California
| | - Markita P Landry
- Department of Chemical and Biomolecular Engineering, University of California Berkeley, Berkeley, California; Chan Zuckerberg Biohub, San Francisco, California
| | - Aaron Streets
- Biophysics Graduate Group, University of California Berkeley, Berkeley, California; Chan Zuckerberg Biohub, San Francisco, California; Department of Bioengineering, University of California Berkeley, Berkeley, California
| | - Ronald M Krauss
- Department of Pediatrics, University of California San Francisco, San Francisco, California; Department of Medicine, University of California San Francisco, San Francisco, California
| | | | - Aras N Mattis
- Department of Pathology, University of California San Francisco, San Francisco, California; Liver Center, University of California San Francisco, San Francisco, California.
| | - Marisa W Medina
- Department of Pediatrics, University of California San Francisco, San Francisco, California.
| |
Collapse
|
5
|
Song C, Qiao Z, Chen L, Ge J, Zhang R, Yuan S, Bian X, Wang C, Liu Q, Jia L, Fu R, Dou K. Identification of Key Genes as Early Warning Signals of Acute Myocardial Infarction Based on Weighted Gene Correlation Network Analysis and Dynamic Network Biomarker Algorithm. Front Immunol 2022; 13:879657. [PMID: 35795669 PMCID: PMC9251518 DOI: 10.3389/fimmu.2022.879657] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 04/27/2022] [Indexed: 11/13/2022] Open
Abstract
Purpose The specific mechanisms and biomarkersunderlying the progression of stable coronary artery disease (CAD) to acute myocardial infarction (AMI) remain unclear. The current study aims to explore novel gene biomarkers associated with CAD progression by analyzing the transcriptomic sequencing data of peripheral blood monocytes in different stages of CAD. Material and Methods A total of 24 age- and sex- matched patients at different CAD stages who received coronary angiography were enrolled, which included 8 patients with normal coronary angiography, 8 patients with angiographic intermediate lesion, and 8 patients with AMI. The RNA from peripheral blood monocytes was extracted and transcriptome sequenced to analyze the gene expression and the differentially expressed genes (DEG). A Gene Oncology (GO) enrichment analysis was performed to analyze the biological function of genes. Weighted gene correlation network analysis (WGCNA) was performed to classify genes into several gene modules with similar expression profiles, and correlation analysis was carried out to explore the association of each gene module with a clinical trait. The dynamic network biomarker (DNB) algorithm was used to calculate the key genes that promote disease progression. Finally, the overlapping genes between different analytic methods were explored. Results WGCNA analysis identified a total of nine gene modules, of which two modules have the highest positive association with CAD stages. GO enrichment analysis indicated that the biological function of genes in these two gene modules was closely related to inflammatory response, which included T-cell activation, cell response to inflammatory stimuli, lymphocyte activation, cytokine production, and the apoptotic signaling pathway. DNB analysis identified a total of 103 genes that may play key roles in the progression of atherosclerosis plaque. The overlapping genes between DEG/WGCAN and DNB analysis identified the following 13 genes that may play key roles in the progression of atherosclerosis disease: SGPP2, DAZAP2, INSIG1, CD82, OLR1, ARL6IP1, LIMS1, CCL5, CDK7, HBP1, PLAU, SELENOS, and DNAJB6. Conclusions The current study identified a total of 13 genes that may play key roles in the progression of atherosclerotic plaque and provides new insights for early warning biomarkers and underlying mechanisms underlying the progression of CAD.
Collapse
Affiliation(s)
- Chenxi Song
- Cardiometabolic Medicine Center, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Cardiovascular Disease, Beijing, China
| | - Zheng Qiao
- Cardiometabolic Medicine Center, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Cardiovascular Disease, Beijing, China
| | - Luonan Chen
- Key Laboratory of Systems Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Jing Ge
- Shanghai Immune Therapy Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Rui Zhang
- Cardiometabolic Medicine Center, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Cardiovascular Disease, Beijing, China
| | - Sheng Yuan
- Cardiometabolic Medicine Center, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Cardiovascular Disease, Beijing, China
| | - Xiaohui Bian
- Cardiometabolic Medicine Center, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Cardiovascular Disease, Beijing, China
| | - Chunyue Wang
- Cardiometabolic Medicine Center, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Cardiovascular Disease, Beijing, China
| | - Qianqian Liu
- Cardiometabolic Medicine Center, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Cardiovascular Disease, Beijing, China
| | - Lei Jia
- Cardiometabolic Medicine Center, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Cardiovascular Disease, Beijing, China
| | - Rui Fu
- Cardiometabolic Medicine Center, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Cardiovascular Disease, Beijing, China
- *Correspondence: Rui Fu, ; Kefei Dou,
| | - Kefei Dou
- Cardiometabolic Medicine Center, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Cardiovascular Disease, Beijing, China
- *Correspondence: Rui Fu, ; Kefei Dou,
| |
Collapse
|
6
|
Gao J, Ma L, Yin J, Liu G, Ma J, Xia S, Gong S, Han Q, Li T, Chen Y, Yin Y. Camellia ( Camellia oleifera bel.) seed oil reprograms gut microbiota and alleviates lipid accumulation in high fat-fed mice through the mTOR pathway. Food Funct 2022; 13:4977-4992. [PMID: 35452062 DOI: 10.1039/d1fo04075h] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Camellia (Camellia oleifera bel.) seed oil (CO) is extensively used as an edible oil in China and Asian countries owing to its high nutritional and medicinal values. It has been shown that a high-fat diet enhances lipid accumulation and induces intestinal microbiota imbalance in mice. However, it is still to be learned whether CO prevents dyslipidemia through gut microbiota. Here, using 16S rRNA gene sequencing analysis of the gut microbiota, we found that oral CO relieved lipid accumulation and reversed gut microbiota dysbiosis. Compared to mice (C57BL/6J male mice) fed a high-fat diet, treatment with CO regulated the composition and functional profiling communities related to the lipid metabolism of gut microbiota. The abundances of Dubosiella, Lactobacillus, and Alistipes were markedly increased in CO supplementation mice. In addition, the colon levels of isobutyric acid, pentanoic acid, and isovaleric acid were similar between the control and CO supplementation mice. Besides, the results indicated that CO supplementation in mice alleviated lipid droplet accumulation in the hepatocytes and subcutaneous adipose tissue, although the liver index did not show a difference. Notably, CO supplementation for 6 weeks significantly reduced the levels of LDL, TC, and TG, while enhancing the level of HDL in serum and liver. Meanwhile, we also identified that CO supplementation suppressed the mammalian target of rapamycin (mTOR) signaling pathway in high fat-fed (HF-fed) mice. Taken together, our results suggest that CO improved dyslipidemia and alleviated lipid accumulation in HF-fed mice, the molecular mechanisms possibly associated with the reorganization of gut microbiota, in particular, Alistipes and Dubosiella, mediated the inhibition of the mTOR pathway.
Collapse
Affiliation(s)
- Jing Gao
- Research Institute of Oil Tea Camellia, Hunan Academy of Forestry, Shao shan South Road, No. 658, Changsha 410004, China. .,National Engineering Research Center for Oil Tea Camellia, Changsha 410004, China.,Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Chinese Academy of Sciences, Changsha, Hunan, China.
| | - Li Ma
- Research Institute of Oil Tea Camellia, Hunan Academy of Forestry, Shao shan South Road, No. 658, Changsha 410004, China. .,National Engineering Research Center for Oil Tea Camellia, Changsha 410004, China
| | - Jie Yin
- College of Animal Science and Technology, Hunan Co-Innovation Center of Animal Production Safety, Hunan Agricultural University, Changsha, China
| | - Gang Liu
- College of Animal Science and Technology, Hunan Co-Innovation Center of Animal Production Safety, Hunan Agricultural University, Changsha, China
| | - Jie Ma
- College of Animal Science and Technology, Hunan Co-Innovation Center of Animal Production Safety, Hunan Agricultural University, Changsha, China
| | - SiTing Xia
- College of Animal Science and Technology, Hunan Co-Innovation Center of Animal Production Safety, Hunan Agricultural University, Changsha, China
| | - SaiMing Gong
- College of Animal Science and Technology, Hunan Co-Innovation Center of Animal Production Safety, Hunan Agricultural University, Changsha, China
| | - Qi Han
- College of Animal Science and Technology, Hunan Co-Innovation Center of Animal Production Safety, Hunan Agricultural University, Changsha, China
| | - TieJun Li
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Chinese Academy of Sciences, Changsha, Hunan, China.
| | - YongZhong Chen
- Research Institute of Oil Tea Camellia, Hunan Academy of Forestry, Shao shan South Road, No. 658, Changsha 410004, China. .,National Engineering Research Center for Oil Tea Camellia, Changsha 410004, China
| | - YuLong Yin
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Chinese Academy of Sciences, Changsha, Hunan, China. .,College of Animal Science and Technology, Hunan Co-Innovation Center of Animal Production Safety, Hunan Agricultural University, Changsha, China
| |
Collapse
|
7
|
Kuang YL, Theusch E, M Krauss R, W Medina M. Identifying genetic modulators of statin response using subject-derived lymphoblastoid cell lines. Pharmacogenomics 2021; 22:413-421. [PMID: 33858191 DOI: 10.2217/pgs-2020-0197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Although statins (3-hydroxy-3-methylglutaryl-CoA reductase inhibitors) have proven effective in reducing plasma low-density lipoprotein levels and risk of cardiovascular disease, their lipid lowering efficacy is highly variable among individuals. Furthermore, statin treatment carries a small but significant risk of adverse effects, most notably myopathy and new onset diabetes. Hence, identification of biomarkers for predicting patients who would most likely benefit from statin treatment without incurring increased risk of adverse effects can have a significant public health impact. In this review, we discuss the rationale for the use of subject-derived lymphoblastoid cell lines in studies of statin pharmacogenomics and describe a variety of approaches we have employed to identify novel genetic markers associated with interindividual variation in statin response.
Collapse
Affiliation(s)
- Yu-Lin Kuang
- Department of Pediatrics, University of California San Francisco, Oakland, CA, USA
| | - Elizabeth Theusch
- Department of Pediatrics, University of California San Francisco, Oakland, CA, USA
| | - Ronald M Krauss
- Departments of Pediatrics and Medicine, University of California San Francisco, Oakland, CA, USA
| | - Marisa W Medina
- Department of Pediatrics, University of California San Francisco, Oakland, CA, USA
| |
Collapse
|
8
|
Theusch E, Chen YDI, Rotter JI, Krauss RM, Medina MW. Genetic variants modulate gene expression statin response in human lymphoblastoid cell lines. BMC Genomics 2020; 21:555. [PMID: 32787775 PMCID: PMC7430882 DOI: 10.1186/s12864-020-06966-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 08/03/2020] [Indexed: 01/10/2023] Open
Abstract
Background Statins are widely prescribed to lower plasma low-density lipoprotein cholesterol levels. Though statins reduce cardiovascular disease risk overall, statin efficacy varies, and some people experience adverse side effects while on statin treatment. Statins also have pleiotropic effects not directly related to their cholesterol-lowering properties, but the mechanisms are not well understood. To identify potential genetic modulators of clinical statin response, we looked for genetic variants associated with statin-induced changes in gene expression (differential eQTLs or deQTLs) in lymphoblastoid cell lines (LCLs) derived from participants of the Cholesterol and Pharmacogenetics (CAP) 40 mg/day 6-week simvastatin clinical trial. We exposed CAP LCLs to 2 μM simvastatin or control buffer for 24 h and performed polyA-selected, strand-specific RNA-seq. Statin-induced changes in gene expression from 259 European ancestry or 153 African American ancestry LCLs were adjusted for potential confounders prior to association with genotyped and imputed genetic variants within 1 Mb of each gene’s transcription start site. Results From the deQTL meta-analysis of the two ancestral populations, we identified significant cis-deQTLs for 15 genes (TBC1D4, MDGA1, CHI3L2, OAS1, GATM, ASNSD1, GLUL, TDRD12, PPIP5K2, OAS3, SERPINB1, ANKDD1A, DTD1, CYFIP2, and GSDME), eight of which were significant in at least one of the ancestry subsets alone. We also conducted eQTL analyses of the endogenous (control-treated), statin-treated, and average of endogenous and statin-treated LCL gene expression levels. We identified eQTLs for approximately 6000 genes in each of the three (endogenous, statin-treated, and average) eQTL meta-analyses, with smaller numbers identified in the ancestral subsets alone. Conclusions Several of the genes in which we identified deQTLs have functions in human health and disease, such as defense from viruses, glucose regulation, and response to chemotherapy drugs. This suggests that DNA variation may play a role in statin effects on various health outcomes. These findings could prove useful to future studies aiming to assess benefit versus risk of statin treatment using individual genetic profiles.
Collapse
Affiliation(s)
- Elizabeth Theusch
- Department of Pediatrics, University of California San Francisco, Oakland, CA, USA
| | - Yii-Der I Chen
- Department of Pediatrics, The Institute for Translational Genomics and Population Sciences, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Jerome I Rotter
- Departments of Pediatrics and Medicine, The Institute for Translational Genomics and Population Sciences, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Ronald M Krauss
- Departments of Pediatrics and Medicine, University of California San Francisco, Oakland, CA, USA
| | - Marisa W Medina
- Department of Pediatrics, University of California San Francisco, Oakland, CA, USA.
| |
Collapse
|
9
|
ZNF542P is a pseudogene associated with LDL response to simvastatin treatment. Sci Rep 2018; 8:12443. [PMID: 30127457 PMCID: PMC6102286 DOI: 10.1038/s41598-018-30859-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 08/03/2018] [Indexed: 02/07/2023] Open
Abstract
Statins are the most commonly prescribed cardiovascular disease drug, but their inter-individual efficacy varies considerably. Genetic factors uncovered to date have only explained a small proportion of variation in low-density lipoprotein cholesterol (LDLC) lowering. To identify novel markers and determinants of statin response, we used whole transcriptome sequence data collected from simvastatin and control incubated lymphoblastoid cell lines (LCLs) established from participants of the Cholesterol and Pharmacogenetics (CAP) simvastatin clinical trial. We looked for genes whose statin-induced expression changes were most different between LCLs derived from individuals with high versus low plasma LDLC statin response during the CAP trial. We created a classification model of 82 “signature” gene expression changes that distinguished high versus low LDLC statin response. One of the most differentially changing genes was zinc finger protein 542 pseudogene (ZNF542P), the signature gene with changes most correlated with statin-induced change in cellular cholesterol ester, an in vitro marker of statin response. ZNF542P knock-down in a human hepatoma cell line increased intracellular cholesterol ester levels upon simvastatin treatment. Together, these findings imply a role for ZNF542P in LDLC response to simvastatin and, importantly, highlight the potential significance of noncoding RNAs as a contributing factor to variation in drug response.
Collapse
|
10
|
Human genetic variation in VAC14 regulates Salmonella invasion and typhoid fever through modulation of cholesterol. Proc Natl Acad Sci U S A 2017; 114:E7746-E7755. [PMID: 28827342 DOI: 10.1073/pnas.1706070114] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Risk, severity, and outcome of infection depend on the interplay of pathogen virulence and host susceptibility. Systematic identification of genetic susceptibility to infection is being undertaken through genome-wide association studies, but how to expeditiously move from genetic differences to functional mechanisms is unclear. Here, we use genetic association of molecular, cellular, and human disease traits and experimental validation to demonstrate that genetic variation affects expression of VAC14, a phosphoinositide-regulating protein, to influence susceptibility to Salmonella enterica serovar Typhi (S Typhi) infection. Decreased VAC14 expression increased plasma membrane cholesterol, facilitating Salmonella docking and invasion. This increased susceptibility at the cellular level manifests as increased susceptibility to typhoid fever in a Vietnamese population. Furthermore, treating zebrafish with a cholesterol-lowering agent, ezetimibe, reduced susceptibility to S Typhi. Thus, coupling multiple genetic association studies with mechanistic dissection revealed how VAC14 regulates Salmonella invasion and typhoid fever susceptibility and may open doors to new prophylactic/therapeutic approaches.
Collapse
|