1
|
Estévez-Paredes M, Mata-Martín MC, de Andrés F, LLerena A. Pharmacogenomic biomarker information on drug labels of the Spanish Agency of Medicines and Sanitary products: evaluation and comparison with other regulatory agencies. THE PHARMACOGENOMICS JOURNAL 2024; 24:2. [PMID: 38233388 DOI: 10.1038/s41397-023-00321-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 10/07/2023] [Accepted: 12/05/2023] [Indexed: 01/19/2024]
Abstract
This work aimed to analyse the pharmacogenetic information in the Spanish Drug Regulatory Agency (AEMPS) Summary of Products Characteristics (SmPC), evaluating the presence of pharmacogenetic biomarkers, as well as the associated recommendations. A total of 55.4% of the 1891 drug labels reviewed included information on pharmacogenetic biomarker(s). Pharmacogenomic information appears most frequently in the "antineoplastic and immunomodulating agents", "nervous system", and "cardiovascular system" Anatomical Therapeutic Chemical groups. A total of 509 different pharmacogenetic biomarkers were found, of which CYP450 enzymes accounted for almost 34% of the total drug-biomarker associations evaluated. A total of 3679 drug-biomarker pairs were identified, 102 of which were at the 1A level (PharmGKB® classification system), and 33.33% of these drug-pharmacogenetic biomarker pairs were assigned to "actionable PGx", 12.75% to "informative PGx", 4.9% to "testing recommended", and 4.9% to "testing required". The rate of coincidence in the assigned PGx level of recommendation between the AEMPS and regulatory agencies included in the PharmGKB® Drug Label Annotations database (i.e., the FDA, EMA, SWISS Medic, PMDA, and HCSC) ranged from 45% to 65%, being 'actionable level' the most frequent. On the other hand, discrepancies between agencies did not exceed 35%. This study highlights the presence of relevant pharmacogenetic information on Spanish drug labels, which would help avoid interactions, toxicity, or lack of treatment efficacy.
Collapse
Affiliation(s)
- María Estévez-Paredes
- INUBE Extremadura Biosanitary Research Institute, Badajoz, Spain
- CICAB Clinical Research Centre, Pharmacogenetics and Personalized Medicine Unit, Badajoz University Hospital, Extremadura Health Service, Badajoz, Spain
| | - M Carmen Mata-Martín
- INUBE Extremadura Biosanitary Research Institute, Badajoz, Spain
- CICAB Clinical Research Centre, Pharmacogenetics and Personalized Medicine Unit, Badajoz University Hospital, Extremadura Health Service, Badajoz, Spain
| | - Fernando de Andrés
- INUBE Extremadura Biosanitary Research Institute, Badajoz, Spain
- CICAB Clinical Research Centre, Pharmacogenetics and Personalized Medicine Unit, Badajoz University Hospital, Extremadura Health Service, Badajoz, Spain
- Department of Analytical Chemistry and Food technology, Faculty of Pharmacy, University of Castilla-La Mancha, Albacete, Spain
| | - Adrián LLerena
- INUBE Extremadura Biosanitary Research Institute, Badajoz, Spain.
- CICAB Clinical Research Centre, Pharmacogenetics and Personalized Medicine Unit, Badajoz University Hospital, Extremadura Health Service, Badajoz, Spain.
- Faculty of Medicine, University of Extremadura, Badajoz, Spain.
| |
Collapse
|
2
|
Cacabelos R, Naidoo V, Corzo L, Cacabelos N, Carril JC. Genophenotypic Factors and Pharmacogenomics in Adverse Drug Reactions. Int J Mol Sci 2021; 22:ijms222413302. [PMID: 34948113 PMCID: PMC8704264 DOI: 10.3390/ijms222413302] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/05/2021] [Accepted: 12/06/2021] [Indexed: 02/06/2023] Open
Abstract
Adverse drug reactions (ADRs) rank as one of the top 10 leading causes of death and illness in developed countries. ADRs show differential features depending upon genotype, age, sex, race, pathology, drug category, route of administration, and drug–drug interactions. Pharmacogenomics (PGx) provides the physician effective clues for optimizing drug efficacy and safety in major problems of health such as cardiovascular disease and associated disorders, cancer and brain disorders. Important aspects to be considered are also the impact of immunopharmacogenomics in cutaneous ADRs as well as the influence of genomic factors associated with COVID-19 and vaccination strategies. Major limitations for the routine use of PGx procedures for ADRs prevention are the lack of education and training in physicians and pharmacists, poor characterization of drug-related PGx, unspecific biomarkers of drug efficacy and toxicity, cost-effectiveness, administrative problems in health organizations, and insufficient regulation for the generalized use of PGx in the clinical setting. The implementation of PGx requires: (i) education of physicians and all other parties involved in the use and benefits of PGx; (ii) prospective studies to demonstrate the benefits of PGx genotyping; (iii) standardization of PGx procedures and development of clinical guidelines; (iv) NGS and microarrays to cover genes with high PGx potential; and (v) new regulations for PGx-related drug development and PGx drug labelling.
Collapse
Affiliation(s)
- Ramón Cacabelos
- Department of Genomic Medicine, International Center of Neuroscience and Genomic Medicine, EuroEspes Biomedical Research Center, Bergondo, 15165 Corunna, Spain
- Correspondence: ; Tel.: +34-981-780-505
| | - Vinogran Naidoo
- Department of Neuroscience, International Center of Neuroscience and Genomic Medicine, EuroEspes Biomedical Research Center, Bergondo, 15165 Corunna, Spain;
| | - Lola Corzo
- Department of Medical Biochemistry, International Center of Neuroscience and Genomic Medicine, EuroEspes Biomedical Research Center, Bergondo, 15165 Corunna, Spain;
| | - Natalia Cacabelos
- Department of Medical Documentation, International Center of Neuroscience and Genomic Medicine, EuroEspes Biomedical Research Center, Bergondo, 15165 Corunna, Spain;
| | - Juan C. Carril
- Departments of Genomics and Pharmacogenomics, International Center of Neuroscience and Genomic Medicine, EuroEspes Biomedical Research Center, Bergondo, 15165 Corunna, Spain;
| |
Collapse
|
3
|
Jeiziner C, Suter K, Wernli U, Barbarino JM, Gong L, Whirl-Carrillo M, Klein TE, Szucs TD, Hersberger KE, Meyer zu Schwabedissen HE. Pharmacogenetic information in Swiss drug labels - a systematic analysis. THE PHARMACOGENOMICS JOURNAL 2021; 21:423-434. [PMID: 33070160 PMCID: PMC8292148 DOI: 10.1038/s41397-020-00195-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 08/18/2020] [Accepted: 10/05/2020] [Indexed: 01/31/2023]
Abstract
Implementation of pharmacogenetics (PGx) and individualization of drug therapy is supposed to obviate adverse drug reactions or therapy failure. Health care professionals (HCPs) use drug labels (DLs) as reliable information about drugs. We analyzed the Swiss DLs to give an overview on the currently available PGx instructions. We screened 4306 DLs applying natural language processing focusing on drug metabolism (pharmacokinetics) and we assigned PGx levels following the classification system of PharmGKB. From 5979 hits, 2564 were classified as PGx-relevant affecting 167 substances. 55% (n = 93) were classified as "actionable PGx". Frequently, PGx information appeared in the pharmacokinetics section and in DLs of the anatomic group "nervous system". Unstandardized wording, appearance of PGx information in different sections and unclear instructions challenge HCPs to identify and interpret PGx information and translate it into practice. HCPs need harmonization and standardization of PGx information in DLs to personalize drug therapies and tailor pharmaceutical care.
Collapse
Affiliation(s)
- C. Jeiziner
- grid.6612.30000 0004 1937 0642Pharmaceutical Care Research Group, Department of Pharmaceutical Sciences, University of Basel, Basel, 4001 Switzerland
| | - K. Suter
- grid.6612.30000 0004 1937 0642European Center of Pharmaceutical Medicine, Faculty of Medicine, University of Basel, Basel, 4056 Switzerland
| | - U. Wernli
- grid.6612.30000 0004 1937 0642Pharmaceutical Care Research Group, Department of Pharmaceutical Sciences, University of Basel, Basel, 4001 Switzerland
| | - J. M. Barbarino
- grid.168010.e0000000419368956Department of Biomedical Data Sciences, Stanford University, Stanford, CA 94305 USA
| | - L. Gong
- grid.168010.e0000000419368956Department of Biomedical Data Sciences, Stanford University, Stanford, CA 94305 USA
| | - M. Whirl-Carrillo
- grid.168010.e0000000419368956Department of Biomedical Data Sciences, Stanford University, Stanford, CA 94305 USA
| | - T. E. Klein
- grid.168010.e0000000419368956Department of Biomedical Data Sciences, Stanford University, Stanford, CA 94305 USA ,grid.168010.e0000000419368956Department of Medicine, Stanford University, Stanford, CA 94305 USA
| | - T. D. Szucs
- grid.6612.30000 0004 1937 0642European Center of Pharmaceutical Medicine, Faculty of Medicine, University of Basel, Basel, 4056 Switzerland
| | - K. E. Hersberger
- grid.6612.30000 0004 1937 0642Pharmaceutical Care Research Group, Department of Pharmaceutical Sciences, University of Basel, Basel, 4001 Switzerland
| | - H. E. Meyer zu Schwabedissen
- grid.6612.30000 0004 1937 0642Biopharmacy, Department of Pharmaceutical Sciences, University of Basel, Basel, 4056 Switzerland
| |
Collapse
|
4
|
Skvrce NM, Krivokapić S, Božina N. Implementation of pharmacogenomics in product information. Pharmacogenomics 2020; 21:443-448. [DOI: 10.2217/pgs-2019-0166] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: The aim of our study was to analyse the level of implementation of pharmacogenomics (PGx) in product information (PI) of medicinal products approved through national procedures in the EU. Materials & methods: In the analysis, we included nationally approved medicinal products in Croatia if guidelines for relevant substances were published. Results: Overall, 265 marketing authorizations were analyzed. The majority of data included in PI was only informative, while the most frequent PGx biomarkers were genes which code CYP P450. Analysis according to the Anatomical Therapeutic Chemical classification revealed that most substances belonged to the nervous system. Conclusion: Although hindrances in implementation are anticipated, PI should be more specific in terms of when the testing is indicated and should include actionable recommendations according to the results of PGx testing.
Collapse
Affiliation(s)
| | - Sonja Krivokapić
- Agency for Medicinal Products & Medical Devices, Zagreb, Croatia
| | - Nada Božina
- School of Medicine,University of Zagreb, Zagreb, Croatia
- Department of Laboratory Diagnostics, University Hospital Center Zagreb, Zagreb, Croatia
| |
Collapse
|
5
|
Kamenski G, Ayazseven S, Berndt A, Fink W, Kamenski L, Zehetmayer S, Pühringer H. Clinical Relevance of CYP2D6 Polymorphisms in Patients of an Austrian Medical Practice: A Family Practice-Based Observational Study. Drugs Real World Outcomes 2020; 7:63-73. [PMID: 31863305 PMCID: PMC7060981 DOI: 10.1007/s40801-019-00177-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND Around 20-30% of all prescribed drugs are estimated to be metabolised by the cytochrome P450 (CYP) 2D6 enzyme. In a medical practice, it is usually not known whether a patient is a poor, intermediate, normal or ultra-rapid metaboliser for CYP2D6-metabolised drugs. OBJECTIVE This study aims to explore the clinical relevance and the extent of hazardous prescriptions by analysing the metaboliser status of patients already taking such drugs. METHODS This is a family practice-based observational study performed in a rural practice for general and family medicine in Lower Austria providing care for approximately 2100 patients annually. In 287 consecutive patients, who had taken or were taking a drug metabolised by CYP2D6 during the last 3 years, the metaboliser status was analysed. RESULTS The genetic analysis of 287 patients resulted in 51.22% normal metabolisers, 38.68% intermediate metabolisers, 6.27% poor metabolisers and 3.83% ultra-rapid metabolisers. In 50 cases (poor metaboliser, intermediate metaboliser and ultra-rapid metaboliser, i.e. 17.42% of all tested patients taking a CYP2D6-specific drug), an altered gene function was identified, for which clinical guideline annotations, drug label annotations, or clinical annotations are available. Allele and genotype frequencies were in accordance with data from other European studies. CONCLUSIONS In 17.42% of all patients already taking a drug metabolised by CYP2D6, knowledge of the genetically defined metaboliser status would have been of immediate clinical relevance before prescribing the drug. CLINICALTRIALS. GOV IDENTIFIER NCT03859622.
Collapse
Affiliation(s)
- Gustav Kamenski
- Karl Landsteiner Institute for Systematics in General Medicine, Angern, Austria.
- Department of General Practice, Centre for Public Health, Medical University Vienna, Vienna, Austria.
| | | | - Anne Berndt
- R&D Department, ViennaLab Diagnostic GmbH, Vienna, Austria
| | - Waltraud Fink
- Karl Landsteiner Institute for Systematics in General Medicine, Angern, Austria
| | | | - Sonja Zehetmayer
- Section for Medical Statistics, Centre for Medical Statistics, Informatics and Intelligent Systems, Medical University of Vienna, Vienna, Austria
| | | |
Collapse
|
6
|
Cacabelos R, Cacabelos N, Carril JC. The role of pharmacogenomics in adverse drug reactions. Expert Rev Clin Pharmacol 2019; 12:407-442. [DOI: 10.1080/17512433.2019.1597706] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Ramón Cacabelos
- EuroEspes Biomedical Research Center, Institute of Medical Science and Genomic Medicine, Corunna, Spain
| | - Natalia Cacabelos
- EuroEspes Biomedical Research Center, Institute of Medical Science and Genomic Medicine, Corunna, Spain
| | - Juan C. Carril
- EuroEspes Biomedical Research Center, Institute of Medical Science and Genomic Medicine, Corunna, Spain
| |
Collapse
|
7
|
Tan-Koi WC, Limenta M, Mohamed EHM, Lee EJD. The Importance of Ethnicity Definitions and Pharmacogenomics in Ethnobridging and Pharmacovigilance. Pharmacogenomics 2019. [DOI: 10.1016/b978-0-12-812626-4.00011-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
|
8
|
Applications of pharmacogenomics in regulatory science: a product life cycle review. THE PHARMACOGENOMICS JOURNAL 2017; 18:359-366. [PMID: 29205206 DOI: 10.1038/tpj.2017.47] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 08/05/2017] [Accepted: 09/18/2017] [Indexed: 01/11/2023]
Abstract
With rapid developments of pharmacogenomics (PGx) and regulatory science, it is important to understand the current PGx integration in product life cycle, impact on clinical practice thus far and opportunities ahead. We conducted a cross-sectional review on PGx-related regulatory documents and implementation guidelines in the United States and Europe. Our review found that although PGx-related guidance in both markets span across the entire product life cycle, the scope of implementation guidelines varies across two continents. Approximately one-third of Food and Drug Administration (FDA)-approved drugs with PGx information in drug labels and half of the European labels posted on PharmGKB website contain recommendations on genetic testing. The drugs affected 19 and 15 World Health Organization Anatomical Therapeutic Chemical drug classes (fourth level) in the United States and Europe, respectively, with protein kinase inhibitors (13 drugs in the United States and 16 drugs in Europe) being most prevalent. Topics of emerging interest were novel technologies, adaptive design in clinical trial and sample collection.
Collapse
|