1
|
Duinkerken CW, Chiodo S, Hueniken K, Hauptmann M, Jóźwiak K, Cheng D, Hope A, Liu G, Zuur CL. The role of genetic variants in the prediction of hearing loss due to cisplatin chemoradiotherapy. Cancer Med 2024; 13:e7465. [PMID: 39159054 PMCID: PMC11332395 DOI: 10.1002/cam4.7465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 04/26/2024] [Accepted: 05/28/2024] [Indexed: 08/21/2024] Open
Abstract
BACKGROUND Concomitant high-dose cisplatin with radiotherapy is commonly used for treating head and neck squamous cell carcinoma (HNSCC). Cisplatin, often used with radiotherapy, is known for causing irreversible sensorineural hearing loss, with individual variability suggesting a genetic component. This study aims to enhance the predictive ability of the clinical prediction model for cisplatin-induced hearing loss (CIHL) in HNSCC patients, as outlined in Theunissen et al., by incorporating significant genetic variants. METHODS Conducted at the Netherlands Cancer Institute, this retrospective study included 74 patients treated between 1997 and 2011. Thirty-one SNPs that were previously associated with CIHL or other cisplatin-induced toxicities were identified and incorporated into the model. The primary outcome measured was the change in decibels at posttreatment 1-2-4 kHz hearing levels per additional minor allele of these SNPs, evaluated using linear mixed-effects regression models. The model's predictive accuracy was determined by the area under the curve (AUC) using 10-fold cross-validation. RESULTS The rs2289669 SNP in the SLC47A1/MATE1 gene was linked to a significant 2.67 dB increase in hearing loss per allele (95% CI 0.49-4.86, p = 0.017). Incorporating rs2289669 improved the model's AUC from 0.78 to 0.83, a borderline significant improvement (p = 0.073). CONCLUSIONS This study underscores the importance of the rs2289669 SNP in CIHL and demonstrates the potential of combining genetic and clinical data for enhanced predictive models in personalized treatment strategies.
Collapse
Affiliation(s)
- Charlotte W. Duinkerken
- Department of Otolaryngology and Head and Neck SurgeryLeiden University Medical CentreLeidenthe Netherlands
- Department of Head and Neck Surgerythe Netherlands Cancer InstituteAmsterdamthe Netherlands
| | - Sabrina Chiodo
- Dalla Lana School of Public HealthUniversity of TorontoTorontoCanada
- Department of Medical Oncology and HematologyPrincess Margaret Cancer CentreTorontoCanada
| | - Katrina Hueniken
- Department of BiostatisticsUniversity Health NetworkTorontoCanada
| | - Michael Hauptmann
- Institute of Biostatistics and Registry ResearchBrandenburg Medical School Theodor FontaneNeuruppinGermany
| | - Katarzyna Jóźwiak
- Institute of Biostatistics and Registry ResearchBrandenburg Medical School Theodor FontaneNeuruppinGermany
| | - Dangxiao Cheng
- Department of Medical Oncology and HematologyPrincess Margaret Cancer CentreTorontoCanada
| | - Andrew Hope
- Department of Medical Oncology and HematologyPrincess Margaret Cancer CentreTorontoCanada
| | - Geoffrey Liu
- Dalla Lana School of Public HealthUniversity of TorontoTorontoCanada
- Department of Medical Oncology and HematologyPrincess Margaret Cancer CentreTorontoCanada
| | - Charlotte L. Zuur
- Department of Otolaryngology and Head and Neck SurgeryLeiden University Medical CentreLeidenthe Netherlands
- Department of Head and Neck Surgerythe Netherlands Cancer InstituteAmsterdamthe Netherlands
| |
Collapse
|
2
|
Fujikawa T, Ito T, Okada R, Sawada M, Mohri K, Tateishi Y, Takahashi R, Asakage T, Tsutsumi T. Combined genetic polymorphisms of the GSTT1 and NRF2 genes increase susceptibility to cisplatin-induced ototoxicity: A preliminary study. Hear Res 2024; 445:108995. [PMID: 38518393 DOI: 10.1016/j.heares.2024.108995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 03/01/2024] [Accepted: 03/19/2024] [Indexed: 03/24/2024]
Abstract
OBJECTIVE The genotype-phenotype relationship in cisplatin-induced ototoxicity remains unclear. By assessing early shifts in distortion product otoacoustic emission (DPOAE) levels after initial cisplatin administration, we aimed to discriminate patients' susceptibility to cisplatin-induced ototoxicity and elucidate their genetic background. STUDY DESIGN A prospective cross-sectional study. SETTING Tertiary referral hospital in Japan. PATIENTS Twenty-six patients with head and neck cancer were undergoing chemoradiotherapy with three cycles of 100 mg/m2 cisplatin. INTERVENTIONS Repetitive pure-tone audiometry and DPOAE measurements, and blood sampling for DNA extraction were performed. Patients were grouped into early ototoxicity presence or absence based on whether DPOAE level shifts exceeded the corresponding reference limits of the 21-day test interval. MAIN OUTCOME MEASURES Hearing thresholds after each cisplatin cycle, severity of other adverse events, and polymorphisms in cisplatin-induced ototoxicity-associated genes were compared. RESULTS Early ototoxicity was present in 14 and absent in 12 patients. Ototoxicity presence on DPOAEs was associated with greater progression of hearing loss in frequencies ≥2 kHz throughout therapy and with higher ototoxicity grades compared with ototoxicity absence. Ototoxicity was further associated with grade ≥2 nausea. Ototoxicity presence was genetically associated with the GSTT1 null genotype and G-allele of NFE2L2 rs6721961, whereas ototoxicity absence was associated with the GSTM1 null genotype. Dose-dependent progression of hearing loss was the greatest in the combined genotype pattern of GSTT1 null and the T/G or G/G variants of rs6721961. CONCLUSION Early DPOAE changes reflected genetic vulnerability to cisplatin-induced ototoxicity. Hereditary insufficiency of the antioxidant defense system causes severe cisplatin-induced hearing loss and nausea.
Collapse
Affiliation(s)
- Taro Fujikawa
- Department of Otolaryngology, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo, Tokyo, 113-8510 Japan.
| | - Taku Ito
- Department of Otolaryngology, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo, Tokyo, 113-8510 Japan
| | - Ryuhei Okada
- Department of Head and Neck Surgery, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo, Tokyo, 113-8510 Japan
| | - Mitsutaka Sawada
- Department of Otolaryngology, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo, Tokyo, 113-8510 Japan
| | - Kaori Mohri
- Department of Otolaryngology, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo, Tokyo, 113-8510 Japan
| | - Yumiko Tateishi
- Department of Head and Neck Surgery, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo, Tokyo, 113-8510 Japan
| | - Ryosuke Takahashi
- Department of Head and Neck Surgery, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo, Tokyo, 113-8510 Japan
| | - Takahiro Asakage
- Department of Head and Neck Surgery, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo, Tokyo, 113-8510 Japan
| | - Takeshi Tsutsumi
- Department of Otolaryngology, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo, Tokyo, 113-8510 Japan
| |
Collapse
|
3
|
Scott EN, Joseph AA, Dhanda A, Tanoshima R, Brooks B, Rassekh SR, Ross CJD, Carleton BC, Loucks CM. Systematic Critical Review of Genetic Factors Associated with Cisplatin-induced Ototoxicity: Canadian Pharmacogenomics Network for Drug Safety 2022 Update. Ther Drug Monit 2023; 45:714-730. [PMID: 37726872 DOI: 10.1097/ftd.0000000000001113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 02/01/2023] [Indexed: 09/21/2023]
Abstract
BACKGROUND Cisplatin is commonly used to treat solid tumors; however, its use can be complicated by drug-induced hearing loss (ie, ototoxicity). The presence of certain genetic variants has been associated with the development/occurrence of cisplatin-induced ototoxicity, suggesting that genetic factors may be able to predict patients who are more likely to develop ototoxicity. The authors aimed to review genetic associations with cisplatin-induced ototoxicity and discuss their clinical relevance. METHODS An updated systematic review was conducted on behalf of the Canadian Pharmacogenomics Network for Drug Safety, based on the Preferred Reporting Items for Systematic reviews and Meta-Analyses 2020 statement. Pharmacogenomic studies that reported associations between genetic variation and cisplatin-induced ototoxicity were included. The evidence on genetic associations was summarized and evaluated, and knowledge gaps that can be used to inform future pharmacogenomic studies identified. RESULTS Overall, 40 evaluated reports, considering 47 independent patient populations, captured associations involving 24 genes. Considering GRADE criteria, genetic variants in 2 genes were strongly (ie, odds ratios ≥3) and consistently (ie, replication in ≥3 independent populations) predictive of cisplatin-induced ototoxicity. Specifically, an ACYP2 variant has been associated with ototoxicity in both children and adults, whereas TPMT variants are relevant in children. Encouraging evidence for associations involving several other genes also exists; however, further research is necessary to determine potential clinical relevance. CONCLUSIONS Genetic variation in ACYP2 and TPMT may be helpful in predicting patients at the highest risk of developing cisplatin-induced ototoxicity. Further research (including replication studies considering diverse pediatric and adult patient populations) is required to determine whether genetic variation in additional genes may help further identify patients most at risk.
Collapse
Affiliation(s)
- Erika N Scott
- BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada
- Department of Medical Genetics, Faculty of Medicine, University of British Columbia (UBC), Vancouver, British Columbia, Canada
| | - Akshaya A Joseph
- BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada
- Division of Translational Therapeutics, Department of Pediatrics, Faculty of Medicine, UBC, Vancouver, British Columbia, Canada
| | - Angie Dhanda
- BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada
- Division of Translational Therapeutics, Department of Pediatrics, Faculty of Medicine, UBC, Vancouver, British Columbia, Canada
| | - Reo Tanoshima
- Department of Pediatrics, Yokohama City University Hospital, Yokohama, Japan
- YCU Center for Novel and Exploratory Clinical Trials, Yokohama City University Hospital, Yokohama, Japan
| | - Beth Brooks
- Audiology and Speech Pathology Department, British Columbia Children's Hospital, Vancouver, British Columbia, Canada
- School of Audiology and Speech Science, UBC, Vancouver, British Columbia, Canada
| | - S Rod Rassekh
- BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada
- Division of Oncology, Hematology and Bone Marrow Transplant, British Columbia Children's Hospital and UBC, Vancouver, British Columbia, Canada
| | - Colin J D Ross
- BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada
- Department of Medical Genetics, Faculty of Medicine, University of British Columbia (UBC), Vancouver, British Columbia, Canada
- Faculty of Pharmaceutical Sciences, UBC, Vancouver, British Columbia, Canada
| | - Bruce C Carleton
- BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada
- Department of Medical Genetics, Faculty of Medicine, University of British Columbia (UBC), Vancouver, British Columbia, Canada
- Division of Translational Therapeutics, Department of Pediatrics, Faculty of Medicine, UBC, Vancouver, British Columbia, Canada
- Pharmaceutical Outcomes Programme, British Columbia Children's Hospital, Vancouver, British Columbia, Canada; and
| | - Catrina M Loucks
- BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada
- Division of Translational Therapeutics, Department of Pediatrics, Faculty of Medicine, UBC, Vancouver, British Columbia, Canada
- Department of Anesthesiology, Pharmacology & Therapeutics, Faculty of Medicine, UBC, Vancouver, British Columbia, Canada
| |
Collapse
|
4
|
Bellanca CM, Augello E, Cantone AF, Di Mauro R, Attaguile GA, Di Giovanni V, Condorelli GA, Di Benedetto G, Cantarella G, Bernardini R. Insight into Risk Factors, Pharmacogenetics/Genomics, and Management of Adverse Drug Reactions in Elderly: A Narrative Review. Pharmaceuticals (Basel) 2023; 16:1542. [PMID: 38004408 PMCID: PMC10674329 DOI: 10.3390/ph16111542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/23/2023] [Accepted: 10/25/2023] [Indexed: 11/26/2023] Open
Abstract
The European Medicine Agency (EMA) has defined Adverse Drug Reactions (ADRs) as "a noxious and unintended response to a medicine", not including poisoning, accidental, or intentional overdoses. The ADR occurrence differs based on the approach adopted for defining and detecting them, the characteristics of the population under study, and the research setting. ADRs have a significant impact on morbidity and mortality, particularly among older adults, and represent a financial burden for health services. Between 30% and 60% of ADRs might be predictable and preventable, emerging as a result of inappropriate prescription, drug chemistry inherent toxicity, cell-specific drug toxicity, age- and sex-related anomalies in drug absorption, distribution, metabolism, and elimination (ADME), and drug-drug interactions (DDIs) in combination therapies or when a patient is treated with different drugs for concomitant disorders. This is particularly important in chronic diseases which require long-term treatments. Rapid developments in pharmacogenetics/genomics have improved the understanding of ADRs accompanied by more accurate prescriptions and reduction in unnecessary costs. To alleviate the burden of ADRs, especially in the elderly, interventions focused on pharmaceutical principles, such as medication review and reconciliation, should be integrated into a broader assessment of patients' characteristics, needs, and health priorities. Digital health interventions could offer valuable solutions to assist healthcare professionals in identifying inappropriate prescriptions and promoting patient adherence to pharmacotherapies.
Collapse
Affiliation(s)
- Carlo Maria Bellanca
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, 95123 Catania, Italy; (C.M.B.); (E.A.); (A.F.C.); (G.A.A.); (G.A.C.); (G.C.); (R.B.)
- Clinical Toxicology Unit, University Hospital of Catania, 95123 Catania, Italy
| | - Egle Augello
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, 95123 Catania, Italy; (C.M.B.); (E.A.); (A.F.C.); (G.A.A.); (G.A.C.); (G.C.); (R.B.)
- Clinical Toxicology Unit, University Hospital of Catania, 95123 Catania, Italy
| | - Anna Flavia Cantone
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, 95123 Catania, Italy; (C.M.B.); (E.A.); (A.F.C.); (G.A.A.); (G.A.C.); (G.C.); (R.B.)
| | - Rosaria Di Mauro
- Dipartimento del Farmaco, ASP Trapani, 91100 Trapani, Italy; (R.D.M.); (V.D.G.)
| | - Giuseppe Antonino Attaguile
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, 95123 Catania, Italy; (C.M.B.); (E.A.); (A.F.C.); (G.A.A.); (G.A.C.); (G.C.); (R.B.)
| | | | - Guido Attilio Condorelli
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, 95123 Catania, Italy; (C.M.B.); (E.A.); (A.F.C.); (G.A.A.); (G.A.C.); (G.C.); (R.B.)
| | - Giulia Di Benedetto
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, 95123 Catania, Italy; (C.M.B.); (E.A.); (A.F.C.); (G.A.A.); (G.A.C.); (G.C.); (R.B.)
- Clinical Toxicology Unit, University Hospital of Catania, 95123 Catania, Italy
| | - Giuseppina Cantarella
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, 95123 Catania, Italy; (C.M.B.); (E.A.); (A.F.C.); (G.A.A.); (G.A.C.); (G.C.); (R.B.)
| | - Renato Bernardini
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, 95123 Catania, Italy; (C.M.B.); (E.A.); (A.F.C.); (G.A.A.); (G.A.C.); (G.C.); (R.B.)
- Clinical Toxicology Unit, University Hospital of Catania, 95123 Catania, Italy
| |
Collapse
|
5
|
Nrf2 Knockout Affected the Ferroptosis Signaling Pathway against Cisplatin-Induced Hair Cell-Like HEI-OC1 Cell Death. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:2210733. [PMID: 35814275 PMCID: PMC9270153 DOI: 10.1155/2022/2210733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 05/04/2022] [Indexed: 12/14/2022]
Abstract
Cisplatin is a well-known and widely used anticancer drug with high therapeutic efficacy in solid tumors; however, side effects are common with its use. Because cisplatin can be retained in the cochlea, ototoxicity leading to hearing loss limits its clinical applications. Here, we report that Nrf2 knockout (KO) strongly increased cisplatin resistance in HEI-OC1 cells, which are immortalized cells from the murine organ of Corti. The underlying mechanism of this phenomenon was uncovered, and an important novel therapeutic target for combating cisplatin-induced hearing loss was identified. Preliminary investigations determined that Nrf2 KO markedly decreased TfR1 protein levels and increased GPX4 protein levels. Thus, ferroptosis may protect organisms from cisplatin-induced cell death. Furthermore, Nrf2 KO cells were resistant to the classical ferroptosis inducers RSL3 and erastin, providing solid evidence that Nrf2 KO inhibits ferroptosis and that knocking out Nrf2 may be a new clinical strategy to prevent cisplatin-induced hearing loss.
Collapse
|
6
|
Manyisa N, Adadey SM, Wonkam-Tingang E, Yalcouye A, Wonkam A. Hearing Impairment in South Africa and the Lessons Learned for Planetary Health Genomics: A Systematic Review. OMICS : A JOURNAL OF INTEGRATIVE BIOLOGY 2022; 26:2-18. [PMID: 35041532 PMCID: PMC8792495 DOI: 10.1089/omi.2021.0181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Hearing impairment (HI) is a silent planetary health crisis that requires attention worldwide. The prevalence of HI in South Africa is estimated as 5.5 in 100 live births, which is about 5 times higher than the prevalence in high-income countries. This also offers opportunity to drive progressive science, technology and innovation policy, and health systems. We present here a systematic analysis and review on the prevalence, etiologies, clinical patterns, and genetics/genomics of HI in South Africa. We searched PubMed, Scopus, African Journals Online, AFROLIB, and African Index Medicus to identify the pertinent studies on HI in South Africa, published from inception to April 30, 2021, and the data were summarized narratively. We screened 944 records, of which 27 studies were included in the review. The age at diagnosis is ∼3 years of age and the most common factor associated with acquired HI was middle ear infections. There were numerous reports on medication toxicity, with kanamycin-induced ototoxicity requiring specific attention when considering the high burden of tuberculosis in South Africa. The Waardenburg Syndrome is the most common reported syndromic HI. The Usher Syndrome is the only syndrome with genetic investigations, whereby a founder mutation was identified among black South Africans (MYO7A-c.6377delC). GJB2 and GJB6 genes are not major contributors to nonsyndromic HI among Black South Africans. Furthermore, emerging data using targeted panel sequencing have shown a low resolution rate in Black South Africans in known HI genes. Importantly, mutations in known nonsyndromic HI genes are infrequent in South Africa. Therefore, whole-exome sequencing appears as the most effective way forward to identify variants associated with HI in South Africa. Taken together, this article contributes to the emerging field of planetary health genomics with a focus on HI and offers new insights and lessons learned for future roadmaps on genomics/multiomics and clinical studies of HI around the world.
Collapse
Affiliation(s)
- Noluthando Manyisa
- Division of Human Genetics, Department of Pathology, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Samuel Mawuli Adadey
- Division of Human Genetics, Department of Pathology, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa.,West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Accra, Ghana
| | - Edmond Wonkam-Tingang
- Division of Human Genetics, Department of Pathology, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Abdoulaye Yalcouye
- Division of Human Genetics, Department of Pathology, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa.,Department of Neurology, Point G Teaching Hospital, University of Sciences, Techniques and Technology, Bamako, Mali
| | - Ambroise Wonkam
- Division of Human Genetics, Department of Pathology, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
7
|
Vasistha A, Kothari R, Mishra A, De Andrés F, LLerena A, Nair S. Current Insights into Interethnic Variability in Testicular Cancers: Population Pharmacogenetics, Clinical Trials, Genetic Basis of Chemotherapy- Induced Toxicities and Molecular Signal Transduction. Curr Top Med Chem 2021; 20:1824-1838. [PMID: 32552648 DOI: 10.2174/1568026620666200618112205] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 04/08/2020] [Accepted: 05/07/2020] [Indexed: 12/15/2022]
Abstract
Testicular cancer is an aggressive malignancy with a rising incidence rate across the globe. Testicular germ cell tumors are the most commonly diagnosed cancers, and surgical removal of the testes is often a radical necessity along with chemotherapy and radiotherapy. While seminomas are receptive to radiotherapy as well as chemotherapy, non-seminomatous germ cell tumors respond to chemotherapy only. Due to the singular nature of testicular cancers with associated orchiectomy and mortality, it is important to study the molecular basis and genetic underpinnings of this group of cancers across male populations globally. In this review, we shed light on the population pharmacogenetics of testicular cancer, pediatric and adult tumors, current clinical trials, genetic determinants of chemotherapy-induced toxicity in testicular cancer, as well as the molecular signal transduction pathways operating in this malignancy. Taken together, our discussions will help in enhancing our understanding of genetic factors in testicular carcinogenesis and chemotherapy-induced toxicity, augment our knowledge of this aggressive cancer at the cellular and molecular level, as well as improve precision medicine approaches to combat this disease.
Collapse
Affiliation(s)
- Aman Vasistha
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM's NMIMS University, V. L. Mehta Road, Vile Parle (West), Mumbai - 400 056, India
| | - Rishi Kothari
- SVKM's Dr. Bhanuben Nanavati College of Pharmacy, University of Mumbai, V. L. Mehta Road, Vile Parle (West), Mumbai - 400 056, India
| | - Adarsh Mishra
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM's NMIMS University, V. L. Mehta Road, Vile Parle (West), Mumbai - 400 056, India
| | - Fernando De Andrés
- CICAB Clinical Research Centre at Extremadura University Hospital and Medical School, Universidad de Extremadura, Badajoz, Spain
| | - Adrián LLerena
- CICAB Clinical Research Centre at Extremadura University Hospital and Medical School, Universidad de Extremadura, Badajoz, Spain
| | - Sujit Nair
- SVKM's Dr. Bhanuben Nanavati College of Pharmacy, University of Mumbai, V. L. Mehta Road, Vile Parle (West), Mumbai - 400 056, India
| |
Collapse
|
8
|
Elzagallaai AA, Carleton BC, Rieder MJ. Pharmacogenomics in Pediatric Oncology: Mitigating Adverse Drug Reactions While Preserving Efficacy. Annu Rev Pharmacol Toxicol 2020; 61:679-699. [PMID: 32976737 DOI: 10.1146/annurev-pharmtox-031320-104151] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cancer is the leading cause of death in American children older than 1 year of age. Major developments in drugs such as thiopurines and optimization in clinical trial protocols for treating cancer in children have led to a remarkable improvement in survival, from approximately 30% in the 1960s to more than 80% today. Short-term and long-term adverse effects of chemotherapy still affect most survivors of childhood cancer. Pharmacogenetics plays a major role in predicting the safety of cancer chemotherapy and, in the future, its effectiveness. Treatment failure in childhood cancer-due to either serious adverse effects that limit therapy or the failure of conventional dosing to induce remission-warrants development of new strategies for treatment. Here, we summarize the current knowledge of the pharmacogenomics of cancer drug treatment in children and of statistically and clinically relevant drug-gene associations and the mechanistic understandings that underscore their therapeutic value in the treatment of childhood cancer.
Collapse
Affiliation(s)
- Abdelbaset A Elzagallaai
- Department of Pediatrics, Schulich School of Medicine and Dentistry, Western University, London, Ontario N6A 3M7, Canada;
| | - Bruce C Carleton
- Division of Translational Therapeutics, Department of Pediatrics, University of British Columbia, Vancouver, British Columbia V5Z 4H4, Canada.,Pharmaceutical Outcomes Programme, BC Children's Hospital, Vancouver, British Columbia V5Z 4H4, Canada.,BC Children's Hospital Research Institute, Vancouver, British Columbia V5Z 4H4, Canada
| | - Michael J Rieder
- Department of Pediatrics, Schulich School of Medicine and Dentistry, Western University, London, Ontario N6A 3M7, Canada;
| |
Collapse
|
9
|
Langer T, Clemens E, Broer L, Maier L, Uitterlinden AG, de Vries ACH, van Grotel M, Pluijm SFM, Binder H, Mayer B, von dem Knesebeck A, Byrne J, van Dulmen-den Broeder E, Crocco M, Grabow D, Kaatsch P, Kaiser M, Spix C, Kenborg L, Winther JF, Rechnitzer C, Hasle H, Kepak T, van der Kooi ALF, Kremer LC, Kruseova J, Bielack S, Sorg B, Hecker-Nolting S, Kuehni CE, Ansari M, Kompis M, van der Pal H, Parfitt R, Deuster D, Matulat P, Tillmanns A, Tissing WJE, Beck JD, Elsner S, Am Zehnhoff-Dinnesen A, van den Heuvel-Eibrink MM, Zolk O. Usefulness of current candidate genetic markers to identify childhood cancer patients at risk for platinum-induced ototoxicity: Results of the European PanCareLIFE cohort study. Eur J Cancer 2020; 138:212-224. [PMID: 32905960 DOI: 10.1016/j.ejca.2020.07.019] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 07/22/2020] [Accepted: 07/29/2020] [Indexed: 01/12/2023]
Abstract
BACKGROUND Irreversible sensorineural hearing loss is a common side effect of platinum treatment with the potential to significantly impair the neurocognitive, social and educational development of childhood cancer survivors. Genetic association studies suggest a genetic predisposition for cisplatin-induced ototoxicity. Among other candidate genes, thiopurine methyltransferase (TPMT) is considered a critical gene for susceptibility to cisplatin-induced hearing loss in a pharmacogenetic guideline. The aim of this cross-sectional cohort study was to confirm the genetic associations in a large pan-European population and to evaluate the diagnostic accuracy of the genetic markers. METHODS Eligibility criteria required patients to be aged less than 19 years at the start of chemotherapy, which had to include cisplatin and/or carboplatin. Patients were assigned to three phenotype categories: no, minor and clinically relevant hearing loss. Fourteen variants in eleven candidate genes (ABCC3, OTOS, TPMT, SLC22A2, NFE2L2, SLC16A5, LRP2, GSTP1, SOD2, WFS1 and ACYP2) were investigated. Multinomial logistic regression was performed to model the relationship between genetic predictors and platinum ototoxicity, adjusting for clinical risk factors. Additionally, measures of the diagnostic accuracy of the genetic markers were determined. RESULTS 900 patients were included in this study. In the multinomial logistic regression, significant unique contributions were found from SLC22A2 rs316019, the age at the start of platinum treatment, cranial radiation and the interaction term [platinum compound]∗[cumulative dose of cisplatin]. The predictive performance of the genetic markers was poor compared with the clinical risk factors. CONCLUSIONS PanCareLIFE is the largest study of cisplatin-induced ototoxicity to date and confirmed a role for the polyspecific organic cation transporter SLC22A2. However, the predictive value of the current genetic candidate markers for clinical use is negligible, which puts the value of clinical factors for risk assessment of cisplatin-induced ototoxicity back into the foreground.
Collapse
Affiliation(s)
- Thorsten Langer
- Department of Pediatric Oncology and Hematology, University Hospital for Children and Adolescents, Lübeck, Germany
| | - Eva Clemens
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands; Department of Pediatric Oncology, Erasmus MC - Sophia Children's Hospital, Rotterdam, the Netherlands
| | - Linda Broer
- Department of Internal Medicine, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Lara Maier
- Institute of Pharmacology of Natural Products and Clinical Pharmacology, Ulm University Medical Center, Ulm, Germany
| | - André G Uitterlinden
- Department of Internal Medicine, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Andrica C H de Vries
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands; Department of Pediatric Oncology, Erasmus MC - Sophia Children's Hospital, Rotterdam, the Netherlands
| | | | - Saskia F M Pluijm
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Harald Binder
- German Childhood Cancer Registry, Institute of Medical Biostatistics, Epidemiology and Informatics, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany; Institute of Medical Biometry and Statistics, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany
| | - Benjamin Mayer
- Institute of Epidemiology and Medical Biometry, University of Ulm, Ulm, Germany
| | - Annika von dem Knesebeck
- Department of Pediatric Oncology and Hematology, University Hospital for Children and Adolescents, Lübeck, Germany
| | | | - Eline van Dulmen-den Broeder
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands; Department of Pediatric Hematology and Oncology, VU Medical Center, Amsterdam, the Netherlands
| | - Marco Crocco
- Department of Neurooncology, Istituto Giannina Gaslini, Genova, Italy
| | - Desiree Grabow
- German Childhood Cancer Registry, Institute of Medical Biostatistics, Epidemiology and Informatics, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Peter Kaatsch
- German Childhood Cancer Registry, Institute of Medical Biostatistics, Epidemiology and Informatics, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Melanie Kaiser
- German Childhood Cancer Registry, Institute of Medical Biostatistics, Epidemiology and Informatics, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Claudia Spix
- German Childhood Cancer Registry, Institute of Medical Biostatistics, Epidemiology and Informatics, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Line Kenborg
- Danish Cancer Society Research Center, Childhood Cancer Research Group, Copenhagen, Denmark
| | - Jeanette F Winther
- Danish Cancer Society Research Center, Childhood Cancer Research Group, Copenhagen, Denmark; Department of Clinical Medicine, Faculty of Health, Aarhus University, Aarhus, Denmark
| | - Catherine Rechnitzer
- Copenhagen University Hospital Rigshospitalet, Department of Pediatrics and Adolescent Medicine, Copenhagen, Denmark
| | - Henrik Hasle
- Aarhus University Hospital, Department of Pediatrics, Aarhus University Hospital, Aarhus, Denmark
| | - Tomas Kepak
- University Hospital Brno, Brno, Czech Republic; International Clinical Research Center (FNUSA-ICRC), Brno, Czech Republic
| | - Anne-Lotte F van der Kooi
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands; Department of Obstetrics and Gynecology, Erasmus MC - Sophia Children's Hospital, the Netherlands
| | - Leontien C Kremer
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands; Department of Pediatric Oncology, Academic Medical Center Amsterdam, Amsterdam, the Netherlands
| | - Jarmila Kruseova
- Department of Children Hemato-Oncology, Motol University Hospital Prague, Prague, Czech Republic
| | - Stefan Bielack
- Department of Pediatric Oncology, Hematology, Immunology, Stuttgart Cancer Center, Olgahospital, Stuttgart, Germany
| | - Benjamin Sorg
- Department of Pediatric Oncology, Hematology, Immunology, Stuttgart Cancer Center, Olgahospital, Stuttgart, Germany
| | - Stefanie Hecker-Nolting
- Department of Pediatric Oncology, Hematology, Immunology, Stuttgart Cancer Center, Olgahospital, Stuttgart, Germany
| | - Claudia E Kuehni
- Institute of Social and Preventive Medicine, University of Bern, Bern, Switzerland; Paediatric Oncology, Dept. of Paediatrics, Inselspital, University of Bern, Switzerland
| | - Marc Ansari
- Department of Pediatrics, Oncology and Hematology Unit, University Hospital of Geneva, Cansearch Research Laboratory, Geneva University, Switzerland
| | - Martin Kompis
- Department of Otolaryngology, Head and Neck Surgery, Inselspital, University of Berne, Switzerland
| | - Heleen van der Pal
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands; Department of Pediatric Oncology, Academic Medical Center Amsterdam, Amsterdam, the Netherlands
| | - Ross Parfitt
- Department of Phoniatrics and Pedaudiology, University Hospital Münster, Westphalian Wilhelm University, Münster, Germany
| | - Dirk Deuster
- Department of Phoniatrics and Pedaudiology, University Hospital Münster, Westphalian Wilhelm University, Münster, Germany
| | - Peter Matulat
- Department of Phoniatrics and Pedaudiology, University Hospital Münster, Westphalian Wilhelm University, Münster, Germany
| | - Amelie Tillmanns
- Department of Phoniatrics and Pedaudiology, University Hospital Münster, Westphalian Wilhelm University, Münster, Germany
| | - Wim J E Tissing
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands; Department of Pediatric Oncology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Jörn D Beck
- Hospital for Children and Adolescents, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Susanne Elsner
- Institute for Social Medicine and Epidemiology, University of Lübeck, Lübeck, Germany
| | | | - Marry M van den Heuvel-Eibrink
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands; Department of Pediatric Oncology, Erasmus MC - Sophia Children's Hospital, Rotterdam, the Netherlands
| | - Oliver Zolk
- Institute of Clinical Pharmacology, Immanuel Klinik Rüdersdorf, Brandenburg Medical School Theodor Fontane, Germany; Institute of Pharmacology of Natural Products and Clinical Pharmacology, Ulm University Medical Center, Ulm, Germany.
| | | |
Collapse
|
10
|
Malki MA, Pearson ER. Drug-drug-gene interactions and adverse drug reactions. THE PHARMACOGENOMICS JOURNAL 2019; 20:355-366. [PMID: 31792369 PMCID: PMC7253354 DOI: 10.1038/s41397-019-0122-0] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 11/11/2019] [Accepted: 11/17/2019] [Indexed: 11/21/2022]
Abstract
The economic and health burden caused by adverse drug reactions has increased dramatically in the last few years. This is likely to be mediated by increasing polypharmacy, which increases the likelihood for drug–drug interactions. Tools utilized by healthcare practitioners to flag potential adverse drug reactions secondary to drug–drug interactions ignore individual genetic variation, which has the potential to markedly alter the severity of these interactions. To date there have been limited published studies on impact of genetic variation on drug–drug interactions. In this review, we establish a detailed classification for pharmacokinetic drug–drug–gene interactions, and give examples from the literature that support this approach. The increasing availability of real-world drug outcome data linked to genetic bioresources is likely to enable the discovery of previously unrecognized, clinically important drug–drug–gene interactions.
Collapse
Affiliation(s)
- Mustafa Adnan Malki
- Population Health & Genomics, School of Medicine, University of Dundee, Dundee, UK
| | - Ewan Robert Pearson
- Population Health & Genomics, School of Medicine, University of Dundee, Dundee, UK.
| |
Collapse
|
11
|
Genetic variation of cisplatin-induced ototoxicity in non-cranial-irradiated pediatric patients using a candidate gene approach: The International PanCareLIFE Study. THE PHARMACOGENOMICS JOURNAL 2019; 20:294-305. [PMID: 31666714 DOI: 10.1038/s41397-019-0113-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 10/07/2019] [Accepted: 10/10/2019] [Indexed: 12/11/2022]
Abstract
Ototoxicity is a common side effect of platinum treatment and manifests as irreversible, high-frequency sensorineural hearing loss. Genetic association studies have suggested a role for SNPs in genes related to the disposition of cisplatin or deafness. In this study, 429 pediatric patients that were treated with cisplatin were genotyped for 10 candidate SNPs. Logistic regression analyses revealed that younger age at treatment (≤5 years vs >15 years: OR: 9.1; 95% CI: 3.8-21.5; P = 5.6 × 10-7) and higher cumulative dose of cisplatin (>450 vs ≤300 mg/m2: OR: 2.4; 95% CI: 1.3-4.6; P = 0.007) confer a significant risk of ototoxicity. Of the SNPs investigated, none of them were significantly associated with an increase of ototoxicity. In the meta-analysis, ACYP2 rs1872328 (OR: 3.94; 95% CI: 1.04-14.03; P = 0.04) and SLC22A2 rs316019 (OR: 1.46; 95% CI: 1.07-2.00; P = 0.02) were associated with ototoxicity. In order to increase the understanding of the association between SNPs and ototoxicity, we propose a polygenic model, which takes into account multiple interacting genes of the cisplatin pathway that together confer an increased risk of ototoxicity.
Collapse
|
12
|
Rybak LP, Mukherjea D, Ramkumar V. Mechanisms of Cisplatin-Induced Ototoxicity and Prevention. Semin Hear 2019; 40:197-204. [PMID: 31036996 DOI: 10.1055/s-0039-1684048] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Cisplatin is a highly effective antineoplastic agent used to treat solid tumors. Unfortunately, the administration of this drug leads to significant side effects, including ototoxicity, nephrotoxicity, and neurotoxicity. This review addresses the mechanisms of cisplatin-induced ototoxicity and various strategies tested to prevent this distressing adverse effect. The molecular pathways underlying cisplatin ototoxicity are still being investigated. Cisplatin enters targeted cells in the cochlea through the action of several transporters. Once it enters the cochlea, cisplatin is retained for months to years. It can cause DNA damage, inhibit protein synthesis, and generate reactive oxygen species that can lead to inflammation and apoptosis of outer hair cells, resulting in permanent hearing loss. Strategies to prevent cisplatin ototoxicity have utilized antioxidants, transport inhibitors, G-protein receptor agonists, and anti-inflammatory agents. There are no FDA-approved drugs to prevent cisplatin ototoxicity. It is critical that potential protective agents do not interfere with the antitumor efficacy of cisplatin.
Collapse
Affiliation(s)
- Leonard P Rybak
- Department of Surgery, Southern Illinois University School of Medicine, Springfield, Illinois.,Division of Otolaryngology, Southern Illinois University School of Medicine, Springfield, Illinois
| | - Debashree Mukherjea
- Department of Surgery, Southern Illinois University School of Medicine, Springfield, Illinois.,Division of Otolaryngology, Southern Illinois University School of Medicine, Springfield, Illinois
| | - Vickram Ramkumar
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, Illinois
| |
Collapse
|
13
|
Clemens E, Meijer AJ, Broer L, Langer T, van der Kooi ALL, Uitterlinden AG, de Vries A, Kuehni CE, Garrè ML, Kepak T, Kruseova J, Winther JF, Kremer LC, van Dulmen-den Broeder E, Tissing WJ, Rechnitzer C, Kenborg L, Hasle H, Grabow D, Parfitt R, Binder H, Carleton BC, Byrne J, Kaatsch P, Am Zehnhoff-Dinnesen A, Zolk O, van den Heuvel-Eibrink MM. Genetic Determinants of Ototoxicity During and After Childhood Cancer Treatment: Protocol for the PanCareLIFE Study. JMIR Res Protoc 2019; 8:e11868. [PMID: 30888333 PMCID: PMC6444213 DOI: 10.2196/11868] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 11/08/2018] [Accepted: 11/22/2018] [Indexed: 12/31/2022] Open
Abstract
Background Survival rates after childhood cancer now reach nearly 80% in developed countries. However, treatments that lead to survival and cure can cause serious adverse effects with lifelong negative impacts on survivor quality of life. Hearing impairment is a common adverse effect in children treated with cisplatin-based chemotherapy or cranial radiotherapy. Ototoxicity can extend from high-tone hearing impairment to involvement of speech frequencies. Hearing impairment can impede speech and language and neurocognitive development. Although treatment-related risk factors for hearing loss following childhood cancer treatment have been identified, the individual variability in toxicity of adverse effects after similar treatment between childhood cancer patients suggests a role for genetic susceptibility. Currently, 12 candidate gene approach studies have been performed to identify polymorphisms predisposing to platinum-induced ototoxicity in children being treated for cancer. However, results were inconsistent and most studies were underpowered and/or lacked replication. Objective We describe the design of the PanCareLIFE consortium’s work packages that address the genetic susceptibility of platinum-induced ototoxicity. Methods As a part of the PanCareLIFE study within the framework of the PanCare consortium, we addressed genetic susceptibility of treatment-induced ototoxicity during and after childhood cancer treatment in a large European cohort by a candidate gene approach and a genome-wide association screening. Results This study included 1124 survivors treated with cisplatin, carboplatin, or cranial radiotherapy for childhood cancer, resulting in the largest clinical European cohort assembled for this late effect to date. Within this large cohort we defined a group of 598 cisplatin-treated childhood cancer patients not confounded by cranial radiotherapy. The PanCareLIFE initiative provided, for the first time, a unique opportunity to confirm already identified determinants for hearing impairment during childhood cancer using a candidate gene approach and set up the first international genome-wide association study of cisplatin-induced direct ototoxicity in childhood cancer patients to identify novel allelic variants. Results will be validated in an independent replication cohort. Patient recruitment started in January 2015 and final inclusion was October 2017. We are currently performing the analyses and the first results are expected by the end of 2019 or the beginning of 2020. Conclusions Genetic factors identified as part of this pan-European project, PanCareLIFE, may contribute to future risk prediction models that can be incorporated in future clinical trials of platinum-based therapies for cancer and may help with the development of prevention strategies. International Registered Report Identifier (IRRID) DERR1-10.2196/11868
Collapse
Affiliation(s)
- Eva Clemens
- Princess Maxima Center for Pediatric Oncology, Utrecht, Netherlands.,Department of Pediatric Hematology and Oncology, Erasmus Medical Center-Sophia Children's Hospital, Rotterdam, Netherlands
| | | | - Linda Broer
- Department of Internal Medicine, Erasmus Medical Center, Rotterdam, Netherlands
| | - Thorsten Langer
- Department of Pediatric Oncology, University Hospital for Children and Adolescents, Luebeck, Germany
| | - Anne-Lotte Lf van der Kooi
- Princess Maxima Center for Pediatric Oncology, Utrecht, Netherlands.,Department of Pediatric Hematology and Oncology, Erasmus Medical Center-Sophia Children's Hospital, Rotterdam, Netherlands.,Department of Obstetrics and Gynecology, Erasmus Medical Center-Sophia Children's Hospital, Rotterdam, Netherlands
| | | | - Andrica de Vries
- Princess Maxima Center for Pediatric Oncology, Utrecht, Netherlands.,Department of Pediatric Hematology and Oncology, Erasmus Medical Center-Sophia Children's Hospital, Rotterdam, Netherlands
| | - Claudia E Kuehni
- Institute of Social and Preventive Medicine, University of Bern, Bern, Switzerland.,Department of Paediatric Respiratory Medicine, University Children's Hospital, University of Bern, Bern, Switzerland
| | - Maria L Garrè
- Department of Neurooncology, Institute Giannina Gaslini, Genova, Italy
| | - Tomas Kepak
- Department of Paediatric Oncology, University Hospital Brno, Masaryk University, Brno, Czech Republic.,St. Anne's University Hospital Brno-International Clinical Research Center, Brno, Czech Republic
| | - Jarmila Kruseova
- Department of Pediatric Hemato-Oncology, Motol University Hospital Prague, Prague, Czech Republic
| | - Jeanette F Winther
- Danish Cancer Society Research Center, Copenhagen, Denmark.,Department of Clinical Medicine, Faculty of Health, Aarhus University, Aarhus, Denmark
| | - Leontien C Kremer
- Princess Maxima Center for Pediatric Oncology, Utrecht, Netherlands.,Department of Pediatric Oncology, Academic Medical Center Amsterdam, Amsterdam, Netherlands
| | - Eline van Dulmen-den Broeder
- Princess Maxima Center for Pediatric Oncology, Utrecht, Netherlands.,Department of Pediatric Hematology and Oncology, VU Medical Center, Amsterdam, Netherlands
| | - Wim Je Tissing
- Princess Maxima Center for Pediatric Oncology, Utrecht, Netherlands.,Department of Pediatric Oncology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Catherine Rechnitzer
- Department of Pediatrics and Adolescent Medicine, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Line Kenborg
- Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Henrik Hasle
- Department of Pediatrics, Aarhus University Hospital, Aarhus, Denmark
| | - Desiree Grabow
- German Childhood Cancer Registry, Institute of Medical Biostatistics, Epidemiology and Informatics, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Ross Parfitt
- Department of Phoniatrics and Pedaudiology, University of Münster, Muenster, Germany
| | - Harald Binder
- German Childhood Cancer Registry, Institute of Medical Biostatistics, Epidemiology and Informatics, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany.,Institute of Medical Biometry and Statistics, Faculty of Medicine and Medical Center, University of Freiburg, Freibug, Germany
| | - Bruce C Carleton
- Division of Translational Therapeutics, Department of Pediatrics, British Columbia Children's Hospital Research Institute, University of British Columbia, Vancouver, BC, Canada
| | | | - Peter Kaatsch
- German Childhood Cancer Registry, Institute of Medical Biostatistics, Epidemiology and Informatics, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | | | - Oliver Zolk
- Institute of Pharmacology of Natural Products and Clinical Pharmacology, Ulm University Medical Center, Ulm, Germany
| | | |
Collapse
|
14
|
Tserga E, Nandwani T, Edvall NK, Bulla J, Patel P, Canlon B, Cederroth CR, Baguley DM. The genetic vulnerability to cisplatin ototoxicity: a systematic review. Sci Rep 2019; 9:3455. [PMID: 30837596 PMCID: PMC6401165 DOI: 10.1038/s41598-019-40138-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 01/28/2019] [Indexed: 12/16/2022] Open
Abstract
Ototoxicity is one of the major side-effects of platinum-based chemotherapy, in particular cisplatin (cis-diammine dichloroplatinum II). To our knowledge, no systematic review has previously provided a quantitative summary estimate of the impact of genetics upon the risk of developing hearing loss. We searched Embase, Medline, ASSIA, Pubmed, Scopus, and Web of Science, for studies documenting the genetic risk of ototoxicity in patients with cancer treated with cisplatin. Titles/abstracts and full texts were reviewed for inclusion. Meta-analytic estimates of risk (Odds Ratio) from the pooled data were calculated for studies that have been repeated twice or more. The search identified 3891 papers, of which 30 were included. The majority were retrospective (44%), ranging from n = 39 to n = 317, some including only patients younger than 25 years of age (33%), and some on both genders (80%). The most common cancers involved were osteosarcoma (53%), neuroblastoma (37%), prostate (17%) and reproductive (10%). Most studies performed genotyping, though only 5 studies performed genome-wide association studies. Nineteen single-nucleotide polymorphisms (SNPs) from 15 genes were repeated more than twice. Meta-analysis of group data indicated that rs1872328 on ACYP2, which plays a role in calcium homeostasis, increases the risk of ototoxicity by 4.61 (95% CI: 3.04-7.02; N = 696, p < 0.0001) as well as LRP2 rs4668123 shows a cumulated Odds Ratio of 3.53 (95% CI: 1.48-8.45; N = 118, p = 0.0059), which could not be evidenced in individual studies. Despite the evidence of heterogeneity across studies, these meta-analytic results from 30 studies are consistent with a view of a genetic predisposition to platinum-based chemotherapy mediated ototoxicity. These new findings are informative and encourage the genetic screening of cancer patients in order to identify patients with greater vulnerability of developing hearing loss, a condition having a potentially large impact on quality of life. More studies are needed, with larger sample size, in order to identify additional markers of ototoxic risk associated with platinum-based chemotherapy and investigate polygenic risks, where multiple markers may exacerbate the side-effects.
Collapse
Affiliation(s)
- Evangelia Tserga
- Experimental Audiology, Biomedicum, Karolinska Institutet, Solnavägen 9, 171 65, Stockholm, Sweden
| | - Tara Nandwani
- School of Medicine, University of Nottingham, Nottingham, UK
| | - Niklas K Edvall
- Experimental Audiology, Biomedicum, Karolinska Institutet, Solnavägen 9, 171 65, Stockholm, Sweden
| | - Jan Bulla
- Department of Mathematics, University of Bergen, Bergen, Norway.,Department of Psychiatry and Psychotherapy, University Regensburg, Universitätsstraße 84, 93053, Regensburg, Germany
| | - Poulam Patel
- Division of Oncology, School of Medicine, University of Nottingham, Nottingham, UK
| | - Barbara Canlon
- Experimental Audiology, Biomedicum, Karolinska Institutet, Solnavägen 9, 171 65, Stockholm, Sweden
| | - Christopher R Cederroth
- Experimental Audiology, Biomedicum, Karolinska Institutet, Solnavägen 9, 171 65, Stockholm, Sweden
| | - David M Baguley
- Otology and Hearing Group, Division of Clinical Neuroscience, School of Medicine, University of Nottingham, Nottingham, UK. .,NIHR Nottingham Biomedical Research Centre, University of Nottingham, Nottingham, UK.
| |
Collapse
|
15
|
Ralli M, Rolesi R, Anzivino R, Turchetta R, Fetoni AR. Acquired sensorineural hearing loss in children: current research and therapeutic perspectives. ACTA OTORHINOLARYNGOLOGICA ITALICA 2018; 37:500-508. [PMID: 29327735 PMCID: PMC5782428 DOI: 10.14639/0392-100x-1574] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 05/02/2017] [Indexed: 01/03/2023]
Abstract
The knowledge of mechanisms responsible for acquired sensorineural hearing loss in children, such as viral and bacterial infections, noise exposure, aminoglycoside and cisplatin ototoxicity, is increasing and progressively changing the clinical management of affected patients. Viral infections are by far the most relevant cause of acquired hearing loss, followed by aminoglycoside and platinum derivative ototoxicity; moreover, cochlear damage induced by noise overexposure, mainly in adolescents, is an emerging topic. Pharmacological approaches are still challenging to develop a truly effective cochlear protection; however, the use of steroids, antioxidants, antiviral drugs and other small molecules is encouraging for clinical practice. Most of evidence on the effectiveness of antioxidants is still limited to experimental models, while the use of corticosteroids and antiviral drugs has a wide correspondence in literature but with controversial safety. Future therapeutic perspectives include innovative strategies to transport drugs into the cochlea, such as molecules incorporated in nanoparticles that can be delivered to a specific target. Innovative approaches also include the gene therapy designed to compensate for abnormal genes or to make proteins by introducing genetic material into cells; finally, regenerative medicine (including stem cell approaches) may play a central role in the upcoming years in hearing preservation and restoration even if its role in the inner ear is still debated.
Collapse
Affiliation(s)
- M Ralli
- Department of Oral and Maxillofacial Sciences, Sapienza University of Rome, Italy
| | - R Rolesi
- Department of Otolaryngology, Catholic University of Sacred Heart, Rome, Italy
| | - R Anzivino
- Department of Otolaryngology, Catholic University of Sacred Heart, Rome, Italy
| | - R Turchetta
- Department of Sense Organs, Sapienza University of Rome, Italy
| | - A R Fetoni
- Department of Otolaryngology, Catholic University of Sacred Heart, Rome, Italy
| |
Collapse
|
16
|
Jin J, Zhu Y, Sun F, Chen Z, Chen S, Li Y, Li W, Li M, Cui C, Cui Y, Yin X, Li S, Zhao J, Yan G, Li X, Jin N. Synergistic antitumor effect of the combination of a dual cancer-specific oncolytic adenovirus and cisplatin on lung cancer cells. Oncol Lett 2018; 16:6275-6282. [PMID: 30405762 PMCID: PMC6202551 DOI: 10.3892/ol.2018.9470] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 04/26/2018] [Indexed: 12/24/2022] Open
Abstract
The effect of the combination of a recombinant adenovirus (ATV) expressing a specific apoptin protein and cisplatin on human lung cancer cells (A549 cells) was determined. The inhibitory effects of ATV and cisplatin, ATV alone, or cisplatin alone on the migration and invasion of A549 cells were evaluated in vitro using cell proliferation, wound healing, Transwell migration and Matrigel invasion assays. The tumor inhibition effect on A549 cells in vivo was assessed by observing the tumor growth and survival rate of nude mice with subcutaneous tumor xenografts grown from implanted A549 cells after treatment with ATV, cisplatin, or ATV combined with cisplatin. The proliferation (P<0.01), migration (P<0.01), and invasion (P<0.01) on A549 cells was suppressed significantly by ATV, cisplatin, and ATV and cisplatin, in a dose- and time-dependent manner. The inhibition of tumor growth in transplanted nude mice in the ATV combined with cisplatin group was significantly higher than that displayed in the other groups, and the survival rate of the combined treatment group was significantly higher than that of the group treated with cisplatin alone. The results indicated that the combined application of ATV and cisplatin could reduce toxicity and showed a synergistic effect in reducing tumor growth and increasing survival. Thus, there is a potential research value in treating tumors using the combination of ATV and cisplatin, which provides a foundation for future preclinical studies on this antitumor treatment.
Collapse
Affiliation(s)
- Jing Jin
- Institute of Frontier Medical Science, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Yilong Zhu
- Academicians Workstation of Jilin Province, Changchun University of Chinese Medicine, Changchun, Jilin 130117, P.R. China.,Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Changchun, Jilin 130122, P.R. China
| | - Fei Sun
- Institute of Frontier Medical Science, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Zhifei Chen
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Changchun, Jilin 130122, P.R. China
| | - Shuang Chen
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Changchun, Jilin 130122, P.R. China
| | - Yiquan Li
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Changchun, Jilin 130122, P.R. China
| | - Wenjie Li
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Changchun, Jilin 130122, P.R. China
| | - Min Li
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Changchun, Jilin 130122, P.R. China
| | - Chuanxin Cui
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Changchun, Jilin 130122, P.R. China
| | - Yingli Cui
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Changchun, Jilin 130122, P.R. China
| | - Xunzhi Yin
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Changchun, Jilin 130122, P.R. China
| | - Shanzhi Li
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Changchun, Jilin 130122, P.R. China
| | - Jin Zhao
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Changchun, Jilin 130122, P.R. China
| | - Guo Yan
- Academicians Workstation of Jilin Province, Changchun University of Chinese Medicine, Changchun, Jilin 130117, P.R. China
| | - Xiao Li
- Institute of Frontier Medical Science, Jilin University, Changchun, Jilin 130021, P.R. China.,Academicians Workstation of Jilin Province, Changchun University of Chinese Medicine, Changchun, Jilin 130117, P.R. China.,Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Changchun, Jilin 130122, P.R. China
| | - Ningyi Jin
- Institute of Frontier Medical Science, Jilin University, Changchun, Jilin 130021, P.R. China.,Academicians Workstation of Jilin Province, Changchun University of Chinese Medicine, Changchun, Jilin 130117, P.R. China.,Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Changchun, Jilin 130122, P.R. China
| |
Collapse
|
17
|
Marnitz S, Schermeyer L, Dommerich S, Köhler C, Olze H, Budach V, Martus P. Age-corrected hearing loss after chemoradiation in cervical cancer patients. Strahlenther Onkol 2018; 194:1039-1048. [PMID: 30120496 DOI: 10.1007/s00066-018-1347-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 07/31/2018] [Indexed: 10/28/2022]
Abstract
OBJECTIVE This study aimed to evaluate subjective and objective hearing loss in cervical cancer patients after chemoradiation with cisplatin (mono). PATIENTS AND METHODS A total of 51 cervical cancer patients with indication for chemoradiation were included. Pure tone and impedance audiometry were performed before and after chemoradiation. Hearing loss was scaled according to ASHA criteria. Subjective hearing was assessed with the Oldenburger Sentence Test. To consider age-dependent changes, hearing loss was corrected for age and the time interval between measurements. RESULTS Median age at diagnosis was 46 years, 46% were active/former smokers (n = 24), 28 (54%) patients were never-smokers. Median total weekly cisplatin dose was 70 ± 14.2 mg. Cumulative doses of cisplatin during chemoradiation ranged between 115.2 and 400 mg cisplatin (mean 336.1 mg, median 342 ± 52.7 mg). The median interval between last chemotherapy and second audiometry was 320 ± 538 days (35-2262 days). Changes in hearing threshold ≥20 dB were experienced by 32/52 patients (62%) following chemoradiation, 55% of them for frequencies ≥6000 Hz. No statistically significant hearing loss remained after chemoradiation upon correction for age and time interval. Patients >40 years had a higher risk of hearing loss than younger patients. Objective data on hearing function did not correlate with subjective hearing loss and did not impair daily activity in any patient. CONCLUSION Chemoradiation with cumulative cisplatin doses up to 400 mg did not lead to significant impairment of objective or subjective hearing. For cervical cancer patients undergoing chemoradiation, standard audiometry is not indicated.
Collapse
Affiliation(s)
- S Marnitz
- Medical Faculty, Department of Radiation Oncology, CyberKnife Center, University of Cologne, Kerpener Str. 62, 50937, Cologne, Germany.
| | - L Schermeyer
- Department of Radiation Oncology, Charité University Clinic, Berlin, Germany
| | - S Dommerich
- Department of Otolaryngology, Head and Neck Surgery, Charité University Clinic, Berlin, Germany
| | - C Köhler
- Department of Gynecologic Oncology, Asklepios Clinic Hamburg, Hamburg, Germany
| | - H Olze
- Department of Otolaryngology, Head and Neck Surgery, Charité University Clinic, Berlin, Germany
| | - V Budach
- Department of Radiation Oncology, Charité University Clinic, Berlin, Germany
| | - P Martus
- Institute of Clinical Epidemiology and Applied Biosta5s5cs, Eberhard-Karls-University Tübingen, Tübingen, Germany
| |
Collapse
|
18
|
Fransson AE, Kisiel M, Pirttilä K, Pettersson C, Videhult Pierre P, Laurell GFE. Hydrogen Inhalation Protects against Ototoxicity Induced by Intravenous Cisplatin in the Guinea Pig. Front Cell Neurosci 2017; 11:280. [PMID: 28955207 PMCID: PMC5601388 DOI: 10.3389/fncel.2017.00280] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 08/29/2017] [Indexed: 11/13/2022] Open
Abstract
Introduction: Permanent hearing loss and tinnitus as side-effects from treatment with the anticancer drug cisplatin is a clinical problem. Ototoxicity may be reduced by co-administration of an otoprotective agent, but the results in humans have so far been modest. Aim: The present preclinical in vivo study aimed to explore the protective efficacy of hydrogen (H2) inhalation on ototoxicity induced by intravenous cisplatin. Materials and Methods: Albino guinea pigs were divided into four groups. The Cispt (n = 11) and Cispt+H2 (n = 11) groups were given intravenous cisplatin (8 mg/kg b.w., injection rate 0.2 ml/min). Immediately after, the Cispt+H2 group also received gaseous H2 (2% in air, 60 min). The H2 group (n = 5) received only H2 and the Control group (n = 7) received neither cisplatin nor H2. Ototoxicity was assessed by measuring frequency specific ABR thresholds before and 96 h after treatment, loss of inner (IHCs) and outer (OHCs) hair cells, and by performing densitometry-based immunohistochemistry analysis of cochlear synaptophysin, organic transporter 2 (OCT2), and copper transporter 1 (CTR1) at 12 and 7 mm from the round window. By utilizing metabolomics analysis of perilymph the change of metabolites in the perilymph was assessed. Results: Cisplatin induced electrophysiological threshold shifts, hair cell loss, and reduced synaptophysin immunoreactivity in the synapse area around the IHCs and OHCs. H2 inhalation mitigated all these effects. Cisplatin also reduced the OCT2 intensity in the inner and outer pillar cells and in the stria vascularis as well as the CTR1 intensity in the synapse area around the IHCs, the Deiters' cells, and the stria vascularis. H2 prevented the majority of these effects. Conclusion: H2 inhalation can reduce cisplatin-induced ototoxicity on functional, cellular, and subcellular levels. It is proposed that synaptopathy may serve as a marker for cisplatin ototoxicity. The effect of H2 on the antineoplastic activity of cisplatin needs to be further explored.
Collapse
Affiliation(s)
| | - Marta Kisiel
- Department of Surgical Science, Uppsala UniversityUppsala, Sweden
| | - Kristian Pirttilä
- Division of Analytical Pharmaceutical Chemistry, Department of Medical Chemistry, Uppsala UniversityUppsala, Sweden
| | - Curt Pettersson
- Division of Analytical Pharmaceutical Chemistry, Department of Medical Chemistry, Uppsala UniversityUppsala, Sweden
| | - Pernilla Videhult Pierre
- Division of Audiology, Department of Clinical Science, Intervention and Technology, Karolinska InstitutetStockholm, Sweden
| | | |
Collapse
|
19
|
Pharmacogenomic Variants May Influence the Urinary Excretion of Novel Kidney Injury Biomarkers in Patients Receiving Cisplatin. Int J Mol Sci 2017. [PMID: 28640195 PMCID: PMC5535826 DOI: 10.3390/ijms18071333] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Nephrotoxicity is a dose limiting side effect associated with the use of cisplatin in the treatment of solid tumors. The degree of nephrotoxicity is dictated by the selective accumulation of cisplatin in renal tubule cells due to: (1) uptake by organic cation transporter 2 (OCT2) and copper transporter 1 (CTR1); (2) metabolism by glutathione S-transferases (GSTs) and γ-glutamyltransferase 1 (GGT1); and (3) efflux by multidrug resistance-associated protein 2 (MRP2) and multidrug and toxin extrusion protein 1 (MATE1). The purpose of this study was to determine the significance of single nucleotide polymorphisms that regulate the expression and function of transporters and metabolism genes implicated in development of acute kidney injury (AKI) in cisplatin treated patients. Changes in the kidney function were assessed using novel urinary protein biomarkers and traditional markers. Genotyping was conducted by the QuantStudio 12K Flex Real-Time PCR System using a custom open array chip with metabolism, transport, and transcription factor polymorphisms of interest to cisplatin disposition and toxicity. Traditional and novel biomarker assays for kidney toxicity were assessed for differences according to genotype by ANOVA. Allele and genotype frequencies were determined based on Caucasian population frequencies. The polymorphisms rs596881 (SLC22A2/OCT2), and rs12686377 and rs7851395 (SLC31A1/CTR1) were associated with renoprotection and maintenance of estimated glomerular filtration rate (eGFR). Polymorphisms in SLC22A2/OCT2, SLC31A1/CTRI, SLC47A1/MATE1, ABCC2/MRP2, and GSTP1 were significantly associated with increases in the urinary excretion of novel AKI biomarkers: KIM-1, TFF3, MCP1, NGAL, clusterin, cystatin C, and calbindin. Knowledge concerning which genotypes in drug transporters are associated with cisplatin-induced nephrotoxicity may help to identify at-risk patients and initiate strategies, such as using lower or fractionated cisplatin doses or avoiding cisplatin altogether, in order to prevent AKI.
Collapse
|