1
|
Pronkin PG, Tatikolov AS. Spectral-fluorescent and photochemical study of 6,6'-di(benzoylamino)trimethine cyanine dyes in solutions as possible probes for DNA. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 292:122416. [PMID: 36746042 DOI: 10.1016/j.saa.2023.122416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 01/23/2023] [Accepted: 01/24/2023] [Indexed: 06/18/2023]
Abstract
Spectral-fluorescent and photochemical properties of trimethine cyanine dyes T-304, T-306, and T-307, having substituents in 6,6'-positions, in various organic solvents, in aqueous buffer solutions, in the presence of surfactants and ethanol additives, and the effect on these properties of addition of DNA have been studied. Strong aggregation of the dyes in aqueous and aqueous buffer solutions has been shown. This is due to increased hydrophobicity of the dyes, which makes it difficult to use them as spectral-fluorescent probes for DNA. In the presence of DNA, trimethine cyanines partially form highly fluorescent complexes of dye monomers with the biomolecule, with slight decomposition of the initial aggregates and the formation of aggregates on DNA molecules. The formation of different types of dye-DNA complexes, i.e., intercalation and binding in the DNA grooves, was modeled by molecular docking. Dye-DNA complexes were also studied by circular dichroism spectroscopy and by thermal dissociation of DNA. To reveal selectivity of the dyes, their interaction with human serum albumin was briefly studied. The presence of moderate concentrations of nonionic surfactants does not lead to a significant decomposition of aggregates, but leads to a biphasic dependence of the fluorescence intensity on the DNA concentration. At the same time, ethanol additives (15%) lead to a more or less linear concentration dependence of the fluorescence intensity, which makes it possible to use these dyes as fluorescent probes for DNA. The effective binding constants of the dyes to DNA and the limits of DNA detection using the dyes in the presence of 15% ethanol were estimated. Photoisomerization and generation of the triplet states of T-304, T-306, and T-307 have been also studied. Along with the fluorescence growth, complexation with DNA leads to an increase in the yield of the triplet states of the dyes. This creates a prerequisite for using the dyes in targeted PDT. In the presence of DNA, the decay kinetics of the triplet states are biexponential, which indicates different types of dye complexes with DNA. The rate constants of oxygen quenching of the triplet states of the dyes bound to DNA are significantly lower than the diffusion-controlled values (taking into account the spin-statistical factor), which is explained by the shielding effect on the triplet molecules in complexes with DNA. The data obtained show that dyes T-304, T-306 and T-307, with addition of 15% ethanol, can be used as possible fluorescent probes for DNA.
Collapse
Affiliation(s)
- P G Pronkin
- N.M. Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 4 Kosygin Str., 119334 Moscow, Russia.
| | - A S Tatikolov
- N.M. Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 4 Kosygin Str., 119334 Moscow, Russia
| |
Collapse
|
2
|
Kim KH, Kim SJ, Singha S, Yang YJ, Park SK, Ahn KH. Ratiometric Detection of Hypochlorous Acid in Brain Tissues of Neuroinflammation and Maternal Immune Activation Models with a Deep-Red/Near-Infrared Emitting Probe. ACS Sens 2021; 6:3253-3261. [PMID: 34467757 DOI: 10.1021/acssensors.1c00930] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Reactive oxygen species (ROS) produced by an inflammatory response in the brain are associated with various neurological disorders. To investigate ROS-associated neuroinflammatory diseases, fluorescent probes with practicality are in demand. We have investigated hypochlorous acid, an important ROS, in the brain tissues of neuroinflammation and maternal immune activation (MIA) model mice, using a new fluorescent probe. The probe has outstanding features over many known probes, such as providing two bright ratio signals in cells and tissues in deep-red/near-infrared wavelength regions with a large spectral separation, in addition to being strongly fluorescent, photo- and chemo-stable, highly selective and sensitive, fast responding, and biocompatible. We have found that the level of hypochlorous acid in the brain tissue of a neuroinflammatory mouse model was higher (2.7-4.0-fold) compared with that in normal brain tissue. Furthermore, the level of hypochlorous acid in the brain tissue of a MIA mouse model was higher (1.2-1.3-fold) compared with that in the normal brain tissue. The "robust" probe provides a practical tool for studying ROS-associated neurological disorders.
Collapse
Affiliation(s)
- Kyeong Hwan Kim
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, Pohang, Gyungbuk 37673, Republic of Korea
| | - Soo Jeong Kim
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, Pohang, Gyungbuk 37673, Republic of Korea
| | - Subhankar Singha
- Institute of Advanced Studies and Research, JIS University, Kolkata 700091, India
| | - Yun Jae Yang
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, Pohang, Gyungbuk 37673, Republic of Korea
| | - Sang Ki Park
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, Pohang, Gyungbuk 37673, Republic of Korea
| | - Kyo Han Ahn
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, Pohang, Gyungbuk 37673, Republic of Korea
| |
Collapse
|
3
|
Spectral-Fluorescent Study of the Interaction of Cationic and Anionic Polymethine Dyes with Sodium Deoxycholate in Aqueous Solutions. J Fluoresc 2019; 29:1161-1170. [DOI: 10.1007/s10895-019-02432-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 08/27/2019] [Indexed: 01/16/2023]
|
4
|
Tatikolov AS, Pronkin PG, Panova IG. Spectral-fluorescent study of the interaction of polymethine dye probes with biological surfactants - bile salts. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 216:190-201. [PMID: 30901704 DOI: 10.1016/j.saa.2019.03.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 03/05/2019] [Accepted: 03/08/2019] [Indexed: 06/09/2023]
Abstract
Spectral-fluorescent properties of polymethine dye probes anionic 3,3'-di(sulfopropyl)-4,5,4',5'-dibenzo-9-ethylthiacarbocyanine-betaine (DEC) and cationic 3,3',9-trimethylthiacarbocyanine iodide (Cyan 2) in the presence of biological surfactants, bile salts sodium cholate (NaC), sodium deoxycholate (NaDC) and sodium taurocholate (NaTC), as well as sodium dodecyl sulfate (SDS), have been studied in a wide range of surfactant concentrations. When a surfactant is introduced into a solution of DEC, changes of the spectral-fluorescent properties are observed due to decomposition of dye dimers into cis-monomers and cis-trans conversion of the resulting monomers. In the presence of SDS, both processes occur in parallel, caused by noncovalent interaction of dye monomers with micelles, and mainly occur near the critical micelle concentration (CMC). In contrast, upon the introduction of increasing concentrations of bile salts, decomposition of dye dimers into the monomers begins at lower concentrations than cis-trans conversion. The former process is almost completed at concentrations close to CMC of secondary micelles (CMC2), while the latter process occurs even at concentrations of bile salts much higher than CMC2. Hence, DEC can serve as a probe that permits estimating the value of CMC2 and is indicative of reorganization of secondary micelles upon an increase in bile salt concentration. Aggregation of DEC and Cyan 2 on bile salts is also observed. Since it is observed at relatively low concentrations of bile salts (<CMC2), the aggregation probably occurs on monomeric molecules of bile salts and their small associates and primary micelles. Decomposition of the aggregates formed begins at concentrations of bile salts above CMC2 (that is, upon the interaction with secondary micelles).
Collapse
Affiliation(s)
- Alexander S Tatikolov
- N.M. Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Kosygin St. 4, Moscow 119334, Russia.
| | - Pavel G Pronkin
- N.M. Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Kosygin St. 4, Moscow 119334, Russia
| | - Ina G Panova
- N.K. Koltsov Institute of Developmental Biology, Russian Academy of Sciences, Vavilov St. 26, Moscow 119334, Russia
| |
Collapse
|
5
|
Sett R, Sen S, Paul BK, Guchhait N. How Does Nanoconfinement within a Reverse Micelle Influence the Interaction of Phenazinium-Based Photosensitizers with DNA? ACS OMEGA 2018; 3:1374-1385. [PMID: 31458466 PMCID: PMC6641382 DOI: 10.1021/acsomega.7b01820] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 01/17/2018] [Indexed: 06/10/2023]
Abstract
The major focus of the present work lies in exploring the influence of nanoconfinement within aerosol-OT (AOT) reverse micelles on the binding interaction of two phenazinium-based photosensitizers, namely, phenosafranin (PSF) and safranin-O (SO), with the DNA duplex. Circular dichroism and dynamic light-scattering studies reveal the condensation of DNA within the reverse micellar interior (transformation of the B-form of native DNA to ψ-form). Our results unveil a remarkable effect of the degree of hydration of the reverse micellar core on the stability of the stacking interaction (intercalation) of the drugs (PSF and SO) into DNA; increasing size of the water nanopool (that is, w 0) accompanies decreasing curvature of the DNA duplex structure with the consequent effect of increasing stabilization of the drug:DNA intercalation. The marked differences in the dynamical aspects of the interaction scenario following encapsulation within the reverse micellar core and the subsequent dependence on the size of the water nanopool are also meticulously explored. The differential degrees of steric interactions offered by the drug molecules (presence of methyl substitutions on the planar phenazinium ring in SO) are also found to affect the extent of intercalation of the drugs to DNA. In this context, it is imperative to state that the water pool of the reverse micellar core is often argued to approach bulk-like properties of water with increasing micellar size (typically w 0 ≥ 10), so that deviation from the bulk water properties is likely to be minimized in large reverse micelles (w 0 ≥ 10). On the contrary, our results (particularly quantitative elucidation of micropolarity and dynamical aspects of the interaction) explicitly demonstrate that the bulk-like behavior of the nanoconfined water is not truly achieved even in large reverse micelles.
Collapse
Affiliation(s)
- Riya Sett
- Department
of Chemistry, University of Calcutta, 92 A. P. C. Road, Kolkata 700009, India
| | - Swagata Sen
- Department
of Chemistry, University of Calcutta, 92 A. P. C. Road, Kolkata 700009, India
| | - Bijan K. Paul
- Department
of Chemistry, Mahadevananda Mahavidyalaya, Barrackpore, Kolkata 700120, India
| | - Nikhil Guchhait
- Department
of Chemistry, University of Calcutta, 92 A. P. C. Road, Kolkata 700009, India
| |
Collapse
|
6
|
Chen Y, Liu Y, Yao Y, Zhang S, Gu Z. Reverse micelle-based water-soluble nanoparticles for simultaneous bioimaging and drug delivery. Org Biomol Chem 2018; 15:3232-3238. [PMID: 28327735 DOI: 10.1039/c7ob00169j] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
With special confined water pools, reverse micelles (RMs) have shown potential for a wide range of applications. However, the inherent water-insolubility of RMs hinders their further application prospects, especially for applications related to biology. We recently reported the first successful transfer of RMs from organic media to an aqueous phase without changing the smart water pools by the hydrolysis of an arm-cleavable interfacial cross-linked reverse micelles. Herein, we employed another elaborate amphiphile 1 to construct new acrylamide-based cross-linked water-soluble nanoparticles (ACW-NPs) under much gentler conditions. The special property of the water pools of the ACW-NPs was confirmed by both the Förster resonance energy transfer (FRET) between 5-((2-aminoethyl)amino)naphthalene-1-sulfonic acid (1,5-EDANS) and benzoic acid, 4-[2-[4-(dimethylamino)phenyl]diazenyl] (DABCYL) and satisfactory colloidal stability in 10% fetal bovine serum. Importantly, featured by the gentle synthetic strategy, confined water pool, and carboxylic acid-functionalized surface, the new ACW-NPs are well suitable for biological applications. As an example, the fluorescent reagent 8-hydroxy-1,3,6-pyrenetrisulfonic acid trisodium salt (HPTS) was encapsulated in the core and simultaneously, the anticancer drug gemcitabine (Gem) was covalently conjugated onto the surface exterior. As expected, the resulting multifunctional ACW-NPs@HPTS@Gem exhibits a high imaging effect and anticancer activity for non-small lung cancer cells.
Collapse
Affiliation(s)
- Ying Chen
- National Engineering Research Centre for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu 610064, China.
| | | | | | | | | |
Collapse
|
7
|
Gbahou F, Cecon E, Viault G, Gerbier R, Jean-Alphonse F, Karamitri A, Guillaumet G, Delagrange P, Friedlander RM, Vilardaga JP, Suzenet F, Jockers R. Design and validation of the first cell-impermeant melatonin receptor agonist. Br J Pharmacol 2017; 174:2409-2421. [PMID: 28493341 DOI: 10.1111/bph.13856] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 04/27/2017] [Accepted: 05/03/2017] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND AND PURPOSE The paradigm that GPCRs are able to prolong or initiate cellular signalling through intracellular receptors recently emerged. Melatonin binds to G protein-coupled MT1 and MT2 receptors. In contrast to most other hormones targeting GPCRs, melatonin and its synthetic analogues are amphiphilic molecules easily penetrating into cells, but the existence of intracellular receptors is still unclear mainly due to a lack of appropriate tools. EXPERIMENTAL APPROACH We therefore designed and synthesized a series of hydrophilic melatonin receptor ligands coupled to the Cy3 cyanin fluorophore to reliably monitor its inability to penetrate cells. Two compounds, one lipophilic and one hydrophilic, were then functionally characterized in terms of their affinity for human and murine melatonin receptors expressed in HEK293 cells and their signalling efficacy. KEY RESULTS Among the different ligands, ICOA-13 showed the desired properties as it was cell-impermeant and bound to human and mouse MT1 and MT2 receptors. ICOA-13 showed differential activities on melatonin receptors ranging from partial to full agonistic properties for the Gi /cAMP and ERK pathway and β-arrestin 2 recruitment. Notably, ICOA-13 enabled us to discriminate between Gi /cAMP signalling of the MT1 receptor initiated at the cell surface and neuronal mitochondria. CONCLUSIONS AND IMPLICATIONS We report here the first cell-impermeant melatonin receptor agonist, ICOA-13, which allows us to discriminate between signalling events initiated at the cell surface and intracellular compartments. Detection of mitochondrial MT1 receptors may have an important impact on the development of novel melatonin receptor ligands relevant for neurodegenerative diseases, such as Huntington disease.
Collapse
Affiliation(s)
- Florence Gbahou
- Inserm, U1016, Institut Cochin, Paris, France.,CNRS UMR 8104, Paris, France.,Université Paris Descartes, Paris, France
| | - Erika Cecon
- Inserm, U1016, Institut Cochin, Paris, France.,CNRS UMR 8104, Paris, France.,Université Paris Descartes, Paris, France
| | - Guillaume Viault
- Institut de Chimie Organique et Analytique (ICOA), Université d'Orléans, UMR CNRS 7311, B.P. 6759, Orléans Cedex 2, France
| | - Romain Gerbier
- Inserm, U1016, Institut Cochin, Paris, France.,CNRS UMR 8104, Paris, France.,Université Paris Descartes, Paris, France
| | - Frederic Jean-Alphonse
- Laboratory for GPCR Biology, Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Angeliki Karamitri
- Inserm, U1016, Institut Cochin, Paris, France.,CNRS UMR 8104, Paris, France.,Université Paris Descartes, Paris, France
| | - Gérald Guillaumet
- Institut de Chimie Organique et Analytique (ICOA), Université d'Orléans, UMR CNRS 7311, B.P. 6759, Orléans Cedex 2, France
| | - Philippe Delagrange
- Pôle d'Innovation Thérapeutique Neuropsychiatrie, Institut de Recherches Servier, Croissy, France
| | - Robert M Friedlander
- Neuroapoptosis Laboratory, Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jean-Pierre Vilardaga
- Laboratory for GPCR Biology, Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Franck Suzenet
- Institut de Chimie Organique et Analytique (ICOA), Université d'Orléans, UMR CNRS 7311, B.P. 6759, Orléans Cedex 2, France
| | - Ralf Jockers
- Inserm, U1016, Institut Cochin, Paris, France.,CNRS UMR 8104, Paris, France.,Université Paris Descartes, Paris, France
| |
Collapse
|
8
|
Liu Y, Chen Y, Yao Y, Luo K, Zhang S, Gu Z. Confined Pool-Buried Water-Soluble Nanoparticles from Reverse Micelles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:5275-5282. [PMID: 28505441 DOI: 10.1021/acs.langmuir.7b00890] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
With the special nature of confined water pools, reverse micelles (RMs) have shown potential for a wide range of applications. However, the inherent water insolubility of RMs hinders their further application prospect especially for applications related to biology. We present herein the first successful transformation of water-insoluble RMs into water-soluble nanoparticles without changing the confined aqueous interiors by hydrolysis/aminolysis of arm-cleavable interfacial cross-linked reverse micelles formed from diester surfactant 1. The unique properties exhibited by the aqueous interiors of the resulting pool-buried water-soluble nanoparticles (PWNPs) were demonstrated both by the template synthesis of gold nanoparticles in the absence of external reductants and by the fluorescence enhancement of encapsulated thioflavin T (ThT). Importantly, the unique potential for PWNPs in biological applications was exemplified by the use of ThT@PWNPs and "cell targeted" ThT@PWNPs as effective optical imaging agents of living cells. This work conceptually overcomes the application bottleneck of RMs and opens an entry to a new class of functional materials.
Collapse
Affiliation(s)
- Yong Liu
- National Engineering Research Center for Biomaterials and ‡College of Chemistry, Sichuan University , 29 Wangjiang Road, Chengdu 610064, China
| | - Ying Chen
- National Engineering Research Center for Biomaterials and ‡College of Chemistry, Sichuan University , 29 Wangjiang Road, Chengdu 610064, China
| | - Yongchao Yao
- National Engineering Research Center for Biomaterials and ‡College of Chemistry, Sichuan University , 29 Wangjiang Road, Chengdu 610064, China
| | - Kui Luo
- National Engineering Research Center for Biomaterials and ‡College of Chemistry, Sichuan University , 29 Wangjiang Road, Chengdu 610064, China
| | - Shiyong Zhang
- National Engineering Research Center for Biomaterials and ‡College of Chemistry, Sichuan University , 29 Wangjiang Road, Chengdu 610064, China
| | - Zhongwei Gu
- National Engineering Research Center for Biomaterials and ‡College of Chemistry, Sichuan University , 29 Wangjiang Road, Chengdu 610064, China
| |
Collapse
|
9
|
Ghosh S, Banik D, Roy A, Kundu N, Kuchlyan J, Sarkar N. Spectroscopic investigation of the binding interactions of a membrane potential molecule in various supramolecular confined environments: contrasting behavior of surfactant molecules in relocation or release of the probe between nanocarriers and DNA surface. Phys Chem Chem Phys 2014; 16:25024-38. [DOI: 10.1039/c4cp03178d] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
10
|
Molecular interaction of oxazine dyes in aqueous solution: Temperature dependent molecular disposition of the aggregates. J Mol Liq 2011. [DOI: 10.1016/j.molliq.2011.09.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
11
|
Choudhury SD, Bhasikuttan AC, Pal H, Mohanty J. Surfactant-induced aggregation patterns of thiazole orange: a photophysical study. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2011; 27:12312-12321. [PMID: 21902267 DOI: 10.1021/la202414h] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The aggregation behavior of the DNA marker dye thiazole orange (TO), has been investigated in two types of surfactant assemblies, namely, premicelles/micelles of sodium dodecyl sulfate (SDS) and pre reverse micelles/reverse micelles of sodium bis(2-ethylhexyl) sulfosuccinate (AOT). In the case of an SDS/water system, absorption spectral changes of TO signify the formation of H-aggregates and H-dimers of the dye at premicellar concentrations, which subsequently convert to the monomeric form beyond the critical micellar concentration (cmc). Interestingly, the observed changes in the absorption and emission characteristics due to the surfactant-induced formation of H-aggregates/dimers of TO are found to be useful to estimate the surfactant concentration parameters for premicellar aggregation of SDS. In the case of an AOT/n-heptane system, similarly, H-aggregates/dimers are observed at low AOT concentrations, below the cmc. However, in this case, the H-dimers persist even beyond the cmc. This is attributed to the strong tendency of TO for self-aggregation and its favorable electrostatic interactions with the AOT head groups. With increasing water content in the AOT reverse micelles, the hydration of the dye leads to the conversion of H-dimers to the monomeric form. The steady-state fluorescence results are nicely corroborated with those from time-resolved fluorescence studies and demonstrate the interesting behavior of the surfactant-induced aggregation of TO dye.
Collapse
|
12
|
Zhu R, Lü R, Yu A. Aggregation Behaviors of Tricarbocyanine Dye in Water and in AOT Reverse Micelles. CHINESE J CHEM 2011. [DOI: 10.1002/cjoc.201190095] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
13
|
Zhu R, Lu R, Yu A. Photophysics and locations of IR125 and C152 in AOT reverse micelles. Phys Chem Chem Phys 2011; 13:20844-54. [DOI: 10.1039/c1cp21946d] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
14
|
Nikolenko LM, Ivanchikhina AV. Specifics of the formation of J-aggregates of cyanine dyes in solutions of AOT/water/hexane reverse micelles. HIGH ENERGY CHEMISTRY 2010. [DOI: 10.1134/s0018143910060093] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
15
|
3,3′-Diethyloxacarbocyanine iodide: A new microviscosity probe for micelles and microemulsions. Colloids Surf A Physicochem Eng Asp 2010. [DOI: 10.1016/j.colsurfa.2010.04.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
16
|
Ternary AOT/water/hexane systems as “micellar sieves” for cyanine dye J-aggregates. J Colloid Interface Sci 2009; 332:366-72. [DOI: 10.1016/j.jcis.2008.12.022] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2008] [Revised: 12/03/2008] [Accepted: 12/05/2008] [Indexed: 11/21/2022]
|
17
|
Nau WM, Hennig A, Koner AL. Squeezing Fluorescent Dyes into Nanoscale Containers—The Supramolecular Approach to Radiative Decay Engineering. ACTA ACUST UNITED AC 2007. [DOI: 10.1007/4243_2007_007] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
|
18
|
Tatikolov AS, Costa SMB. Energy Transfer and Fluorescence Quenching in Complexes of Polymethine Dyes with Human Serum Albumin¶. Photochem Photobiol 2007. [DOI: 10.1111/j.1751-1097.2004.tb00079.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
19
|
Atabekyan LS, Chibisov AK. Photoprocesses in aqueous solutions of 9-ethylthiacarbocyanine dyes in the presence of surfactants. HIGH ENERGY CHEMISTRY 2007. [DOI: 10.1134/s0018143907020075] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
20
|
Andrade SM, Costa SMB. Spectroscopic Studies of Water-Soluble Porphyrins with Protein Encapsulated in Bis(2-ethylhexyl)sulfosuccinate (AOT) Reverse Micelles: Aggregation versus Complexation. Chemistry 2006; 12:1046-57. [PMID: 16250056 DOI: 10.1002/chem.200500047] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
We have investigated the interaction of two water-soluble free-base porphyrins (negatively charged meso-tetrakis(p-sulfonatophenyl)porphyrin sodium salt (TSPP) and positively charged meso-tetrakis(N-methylpyridinium-4-yl)porphyrin (TMpyP)) with two drug-carrier proteins (human serum albumin (HSA) and beta-lactoglobulin (betaLG)) in bis(2-ethylhexyl)sulfosuccinate (AOT)/isooctane/water reverse micelles (RM) by using steady-state and transient-state fluorescence spectroscopy. TSPP exhibited a complex pattern of aggregation on varying the RM size and pH in the absence of the protein: at low omega0 (the ratio of water concentration to AOT concentration, the emission of H-aggregates prevails under acidic or neutral "pH(ext)" conditions. Upon formation of the water-pool, J-aggregates and monomeric diacid species dominate at low "pH(ext)" but only monomer is detected at neutral "pH(ext)". The aggregation number increases with omega0 and the presence of the protein does not seem to contribute to further growth of the aggregate. The presence of protein leads to H-deaggregation but promotes J-aggregation up to a certain protein/porphyrin ratio above which, complexation with the monomer bound to a hydrophobic site of the protein prevails. The effective complex binding constants are smaller than in free aqueous solution; this indicates a weaker binding in these RM probably due to some conformational changes imposed by encapsulation. Only a weak quenching of TMpyP fluorescence is detected due to the presence of protein in contrast to the negative porphyrin.
Collapse
Affiliation(s)
- Suzana M Andrade
- Centro de Química Estrutural, Complexo 1, Instituto Superior Técnico, 1049-001 Lisboa, Portugal.
| | | |
Collapse
|
21
|
Nath S, Ghosh SK, Panigrahi S, Pal T. Photo-induced decolorization of dimethylmethylene blue with selenious acid: a novel method to examine selective monomer-dimer distribution of the dye in micelle. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2005; 61:2145-51. [PMID: 15911404 DOI: 10.1016/j.saa.2004.08.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2004] [Accepted: 08/19/2004] [Indexed: 05/02/2023]
Abstract
In this report, selenious acid (H2SeO3) has been exploited to study the decolorization of a cationic dye, dimethylmethylene blue (DMMB) with UV-light. Micelles have effectively been employed as organized media to promote the rate of decolorization of the dye molecules. Micellar catalysis has been explained as a consequence of electrostatic, hydrophobic and charge transfer interactions. It has also been shown that strong charge transfer and electrostatic interaction lead to an appreciable enhancement of the reaction rate in micelle, whereas, weak hydrophobic interaction is of marginal importance. Existence of monomer-dimer equilibrium for the dye molecules under certain selective environments has been identified spectrophotometrically. Then the shift of dimer-monomer equilibrium of the dye has been successfully studied in aqueous and micellar environments exploiting photodecolorization process for the dye in solution. 'Salting-in' and 'salting-out' agents were introduced into the reaction mixture to examine the viability of the dye decolorization process for dye contaminated water samples.
Collapse
Affiliation(s)
- Sudip Nath
- Department of Chemistry, Indian Institute of Technology, Kharagpur 721302, India
| | | | | | | |
Collapse
|
22
|
Brichkin SB, Kurandina MA, Nikolaeva TM, Razumov VF. Spectral properties of carbocyanine dyes in solutions of reverse AOT micelles. HIGH ENERGY CHEMISTRY 2005. [DOI: 10.1007/s10733-005-0003-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
23
|
Mishra PP, Koner AL, Datta A. Interaction of Lucifer yellow with cetyltrimethyl ammonium bromide micelles and the consequent suppression of its non-radiative processes. Chem Phys Lett 2004. [DOI: 10.1016/j.cplett.2004.10.101] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
24
|
Nath S, Ghosh SK, Panigrahi S, Pal T. Photolytic color bleaching of cationic dyes in presence of selenious acid in aqueous and micellar environments. Colloids Surf A Physicochem Eng Asp 2004. [DOI: 10.1016/j.colsurfa.2004.06.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
25
|
Tatikolov AS, Costa SMB. Complexation of polymethine dyes with human serum albumin: a spectroscopic study. Biophys Chem 2004; 107:33-49. [PMID: 14871599 DOI: 10.1016/s0301-4622(03)00218-7] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2003] [Revised: 08/04/2003] [Accepted: 08/04/2003] [Indexed: 11/15/2022]
Abstract
Non-covalent interactions between polymethine dyes of various types (cationic and anionic thiacarbocyanines as well as anionic oxonols and tetracyanopolymethines) and human serum albumin (HSA) were studied by means of absorption, fluorescence and circular dichroism (CD) spectroscopies. Complexation with the protein leads to a red shift of the dye absorption spectra and, in most cases, to a growth of the fluorescence quantum yield (Phif; for oxonols this growth is very small). The binding constants (K) obtained from changing the absorption spectra and Phif vary from 10(4) to (5-6) x 10(7) M(-1). K for the anionic dyes is much higher than for the cationic dyes (the highest K was found for oxonols). Interaction of meso-substituted anionic thiacarbocyanines with HSA results in cis-->trans isomerization and, as a consequence, an appearance and a steep rise of dye fluorescence. Binding to HSA gives rise to dye CD signals and in many cases is accompanied by aggregation of the dyes. These aggregates often exhibit biphasic CD spectra. The aggregates formed by the dyes alone are decomposed in the presence of HSA.
Collapse
Affiliation(s)
- Alexander S Tatikolov
- Centro de Química Estrutural, Complexo 1, Instituto Superior Técnico, Av. Rovisco Pais, Lisboa 1049-001, Portugal.
| | | |
Collapse
|