1
|
Huuskonen P, Porras SP, Scholten B, Portengen L, Uuksulainen S, Ylinen K, Santonen T. Occupational Exposure and Health Impact Assessment of Diisocyanates in Finland. TOXICS 2023; 11:229. [PMID: 36976995 PMCID: PMC10052111 DOI: 10.3390/toxics11030229] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/09/2023] [Accepted: 02/23/2023] [Indexed: 06/18/2023]
Abstract
Diisocyanates are a group of chemicals widely used in different industrial applications. The critical health effects related to diisocyanate exposure are isocyanate sensitisation, occupational asthma and bronchial hyperresponsiveness (BHR). Industrial air measurements and human biomonitoring (HBM) samples were gathered in specific occupational sectors to examine MDI, TDI, HDI and IPDI and the respective metabolites from Finnish screening studies. HBM data can give a more accurate picture of diisocyanate exposure, especially if workers have been exposed dermally or used respiratory protection. The HBM data were used for conducting a health impact assessment (HIA) in specific Finnish occupational sectors. For this purpose, exposure reconstruction was performed on the basis of HBM measurements of TDI and MDI exposures using a PBPK model, and a correlation equation was made for HDI exposure. Subsequently, the exposure estimates were compared to a previously published dose-response curve for excess BHR risk. The results showed that the mean and median diisocyanate exposure levels and HBM concentrations were low for all diisocyanates. In HIA, the excess risk of BHR from MDI exposure over a working life period was highest in the construction and motor and vehicle industries and repair sectors, resulting in estimated excess risks of BHR of 2.0% and 2.6%, and 113 and 244 extra BHR cases in Finland, respectively. Occupational exposure to diisocyanates must be monitored because a clear threshold for DI sensitisation cannot be established.
Collapse
Affiliation(s)
- Pasi Huuskonen
- Finnish Institute of Occupational Health, FI-00032 Helsinki, Finland
| | - Simo P. Porras
- Finnish Institute of Occupational Health, FI-00032 Helsinki, Finland
| | - Bernice Scholten
- The Netherlands Organisation for Applied Scientific Research (TNO), 3508 TA Utrecht, The Netherlands
| | - Lützen Portengen
- Institute for Risk Assessment Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584 CK Utrecht, The Netherlands
| | - Sanni Uuksulainen
- Finnish Institute of Occupational Health, FI-00032 Helsinki, Finland
| | - Katriina Ylinen
- Finnish Institute of Occupational Health, FI-00032 Helsinki, Finland
| | - Tiina Santonen
- Finnish Institute of Occupational Health, FI-00032 Helsinki, Finland
| |
Collapse
|
2
|
Human Biomonitoring of Environmental and Occupational Exposures by GC-MS and Gas Sensor Systems: A Systematic Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph181910236. [PMID: 34639537 PMCID: PMC8508139 DOI: 10.3390/ijerph181910236] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 09/23/2021] [Accepted: 09/26/2021] [Indexed: 12/15/2022]
Abstract
Environmental chemicals and contaminants coming from multiple external sources enter the human body, determining a potential risk for human health. Human biomonitoring (HBM), measuring the concentrations of biomarkers in human specimens, has become an emerging approach for assessing population-wide exposure to hazardous chemicals and health risk through large-scale studies in many countries. However, systematic mapping of HBM studies, including their characteristics, targeted hazardous pollutants, analytical techniques, and sample population (general population and occupationally exposed workers), has not been done so far. We conducted a systematic review of the literature related to airborne hazardous pollutants in biofluids to answer the following questions: Which main chemicals have been included in the literature, which bodily fluids have been used, and what are the main findings? Following PRISMA protocol, we summarized the publications published up to 4 February 2021 of studies based on two methods: gas-chromatography/mass spectrometry (GC/MS) and electronic noses (e-noses). We screened 2606 records and 117 publications were included in the analysis, the most based on GC/MS analysis. The selected HBM studies include measurements of biomarkers in different bodily fluids, such as blood, urine, breast milk, and human semen as well as exhaled air. The papers cover numerous airborne hazardous pollutants that we grouped in chemical classes; a lot of hazardous and noxious compounds, mainly persistent organic pollutants (POPs) and volatile organic compounds (VOCs), have been detected in biological fluids at alarming levels. The scenario that emerged from this survey demonstrates the importance of HBM in human exposure to hazardous pollutants and the need to use it as valid tool in health surveillance. This systematic review represents a starting point for researchers who focus on the world of pollutant biomonitoring in the human body and gives them important insights into how to improve the methods based on GC/MS. Moreover, it makes a first overview of the use of gas sensor array and e-noses in HBM studies.
Collapse
|
3
|
Scholten B, Kenny L, Duca RC, Pronk A, Santonen T, Galea KS, Loh M, Huumonen K, Sleeuwenhoek A, Creta M, Godderis L, Jones K. Biomonitoring for Occupational Exposure to Diisocyanates: A Systematic Review. Ann Work Expo Health 2020; 64:569-585. [PMID: 32313948 PMCID: PMC7328470 DOI: 10.1093/annweh/wxaa038] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 03/24/2020] [Accepted: 04/02/2020] [Indexed: 11/14/2022] Open
Abstract
Diisocyanates are a group of chemicals that are widely used in occupational settings. They are known to induce various health effects, including skin- and respiratory tract sensitization resulting in allergic dermatitis and asthma. Exposure to diisocyanates has been studied in the past decades by using different types of biomonitoring markers and matrices. The aim of this review as part of the HBM4EU project was to assess: (i) which biomarkers and matrices have been used for biomonitoring diisocyanates and what are their strengths and limitations; (ii) what are (current) biomonitoring levels of the major diisocyanates (and metabolites) in workers; and (iii) to characterize potential research gaps. For this purpose we conducted a systematic literature search for the time period 2000-end 2018, thereby focussing on three types of diisocyanates which account for the vast majority of the total isocyanate market volume: hexamethylene diisocyanate (HDI), toluene diisocyanate (TDI), and 4,4'-methylenediphenyl diisocyanate (MDI). A total of 28 publications were identified which fulfilled the review inclusion criteria. The majority of these studies (93%) investigated the corresponding diamines in either urine or plasma, but adducts have also been investigated by several research groups. Studies on HDI were mostly in the motor vehicle repair industry [with urinary hexamethylene diamine result ranging from 0.03 to 146.5 µmol mol-1 creatinine]. For TDI, there is mostly data on foam production [results for urinary toluene diamine ranging from ~0.01 to 97 µmol mol-1 creatinine] whereas the available MDI data are mainly from the polyurethane industry (results for methylenediphenyl diamine range from 0.01 to 32.7 µmol mol-1 creatinine). About half of the studies published were prior to 2010 hence might not reflect current workplace exposure. There is large variability within and between studies and across sectors which could be potentially explained by several factors including worker or workplace variability, short half-lives of biomarkers, and differences in sampling strategies and analytical techniques. We identified several research gaps which could further be taken into account when studying diisocyanates biomonitoring levels: (i) the development of specific biomarkers is promising (e.g. to study oligomers of HDI which have been largely neglected to date) but needs more research before they can be widely applied, (ii) since analytical methods differ between studies a more uniform approach would make comparisons between studies easier, and (iii) dermal absorption seems a possible exposure route and needs to be further investigated. The use of MDI, TDI, and HDI has been recently proposed to be restricted in the European Union unless specific conditions for workers' training and risk management measures apply. This review has highlighted the need for a harmonized approach to establishing a baseline against which the success of the restriction can be evaluated.
Collapse
Affiliation(s)
- Bernice Scholten
- Risk Assessment for Products in Development, TNO Quality of Life, Zeist, The Netherlands
| | - Laura Kenny
- Health and Safety Executive (HSE), Harpur Hill, Buxton, UK
| | - Radu-Corneliu Duca
- Unit Environmental Hygiene and Human Biological Monitoring, Department of Health Protection, National Health Laboratory, Dudelange, Luxembourg
| | - Anjoeka Pronk
- Risk Assessment for Products in Development, TNO Quality of Life, Zeist, The Netherlands
| | | | - Karen S Galea
- Centre for Human Exposure Science (CHES), Institute of Occupational Medicine (IOM), Edinburgh, UK
| | - Miranda Loh
- Centre for Human Exposure Science (CHES), Institute of Occupational Medicine (IOM), Edinburgh, UK
| | | | - Anne Sleeuwenhoek
- Centre for Human Exposure Science (CHES), Institute of Occupational Medicine (IOM), Edinburgh, UK
| | - Matteo Creta
- Centre Environment and Health, KU Leuven, Leuven, Belgium
| | - Lode Godderis
- Centre Environment and Health, KU Leuven, Leuven, Belgium
- External Service for Prevention and Protection at Work, Heverlee, Belgium
| | - Kate Jones
- Health and Safety Executive (HSE), Harpur Hill, Buxton, UK
| |
Collapse
|
4
|
Donchenko A, Aubin S, Gagné S, Spence M, Breau L, Lesage J. Development of a method for quantification of toluene diisocyanate and methylenediphenyl diisocyanate migration from polyurethane foam sample surface to artificial sweat by HPLC-UV-MS. J Chromatogr B Analyt Technol Biomed Life Sci 2020; 1142:122027. [PMID: 32145637 DOI: 10.1016/j.jchromb.2020.122027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 01/29/2020] [Accepted: 02/12/2020] [Indexed: 12/01/2022]
Abstract
The US Environmental protection agency (EPA) has published guidance that includes test procedures for evaluating indoor exposure to chemicals from products. One of the test procedures represents the migration test for evaluating potential dermal exposure from home furniture. Such an evaluation involves the chemical measurement of the sweat which is currently unavailable in the literature. The objective of this project was to develop and validate an analytical method for quantification of migration of 4,4'-methylenediphenyl diisocyanate (MDI), 2,6-toluene diisocyanate (2,6-TDI) and 2,4-toluene diisocyanate (2,4-TDI) from a polyurethane (PU) flexible foam to artificial sweat that meets the recommendations of the EPA test protocol. Following the EPA protocol, six synthetic sweat solutions were prepared and used in evaluation of isocyanate recovery performance. The migration tests were conducted using five foam types that were chosen and supplied by PU foam manufacturers to represent the types most commonly found in commercial products, and with formulations anticipated to have the highest potential residual TDI or MDI. Migration tests were conducted using glass fiber filters (GFF) coated with 1-(2-methoxyphenyl)piperazine (1,2-MP) and analyzed using HPLC equipped with a UV detector for quantification and a MS detector to qualify peaks. The detection limits of the method were 0.002 µg/mL for 2,6-TDI, 0.011 µg/mL for 2,4-TDI, and 0.003 µg/mL for MDI. Quantification limits were 0.006 µg/mL, 0.037 µg/mL, and 0.010 µg/mL, respectively. The recovery tests on a Teflon surface for 5 of the 6 EPA-recommended synthetic sweat solutions indicate the recovery percentage was approximately 80% for diisocyanates. Recovery for the sixth sweat solution was low, approximately 30%. TDI and MDI migration was not observed when testing was conducted on foam samples.
Collapse
Affiliation(s)
- Aleksandra Donchenko
- Université du Québec à Montréal, Chemistry Department, PO Box 8888, succ. Centre-Ville, Montréal, Québec H3C 3P8, Canada; Institut de recherche Robert-Sauvé en santé et en sécurité du travail, 505, De Maisonneuve Blvd West., Montréal, Québec H3A 3C2, Canada
| | - Simon Aubin
- Institut de recherche Robert-Sauvé en santé et en sécurité du travail, 505, De Maisonneuve Blvd West., Montréal, Québec H3A 3C2, Canada
| | - Sébastien Gagné
- Institut de recherche Robert-Sauvé en santé et en sécurité du travail, 505, De Maisonneuve Blvd West., Montréal, Québec H3A 3C2, Canada.
| | - Mark Spence
- International Isocyanate Institute, Inc., West Main St, Boonton, NJ 07005, United States
| | - Livain Breau
- Université du Québec à Montréal, Chemistry Department, PO Box 8888, succ. Centre-Ville, Montréal, Québec H3C 3P8, Canada
| | - Jacques Lesage
- Université du Québec à Montréal, Chemistry Department, PO Box 8888, succ. Centre-Ville, Montréal, Québec H3C 3P8, Canada
| |
Collapse
|
5
|
A validated UPLC-MS/MS method for the determination of aliphatic and aromatic isocyanate exposure in human urine. Anal Bioanal Chem 2019; 412:753-762. [PMID: 31872276 DOI: 10.1007/s00216-019-02295-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 10/28/2019] [Accepted: 11/19/2019] [Indexed: 10/25/2022]
Abstract
4,4'-Methylenediphenyldiisocyanate (MDI), toluenediisocyanate (2,4-TDI and 2,6-TDI), and 1,6'-hexamethylenediisocyanate (HDI) are all commonly used in the production of polyurethane-containing materials in different application areas. Workers exposed occupationally to these compounds may develop sensitization with the potential to lead to asthma. Isocyanates are metabolized in vivo by conjugation to macromolecules and/or by acetylation prior to being eliminated in urine. The hydrolysis of urine samples releases free amine compounds from these metabolites as biomarkers of exposure, specific to each parent isocyanate: 4,4'-methylenedianiline (MDA), toluenediamine (2,4-TDA and 2,6-TDA), and hexamethylenediamine (HDA). To address the need for a validated method that could be used for the simultaneous determination of biomarkers of aliphatic and aromatic isocyanates to monitor occupational exposure based on recommended thresholds, we have developed an UPLC-MS/MS method for the quantitation of MDA, TDA isomers, and HDA following acid hydrolysis, solid-phase extraction, and derivatization of urine samples. Free amine compounds were derivatized with acetic anhydride to augment chromatographic retention and signal intensity. The method was developed considering the biological guidance value (BGV) of MDA at 10 μg L-1, and biological exposure indices (BEI) of TDA isomers and HDA at 5 μg g-1 and 15 μg g-1 creatinine, respectively. Limits of detection allowed monitoring down to 6% of BGV/BEI, with precision within 8%. The accuracy and reliability of the method were assessed using inter-laboratory reference samples and deemed acceptable based on three rounds of measurements. This novel method has therefore been proven as useful for occupational safety and health assessments. Graphical Abstract.
Collapse
|
6
|
Lépine M, Sleno L, Lesage J, Gagné S. A validated liquid chromatography/tandem mass spectrometry method for 4,4'-methylenedianiline quantitation in human urine as a measure of 4,4'-methylene diphenyl diisocyanate exposure. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2019; 33:600-606. [PMID: 30604511 DOI: 10.1002/rcm.8380] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 12/11/2018] [Accepted: 12/23/2018] [Indexed: 06/09/2023]
Abstract
RATIONALE 4,4'-Methylene diphenyl diisocyanate (MDI) is a highly reactive isocyanate used in the production of polyurethanes. Workers exposed to these products may develop sensitization to the diisocyanate compounds, leading to occupational asthma. Quantifying MDI levels is necessary to ensure workplace safety. MDI is metabolized by acetylation and/or conjugation to macromolecules for excretion into urine. All metabolites can be chemically hydrolyzed to form the free diamine 4,4'-methylenedianiline (MDA) as a urinary biomarker of MDI exposure. Current methods involve long sample preparation, or have been designed using costly automation. There is therefore a need to develop a new practical method for assessing exposure to MDI. METHODS Urine samples were acidified and heated to form MDA, followed by neutralization and liquid-liquid extraction. Extracts were separated by reversed-phase chromatography on a HSS T3 column followed by analysis on a triple quadrupole mass spectrometer in multiple reaction monitoring (MRM) mode. RESULTS 13 C15 N-MDA was selected as the internal standard (IS) of choice following an investigation of internal standard stability. The hydrolysis efficiency, forming free MDA from conjugated metabolites in vivo, was evaluated using 4,4'-methylenebis(acetanilide) spiked into urine and complete hydrolysis occurred after 1 h. A dynamic range of 5 to 500 nM was achieved, and was useful for monitoring MDI exposure considering the biological guidance value (BGV) of 10 μg/L (~50 nM) proposed by the German Research Foundation (DFG). The limit of detection (LOD) and limit of quantification (LOQ) of the method were 0.8 and 2.7 nM, respectively. The intra-day and inter-day precisions were 4.33% and 4.27%, respectively. Finally, the method was tested with inter-laboratory samples from the German External Quality Assessment Scheme (G-EQUAS) program and the results submitted were all within the allowable tolerance range. CONCLUSIONS A practical and validated method for the analysis of small- to medium-sized batches of samples has been developed for the biological monitoring of MDI exposure in human urine.
Collapse
Affiliation(s)
- Maggy Lépine
- Chemistry Department, Université du Québec à Montréal, PO Box 8888 Downtown Station, Montreal, H3C 3P8, Canada
- Institut de recherche Robert-Sauvé en santé et en sécurité du travail, 505 boul. De Maisonneuve Ouest, Montréal, Québec, H3A 3C2, Canada
| | - Lekha Sleno
- Chemistry Department, Université du Québec à Montréal, PO Box 8888 Downtown Station, Montreal, H3C 3P8, Canada
| | - Jacques Lesage
- Chemistry Department, Université du Québec à Montréal, PO Box 8888 Downtown Station, Montreal, H3C 3P8, Canada
| | - Sébastien Gagné
- Institut de recherche Robert-Sauvé en santé et en sécurité du travail, 505 boul. De Maisonneuve Ouest, Montréal, Québec, H3A 3C2, Canada
| |
Collapse
|
7
|
Robbins Z, Bodnar W, Zhang Z, Gold A, Nylander-French LA. Trisaminohexyl isocyanurate, a urinary biomarker of HDI isocyanurate exposure. J Chromatogr B Analyt Technol Biomed Life Sci 2018; 1076:117-129. [PMID: 29406025 DOI: 10.1016/j.jchromb.2018.01.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 01/12/2018] [Accepted: 01/15/2018] [Indexed: 11/17/2022]
Abstract
Biological monitoring of occupational exposure to 1,6-hexamethylene diisocyanate (HDI)-containing spray-paints is limited to analysis of metabolites of HDI monomer although polymeric HDI isocyanurate constitutes the predominant inhalation and skin exposure for workers in the automotive paint industry. A novel method using nanoflow ultra-performance liquid chromatography coupled to nano-electrospray ionization tandem mass spectrometry (nano-UPLC-ESI-MS/MS) was developed to quantify trisaminohexyl isocyanurate (TAHI), a hydrolysis product of HDI isocyanurate, in the urine of spray-painters. Analytical and internal standards were synthesized in-house and weighted linear regression calibration curves were generated using spiked control urine from non-exposed persons (0.06-7.98 μg/L; N = 13; w = x-2; r = 0.998). Urine samples collected from 15 exposed workers (N = 111) were subjected to acid hydrolysis and extracted with dichloromethane, then derivatized with acetic anhydride. The derivatized product, trisacetamidohexyl isocyanurate (TAAHI), was analyzed using nano-UPLC-ESI-MS/MS. The protocol was sensitive and specific for analysis of TAHI in the urine of exposed workers with a method detection limit at 0.03 μg/L. TAHI was detected in 33 of 111 urine samples and in 11 of 15 workers. This biomarker for HDI isocyanurate is critical to determine the relative potency and dose-relationships between the monomer and oligomer exposure on the development of diisocyanate induced health effects in future studies.
Collapse
Affiliation(s)
- Zachary Robbins
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, NC 27599, USA
| | - Wanda Bodnar
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, NC 27599, USA
| | - Zhenfa Zhang
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, NC 27599, USA
| | - Avram Gold
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, NC 27599, USA
| | - Leena A Nylander-French
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, NC 27599, USA.
| |
Collapse
|
8
|
Henriks-Eckerman ML, Mäkelä EA, Laitinen J, Ylinen K, Suuronen K, Vuokko A, Sauni R. Role of dermal exposure in systemic intake of methylenediphenyl diisocyanate (MDI) among construction and boat building workers. Toxicol Lett 2014; 232:595-600. [PMID: 25542146 DOI: 10.1016/j.toxlet.2014.12.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Revised: 12/19/2014] [Accepted: 12/19/2014] [Indexed: 11/19/2022]
Abstract
The causal relationship between inhalation exposure to methylenediphenyl diisocyanate (MDI) and the risk of occupational asthma is well known, but the role of dermal exposure and dermal uptake of MDI in this process is still unclear. The aims of this study were to measure dermal exposure to and the dermal uptake of MDI among workers (n=24) who regularly handle MDI-urethanes. Dermal exposure was measured by the tape-strip technique from four sites on the dominant hand and arm. The workers with the highest exposure (n=5) were biomonitored immediately after their work shift, in the evening and the next morning, using urinary 4,4´methylenedianiline (MDA) as a marker. Dermal uptake was evaluated by comparing workers' MDA excretions both when they were equipped with respiratory protective devices (RPDs) and when they did not use them. The measured amounts of MDI on their hands varied from below 0.1 to 17 μg/10 cm(2) during the test. MDI concentrations were in the range of 0.08 to 27 μg m(-3) in the breathing zone outside the RPDs. MDA concentrations varied from 0.1 to 0.2 μmol mol(-1) creatinine during the test period. The decreasing effect of RPDs on inhalation exposure was absent in the next morning urine samples; this excretion pattern might be an indication of dermal uptake of MDI.
Collapse
Affiliation(s)
| | - Erja A Mäkelä
- Finnish Institute of Occupational Health, Helsinki, Finland
| | - Juha Laitinen
- Finnish Institute of Occupational Health, Kuopio, Finland
| | | | - Katri Suuronen
- Finnish Institute of Occupational Health, Helsinki, Finland
| | - Aki Vuokko
- Finnish Institute of Occupational Health, Helsinki, Finland
| | - Riitta Sauni
- Finnish Institute of Occupational Health, Tampere, Finland
| |
Collapse
|
9
|
Flack SL, Fent KW, Gaines LGT, Thomasen JM, Whittaker SG, Ball LM, Nylander-French LA. Hemoglobin adducts in workers exposed to 1,6-hexamethylene diisocyanate. Biomarkers 2011; 16:261-70. [PMID: 21506697 DOI: 10.3109/1354750x.2010.549242] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
We investigated the utility of 1,6-hexamethylene diamine (HDA) hemoglobin adducts as biomarkers of exposure to 1,6-hexamethylene diisocyanate (HDI) monomer. Blood samples from 15 spray painters applying HDI-containing paint were analyzed for hemoglobin HDA (HDA-Hb) and N-acetyl-1,6-hexamethylene diamine (monoacetyl-HDA-Hb) by GC-MS. HDA-Hb was detected in the majority of workers (≤1.2-37 ng/g Hb), whereas monoacetyl-HDA-Hb was detected in one worker (0.06 ng/g Hb). The stronger, positive association between HDA-Hb and cumulative HDI exposure (r(2) = 0.3, p < 0.06) than same day exposure (p ≥ 0.13) indicates long-term elimination kinetics for HDA-Hb adducts. This association demonstrates the suitability of HDA-Hb adducts for further validation as a biomarker of HDI exposure.
Collapse
Affiliation(s)
- Sheila L Flack
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, NC 27599, USA
| | | | | | | | | | | | | |
Collapse
|
10
|
Lindberg HK, Korpi A, Santonen T, Säkkinen K, Järvelä M, Tornaeus J, Ahonen N, Järventaus H, Pasanen AL, Rosenberg C, Norppa H. Micronuclei, hemoglobin adducts and respiratory tract irritation in mice after inhalation of toluene diisocyanate (TDI) and 4,4′-methylenediphenyl diisocyanate (MDI). MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2011; 723:1-10. [DOI: 10.1016/j.mrgentox.2011.03.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2010] [Revised: 01/17/2011] [Accepted: 03/16/2011] [Indexed: 11/30/2022]
|
11
|
Budnik LT, Nowak D, Merget R, Lemiere C, Baur X. Elimination kinetics of diisocyanates after specific inhalative challenges in humans: mass spectrometry analysis, as a basis for biomonitoring strategies. J Occup Med Toxicol 2011; 6:9. [PMID: 21447151 PMCID: PMC3080353 DOI: 10.1186/1745-6673-6-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2010] [Accepted: 03/29/2011] [Indexed: 11/25/2022] Open
Abstract
Background Isocyanates are some of the leading occupational causes of respiratory disorders, predominantly asthma. Adequate exposure monitoring may recognize risk factors and help to prevent the onset or aggravation of these aliments. Though, the biomonitoring appears to be most suitable for exposure assessment, the sampling time is critical, however. In order to settle the optimal time point for the sample collection in a practical biomonitoring approach, we aimed to measure the elimination of isocyanate urine metabolites. Methods A simple biomonitoring method enabling detection of all major diamine metabolites, from mono-, poly- and diisocyanates in one analytical step, has been established. Urine samples from 121 patients undergoing inhalative challenge tests with diisocyanates for diagnostic reasons were separated by gas chromatography and analyzed with mass spectrometry (GC-MS) at various time points (0-24 h) after the onset of exposure. Results After controlled exposures to different concentrations of diisocyanates (496 ± 102 ppb-min or 1560 ± 420 ppb-min) the elimination kinetics (of respective isocyanate diamine metabolites) revealed differences between aliphatic and aromatic isocyanates (the latter exhibiting a slower elimination) and a dose-response relationship. No significant differences were observed, however, when the elimination time patterns for individual isocyanates were compared, in respect of either low or high exposure or in relation to the presence or absence of prior immunological sensitization. Conclusions The detection of isocyanate metabolites in hydrolyzed urine with the help of gas chromatography combined with mass spectrometric detection system appears to be the most suitable, reliable and sensitive method to monitor possible isocyanate uptake by an individual. Additionally, the information on elimination kinetic patterns must be factored into estimates of isocyanate uptake before it is possible for biomonitoring to provide realistic assessments of isocyanate exposure. The pathophysiological elimination of 1,6-hexamethylene diamine, 2,4-diamine toluene, 2,6-diamine toluene, 1,5-naphthalene diamine, 4,4'-diphenylmethane diamine and isophorone diamines (as respective metabolites of: 1,6-hexamethylene diisocyanate, 2,4-toluene diisocyanate and 2,6 toluene diisocyanate, 1,5-naphthalene diisocyanate, 4,4'-diphenylmethane diisocyanate and isophorone diisocyanates) differs between individual isocyanates' diamines.
Collapse
Affiliation(s)
- Lygia T Budnik
- Institute for Occupational Medicine and Maritime Medicine (ZfAM), University Medical Center, Hamburg-Eppendorf, Hamburg, Germany.
| | | | | | | | | |
Collapse
|
12
|
Säkkinen K, Tornaeus J, Hesso A, Hirvonen A, Vainio H, Norppa H, Rosenberg C. Protein adducts as biomarkers of exposure to aromatic diisocyanates in workers manufacturing polyurethane (PUR) foam. ACTA ACUST UNITED AC 2011; 13:957-65. [PMID: 21344094 DOI: 10.1039/c0em00595a] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This work was undertaken to investigate the usefulness of diisocyanate-related protein adducts in blood samples as biomarkers of occupational exposure to toluene diisocyanate (TDI; 2,4- and 2,6-isomers) and 4,4'-methylenediphenyl diisocyanate (MDI). Quantification of adducts as toluene diamines (TDAs) and methylenedianiline (MDA) was performed on perfluoroacylated derivatives by gas chromatography-mass spectrometry (GC-MS/MS) in negative chemical ionisation mode. TDI-derived adducts were found in 77% of plasma and in 59% of globin samples from exposed workers manufacturing flexible polyurethane foam. The plasma levels ranged from 0.003 to 0.58 nmol mL(-1) and those in globin from 0.012 to 0.33 nmol g(-1). The 2,6-isomer amounted to about two-thirds of the sum concentration of TDA isomers. MDI-derived adducts were detected in 3.5% of plasma and in 7% of globin samples from exposed workers manufacturing rigid polyurethane foam. A good correlation was found between the sum of TDA isomers in urine and that in plasma. The relationship between globin adducts and urinary metabolites was ambiguous. Monitoring TDI-derived TDA in plasma thus appears to be an appropriate method for assessing occupational exposure. Contrary to TDI exposure, adducts in plasma or globin were not useful in assessing workers' exposure to MDI. An important outcome of the study was that no amine-related adducts were detected in globin samples from TDI- or MDI-exposed workers, alleviating concerns that TDI or MDI might pose a carcinogenic hazard. Further studies are nevertheless required to judge whether diisocyanates per se could be such a hazard.
Collapse
Affiliation(s)
- Kirsi Säkkinen
- Work Environment Development, Finnish Institute of Occupational Health, Topeliuksenkatu 41 a A, FI-00250 Helsinki, Finland
| | | | | | | | | | | | | |
Collapse
|
13
|
Abstract
Isocyanates are reactive chemicals and thousands of workers may be exposed to them during their manufacture and use in a wide range of products. They are classed as sensitizers and are a major cause of occupational asthma in the UK. Workplace exposure limits are low and control of exposure often depends on personal respiratory protection. Biological monitoring is increasingly used to assess exposure and the efficacy of control measures, including the behavioural aspects of controls. Biological monitoring methods are available for the most common isocyanates hexamethylene diisocyanate, toluene diisocyanate, isophorone diisocyanate, and methylenediphenyl diisocyanate. They are based on the analysis of hexamethylene diamine, toluene diamine, isopherone diamine, and methylenediamine released after hydrolysis of isocyanate-protein adducts in urine or blood. Volunteer and occupational studies show good correlations between inhalation exposure to isocyanate monomers and isocyanate-derived diamines in urine or blood. However, occupational exposure to isocyanates is often to a mixture of monomers and oligomers so there is some uncertainty comparing biological monitoring results with airborne exposure to 'total NCO'. Nevertheless, there is a substantial body of work demonstrating the utility of biological monitoring as a tool to assess exposure and the efficacy of controls, including how they are used in practice. Non-health-based biological monitoring guidance values are available to help target when and where further action is required. Occupational hygienists will need to use their knowledge and experience to determine the relative contributions of different routes of exposure and how controls can be improved to reduced the risk of ill health.
Collapse
Affiliation(s)
- John Cocker
- Health and Safety Laboratory, Harpur Hill Buxton S10 3PT, UK.
| |
Collapse
|
14
|
Gaines LGT, Fent KW, Flack SL, Thomasen JM, Whittaker SG, Nylander-French LA. Factors affecting variability in the urinary biomarker 1,6-hexamethylene diamine in workers exposed to 1,6-hexamethylene diisocyanate. ACTA ACUST UNITED AC 2010; 13:119-27. [PMID: 20978689 DOI: 10.1039/c0em00122h] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Although urinary 1,6-hexamethylene diamine (HDA) is a useful biomarker of exposure to 1,6-hexamethylene diisocyanate (HDI), a large degree of unexplained intra- and inter-individual variability exists between estimated HDI exposure and urine HDA levels. We investigated the effect of individual and workplace factors on urine HDA levels using quantitative dermal and inhalation exposure data derived from a survey of automotive spray painters exposed to HDI. Painters' dermal and breathing-zone HDI-exposures were monitored over an entire workday for up to three separate workdays, spaced approximately one month apart. One urine sample was collected before the start of work with HDI-containing paints, and multiple samples were collected throughout the workday. Using mixed effects multiple linear regression modeling, coverall use resulted in significantly lower HDA levels (p = 0.12), and weekday contributed to significant variability in HDA levels (p = 0.056). We also investigated differences in urine HDA levels stratified by dichotomous and classification covariates using analysis of variance. Use of coveralls (p = 0.05), respirator type worn (p = 0.06), smoker status (p = 0.12), paint-booth type (p = 0.02), and more than one painter at the shop (p = 0.10) were all found to significantly affect urine HDA levels adjusted for creatinine concentration. Coverall use remained significant (p = 0.10), even after adjusting for respirator type. These results indicate that the variation in urine HDA level is mainly due to workplace factors and that appropriate dermal and inhalation protection is required to prevent HDI exposure.
Collapse
Affiliation(s)
- Linda G T Gaines
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina, CB #7431, Rosenau Hall, Chapel Hill, NC 27599-7431, USA
| | | | | | | | | | | |
Collapse
|
15
|
Flack SL, Ball LM, Nylander-French LA. Occupational exposure to HDI: progress and challenges in biomarker analysis. J Chromatogr B Analyt Technol Biomed Life Sci 2010; 878:2635-42. [PMID: 20176515 PMCID: PMC2889189 DOI: 10.1016/j.jchromb.2010.01.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2009] [Revised: 12/08/2009] [Accepted: 01/07/2010] [Indexed: 11/25/2022]
Abstract
1,6-Hexamethylene diisocyanate (HDI) is extensively used in the automotive repair industry and is a commonly reported cause of occupational asthma in industrialized populations. However, the exact pathological mechanism remains uncertain. Characterization and quantification of biomarkers resulting from HDI exposure can fill important knowledge gaps between exposure, susceptibility, and the rise of immunological reactions and sensitization leading to asthma. Here, we discuss existing challenges in HDI biomarker analysis including the quantification of N-acetyl-1,6-hexamethylene diamine (monoacetyl-HDA) and N,N'-diacetyl-1,6-hexamethylene diamine (diacetyl-HDA) in urine samples based on previously established methods for HDA analysis. In addition, we describe the optimization of reaction conditions for the synthesis of monoacetyl-HDA and diacetyl-HDA, and utilize these standards for the quantification of these metabolites in the urine of three occupationally exposed workers. Diacetyl-HDA was present in untreated urine at 0.015-0.060 μg/l. Using base hydrolysis, the concentration range of monoacetyl-HDA in urine was 0.19-2.2 μg/l, 60-fold higher than in the untreated samples on average. HDA was detected only in one sample after base hydrolysis (0.026 μg/l). In contrast, acid hydrolysis yielded HDA concentrations ranging from 0.36 to 10.1 μg/l in these three samples. These findings demonstrate HDI metabolism via N-acetylation metabolic pathway and protein adduct formation resulting from occupational exposure to HDI.
Collapse
Affiliation(s)
- Sheila L Flack
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, CB #7431, Rosenau Hall, Chapel Hill, NC 27599-7431, USA
| | | | | |
Collapse
|
16
|
Gaines LGT, Fent KW, Flack SL, Thomasen JM, Ball LM, Richardson DB, Ding K, Whittaker SG, Nylander-French LA. Urine 1,6-hexamethylene diamine (HDA) levels among workers exposed to 1,6-hexamethylene diisocyanate (HDI). ACTA ACUST UNITED AC 2010; 54:678-91. [PMID: 20530123 DOI: 10.1093/annhyg/meq041] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Urinary 1,6-hexamethylene diamine (HDA) may serve as a biomarker for systemic exposure to 1,6-hexamethylene diisocyanate (HDI) in occupationally exposed populations. However, the quantitative relationships between dermal and inhalation exposure to HDI and urine HDA levels have not been established. We measured acid-hydrolyzed urine HDA levels along with dermal and breathing-zone levels of HDI in 48 automotive spray painters. These measurements were conducted over the course of an entire workday for up to three separate workdays that were spaced approximately 1 month apart. One urine sample was collected before the start of work with HDI-containing paints and subsequent samples were collected during the workday. HDA levels varied throughout the day and ranged from nondetectable to 65.9 microg l(-1) with a geometric mean and geometric standard deviation of 0.10 microg l(-1) +/- 6.68. Dermal exposure and inhalation exposure levels, adjusted for the type of respirator worn, were both significant predictors of urine HDA levels in the linear mixed models. Creatinine was a significant covariate when used as an independent variable along with dermal and respirator-adjusted inhalation exposure. Consequently, exposure assessment models must account for the water content of a urine sample. These findings indicate that HDA exhibits a biphasic elimination pattern, with a half-life of 2.9 h for the fast elimination phase. Our results also indicate that urine HDA level is significantly associated with systemic HDI exposure through both the skin and the lungs. We conclude that urinary HDA may be used as a biomarker of exposure to HDI, but biological monitoring should be tailored to reliably capture the intermittent exposure pattern typical in this industry.
Collapse
Affiliation(s)
- Linda G T Gaines
- Department of Environmental Sciences and Engineering, The University of North Carolina at Chapel Hill, 27599, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Dopico-García M, López-Vilariño J, Fernández-Martínez G, González-Rodríguez M. Liquid chromatography method to determine polyamines in thermosetting polymers. Anal Chim Acta 2010; 667:123-9. [DOI: 10.1016/j.aca.2010.04.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2010] [Revised: 03/29/2010] [Accepted: 04/04/2010] [Indexed: 10/19/2022]
|
18
|
Gaines LGT, Fent KW, Flack SL, Thomasen JM, Ball LM, Zhou H, Whittaker SG, Nylander-French LA. Effect of creatinine and specific gravity normalization on urinary biomarker 1,6-hexamethylene diamine. ACTA ACUST UNITED AC 2010; 12:591-9. [PMID: 20445846 DOI: 10.1039/b921073c] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Urine amine levels used as biomarkers of diisocyanate exposure have usually been normalized with creatinine concentration. The suitability of using creatinine concentration or specific gravity for these biomarkers in exposure assessment has not been established. We investigated the effect of creatinine concentration and specific gravity on urine 1,6-hexamethylene diamine (HDA) levels in multiple mixed linear regression models using quantitative dermal and inhalation exposure data derived from a survey of automotive spray painters occupationally exposed to 1,6-hexamethylene diisocyanate (HDI). Painters' dermal and breathing-zone HDI exposure were monitored for an entire workday for up to three workdays spaced approximately one month apart. One urine sample was collected before the start of work with HDI-containing paints, and multiple samples were collected throughout the workday. Both creatinine concentration and specific gravity were highly significant predictors (p < 0.0001) of urine HDA levels. When these two were used together in the same model, creatinine remained highly significant (p < 0.0001), but specific gravity decreased in significance (p-values 0.10-0.17). We used different individual factors to determine which affected creatinine and specific gravity. Urine collection time was a highly significant predictor of specific gravity (p = 0.003) and creatinine concentration (p = 0.001). Smoker status was significant (p = 0.026) in the creatinine model. The findings indicate that creatinine concentration is more appropriate to account for urine water content than specific gravity and that creatinine is best used as an independent variable in HDI exposure assessment models instead of traditional urine normalization with creatinine concentration.
Collapse
Affiliation(s)
- Linda G T Gaines
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7431, USA
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Flack SL, Fent KW, Trelles Gaines LG, Thomasen JM, Whittaker S, Ball LM, Nylander-French LA. Quantitative plasma biomarker analysis in HDI exposure assessment. ACTA ACUST UNITED AC 2009; 54:41-54. [PMID: 19805392 DOI: 10.1093/annhyg/mep069] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Quantification of amines in biological samples is important for evaluating occupational exposure to diisocyanates. In this study, we describe the quantification of 1,6-hexamethylene diamine (HDA) levels in hydrolyzed plasma of 46 spray painters applying 1,6-hexamethylene diisocyanate (HDI)-containing paint in vehicle repair shops collected during repeated visits to their workplace and their relationship with dermal and inhalation exposure to HDI monomer. HDA was detected in 76% of plasma samples, as heptafluorobutyryl derivatives, and the range of HDA concentrations was < or =0.02-0.92 microg l(-1). After log-transformation of the data, the correlation between plasma HDA levels and HDI inhalation exposure measured on the same workday was low (N = 108, r = 0.22, P = 0.026) compared with the correlation between plasma HDA levels and inhalation exposure occurring approximately 20 to 60 days before blood collection (N = 29, r = 0.57, P = 0.0014). The correlation between plasma HDA levels and HDI dermal exposure measured on the same workday, although statistically significant, was low (N = 108, r = 0.22, P = 0.040) while the correlation between HDA and dermal exposure occurring approximately 20 to 60 days before blood collection was slightly improved (N = 29, r = 0.36, P = 0.053). We evaluated various workplace factors and controls (i.e. location, personal protective equipment use and paint booth type) as modifiers of plasma HDA levels. Workers using a downdraft-ventilated booth had significantly lower plasma HDA levels relative to semi-downdraft and crossdraft booth types (P = 0.0108); this trend was comparable to HDI inhalation and dermal exposure levels stratified by booth type. These findings indicate that HDA concentration in hydrolyzed plasma may be used as a biomarker of cumulative inhalation and dermal exposure to HDI and for investigating the effectiveness of exposure controls in the workplace.
Collapse
Affiliation(s)
- Sheila L Flack
- Department of Environmental Sciences and Engineering, The University of North Carolina at Chapel Hill, Rosenau Hall, NC 27599, USA
| | | | | | | | | | | | | |
Collapse
|
20
|
Robert A, Ducos P, Francin JM, Marsan P. Biological monitoring of workers exposed to 4,4′-methylenediphenyl diisocyanate (MDI) in 19 French polyurethane industries. Int Arch Occup Environ Health 2006; 80:412-22. [PMID: 17061110 DOI: 10.1007/s00420-006-0150-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2006] [Accepted: 09/04/2006] [Indexed: 10/24/2022]
Abstract
OBJECTIVES To study the range of urinary levels of 4,4'-methylenedianiline (MDA), a metabolite of methylenediphenyl diisocyanate (MDI), across factories in the polyurethane industries and to evaluate the validity of this biomarker to assess MDI occupational exposure. METHODS Workers exposed to MDI, as well as non-occupationally exposed subjects, were studied and pre- and post-shift urine samples were collected from 169 workers of 19 French factories and 120 controls. Details on work activities and practices were collected by a questionnaire and workers were classified into three job categories. The identification and quantification of the total urinary MDA were performed by high-performance liquid chromatography with electrochemical detection (HPLC/EC). RESULTS For all the factories, MDA was detectable in 73% of the post-shift urine samples. These post-shift values, in the range of <0.10 (detection limit)-23.60 microg/l, were significantly higher than those of the pre-shift samples. Urinary MDA levels in the control group were in the range of < 0.10-0.80 microg/l. The degree of automation of the mixing operation (polyols and MDI) appears as a determinant in the extent of exposure levels. The highest amounts of MDA in urine were found in the spraying or hot processes. The excretion levels of the workers directly exposed to the hardener containing the MDI monomer were significantly higher than those of the other workers. In addition, skin exposure to MDI monomer or to polyurethane resin during the curing step were always associated with significant MDA levels in urine. CONCLUSIONS Total MDA in post-shift urine samples is a reliable biomarker to assess occupational exposure to MDI in various industrial applications and to help factories to improve their manufacturing processes and working practices. A biological guiding value not exceeding 7 microg/l (5 microg/g creatinine) could be proposed in France.
Collapse
Affiliation(s)
- A Robert
- Institut National de Recherche et de Sécurité, Avenue de Bourgogne, 54501, Vandoeuvre Cedex, France.
| | | | | | | |
Collapse
|
21
|
Pronk A, Yu F, Vlaanderen J, Tielemans E, Preller L, Bobeldijk I, Deddens JA, Latza U, Baur X, Heederik D. Dermal, inhalation, and internal exposure to 1,6-HDI and its oligomers in car body repair shop workers and industrial spray painters. Occup Environ Med 2006; 63:624-31. [PMID: 16728504 PMCID: PMC2078164 DOI: 10.1136/oem.2005.023226] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
OBJECTIVES To study inhalation and dermal exposure to hexamethylene diisocyanate (HDI) and its oligomers as well as personal protection equipment (PPE) use during task performance in conjunction with urinary hexamethylene diamine (HDA) in car body repair shop workers and industrial spray painters. METHODS Personal task based inhalation samples (n = 95) were collected from six car body repair shops and five industrial painting companies using impingers with di-n-butylamine (DBA) in toluene. In parallel, dermal exposure was assessed using nitril rubber gloves. Gloves were submerged into DBA in toluene after sampling. Analysis for HDI and its oligomers was performed by LC-MS/MS. Urine samples were collected from 55 workers (n = 291) and analysed for HDA by GC-MS. RESULTS Inhalation exposure was strongly associated with tasks during which aerosolisation occurs. Dermal exposure occurred during tasks that involve direct handling of paint. In car body repair shops associations were found between detectable dermal exposure and glove use (odds ratio (OR) 0.22, 95% confidence interval (CI) 0.09 to 0.57) and inhalation exposure level (OR 1.34, 95% CI 0.97 to 1.84 for a 10-fold increase). HDA in urine could be demonstrated in 36% and 10% of car body repair shop workers and industrial painting company workers respectively. In car body repair shops, the frequency of detectable HDA was significantly elevated at the end of the working day (OR 2.13, 95% CI 1.07 to 4.22 for 3-6 pm v 0-8 am). In both branches HDA was detected in urine of approximately 25% of the spray painters. In addition HDA was detected in urine of a large proportion of non-spray painters in car body repair shops. CONCLUSION Although (spray) painting with lacquers containing isocyanate hardeners results in the highest external exposures to HDI and oligomers, workers that do not perform paint related tasks may also receive a considerable internal dose.
Collapse
Affiliation(s)
- A Pronk
- Risk Assessment in the Work Environment, Food & Chemical Risk Analysis, TNO Quality of Life and IRAS, Netherlands.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Gledhill A, Wake A, Hext P, Leibold E, Shiotsuka R. Absorption, distribution, metabolism and excretion of an inhalation dose of [14C] 4,4'-methylenediphenyl diisocyanate in the male rat. Xenobiotica 2005; 35:273-92. [PMID: 16019951 DOI: 10.1080/00498250500057591] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The received dose, tissue distribution, metabolism, routes and rates of excretion of [(14)C]-4, 4(')-methylenediphenyl diisocyanate (MDI) were investigated in the male rat following a 6-h inhalation exposure to [(14)C]-MDI at a target concentration of 2 mg m(-3). The mean dose received was equivalent to 0.078 mg MDI per animal, of this between 25 and 32% of radiolabelled material was available systemically. Radioactivity was distributed to all tissues examined with the highest proportions present in the respiratory and gastrointestinal tracts, suggesting that both oral ingestion and pulmonary absorption contributed to the systemic dose of [(14)C]-MDI derived material, with the oral ingestion and the majority of the internal dose resulting from ingestion of radiolabelled material by grooming the pelt after exposure. Radioactivity was excreted mainly via faeces (about 80% of the received dose). Excretion in bile and urine each accounted for less than 15% of the dose. MDI was extensively metabolized after uptake, with two routes of transformation evident; the proposed spontaneous formation of mixed molecular weight polyureas and the enzyme catalysed metabolism of systemically available MDI or MDI derivatives to give N-acetylated and N-acetylated hydroxylated products. No free MDA was detected in any of the biomatrices (urine, faeces, bile) investigated.
Collapse
Affiliation(s)
- A Gledhill
- Central Toxicology Laboratory, Alderley Park, UK.
| | | | | | | | | |
Collapse
|
23
|
Extractable organic compounds in polyurethane foam with special reference to aromatic amines and derivatives thereof. Anal Chim Acta 2004. [DOI: 10.1016/j.aca.2003.12.063] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|