1
|
Zhang J, Chen S, Liu X, Yu X, Gu N, Li A. Discovery of 1,2,3-triazole-based pleuromutilin derivatives as potent gram-positive antibacterial agents. Bioorg Med Chem Lett 2024; 110:129878. [PMID: 38977107 DOI: 10.1016/j.bmcl.2024.129878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/09/2024] [Accepted: 07/03/2024] [Indexed: 07/10/2024]
Abstract
A novel class of pleuromutilin derivatives possessing 1,2,3-triazole as the linker connected to phenyl analogues were designed. The antibacterial properties of the prepared compounds were assessed in vitro against five strains (E. coli, S. aureus, S. epidermidis, and E. faecalis). Most of the tested compounds displayed potent antibacterial activities against gram-positive bacteria and 14-O-[2-(4-((2,4-dinitrophenoxy)-methyl-1H-1,2,3-triazol-1-yl) acetamide)-2-methylpropan-2-yl) thioacetyl]mutilin (7c) exerted antibacterial activities against S. aureus, MRSA and S. epidermidis with MIC values 0.0625 μg/mL, representing 64-fold, 4-fold and 8-fold higher than tiamulin respectively. Compound 6e, 7c and 8c were chosen to carry out killing kinetics, which exhibited concentration-dependent effect. Subsequently, molecular modeling was conducted to further explore the binding of compound 6e, 7a, 7c, 8c and tiamulin with 50S ribosomal subunit from deinococcus radiodurans. The investigation revealed that the main interactions between compound 7c and the ribosomal residues were three hydrogen bonds, π-π, and p-π conjugate effects. Additionally, the free binding energy and docking score of 7c with the ribosome demonstrated the lowest values of -11.90 kcal/mol and -7.97 kcal/mol, respectively, consistent with its superior antibacterial activities.
Collapse
Affiliation(s)
- Jiahua Zhang
- School of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Yuhua Road 70, Shijiazhuang 050080, PR China
| | - Shaorui Chen
- Hebei Provincial Key Laboratory of Photoelectric Control on Surface and Interface, and College of Science, Hebei University of Science and Technology, Yuhua Road 70, Shijiazhuang 050080, PR China.
| | - Xiaoya Liu
- Hebei Provincial Key Laboratory of Photoelectric Control on Surface and Interface, and College of Science, Hebei University of Science and Technology, Yuhua Road 70, Shijiazhuang 050080, PR China
| | - Xudong Yu
- Hebei Provincial Key Laboratory of Photoelectric Control on Surface and Interface, and College of Science, Hebei University of Science and Technology, Yuhua Road 70, Shijiazhuang 050080, PR China
| | - Na Gu
- Hebei Provincial Key Laboratory of Photoelectric Control on Surface and Interface, and College of Science, Hebei University of Science and Technology, Yuhua Road 70, Shijiazhuang 050080, PR China.
| | - Aijun Li
- School of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Yuhua Road 70, Shijiazhuang 050080, PR China.
| |
Collapse
|
2
|
Zard SZ. Sulfur chemistry in action. New perspectives for organic synthesis. PHOSPHORUS SULFUR 2023. [DOI: 10.1080/10426507.2023.2173755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Samir Z. Zard
- Laboratoire de Synthèse Organique associé au C. N. R. S., UMR 7652, Ecole Polytechnique, Palaiseau, France
| |
Collapse
|
3
|
The Very First Modification of Pleuromutilin and Lefamulin by Photoinitiated Radical Addition Reactions-Synthesis and Antibacterial Studies. Pharmaceutics 2021; 13:pharmaceutics13122028. [PMID: 34959310 PMCID: PMC8704873 DOI: 10.3390/pharmaceutics13122028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/25/2021] [Accepted: 11/25/2021] [Indexed: 11/24/2022] Open
Abstract
Pleuromutilin is a fungal diterpene natural product with antimicrobial properties, semisynthetic derivatives of which are used in veterinary and human medicine. The development of bacterial resistance to pleuromutilins is known to be very slow, which makes the tricyclic diterpene skeleton of pleuromutilin a very attractive starting structure for the development of new antibiotic derivatives that are unlikely to induce resistance. Here, we report the very first synthetic modifications of pleuromutilin and lefamulin at alkene position C19–C20, by two different photoinduced addition reactions, the radical thiol-ene coupling reaction, and the atom transfer radical additions (ATRAs) of perfluoroalkyl iodides. Pleuromutilin were modified with the addition of several alkyl- and aryl-thiols, thiol-containing amino acids and nucleoside and carbohydrate thiols, as well as perfluoroalkylated side chains. The antibacterial properties of the novel semisynthetic pleuromutilin derivatives were investigated on a panel of bacterial strains, including susceptible and multiresistant pathogens and normal flora members. We have identified some novel semisynthetic pleuromutilin and lefamulin derivatives with promising antimicrobial properties.
Collapse
|
4
|
Abstract
Developments in synthetic chemistry are increasingly driven by improvements in the selectivity and sustainability of transformations. Bifunctional reagents, either as dual coupling partners or as a coupling partner in combination with an activating species, offer an atom-economic approach to chemical complexity, while suppressing the formation of waste. These reagents are employed in organic synthesis thanks to their ability to form complex organic architectures and empower novel reaction pathways. This Review describes several key bifunctional reagents by showcasing selected cornerstone research areas and examples, including radical reactions, C-H functionalization, cross-coupling, organocatalysis and cyclization reactions.
Collapse
|
5
|
de Mattos-Shipley KMJ, Foster GD, Bailey AM. Cprp-An Unusual, Repetitive Protein Which Impacts Pleuromutilin Biosynthesis in the Basidiomycete Clitopilus passeckerianus. FRONTIERS IN FUNGAL BIOLOGY 2021; 2:655323. [PMID: 37744150 PMCID: PMC10512284 DOI: 10.3389/ffunb.2021.655323] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 03/04/2021] [Indexed: 09/26/2023]
Abstract
Interrogation of an EST database for Clitopilus passeckerianus identified a putative homolog to the unusual stress response gene from yeast; ddr48, as being upregulated under pleuromutilin production conditions. Silencing of this gene, named cprp, produced a population of transformants which demonstrated significantly reduced pleuromutilin production. Attempts to complement a Saccharomyces cerevisiae ddr48 mutant strain (strain Y16748) with cprp were hampered by the lack of a clearly identifiable mutant phenotype, but interestingly, overexpression of either ddr48 or cprp in S. cerevisiae Y16748 led to a conspicuous and comparable reduction in growth rate. This observation, combined with the known role of DDR48 proteins from a range of fungal species in nutrient starvation and stress responses, raises the possibility that this family of proteins plays a role in triggering oligotrophic growth. Localization studies via the production of a Cprp:GFP fusion protein in C. passeckerianus showed clear localization adjacent to the hyphal septa and, to a lesser extent, cell walls, which is consistent with the identification of DDR48 as a cell wall-associated protein in various yeast species. To our knowledge this is the first study demonstrating that a DDR48-like protein plays a role in the regulation of a secondary metabolite, and represents the first DDR48-like protein from a basidiomycete. Potential homologs can be identified across much of the Dikarya, suggesting that this unusual protein may play a central role in regulating both primary and secondary metabolism in fungi.
Collapse
Affiliation(s)
| | | | - Andy M. Bailey
- School of Biological Sciences, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
6
|
Li YG, Wang JX, Zhang GN, Zhu M, You XF, Wang YC, Zhang F. Design, synthesis, and biological activity evaluation of a series of pleuromutilin derivatives with novel C14 side chains. Bioorg Med Chem Lett 2020; 30:126969. [PMID: 32014384 DOI: 10.1016/j.bmcl.2020.126969] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Revised: 01/04/2020] [Accepted: 01/13/2020] [Indexed: 01/08/2023]
Abstract
In this work, according to the 'me-too me-better' design strategy, a peculiar side chain different from lefamulin at C14 position of pleuromutilin was introduced. A series of novel thioether pleuromutilin derivatives containing cyclohexane in the C14 chain was synthesized by ten-step synthesis reaction. All derivatives were characterized by Nuclear Magnetic Resonance (NMR) and High Resolution Mass Spectrometer (HRMS). Furthermore, majority of derivatives displayed moderate antibacterial activity in vitro. However, the compound 2C and 2J exhibited comparable or superior antibacterial activity to lefamulin. The summarized structure-activity relationship not only made the variety of pleuromutilin derivatives more diverse, but also provided new ideas for its design and development.
Collapse
Affiliation(s)
- Yun-Ge Li
- School of Pharmacy, Jinzhou Medical University, Jinzhou 121001, PR China
| | - Ju-Xian Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, PR China
| | - Guo-Ning Zhang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, PR China
| | - Mei Zhu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, PR China
| | - Xue-Fu You
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, PR China
| | - Yu-Cheng Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, PR China.
| | - Fan Zhang
- School of Pharmacy, Jinzhou Medical University, Jinzhou 121001, PR China
| |
Collapse
|
7
|
Pitre SP, Weires NA, Overman LE. Forging C(sp 3)-C(sp 3) Bonds with Carbon-Centered Radicals in the Synthesis of Complex Molecules. J Am Chem Soc 2019; 141:2800-2813. [PMID: 30566838 DOI: 10.1021/jacs.8b11790] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Radical fragment coupling reactions that unite intricate subunits have become an important class of transformations within the arena of complex molecule synthesis. This Perspective highlights some of the early contributions in this area, as well as more modern applications of radical fragment couplings in the preparation of natural products. Additionally, emphasis is placed on contemporary advances that allow for radical generation under mild conditions as a driving force for the implementation of radical fragment couplings in total synthesis.
Collapse
Affiliation(s)
- Spencer P Pitre
- Department of Chemistry , University of California, Irvine , Irvine , California 92697-2025 , United States
| | - Nicholas A Weires
- Department of Chemistry , University of California, Irvine , Irvine , California 92697-2025 , United States
| | - Larry E Overman
- Department of Chemistry , University of California, Irvine , Irvine , California 92697-2025 , United States
| |
Collapse
|
8
|
Abstract
The alkylation of enolates is one of the backbones of ketone chemistry, yet in practice it suffers from numerous limitations due to problems of regiochemistry (including O- versus C-alkylation), multiple alkylations, self-condensation, competing elimination, and incompatibility with many polar groups that have to be protected. Over the years, various solutions have been devised to overcome these difficulties, such as the employment of auxiliary ester or sulfone groups to modify the p Ka of the enolizable hydrogens, the passage by the corresponding hydrazones, the use of transition-metal-catalyzed redox systems to formally alkylate ketones with alcohols, etc. Most of these hurdles disappear upon switching to α-ketonyl radicals. Radicals are tolerant of most polar functions, and radical additions to flat sp2 centers are generally easier to accomplish than enolate substitution at tetrahedral sp3 carbons. The main stumbling block, however, has been a lack of generally applicable methods for the generation and intermolecular capture of α-ketonyl radicals. We have found over the past years that the degenerative exchange of xanthates represents in many ways an ideal solution to this problem. It overcomes essentially all of the difficulties faced by other radical processes because of its unique ability to reversibly store reactive radicals in a dormant, nonreactive form. The lifetime of the radicals can therefore be significantly enhanced, even in the concentrated medium needed for bimolecular additions, while at the same time regulating their absolute and relative concentrations. The ability to perform intermolecular additions to highly functionalized alkene partners opens up numerous possibilities for rapid and convergent access to complex structures. Of particular importance is the elaboration of ketones that are prone to self-condensation, such trifluoroacetone, and of base-sensitive ketones, such as chloro- and dichloroacetone, since the products can be used for the synthesis of a myriad fluorinated and heteroaromatic compounds of relevance to medicinal chemistry and agrochemistry. The formal distal dialkylation of ketones, also of utmost synthetic interest, is readily accomplished, allowing convenient access to a wide array of useful ketone building blocks. Cascade processes can be implemented and, in alliance with powerful classical reactions (aldol, alkylative Birch reductions, etc.), furnish a quick route to complex polycyclic scaffolds. Furthermore, the presence of the xanthate group in the adducts can be exploited to obtain a variety of arenes and heteroarenes, such as pyrroles, thiophenes, naphthalenes, and pyridines, as well as enones, dienes, and cyclopropanes. Last but not least, the reagents and most of the starting materials are exceedingly cheap, and the reactions are safe and easy to scale up.
Collapse
Affiliation(s)
- Samir Z. Zard
- Laboratoire de Synthèse Organique, CNRS UMR 7652 Ecole Polytechnique, 91128 Palaiseau Cedex, France
| |
Collapse
|
9
|
Povie G, Suravarapu SR, Bircher MP, Mojzes MM, Rieder S, Renaud P. Radical chain repair: The hydroalkylation of polysubstituted unactivated alkenes. SCIENCE ADVANCES 2018; 4:eaat6031. [PMID: 30035230 PMCID: PMC6054511 DOI: 10.1126/sciadv.aat6031] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 06/13/2018] [Indexed: 06/08/2023]
Abstract
The concept of repair is widely used by nature to heal molecules such as proteins, lipids, sugars, and DNA that are damaged by hydrogen atom abstraction resulting from oxidative stress. We show that this strategy, rather undocumented in the field of synthetic organic chemistry, can be used in a radical chain reaction to enable notoriously intractable transformations. By overcoming the radical chain inhibitor properties of substituted alkenes, the radical-mediated hydroalkylation of mono-, di-, tri-, and even tetrasubstituted unactivated olefins could be performed under mild conditions. With a remarkable functional group tolerance, this reaction provides a general coupling method for the derivatization of olefin-containing natural products.
Collapse
|
10
|
Yi Y, Fu Y, Dong P, Qin W, Liu Y, Liang J, Shang R. Synthesis and Biological Activity Evaluation of Novel Heterocyclic Pleuromutilin Derivatives. Molecules 2017; 22:E996. [PMID: 28617344 PMCID: PMC6152684 DOI: 10.3390/molecules22060996] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2017] [Revised: 06/08/2017] [Accepted: 06/13/2017] [Indexed: 11/16/2022] Open
Abstract
A series of pleuromutilin derivatives were synthesized by two synthetic procedures under mild reaction conditions and characterized by Nuclear Magnetic Resonance (NMR), Infrared Spectroscopy (IR), and High Resolution Mass Spectrometer (HRMS). Most of the derivatives with heterocyclic groups at the C-14 side of pleuromutilin exhibited excellent in vitro antibacterial activities against Staphylococcus aureus, methicillin-resistant Staphylococcus aureus (MRSA), methicillin-resistant Staphylococcus epidermidis (MRSE), and vancomycin-resistant Enterococcus (VRE) in vitro antibacterial activity. The synthesized derivatives which contained pyrimidine rings, 3a, 3b, and 3f, displayed modest antibacterial activities. Compound 3a, the most active antibacterial agent, displayed rapid bactericidal activity and affected bacterial growth in the same manner as that of tiamulin fumarate. Moreover, molecular docking studies of 3a and lefamulin provided similar information about the interactions between the compounds and 50S ribosomal subunit. The results of the study show that pyrimidine rings should be considered in the drug design of pleuromutilin derivatives.
Collapse
Affiliation(s)
- Yunpeng Yi
- Key Laboratory of New Animal Drug Project of Gansu Province, Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou 730050, China.
| | - Yunxing Fu
- Key Laboratory of New Animal Drug Project of Gansu Province, Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou 730050, China.
| | - Pengcheng Dong
- Key Laboratory of New Animal Drug Project of Gansu Province, Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou 730050, China.
| | - Wenwen Qin
- Key Laboratory of New Animal Drug Project of Gansu Province, Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou 730050, China.
| | - Yu Liu
- Key Laboratory of New Animal Drug Project of Gansu Province, Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou 730050, China.
| | - Jiangping Liang
- Key Laboratory of New Animal Drug Project of Gansu Province, Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou 730050, China.
| | - Ruofeng Shang
- Key Laboratory of New Animal Drug Project of Gansu Province, Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou 730050, China.
| |
Collapse
|
11
|
Paukner S, Riedl R. Pleuromutilins: Potent Drugs for Resistant Bugs-Mode of Action and Resistance. Cold Spring Harb Perspect Med 2017; 7:a027110. [PMID: 27742734 PMCID: PMC5204327 DOI: 10.1101/cshperspect.a027110] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Pleuromutilins are antibiotics that selectively inhibit bacterial translation and are semisynthetic derivatives of the naturally occurring tricyclic diterpenoid pleuromutilin, which received its name from the pleuromutilin-producing fungus Pleurotus mutilus Tiamulin and valnemulin are two established derivatives in veterinary medicine for oral and intramuscular administration. As these early pleuromutilin drugs were developed at a time when companies focused on major antibacterial classes, such as the β-lactams, and resistance was not regarded as an issue, interest in antibiotic research including pleuromutilins was limited. Over the last decade or so, there has been a resurgence in interest to develop this class for human use. This has resulted in a topical derivative, retapamulin, and additional derivatives in clinical development. The most advanced compound is lefamulin, which is in late-stage development for the intravenous and oral treatment of community-acquired bacterial pneumonia and acute bacterial skin infections. Overall, pleuromutilins and, in particular, lefamulin are characterized by potent activity against Gram-positive and fastidious Gram-negative pathogens as well as against mycoplasmas and intracellular organisms, such as Chlamydia spp. and Legionella pneumophila Pleuromutilins are unaffected by resistance to other major antibiotic classes, such as macrolides, fluoroquinolones, tetracyclines, β-lactam antibiotics, and others. Furthermore, pleuromutilins display very low spontaneous mutation frequencies and slow, stepwise resistance development at sub-MIC in vitro. The potential for resistance development in clinic is predicted to be slow as confirmed by extremely low resistance rates to this class despite the use of pleuromutilins in veterinary medicine for >30 years. Although rare, resistant strains have been identified in human- and livestock-associated environments and as with any antibiotic class, require close monitoring as well as prudent use in veterinary medicine. This review focuses on the structural characteristics, mode of action, antibacterial activity, and resistance development of this potent and novel antibacterial class for systemic use in humans.
Collapse
|
12
|
Jamison CR, Overman LE. Fragment Coupling with Tertiary Radicals Generated by Visible-Light Photocatalysis. Acc Chem Res 2016; 49:1578-86. [PMID: 27491019 DOI: 10.1021/acs.accounts.6b00284] [Citation(s) in RCA: 154] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Convergent synthesis strategies in which a target molecule is prepared by a branched approach wherein two or more complex fragments are combined at a late stage are almost always preferred over a linear approach in which the overall yield of the target molecule is eroded by the efficiency of each successive step in the sequence. As a result, bimolecular reactions that are able to combine complex fragments in good yield and, where important, with high stereocontrol are essential for implementing convergent synthetic strategies. Although intramolecular reactions of carbon radicals have long been exploited to assemble polycyclic ring systems, bimolecular coupling reactions of structurally complex carbon radicals have rarely been employed to combine elaborate fragments in the synthesis of structurally intricate molecules. We highlight in this Account recent discoveries from our laboratories that demonstrate that bimolecular reactions of structurally elaborate tertiary carbon radicals and electron-deficient alkenes can unite complex fragments in high yield using nearly equimolar amounts of the two coupling partners. Our discussion begins by considering several aspects of the bimolecular addition of tertiary carbon radicals to electron-deficient alkenes that commend these transformations for the union of structurally complex, sterically bulky fragments. We then discuss how in the context of synthesizing rearranged spongian diterpenoids we became aware of the exceptional utility of coupling reactions of alkenes and tertiary carbon radicals to unite structurally complex synthetic intermediates. Our initial investigations exploit the early report of Okada that N-(acyloxy)phthalimides reductively fragment at room temperature in the presence of visible light and catalytic amounts of the photocatalyst Ru(bpy)3Cl2 to form carbon radicals that react with alkenes. We show that this reaction of a tertiary radical precursor and an enone can combine two elaborate enantioenriched fragments in good yield with the formation of new quaternary and secondary stereocenters. As a result of the ready availability of tertiary alcohols, we describe two methods that were developed, one in collaboration with the MacMillan group, to generate tertiary radicals from tertiary alcohols. In the method that will be preferred in most instances, the tertiary alcohol is esterified in high yield to give a tert-alkyl hemioxalate salt, which-without purification-reacts with electron-deficient alkenes in the presence of visible light and an Ir(III) photocatalyst to give coupled products having a newly formed quaternary carbon in high yield. Hemioxalate salts containing Li, Na, K, and Cs countercations can be employed in this reaction, whose only other product is CO2. These reactions are carried out using nearly equimolar amounts of the addends, making them ideal for coupling of complex fragments at the late stage in a synthetic sequence. The attractive attributes of the fragment-coupling chemistry that we discuss in this Account are illustrated by an enantioselective total synthesis of a tricyclic trans-clerodane diterpenoid in eight steps and 34% overall yield from commercially available precursors. We anticipate that bimolecular reactions of carbon radicals will be increasingly used for fragment coupling in the future.
Collapse
Affiliation(s)
- Christopher R. Jamison
- Department
of Chemistry, University of California, Irvine, California 92697-2025, United States
| | - Larry E. Overman
- Department
of Chemistry, University of California, Irvine, California 92697-2025, United States
| |
Collapse
|
13
|
Zard SZ. The xanthate route to organofluorine derivatives. A brief account. Org Biomol Chem 2016; 14:6891-912. [DOI: 10.1039/c6ob01087c] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The radical chemistry of xanthates allows numerous approaches to organofluorine compounds.
Collapse
Affiliation(s)
- Samir Z. Zard
- Laboratoire de Synthèse Organique UMR 7652
- Ecole Polytechnique
- 91128 Palaiseau
- France
| |
Collapse
|
14
|
|
15
|
Abstract
The first enantiospecific total synthesis of the antibacterial natural product (+)-pleuromutilin has been achieved. The approach includes the synthesis of a non-racemic cyclisation substrate from (+)-trans-dihydrocarvone, a highly selective SmI2-mediated cyclisation cascade, an electron transfer reduction of a hindered ester, and the first efficient conversion of (+)-mutilin to the target.
Collapse
Affiliation(s)
- Neal J Fazakerley
- School of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | | | | |
Collapse
|
16
|
Huang Z, Xu J. One-pot synthesis of symmetric 1,7-dicarbonyl compounds via a tandem radical addition–elimination–addition reaction. RSC Adv 2013. [DOI: 10.1039/c3ra42932f] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
17
|
Zard SZ. Some intriguing mechanistic aspects of the radical chemistry of xanthates. J PHYS ORG CHEM 2012. [DOI: 10.1002/poc.2976] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Samir Z. Zard
- Ecole Polytechnique; Laboratoire de Synthèse Organique, UMR 7652; 91128; Palaiseau; France
| |
Collapse
|
18
|
|
19
|
Janin YL. Antituberculosis drugs: ten years of research. Bioorg Med Chem 2007; 15:2479-513. [PMID: 17291770 DOI: 10.1016/j.bmc.2007.01.030] [Citation(s) in RCA: 360] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2006] [Revised: 12/26/2006] [Accepted: 01/17/2007] [Indexed: 02/03/2023]
Abstract
Tuberculosis is today amongst the worldwide health threats. As resistant strains of Mycobacterium tuberculosis have slowly emerged, treatment failure is too often a fact, especially in countries lacking the necessary health care organisation to provide the long and costly treatment adapted to patients. Because of lack of treatment or lack of adapted treatment, at least two million people will die of tuberculosis this year. Due to this concern, this infectious disease was the focus of renewed scientific interest in the last decade. Regimens were optimized and much was learnt on the mechanisms of action of the antituberculosis drugs used. Moreover, the quest for original drugs overcoming some of the problems of current regimens also became the focus of research programmes and many new series of M. tuberculosis growth inhibitors were reported. This review presents the drugs currently used in antituberculosis treatments and the most advanced compounds undergoing clinical trials. We then provide a description of their mechanism of action along with other series of inhibitors known to act on related biochemical targets. This is followed by other inhibitors of M. tuberculosis growth, including recently reported compounds devoid of a reported mechanism of action.
Collapse
Affiliation(s)
- Yves L Janin
- URA 2128 CNRS-Institut Pasteur, 28 rue du Dr. Roux, 75724 Paris Cedex 15, France.
| |
Collapse
|
20
|
Zard SZ. New routes to organofluorine compounds based on ketenes and the radical transfer of xanthates. Org Biomol Chem 2007; 5:205-13. [PMID: 17205160 DOI: 10.1039/b615592h] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
New routes to organofluorine derivatives based mostly on the powerful xanthate radical transfer technology are described. A special emphasis is placed on the synthesis of trifluoromethyl-substituted structures, including trifluromethyl ketones and fluorinated aromatic and heteroaromatic substances of interest to the pharmaceutical and agrochemical industries.
Collapse
Affiliation(s)
- Samir Z Zard
- Laboratoire de Synthèse Organique, Département de Chimie, Ecole Polytechnique, 91128 Palaiseau, France.
| |
Collapse
|
21
|
Quiclet-Sire B, Zard SZ. Powerful CarbonCarbon Bond Forming Reactions Based on a Novel Radical Exchange Process. Chemistry 2006; 12:6002-16. [PMID: 16791885 DOI: 10.1002/chem.200600510] [Citation(s) in RCA: 180] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Xanthates and related derivatives have proved to be extremely useful for both inter- and intramolecular radical additions. The broad applicability of the intermolecular addition to un-activated olefins opens tremendous opportunities for synthesis, since various functional groups can be brought together under mild conditions and complex structures can be rapidly assembled. The presence of the xanthate in the product is also a powerful asset for further modifications, by both radical and non-radical pathways. Of special importance is the access to highly substituted aromatic and heteroaromatic derivatives and the synthesis of block polymers through a controlled radical polymerisation mediated by various thiocarbonylthio group containing agents (RAFT and MADIX processes).
Collapse
Affiliation(s)
- Béatrice Quiclet-Sire
- Laboratoire de Synthèse Organique associé au CNRS (UMR 7652), Département de Chimie, Ecole Polytechnique, 91128 Palaiseau, France
| | | |
Collapse
|
22
|
Zard SZ. The Genesis of the Reversible Radical Addition–Fragmentation–Transfer of Thiocarbonylthio Derivatives from the Barton–McCombie Deoxygenation: A Brief Account and Some Mechanistic Observations. Aust J Chem 2006. [DOI: 10.1071/ch06263] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The observations and reasoning leading to the discovery of the degenerative transfer of xanthates and related thiocarbonylthio derivatives are briefly described. A few synthetic applications are presented, and the consequences on the emergence of the RAFT and MADIX polymerization technologies as well as some mechanistic aspects are briefly discussed.
Collapse
|
23
|
Abstract
Antibiotics target ribosomes at distinct locations within functionally relevant sites. They exert their inhibitory action by diverse modes, including competing with substrate binding, interfering with ribosomal dynamics, minimizing ribosomal mobility, facilitating miscoding, hampering the progression of the mRNA chain, and blocking the nascent protein exit tunnel. Although the ribosomes are highly conserved organelles, they possess subtle sequence and/or conformational variations. These enable drug selectivity, thus facilitating clinical usage. The structural implications of these differences were deciphered by comparisons of high-resolution structures of complexes of antibiotics with ribosomal particles from eubacteria resembling pathogens and from an archaeon that shares properties with eukaryotes. The various antibiotic-binding modes detected in these structures demonstrate that members of antibiotic families possessing common chemical elements with minute differences might bind to ribosomal pockets in significantly different modes, governed by their chemical properties. Similarly, the nature of seemingly identical mechanisms of drug resistance is dominated, directly or via cellular effects, by the antibiotics' chemical properties. The observed variability in antibiotic binding and inhibitory modes justifies expectations for structurally based improved properties of existing compounds as well as for the discovery of novel drug classes.
Collapse
Affiliation(s)
- Ada Yonath
- Department of Structural Biology, Weizmann Institute, Rehovot, Israel.
| |
Collapse
|
24
|
Pringle M, Poehlsgaard J, Vester B, Long KS. Mutations in ribosomal protein L3 and 23S ribosomal RNA at the peptidyl transferase centre are associated with reduced susceptibility to tiamulin in Brachyspira spp. isolates. Mol Microbiol 2005; 54:1295-306. [PMID: 15554969 DOI: 10.1111/j.1365-2958.2004.04373.x] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The pleuromutilin antibiotic tiamulin binds to the ribosomal peptidyl transferase centre. Three groups of Brachyspira spp. isolates with reduced tiamulin susceptibility were analysed to define resistance mechanisms to the drug. Mutations were identified in genes encoding ribosomal protein L3 and 23S rRNA at positions proximal to the peptidyl transferase centre. In two groups of laboratory-selected mutants, mutations were found at nucleotide positions 2032, 2055, 2447, 2499, 2504 and 2572 of 23S rRNA (Escherichia coli numbering) and at amino acid positions 148 and 149 of ribosomal protein L3 (Brachyspira pilosicoli numbering). In a third group of clinical B. hyodysenteriae isolates, only a single mutation at amino acid 148 of ribosomal protein L3 was detected. Chemical footprinting experiments show a reduced binding of tiamulin to ribosomal subunits from mutants with decreased susceptibility to the drug. This reduction in drug binding is likely the resistance mechanism for these strains. Hence, the identified mutations located near the tiamulin binding site are predicted to be responsible for the resistance phenotype. The positions of the mutated residues relative to the bound drug advocate a model where the mutations affect tiamulin binding indirectly through perturbation of nucleotide U2504.
Collapse
Affiliation(s)
- Märit Pringle
- Department of Antibiotics, National Veterinary Institute, SE-75189 Uppsala, Sweden
| | | | | | | |
Collapse
|
25
|
Schlünzen F, Pyetan E, Fucini P, Yonath A, Harms JM. Inhibition of peptide bond formation by pleuromutilins: the structure of the 50S ribosomal subunit from Deinococcus radiodurans in complex with tiamulin. Mol Microbiol 2004; 54:1287-94. [PMID: 15554968 DOI: 10.1111/j.1365-2958.2004.04346.x] [Citation(s) in RCA: 181] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Tiamulin, a prominent member of the pleuromutilin class of antibiotics, is a potent inhibitor of protein synthesis in bacteria. Up to now the effect of pleuromutilins on the ribosome has not been determined on a molecular level. The 3.5 A structure of the 50S ribosomal subunit from Deinococcus radiodurans in complex with tiamulin provides for the first time a detailed picture of its interactions with the 23S rRNA, thus explaining the molecular mechanism of the antimicrobial activity of the pleuromutilin class of antibiotics. Our results show that tiamulin is located within the peptidyl transferase center (PTC) of the 50S ribosomal subunit with its tricyclic mutilin core positioned in a tight pocket at the A-tRNA binding site. Also, the extension, which protrudes from its mutilin core, partially overlaps with the P-tRNA binding site. Thereby, tiamulin directly inhibits peptide bond formation. Comparison of the tiamulin binding site with other PTC targeting drugs, like chloramphenicol, clindamycin and streptogramins, may facilitate the design of modified or hybridized drugs that extend the applicability of this class of antibiotics.
Collapse
Affiliation(s)
- Frank Schlünzen
- Max-Planck Institute for Molecular Genetics, D-14195 Berlin, Germany
| | | | | | | | | |
Collapse
|