1
|
Dricot CEMK, Erreygers I, Cauwenberghs E, De Paz J, Spacova I, Verhoeven V, Ahannach S, Lebeer S. Riboflavin for women's health and emerging microbiome strategies. NPJ Biofilms Microbiomes 2024; 10:107. [PMID: 39420006 PMCID: PMC11486906 DOI: 10.1038/s41522-024-00579-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 10/06/2024] [Indexed: 10/19/2024] Open
Abstract
Riboflavin (vitamin B2) is an essential water-soluble vitamin that serves as a precursor of flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD). FMN and FAD are coenzymes involved in key enzymatic reactions in energy metabolism, biosynthesis, detoxification and electron scavenging pathways. Riboflavin deficiency is prevalent worldwide and impacts women's health due to riboflavin demands linked to urogenital and reproductive health, hormonal fluctuations during the menstrual cycle, pregnancy, and breastfeeding. Innovative functional foods and nutraceuticals are increasingly developed to meet women's riboflavin needs to supplement dietary sources. An emerging and particularly promising strategy is the administration of riboflavin-producing lactic acid bacteria, combining the health benefits of riboflavin with those of probiotics and in situ riboflavin production. Specific taxa of lactobacilli are of particular interest for women, because of the crucial role of Lactobacillus species in the vagina and the documented health effects of other Lactobacillaceae taxa in the gut and on the skin. In this narrative review, we synthesize the underlying molecular mechanisms and clinical benefits of riboflavin intake for women's health, and evaluate the synergistic potential of riboflavin-producing lactobacilli and other microbiota.
Collapse
Affiliation(s)
- Caroline E M K Dricot
- Laboratory of Applied Microbiology and Biotechnology, Department of Bioscience Engineering, University of Antwerp, Antwerp, Belgium
| | - Isabel Erreygers
- Laboratory of Applied Microbiology and Biotechnology, Department of Bioscience Engineering, University of Antwerp, Antwerp, Belgium
| | - Eline Cauwenberghs
- Laboratory of Applied Microbiology and Biotechnology, Department of Bioscience Engineering, University of Antwerp, Antwerp, Belgium
| | - Jocelyn De Paz
- Laboratory of Applied Microbiology and Biotechnology, Department of Bioscience Engineering, University of Antwerp, Antwerp, Belgium
| | - Irina Spacova
- Laboratory of Applied Microbiology and Biotechnology, Department of Bioscience Engineering, University of Antwerp, Antwerp, Belgium
| | - Veronique Verhoeven
- Department of Family Medicine and Population Health, University of Antwerp, Antwerp, Belgium
- U-MaMi Excellence Centre, University of Antwerp, Antwerp, Belgium
| | - Sarah Ahannach
- Laboratory of Applied Microbiology and Biotechnology, Department of Bioscience Engineering, University of Antwerp, Antwerp, Belgium
| | - Sarah Lebeer
- Laboratory of Applied Microbiology and Biotechnology, Department of Bioscience Engineering, University of Antwerp, Antwerp, Belgium.
- U-MaMi Excellence Centre, University of Antwerp, Antwerp, Belgium.
| |
Collapse
|
2
|
Namba J, Harada M, Shibata R, Toda Y, Maruta T, Ishikawa T, Shigeoka S, Yoshimura K, Ogawa T. AtDREB2G is involved in the regulation of riboflavin biosynthesis in response to low-temperature stress and abscisic acid treatment in Arabidopsis thaliana. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 347:112196. [PMID: 39025268 DOI: 10.1016/j.plantsci.2024.112196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 07/12/2024] [Accepted: 07/13/2024] [Indexed: 07/20/2024]
Abstract
Riboflavin (RF) serves as a precursor to flavin mononucleotide and flavin adenine dinucleotide, which are crucial cofactors in various metabolic processes. Strict regulation of cellular flavin homeostasis is imperative, yet information regarding the factors governing this regulation remains largely elusive. In this study, we first examined the impact of external flavin treatment on the Arabidopsis transcriptome to identify novel regulators of cellular flavin levels. Our analysis revealed alterations in the expression of 49 putative transcription factors. Subsequent reverse genetic screening highlighted a member of the dehydration-responsive element binding (DREB) family, AtDREB2G, as a potential regulator of cellular flavin levels. Knockout mutants of AtDREB2G (dreb2g) exhibited reduced flavin levels and decreased expression of RF biosynthetic genes compared to wild-type plants. Conversely, conditional overexpression of AtDREB2G led to an increase in the expression of RF biosynthetic genes and elevated flavin levels. In wild-type plants, exposure to low temperatures and abscisic acid treatment stimulated enhanced flavin levels and upregulated the expression of RF biosynthetic genes, concomitant with the induction of AtDREB2G. Notably, these responses were significantly attenuated in dreb2g mutants. Our findings establish AtDREB2G is involved in the positive regulation of flavin biosynthesis in Arabidopsis, particularly under conditions of low temperature and abscisic acid treatment.
Collapse
Affiliation(s)
- Junya Namba
- Department of Life Science and Biotechnology, Faculty of Life and Environmental Sciences, Shimane University, 1060 Nishikawatsu, Matsue, Shimane 690-8504, Japan; Graduate School of Natural Science and Technology, Shimane University, 1060 Nishikawatsu, Matsue, Shimane 690-8504, Japan
| | - Miho Harada
- Department of Life Science and Biotechnology, Faculty of Life and Environmental Sciences, Shimane University, 1060 Nishikawatsu, Matsue, Shimane 690-8504, Japan; Graduate School of Natural Science and Technology, Shimane University, 1060 Nishikawatsu, Matsue, Shimane 690-8504, Japan
| | - Rui Shibata
- Department of Life Science and Biotechnology, Faculty of Life and Environmental Sciences, Shimane University, 1060 Nishikawatsu, Matsue, Shimane 690-8504, Japan; Graduate School of Natural Science and Technology, Shimane University, 1060 Nishikawatsu, Matsue, Shimane 690-8504, Japan
| | - Yuina Toda
- Department of Advanced Bioscience, Faculty of Agriculture, Kindai University, Nakamachi, Nara 631-8505, Japan
| | - Takanori Maruta
- Department of Life Science and Biotechnology, Faculty of Life and Environmental Sciences, Shimane University, 1060 Nishikawatsu, Matsue, Shimane 690-8504, Japan; Graduate School of Natural Science and Technology, Shimane University, 1060 Nishikawatsu, Matsue, Shimane 690-8504, Japan; Institute of Agricultural and Life Sciences, Academic Assembly, Shimane University, 1060 Nishikawatsu, Matsue, Shimane 690-8504, Japan
| | - Takahiro Ishikawa
- Department of Life Science and Biotechnology, Faculty of Life and Environmental Sciences, Shimane University, 1060 Nishikawatsu, Matsue, Shimane 690-8504, Japan; Graduate School of Natural Science and Technology, Shimane University, 1060 Nishikawatsu, Matsue, Shimane 690-8504, Japan; Institute of Agricultural and Life Sciences, Academic Assembly, Shimane University, 1060 Nishikawatsu, Matsue, Shimane 690-8504, Japan
| | - Shigeru Shigeoka
- Department of Advanced Bioscience, Faculty of Agriculture, Kindai University, Nakamachi, Nara 631-8505, Japan; Experimental Farm, Kindai University, Yuasa, Wakayama 643-0004, Japan
| | - Kazuya Yoshimura
- Department of Food and Nutritional Science, College of Bioscience and Biotechnology, Chubu University, 1200 Matsumoto-cho, Kasugai, Aichi 487-8501, Japan
| | - Takahisa Ogawa
- Department of Life Science and Biotechnology, Faculty of Life and Environmental Sciences, Shimane University, 1060 Nishikawatsu, Matsue, Shimane 690-8504, Japan; Graduate School of Natural Science and Technology, Shimane University, 1060 Nishikawatsu, Matsue, Shimane 690-8504, Japan; Institute of Agricultural and Life Sciences, Academic Assembly, Shimane University, 1060 Nishikawatsu, Matsue, Shimane 690-8504, Japan.
| |
Collapse
|
3
|
Zhang B, Gao Y, Shao Y, Shen L, Liu W, Li H, Li Y, Li J, Ma T, Wang Z. Effect of Dietary Riboflavin Levels on Reproductive Performance of Pigeon Breeders, and Growth Performance and Carcass Traits of Offspring Squabs. Animals (Basel) 2024; 14:2414. [PMID: 39199948 PMCID: PMC11350774 DOI: 10.3390/ani14162414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/09/2024] [Accepted: 08/10/2024] [Indexed: 09/01/2024] Open
Abstract
This study aimed to investigate the effects of dietary riboflavin levels on the reproductive performance of pigeon breeders and the growth performance and carcass traits of offspring squabs to estimate the riboflavin requirement of pigeon breeders. The natural riboflavin content in the basic diet of corn-peas-soybean-wheat-sorghum-corn gluten is 1.20 mg/kg. Different doses of riboflavin (0, 2.5, 5, 10, and 15 mg/kg) were supplemented with the basal diet to produce five dietary treatments with total riboflavin levels of 1.20, 3.70, 6.20, 10.20, and 16.20 mg/kg. A total of 120 pairs of White King pigeons, aged 60 wks, were randomly allocated into five treatment groups, each consisting of 24 pairs. Each pair was individually raised for 8 wks. After the experiment, an assessment was conducted to evaluate the reproductive performance of the pigeon breeders, as well as the growth and carcass traits of offspring squabs at 28 days of age. The results showed that the dietary riboflavin levels had no significant effect on body weight, feed intake, egg weight, egg production, and egg fertility (p > 0.05). However, pigeons fed a diet without riboflavin had the lowest egg hatchability, egg yolk color, carcass trait, and riboflavin status, while exhibiting higher liver weight and liver index (p < 0.05). Moreover, the indices above showed increased or decreased linearly as the level of riboflavin was increased in the diet. Based on the broken-line regression model, pigeon breeders were determined to require a dietary riboflavin content of 11.4, 13.6, 13.4, 6.60, 4.28, 4.47, 4.67, 6.69, and 6.82 mg/kg to optimize hatchability, eviscerated weight, half-eviscerated weight, breast muscle weight, breast muscle percentage, liver weight, liver index, egg yolk riboflavin, and squab plasma riboflavin, respectively. In conclusion, the optimal supplemental dosage of riboflavin in the diets of pigeon breeders is 13.6 mg/kg.
Collapse
Affiliation(s)
- Bo Zhang
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (B.Z.); (Y.G.); (Y.S.); (L.S.); (W.L.); (H.L.); (Y.L.); (J.L.)
| | - Yusheng Gao
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (B.Z.); (Y.G.); (Y.S.); (L.S.); (W.L.); (H.L.); (Y.L.); (J.L.)
- School of Life Science and Food Engineering, Hebei University of Science and Technology, Shijiazhuang 050091, China;
| | - Yuxin Shao
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (B.Z.); (Y.G.); (Y.S.); (L.S.); (W.L.); (H.L.); (Y.L.); (J.L.)
| | - Li Shen
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (B.Z.); (Y.G.); (Y.S.); (L.S.); (W.L.); (H.L.); (Y.L.); (J.L.)
| | - Wenli Liu
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (B.Z.); (Y.G.); (Y.S.); (L.S.); (W.L.); (H.L.); (Y.L.); (J.L.)
| | - Haoxuan Li
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (B.Z.); (Y.G.); (Y.S.); (L.S.); (W.L.); (H.L.); (Y.L.); (J.L.)
| | - Yipu Li
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (B.Z.); (Y.G.); (Y.S.); (L.S.); (W.L.); (H.L.); (Y.L.); (J.L.)
- School of Life Science and Food Engineering, Hebei University of Science and Technology, Shijiazhuang 050091, China;
| | - Jing Li
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (B.Z.); (Y.G.); (Y.S.); (L.S.); (W.L.); (H.L.); (Y.L.); (J.L.)
| | - Tenghe Ma
- School of Life Science and Food Engineering, Hebei University of Science and Technology, Shijiazhuang 050091, China;
| | - Zheng Wang
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (B.Z.); (Y.G.); (Y.S.); (L.S.); (W.L.); (H.L.); (Y.L.); (J.L.)
| |
Collapse
|
4
|
Scharf A, La-Rostami F, Illarionov BA, Nemes V, Feldmann AM, Höft LS, Lösel H, Bacher A, Fischer M. Systematic Analysis of the Effect of Genomic Knock-Out of Non-Essential Promiscuous HAD-Like Phosphatases YcsE, YitU and YwtE on Flavin and Adenylate Content in Bacillus Subtilis. Chembiochem 2024; 25:e202400165. [PMID: 38616163 DOI: 10.1002/cbic.202400165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/05/2024] [Accepted: 04/09/2024] [Indexed: 04/16/2024]
Abstract
Studying the metabolic role of non-essential promiscuous enzymes is a challenging task, as genetic manipulations usually do not reveal at which point(s) of the metabolic network the enzymatic activity of such protein is beneficial for the organism. Each of the HAD-like phosphatases YcsE, YitU and YwtE of Bacillus subtilis catalyzes the dephosphorylation of 5-amino-6-ribitylamino-uracil 5'-phosphate, which is essential in the biosynthesis of riboflavin. Using CRISPR technology, we have found that the deletion of these genes, individually or in all possible combinations failed to cause riboflavin auxotrophy and did not result in significant growth changes. Analysis of flavin and adenylate content in B. subtilis knockout mutants showed that (i) there must be one or several still unidentified phosphatases that can replace the deleted proteins; (ii) such replacements, however, cannot fully restore the intracellular content of any of three flavins studied (riboflavin, FMN, FAD); (iii) whereas bacterial fitness was not significantly compromised by mutations, the intracellular balance of flavins and adenylates did show some significant changes.
Collapse
Affiliation(s)
- Alexandra Scharf
- Hamburg School of Food Science, Institute of Food Chemistry, University of Hamburg, Grindelallee 117, 20146, Hamburg, Germany
| | - Farshad La-Rostami
- Hamburg School of Food Science, Institute of Food Chemistry, University of Hamburg, Grindelallee 117, 20146, Hamburg, Germany
| | - Boris A Illarionov
- Hamburg School of Food Science, Institute of Food Chemistry, University of Hamburg, Grindelallee 117, 20146, Hamburg, Germany
| | - Vivien Nemes
- Hamburg School of Food Science, Institute of Food Chemistry, University of Hamburg, Grindelallee 117, 20146, Hamburg, Germany
| | - Anna M Feldmann
- Hamburg School of Food Science, Institute of Food Chemistry, University of Hamburg, Grindelallee 117, 20146, Hamburg, Germany
| | - Lars S Höft
- Hamburg School of Food Science, Institute of Food Chemistry, University of Hamburg, Grindelallee 117, 20146, Hamburg, Germany
| | - Henri Lösel
- Hamburg School of Food Science, Institute of Food Chemistry, University of Hamburg, Grindelallee 117, 20146, Hamburg, Germany
| | - Adelbert Bacher
- TUM School of Natural Sciences, Technical University of Munich, 85748, Garching, Germany
| | - Markus Fischer
- Hamburg School of Food Science, Institute of Food Chemistry, University of Hamburg, Grindelallee 117, 20146, Hamburg, Germany
| |
Collapse
|
5
|
Liunardo JJ, Messerli S, Gregotsch A, Lang S, Schlosser K, Rückert‐Reed C, Busche T, Kalinowski J, Zischka M, Weller P, Nouioui I, Neumann‐Schaal M, Risdian C, Wink J, Mack M. Isolation, characterisation and description of the roseoflavin producer Streptomyces berlinensis sp. nov. ENVIRONMENTAL MICROBIOLOGY REPORTS 2024; 16:e13266. [PMID: 38653477 PMCID: PMC11039241 DOI: 10.1111/1758-2229.13266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 04/06/2024] [Indexed: 04/25/2024]
Abstract
The Gram-positive bacteria Streptomyces davaonensis and Streptomyces cinnabarinus have been the only organisms known to produce roseoflavin, a riboflavin (vitamin B2) derived red antibiotic. Using a selective growth medium and a phenotypic screening, we were able to isolate a novel roseoflavin producer from a German soil sample. The isolation procedure was repeated twice, that is, the same strain could be isolated from the same location in Berlin 6 months and 12 months after its first isolation. Whole genome sequencing of the novel roseoflavin producer revealed an unusual chromosomal arrangement and the deposited genome sequence of the new isolate (G + C content of 71.47%) contains 897 genes per inverted terminal repeat, 6190 genes in the core and 107 genes located on an illegitimate terminal end. We identified the roseoflavin biosynthetic genes rosA, rosB and rosC and an unusually high number of riboflavin biosynthetic genes. Overexpression of rosA, rosB and rosC in Escherichia coli and enzyme assays confirmed their predicted functions in roseoflavin biosynthesis. A full taxonomic analysis revealed that the isolate represents a previously unknown Streptomyces species and we propose the name Streptomyces berlinensis sp. nov. for this roseoflavin producer.
Collapse
Affiliation(s)
- Jimmy Jonathan Liunardo
- Institute for Technical Microbiology, Department of BiotechnologyMannheim University of Applied SciencesMannheimGermany
| | - Sebastien Messerli
- Institute for Technical Microbiology, Department of BiotechnologyMannheim University of Applied SciencesMannheimGermany
| | - Ann‐Kathrin Gregotsch
- Institute for Technical Microbiology, Department of BiotechnologyMannheim University of Applied SciencesMannheimGermany
| | - Sonja Lang
- Institute for Technical Microbiology, Department of BiotechnologyMannheim University of Applied SciencesMannheimGermany
| | - Kerstin Schlosser
- Institute for Technical Microbiology, Department of BiotechnologyMannheim University of Applied SciencesMannheimGermany
| | - Christian Rückert‐Reed
- Medical School East Westphalia‐LippeBielefeld UniversityBielefeldGermany
- Technology Platform Genomics, Center for BiotechnologyBielefeld UniversityBielefeldGermany
| | - Tobias Busche
- Medical School East Westphalia‐LippeBielefeld UniversityBielefeldGermany
| | - Jörn Kalinowski
- Technology Platform Genomics, Center for BiotechnologyBielefeld UniversityBielefeldGermany
| | - Martin Zischka
- Institute for Instrumental Analytics and Bioanalytics, Department of BiotechnologyMannheim University of Applied SciencesMannheimGermany
| | - Philipp Weller
- Institute for Instrumental Analytics and Bioanalytics, Department of BiotechnologyMannheim University of Applied SciencesMannheimGermany
| | - Imen Nouioui
- Leibniz‐Institute DSMZ‐German Collection of Microorganisms and Cell CulturesBraunschweigGermany
| | - Meina Neumann‐Schaal
- Leibniz‐Institute DSMZ‐German Collection of Microorganisms and Cell CulturesBraunschweigGermany
| | - Chandra Risdian
- Department of Microbial Strain CollectionHelmholtz Centre for Infection ResearchBraunschweigGermany
- Research Center for Applied MicrobiologyNational Research and Innovation Agency (BRIN)BandungIndonesia
| | - Joachim Wink
- Department of Microbial Strain CollectionHelmholtz Centre for Infection ResearchBraunschweigGermany
- German Centre for Infection Research (DZIF)Partner Site Hannover‐BraunschweigBraunschweigGermany
| | - Matthias Mack
- Institute for Technical Microbiology, Department of BiotechnologyMannheim University of Applied SciencesMannheimGermany
| |
Collapse
|
6
|
Faustino M, Lourenço T, Strobbe S, Cao D, Fonseca A, Rocha I, Van Der Straeten D, Oliveira MM. Mathematical kinetic modelling followed by in vitro and in vivo assays reveal the bifunctional rice GTPCHII/DHBPS enzymes and demonstrate the key roles of OsRibA proteins in the vitamin B2 pathway. BMC PLANT BIOLOGY 2024; 24:220. [PMID: 38532321 DOI: 10.1186/s12870-024-04878-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 03/03/2024] [Indexed: 03/28/2024]
Abstract
BACKGROUND Riboflavin is the precursor of several cofactors essential for normal physical and cognitive development, but only plants and some microorganisms can produce it. Humans thus rely on their dietary intake, which at a global level is mainly constituted by cereals (> 50%). Understanding the riboflavin biosynthesis players is key for advancing our knowledge on this essential pathway and can hold promise for biofortification strategies in major crop species. In some bacteria and in Arabidopsis, it is known that RibA1 is a bifunctional protein with distinct GTP cyclohydrolase II (GTPCHII) and 3,4-dihydroxy-2-butanone-4-phosphate synthase (DHBPS) domains. Arabidopsis harbors three RibA isoforms, but only one retained its bifunctionality. In rice, however, the identification and characterization of RibA has not yet been described. RESULTS Through mathematical kinetic modeling, we identified RibA as the rate-limiting step of riboflavin pathway and by bioinformatic analysis we confirmed that rice RibA proteins carry both domains, DHBPS and GTPCHII. Phylogenetic analysis revealed that OsRibA isoforms 1 and 2 are similar to Arabidopsis bifunctional RibA1. Heterologous expression of OsRibA1 completely restored the growth of the rib3∆ yeast mutant, lacking DHBPS expression, while causing a 60% growth improvement of the rib1∆ mutant, lacking GTPCHII activity. Regarding OsRibA2, its heterologous expression fully complemented GTPCHII activity, and improved rib3∆ growth by 30%. In vitro activity assays confirmed that both OsRibA1 and OsRibA2 proteins carry GTPCHII/DHBPS activities, but that OsRibA1 has higher DHBPS activity. The overexpression of OsRibA1 in rice callus resulted in a 28% increase in riboflavin content. CONCLUSIONS Our study elucidates the critical role of RibA in rice riboflavin biosynthesis pathway, establishing it as the rate-limiting step in the pathway. By identifying and characterizing OsRibA1 and OsRibA2, showcasing their GTPCHII and DHBPS activities, we have advanced the understanding of riboflavin biosynthesis in this staple crop. We further demonstrated that OsRibA1 overexpression in rice callus increases its riboflavin content, providing supporting information for bioengineering efforts.
Collapse
Affiliation(s)
- Maria Faustino
- Laboratory of Plant Functional Genomics, Instituto de Tecnologia Química E Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, 2780-157, Portugal
- Laboratory of Functional Plant Biology, Department of Biology, Ghent University, K. L. Ledeganckstraat 35, Gent, B-9000, Belgium
| | - Tiago Lourenço
- Laboratory of Plant Functional Genomics, Instituto de Tecnologia Química E Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, 2780-157, Portugal
| | - Simon Strobbe
- Laboratory of Functional Plant Biology, Department of Biology, Ghent University, K. L. Ledeganckstraat 35, Gent, B-9000, Belgium
- University of Geneva, Quai E. Ansermet 30, Geneva, 1211, Switzerland
| | - Da Cao
- Laboratory of Functional Plant Biology, Department of Biology, Ghent University, K. L. Ledeganckstraat 35, Gent, B-9000, Belgium
| | - André Fonseca
- Laboratory of Systems and Synthetic Biology, Instituto de Tecnologia Química E Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, 2780-157, Portugal
| | - Isabel Rocha
- Laboratory of Systems and Synthetic Biology, Instituto de Tecnologia Química E Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, 2780-157, Portugal
| | - Dominique Van Der Straeten
- Laboratory of Functional Plant Biology, Department of Biology, Ghent University, K. L. Ledeganckstraat 35, Gent, B-9000, Belgium.
| | - M Margarida Oliveira
- Laboratory of Plant Functional Genomics, Instituto de Tecnologia Química E Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, 2780-157, Portugal.
| |
Collapse
|
7
|
Shi T, Sun X, Yuan Q, Wang J, Shen X. Exploring the role of flavin-dependent monooxygenases in the biosynthesis of aromatic compounds. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2024; 17:46. [PMID: 38520003 PMCID: PMC10958861 DOI: 10.1186/s13068-024-02490-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 03/13/2024] [Indexed: 03/25/2024]
Abstract
Hydroxylated aromatic compounds exhibit exceptional biological activities. In the biosynthesis of these compounds, three types of hydroxylases are commonly employed: cytochrome P450 (CYP450), pterin-dependent monooxygenase (PDM), and flavin-dependent monooxygenase (FDM). Among these, FDM is a preferred choice due to its small molecular weight, stable expression in both prokaryotic and eukaryotic fermentation systems, and a relatively high concentration of necessary cofactors. However, the catalytic efficiency of many FDMs falls short of meeting the demands of large-scale production. Additionally, challenges arise from the limited availability of cofactors and compatibility issues among enzyme components. Recently, significant progress has been achieved in improving its catalytic efficiency, but have not yet detailed and informative viewed so far. Therefore, this review emphasizes the advancements in FDMs for the biosynthesis of hydroxylated aromatic compounds and presents a summary of three strategies aimed at enhancing their catalytic efficiency: (a) Developing efficient enzyme mutants through protein engineering; (b) enhancing the supply and rapid circulation of critical cofactors; (c) facilitating cofactors delivery for enhancing FDMs catalytic efficiency. Furthermore, the current challenges and further perspectives on improving catalytic efficiency of FDMs are also discussed.
Collapse
Affiliation(s)
- Tong Shi
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 15 Beisanhuan East Road, Chaoyang District, Beijing, 100029, China
| | - Xinxiao Sun
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 15 Beisanhuan East Road, Chaoyang District, Beijing, 100029, China
| | - Qipeng Yuan
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 15 Beisanhuan East Road, Chaoyang District, Beijing, 100029, China
| | - Jia Wang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 15 Beisanhuan East Road, Chaoyang District, Beijing, 100029, China.
| | - Xiaolin Shen
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 15 Beisanhuan East Road, Chaoyang District, Beijing, 100029, China.
| |
Collapse
|
8
|
Bastakoti S, Pesonen M, Ajayi C, Julin K, Corander J, Johannessen M, Hanssen AM. Co-culturing with Streptococcus anginosus alters Staphylococcus aureus transcriptome when exposed to tonsillar cells. Front Cell Infect Microbiol 2024; 14:1326730. [PMID: 38333035 PMCID: PMC10850355 DOI: 10.3389/fcimb.2024.1326730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 01/04/2024] [Indexed: 02/10/2024] Open
Abstract
Introduction Improved understanding of Staphylococcus aureus throat colonization in the presence of other co-existing microbes is important for mapping S. aureus adaptation to the human throat, and recurrence of infection. Here, we explore the responses triggered by the encounter between two common throat bacteria, S. aureus and Streptococcus anginosus, to identify genes in S. aureus that are important for colonization in the presence of human tonsillar epithelial cells and S. anginosus, and further compare this transcriptome with the genes expressed in S. aureus as only bacterium. Methods We performed an in vitro co-culture experiment followed by RNA sequencing to identify interaction-induced transcriptional alterations and differentially expressed genes (DEGs), followed by gene enrichment analysis. Results and discussion A total of 332 and 279 significantly differentially expressed genes with p-value < 0.05 and log2 FoldChange (log2FC) ≥ |2| were identified in S. aureus after 1 h and 3 h co-culturing, respectively. Alterations in expression of various S. aureus survival factors were observed when co-cultured with S. anginosus and tonsillar cells. The serine-aspartate repeat-containing protein D (sdrD) involved in adhesion, was for example highly upregulated in S. aureus during co-culturing with S. anginosus compared to S. aureus grown in the absence of S. anginosus, especially at 3 h. Several virulence genes encoding secreted proteins were also highly upregulated only when S. aureus was co-cultured with S. anginosus and tonsillar cells, and iron does not appear to be a limiting factor in this environment. These findings may be useful for the development of interventions against S. aureus throat colonization and could be further investigated to decipher the roles of the identified genes in the host immune response in context of a throat commensal landscape.
Collapse
Affiliation(s)
- Srijana Bastakoti
- Department of Medical Biology, Research group for Host-Microbe Interaction (HMI), UiT – The Arctic University of Norway, Tromsø, Norway
| | - Maiju Pesonen
- Oslo Centre of Biostatistics and Epidemiology, Oslo University Hospital, Oslo, Norway
| | - Clement Ajayi
- Department of Medical Biology, Research group for Host-Microbe Interaction (HMI), UiT – The Arctic University of Norway, Tromsø, Norway
| | - Kjersti Julin
- Department of Medical Biology, Research group for Host-Microbe Interaction (HMI), UiT – The Arctic University of Norway, Tromsø, Norway
| | - Jukka Corander
- Department of Biostatistics, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
- Parasites and Microbes, Wellcome Sanger Institute, Cambridgeshire, United Kingdom
- Helsinki Institute of Information Technology, Department of Mathematics and Statistics, University of Helsinki, Helsinki, Finland
| | - Mona Johannessen
- Department of Medical Biology, Research group for Host-Microbe Interaction (HMI), UiT – The Arctic University of Norway, Tromsø, Norway
| | - Anne-Merethe Hanssen
- Department of Medical Biology, Research group for Host-Microbe Interaction (HMI), UiT – The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
9
|
Gnanagobal H, Cao T, Hossain A, Vasquez I, Chakraborty S, Chukwu-Osazuwa J, Boyce D, Espinoza MJ, García-Angulo VA, Santander J. Role of riboflavin biosynthesis gene duplication and transporter in Aeromonas salmonicida virulence in marine teleost fish. Virulence 2023; 14:2187025. [PMID: 36895132 PMCID: PMC10012899 DOI: 10.1080/21505594.2023.2187025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023] Open
Abstract
Active flavins derived from riboflavin (vitamin B2) are essential for life. Bacteria biosynthesize riboflavin or scavenge it through uptake systems, and both mechanisms may be present. Because of riboflavin's critical importance, the redundancy of riboflavin biosynthetic pathway (RBP) genes might be present. Aeromonas salmonicida, the aetiological agent of furunculosis, is a pathogen of freshwater and marine fish, and its riboflavin pathways have not been studied. This study characterized the A. salmonicida riboflavin provision pathways. Homology search and transcriptional orchestration analysis showed that A. salmonicida has a main riboflavin biosynthetic operon that includes ribD, ribE1, ribBA, and ribH genes. Outside the main operon, putative duplicated genes ribA, ribB and ribE, and a ribN riboflavin importer encoding gene, were found. Monocistronic mRNA ribA, ribB and ribE2 encode for their corresponding functional riboflavin biosynthetic enzyme. While the product of ribBA conserved the RibB function, it lacked the RibA function. Likewise, ribN encodes a functional riboflavin importer. Transcriptomics analysis indicated that external riboflavin affected the expression of a relatively small number of genes, including a few involved in iron metabolism. ribB was downregulated in response to external riboflavin, suggesting negative feedback. Deletion of ribA, ribB and ribE1 showed that these genes are required for A. salmonicida riboflavin biosynthesis and virulence in Atlantic lumpfish (Cyclopterus lumpus). A. salmonicida riboflavin auxotrophic attenuated mutants conferred low protection to lumpfish against virulent A. salmonicida. Overall, A. salmonicida has multiple riboflavin endowment forms, and duplicated riboflavin provision genes are critical for A. salmonicida infection.
Collapse
Affiliation(s)
- Hajarooba Gnanagobal
- Marine Microbial Pathogenesis and Vaccinology Laboratory, Department of Ocean Sciences, Memorial University of Newfoundland, St John's, Canada
| | - Trung Cao
- Marine Microbial Pathogenesis and Vaccinology Laboratory, Department of Ocean Sciences, Memorial University of Newfoundland, St John's, Canada
| | - Ahmed Hossain
- Marine Microbial Pathogenesis and Vaccinology Laboratory, Department of Ocean Sciences, Memorial University of Newfoundland, St John's, Canada
| | - Ignacio Vasquez
- Marine Microbial Pathogenesis and Vaccinology Laboratory, Department of Ocean Sciences, Memorial University of Newfoundland, St John's, Canada
| | - Setu Chakraborty
- Marine Microbial Pathogenesis and Vaccinology Laboratory, Department of Ocean Sciences, Memorial University of Newfoundland, St John's, Canada
| | - Joy Chukwu-Osazuwa
- Marine Microbial Pathogenesis and Vaccinology Laboratory, Department of Ocean Sciences, Memorial University of Newfoundland, St John's, Canada
| | - Danny Boyce
- The Dr. Joe Brown Aquatic Research Building (JBARB), Ocean Sciences Centre, Memorial University of Newfoundland, St John's, Canada
| | - María Jesus Espinoza
- Microbiology and Mycology Program, Institute of Biomedical Sciences, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Víctor Antonio García-Angulo
- Microbiology and Mycology Program, Institute of Biomedical Sciences, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Javier Santander
- Marine Microbial Pathogenesis and Vaccinology Laboratory, Department of Ocean Sciences, Memorial University of Newfoundland, St John's, Canada
| |
Collapse
|
10
|
Jaroensuk J, Chuaboon L, Kesornpun C, Chaiyen P. Enzymes in riboflavin biosynthesis: Potential antibiotic drug targets. Arch Biochem Biophys 2023; 748:109762. [PMID: 37739114 DOI: 10.1016/j.abb.2023.109762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 09/13/2023] [Accepted: 09/19/2023] [Indexed: 09/24/2023]
Abstract
The rapid resistance of pathogens to antibiotics has emerged as a major threat to global health. Identification of new antibiotic targets is thus needed for developing alternative drugs. Genes encoding enzymes involved in the biosynthesis of riboflavin and flavin cofactors (FMN/FAD) are attractive targets because these enzymatic reactions are necessary for most bacteria to synthesize flavin cofactors for use in their central metabolic reactions. Moreover, humans lack most of these enzymes because we uptake riboflavin from our diet. This review discusses the current knowledge of enzymes involved in bacterial biosynthesis of riboflavin and other flavin cofactors, as well as the functions of the FMN riboswitch. Here, we highlight recent progress in the structural and mechanistic characterization, and inhibition of GTP cyclohydrolase II (GCH II), lumazine synthase (LS), riboflavin synthase (RFS), FAD synthetase (FADS), and FMN riboswitch, which have been identified as plausible antibiotic targets. As the structures and functions of these enzymes and regulatory systems are not completely understood, they are attractive as subjects for future in-depth biochemical and biophysical analysis.
Collapse
Affiliation(s)
- Juthamas Jaroensuk
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley, Wangchan, Rayong, 21210, Thailand
| | - Litavadee Chuaboon
- School of Pharmacy and Biomass and Oil Palm Center of Excellence, Walailak University, Nakhon Si Thammarat, 80160, Thailand
| | - Chatchai Kesornpun
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley, Wangchan, Rayong, 21210, Thailand
| | - Pimchai Chaiyen
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley, Wangchan, Rayong, 21210, Thailand.
| |
Collapse
|
11
|
Tong Y, Rozeboom HJ, Loonstra MR, Wijma HJ, Fraaije MW. Characterization of two bacterial multi-flavinylated proteins harboring multiple covalent flavin cofactors. BBA ADVANCES 2023; 4:100097. [PMID: 37455753 PMCID: PMC10339131 DOI: 10.1016/j.bbadva.2023.100097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/27/2023] [Accepted: 07/03/2023] [Indexed: 07/18/2023] Open
Abstract
In recent years, studies have shown that a large number of bacteria secrete multi-flavinylated proteins. The exact roles and properties, of these extracellular flavoproteins that contain multiple covalently anchored FMN cofactors, are still largely unknown. Herein, we describe the biochemical and structural characterization of two multi-FMN-containing covalent flavoproteins, SaFMN3 from Streptomyces azureus and CbFMN4 from Clostridiaceae bacterium. Based on their primary structure, these proteins were predicted to contain three and four covalently tethered FMN cofactors, respectively. The genes encoding SaFMN3 and CbFMN4 were heterologously coexpressed with a flavin transferase (ApbE) in Escherichia coli, and could be purified by affinity chromatography in good yields. Both proteins were found to be soluble and to contain covalently bound FMN molecules. The SaFMN3 protein was studied in more detail and found to display a single redox potential (-184 mV) while harboring three covalently attached flavins. This is in line with the high sequence similarity when the domains of each flavoprotein are compared. The fully reduced form of SaFMN3 is able to use dioxygen as electron acceptor. Single domains from both proteins were expressed, purified and crystallized. The crystal structures were elucidated, which confirmed that the flavin cofactor is covalently attached to a threonine. Comparison of both crystal structures revealed a high similarity, even in the flavin binding pocket. Based on the crystal structure, mutants of the SaFMN3-D2 domain were designed to improve its fluorescence quantum yield by changing the microenvironment of the isoalloxazine moiety of the flavin cofactor. Residues that quench the flavin fluorescence were successfully identified. Our study reveals biochemical details of multi-FMN-containing proteins, contributing to a better understanding of their role in bacteria and providing leads to future utilization of these flavoprotein in biotechnology.
Collapse
|
12
|
Klein VJ, Brito LF, Perez-Garcia F, Brautaset T, Irla M. Metabolic engineering of thermophilic Bacillus methanolicus for riboflavin overproduction from methanol. Microb Biotechnol 2023; 16:1011-1026. [PMID: 36965151 PMCID: PMC10128131 DOI: 10.1111/1751-7915.14239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 02/08/2023] [Accepted: 02/10/2023] [Indexed: 03/27/2023] Open
Abstract
The growing need of next generation feedstocks for biotechnology spurs an intensification of research on the utilization of methanol as carbon and energy source for biotechnological processes. In this paper, we introduced the methanol-based overproduction of riboflavin into metabolically engineered Bacillus methanolicus MGA3. First, we showed that B. methanolicus naturally produces small amounts of riboflavin. Then, we created B. methanolicus strains overexpressing either homologous or heterologous gene clusters encoding the riboflavin biosynthesis pathway, resulting in riboflavin overproduction. Our results revealed that the supplementation of growth media with sublethal levels of chloramphenicol contributes to a higher plasmid-based riboflavin production titre, presumably due to an increase in plasmid copy number and thus biosynthetic gene dosage. Based on this, we proved that riboflavin production can be increased by exchanging a low copy number plasmid with a high copy number plasmid leading to a final riboflavin titre of about 523 mg L-1 in methanol fed-batch fermentation. The findings of this study showcase the potential of B. methanolicus as a promising host for methanol-based overproduction of extracellular riboflavin and serve as basis for metabolic engineering of next generations of riboflavin overproducing strains.
Collapse
Affiliation(s)
- Vivien Jessica Klein
- Department of Biotechnology and Food Science, Norwegian University of Science and Technology, Trondheim, Norway
| | - Luciana Fernandes Brito
- Department of Biotechnology and Food Science, Norwegian University of Science and Technology, Trondheim, Norway
| | - Fernando Perez-Garcia
- Department of Biotechnology and Food Science, Norwegian University of Science and Technology, Trondheim, Norway
| | - Trygve Brautaset
- Department of Biotechnology and Food Science, Norwegian University of Science and Technology, Trondheim, Norway
| | - Marta Irla
- Department of Biological and Chemical Engineering, Aarhus University, Aarhus, Denmark
| |
Collapse
|
13
|
Abstract
Covering: up to 2022The report provides a broad approach to deciphering the evolution of coenzyme biosynthetic pathways. Here, these various pathways are analyzed with respect to the coenzymes required for this purpose. Coenzymes whose biosynthesis relies on a large number of coenzyme-mediated reactions probably appeared on the scene at a later stage of biological evolution, whereas the biosyntheses of pyridoxal phosphate (PLP) and nicotinamide (NAD+) require little additional coenzymatic support and are therefore most likely very ancient biosynthetic pathways.
Collapse
Affiliation(s)
- Andreas Kirschning
- Institute of Organic Chemistry, Leibniz University Hannover, Schneiderberg 1B, D-30167 Hannover, Germany.
| |
Collapse
|
14
|
Engineering cofactor supply and recycling to drive phenolic acid biosynthesis in yeast. Nat Chem Biol 2022; 18:520-529. [PMID: 35484257 DOI: 10.1038/s41589-022-01014-6] [Citation(s) in RCA: 70] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 03/15/2022] [Indexed: 01/14/2023]
Abstract
Advances in synthetic biology enable microbial hosts to synthesize valuable natural products in an efficient, cost-competitive and safe manner. However, current engineering endeavors focus mainly on enzyme engineering and pathway optimization, leaving the role of cofactors in microbial production of natural products and cofactor engineering largely ignored. Here we systematically engineered the supply and recycling of three cofactors (FADH2, S-adenosyl-L-methion and NADPH) in the yeast Saccharomyces cerevisiae, for high-level production of the phenolic acids caffeic acid and ferulic acid, the precursors of many pharmaceutical molecules. Tailored engineering strategies were developed for rewiring biosynthesis, compartmentalization and recycling of the cofactors, which enabled the highest production of caffeic acid (5.5 ± 0.2 g l-1) and ferulic acid (3.8 ± 0.3 g l-1) in microbial cell factories. These results demonstrate that cofactors play an essential role in driving natural product biosynthesis and the engineering strategies described here can be easily adopted for regulating the metabolism of other cofactors.
Collapse
|
15
|
Co-Overexpression of RIB1 and RIB6 Increases Riboflavin Production in the Yeast Candida famata. FERMENTATION 2022. [DOI: 10.3390/fermentation8040141] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Riboflavin or vitamin B2 is a water-soluble vitamin and a precursor of flavin coenzymes, flavin mononucleotide, and flavin adenine dinucleotide, which play a key role as enzyme cofactors in energy metabolism. Candida famata yeast is a promising producer of riboflavin, as it belongs to the group of so-called flavinogenic yeasts, capable of riboflavin oversynthesis under conditions of iron starvation. The role of the particular structural genes in the limitation of riboflavin oversynthesis is not known. To study the impact of overexpression of the structural genes of riboflavin synthesis on riboflavin production, a set of plasmids containing genes RIB1, RIB6, and RIB7 in different combinations was constructed. The transformants of the wild-type strain of C. famata, as well as riboflavin overproducer, were obtained, and the synthesis of riboflavin was studied. It was found that overexpression of RIB1 and RIB6 genes coding for enzymes GTP cyclohydrolase II and 3,4-dihydroxy-2-butanone-4-phosphate synthase, which catalase the initial steps of riboflavin synthesis, elevated riboflavin production by 13–28% relative to the parental riboflavin-overproducing strains.
Collapse
|
16
|
Farah N, Chin VK, Chong PP, Lim WF, Lim CW, Basir R, Chang SK, Lee TY. Riboflavin as a promising antimicrobial agent? A multi-perspective review. CURRENT RESEARCH IN MICROBIAL SCIENCES 2022; 3:100111. [PMID: 35199072 PMCID: PMC8848291 DOI: 10.1016/j.crmicr.2022.100111] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 02/05/2022] [Accepted: 02/07/2022] [Indexed: 12/29/2022] Open
Abstract
Riboflavin demonstrates antioxidant and photosensitizing properties. Riboflavin is able to induce ROS and modulate immune response. Riboflavin possesses potent antimicrobial activity when used alone or combined with other anti-infectives. The riboflavin biosynthesis pathway serves as an ideal drug target against microbes. UVA combination with riboflavin exhibits remarkable antimicrobial effects.
Riboflavin, or more commonly known as vitamin B2, forms part of the component of vitamin B complex. Riboflavin consisting of two important cofactors, flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD), which are involved in multiple oxidative-reduction processes and energy metabolism. Besides maintaining human health, different sources reported that riboflavin can inhibit or inactivate the growth of different pathogens including bacteria, viruses, fungi and parasites, highlighting the possible role of riboflavin as an antimicrobial agent. Moreover, riboflavin and flavins could produce reactive oxygen species (ROS) when exposed to light, inducing oxidative damage in cells and tissues, and thus are excellent natural photosensitizers. Several studies have illustrated the therapeutic efficacy of photoactivated riboflavin against nosocomial infections and multidrug resistant bacterial infections as well as microbial associated biofilm infections, revealing the potential role of riboflavin as a promising antimicrobial candidate, which could serve as one of the alternatives in fighting the global crisis of the emergence of antimicrobial resistance seen in different pathogenic microbes. Riboflavin could also be involved in modulating host immune responses, which might increase the pathogen clearance from host cells and increase host defense against microbial infections. Thus, the dual effects of riboflavin on both pathogens and host immunity, reflected by its potent bactericidal effect and alleviation of inflammation in host cells further imply that riboflavin could be a potential candidate for therapeutic intervention in resolving microbial infections. Hence, this review aimed to provide some insights on the promising role of riboflavin as an antimicrobial candidate and also a host immune-modulator from a multi-perspective view as well as to discuss the application and challenges on using riboflavin in photodynamic therapy against various pathogens and microbial biofilm-associated infections.
Collapse
Affiliation(s)
- Nuratiqah Farah
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, UPM, 43400, Serdang, Selangor, Malaysia
| | - Voon Kin Chin
- Department of Medical Microbiology, Faculty of Medicine and Health Sciences, UPM, 43400, Serdang, Selangor, Malaysia
| | - Pei Pei Chong
- School of Biosciences, Taylor's University, No 1, Jalan Taylor's, 47500 Subang Jaya, Selangor, Malaysia
| | - Wai Feng Lim
- Integrative Pharmacogenomics Institute (iPROMISE), Universiti Teknologi MARA, Puncak Alam Campus, 42300 Bandar Puncak Alam, Selangor, Malaysia
| | - Chee Woei Lim
- Department of Medicine, Faculty of Medicine and Health Sciences, UPM, 43400, Serdang, Selangor, Malaysia
| | - Rusliza Basir
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, UPM, 43400, Serdang, Selangor, Malaysia
| | - Sui Kiat Chang
- Department of Horticulture, Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Key Laboratory of Post-Harvest Handling of Fruits, Ministry of Agriculture. South China Botanical Garden, Chinese Academy of Sciences. Guangzhou, 510650 China
| | - Tze Yan Lee
- Perdana University School of Liberal Arts, Science and Technology (PUScLST), Suite 9.2, 9th Floor, Wisma Chase Perdana, Changkat Semantan, Damansara Heights, 50490 Kuala Lumpur, Malaysia
- Corresponding author.
| |
Collapse
|
17
|
Abstract
To resolve the growing problem of drug resistance in the treatment of bacterial and fungal pathogens, specific cellular targets and pathways can be used as targets for new antimicrobial agents. Endogenous riboflavin biosynthesis is a conserved pathway that exists in most bacteria and fungi. In this review, the roles of endogenous and exogenous riboflavin in infectious disease as well as several antibacterial agents, which act as analogues of the riboflavin biosynthesis pathway, are summarized. In addition, the effects of exogenous riboflavin on immune cells, cytokines, and heat shock proteins are described. Moreover, the immune response of endogenous riboflavin metabolites in infectious diseases, recognized by MHC-related protein-1, and then presented to mucosal associated invariant T cells, is highlighted. This information will provide a strategy to identify novel drug targets as well as highlight the possible clinical use of riboflavin.
Collapse
Affiliation(s)
- Junwen Lei
- Molecular Biotechnology Platform, Public Center of Experimental Technology, School of Basic Medical Sciences, Southwest Medical University, Luzhou People's Republic of China
| | - Caiyan Xin
- Molecular Biotechnology Platform, Public Center of Experimental Technology, School of Basic Medical Sciences, Southwest Medical University, Luzhou People's Republic of China
| | - Wei Xiao
- Molecular Biotechnology Platform, Public Center of Experimental Technology, School of Basic Medical Sciences, Southwest Medical University, Luzhou People's Republic of China
| | - Wenbi Chen
- Molecular Biotechnology Platform, Public Center of Experimental Technology, School of Basic Medical Sciences, Southwest Medical University, Luzhou People's Republic of China
| | - Zhangyong Song
- Molecular Biotechnology Platform, Public Center of Experimental Technology, School of Basic Medical Sciences, Southwest Medical University, Luzhou People's Republic of China
| |
Collapse
|
18
|
Rotter DAO, Heger C, Oviedo-Bocanegra LM, Graumann PL. Transcription-dependent confined diffusion of enzymes within subcellular spaces of the bacterial cytoplasm. BMC Biol 2021; 19:183. [PMID: 34474681 PMCID: PMC8414670 DOI: 10.1186/s12915-021-01083-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 07/01/2021] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Knowledge on the localization and mobility of enzymes inside bacterial cells is scarce, but important for understanding spatial regulation of metabolism. The four central enzymes (Rib enzymes) of the riboflavin (RF) biosynthesis pathway in the Gram positive model bacterium Bacillus subtilis have been studied extensively in vitro, especially the heavy RF synthase, a large protein complex with a capsid structure formed by RibH and an encapsulated RibE homotrimer, which mediates substrate-channeling. However, little is known about the behavior and mobility of these enzymes in vivo. RESULTS We have investigated the localization and diffusion of the Rib enzymes in the cytoplasm of B. subtilis. By characterizing the diffusion of Rib enzymes in live cells using single particle tracking (SPT) we provide evidence for confined diffusion at the cell poles and otherwise Brownian motion. A majority of RibH particles showed clear nucleoid occlusion and a high degree of confined motion, which is largely abolished after treatment with Rifampicin, revealing that confinement is dependent on active transcription. Contrarily, RibE is mostly diffusive within the cell, showing only 14% encapsulation by RibH nanocompartments. By localizing different diffusive populations within single cells, we find that fast diffusion occurs mostly across the nucleoids located in the cell centers, while the slower, confined subdiffusion occurs at the crowded cell poles. CONCLUSIONS Our results provide evidence for locally different motion of active enzymes within the bacterial cytoplasm, setting up metabolic compartmentalization mostly at the poles of cells.
Collapse
Affiliation(s)
- Daniel A O Rotter
- SYNMIKRO, LOEWE Center for Synthetic Microbiology, Marburg, Germany
- Department of Chemistry, Philipps-Universität Marburg, Marburg, Germany
| | - Christoph Heger
- SYNMIKRO, LOEWE Center for Synthetic Microbiology, Marburg, Germany
- Department of Chemistry, Philipps-Universität Marburg, Marburg, Germany
| | - Luis M Oviedo-Bocanegra
- SYNMIKRO, LOEWE Center for Synthetic Microbiology, Marburg, Germany
- Department of Chemistry, Philipps-Universität Marburg, Marburg, Germany
| | - Peter L Graumann
- SYNMIKRO, LOEWE Center for Synthetic Microbiology, Marburg, Germany.
- Department of Chemistry, Philipps-Universität Marburg, Marburg, Germany.
| |
Collapse
|
19
|
Herbst E, Lee A, Tang Y, Snyder SA, Cornish VW. Heterologous Catalysis of the Final Steps of Tetracycline Biosynthesis by Saccharomyces cerevisiae. ACS Chem Biol 2021; 16:1425-1434. [PMID: 34269557 DOI: 10.1021/acschembio.1c00259] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Developing treatments for antibiotic resistant bacterial infections is among the highest priority public health challenges worldwide. Tetracyclines, one of the most important classes of antibiotics, have fallen prey to antibiotic resistance, necessitating the generation of new analogs. Many tetracycline analogs have been accessed through both total synthesis and semisynthesis, but key C-ring tetracycline analogs remain inaccessible. New methods are needed to unlock access to these analogs, and heterologous biosynthesis in a tractable host such as Saccharomyces cerevisiae is a candidate method. C-ring analog biosynthesis can mimic nature's biosynthesis of tetracyclines from anhydrotetracyclines, but challenges exist, including the absence of the unique cofactor F420 in common heterologous hosts. Toward this goal, this paper describes the biosynthesis of tetracycline from anhydrotetracycline in S. cerevisiae heterologously expressing three enzymes from three bacterial hosts: the anhydrotetracycline hydroxylase OxyS, the dehydrotetracycline reductase CtcM, and the F420 reductase FNO. This biosynthesis of tetracycline is enabled by OxyS performing just one hydroxylation step in S. cerevisiae despite its previous characterization as a double hydroxylase. This single hydroxylation enabled us to purify and structurally characterize a hypothetical intermediate in oxytetracycline biosynthesis that can explain structural differences between oxytetracycline and chlortetracycline. We show that Fo, a synthetically accessible derivative of cofactor F420, can replace F420 in tetracycline biosynthesis. Critically, the use of S. cerevisiae for the final steps of tetracycline biosynthesis described herein sets the stage to achieve a total biosynthesis of tetracycline as well as novel tetracycline analogs in S. cerevisiae with the potential to combat antibiotic-resistant bacteria.
Collapse
Affiliation(s)
- Ehud Herbst
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Arden Lee
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Yi Tang
- Department of Chemical and Biomolecular Engineering and Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | - Scott A. Snyder
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - Virginia W. Cornish
- Department of Chemistry, Columbia University, New York, New York 10027, United States
- Department of Systems Biology, Columbia University, New York, New York 10032, United States
| |
Collapse
|
20
|
Wang Y, Liu L, Jin Z, Zhang D. Microbial Cell Factories for Green Production of Vitamins. Front Bioeng Biotechnol 2021; 9:661562. [PMID: 34222212 PMCID: PMC8247775 DOI: 10.3389/fbioe.2021.661562] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 05/12/2021] [Indexed: 11/13/2022] Open
Abstract
Vitamins are a group of essential nutrients that are necessary to maintain normal metabolic activities and optimal health. There are wide applications of different vitamins in food, cosmetics, feed, medicine, and other areas. The increase in the global demand for vitamins has inspired great interest in novel production strategies. Chemical synthesis methods often require high temperatures or pressurized reactors and use non-renewable chemicals or toxic solvents that cause product safety concerns, pollution, and hazardous waste. Microbial cell factories for the production of vitamins are green and sustainable from both environmental and economic standpoints. In this review, we summarized the vitamins which can potentially be produced using microbial cell factories or are already being produced in commercial fermentation processes. They include water-soluble vitamins (vitamin B complex and vitamin C) as well as fat-soluble vitamins (vitamin A/D/E and vitamin K). Furthermore, metabolic engineering is discussed to provide a reference for the construction of microbial cell factories. We also highlight the current state and problems encountered in the fermentative production of vitamins.
Collapse
Affiliation(s)
- Yanyan Wang
- School of Biological Engineering, Dalian Polytechnic University, Dalian, China.,Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, China.,Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Linxia Liu
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, China.,Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China.,National Technology Innovation Center of Synthetic Biology, Tianjin, China
| | - Zhaoxia Jin
- School of Biological Engineering, Dalian Polytechnic University, Dalian, China
| | - Dawei Zhang
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, China.,Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China.,National Technology Innovation Center of Synthetic Biology, Tianjin, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
21
|
Fedorovych DV, Dmytruk KV, Sibirny AA. Recent Advances in Construction of the Efficient Producers of Riboflavin and Flavin Nucleotides (FMN, FAD) in the Yeast Candida famata. Methods Mol Biol 2021; 2280:15-30. [PMID: 33751426 DOI: 10.1007/978-1-0716-1286-6_2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The approaches used by the authors to design the Candida famata strains capable to overproduce riboflavin, flavin mononucleotide (FMN), and flavin adenine dinucleotide (FAD) are described. The metabolic engineering approaches include overexpression of SEF1 gene encoding positive regulator of riboflavin biosynthesis, IMH3 (coding for IMP dehydrogenase) orthologs from another species of flavinogenic yeast Debaryomyces hansenii, and the homologous genes RIB1 and RIB7 encoding GTP cyclohydrolase II and riboflavin synthase, the first and the last enzymes of riboflavin biosynthesis pathway, respectively. Overexpression of the above mentioned genes in the genetically stable riboflavin overproducer AF-4 obtained by classical selection resulted in fourfold increase of riboflavin production in shake flask experiments.Overexpression of engineered enzymes phosphoribosyl pyrophosphate synthetase and phosphoribosyl pyrophosphate amidotransferase catalyzing the initial steps of purine nucleotide biosynthesis enhances riboflavin synthesis in the flavinogenic yeast C. famata even more.Recombinant strains of C. famata containing FMN1 gene from D. hansenii encoding riboflavin kinase under control of the strong constitutive TEF1 promoter were constructed. Overexpression of the FMN1 gene in the riboflavin-producing mutant led to the 30-fold increase of the riboflavin kinase activity and 400-fold increase of FMN production in the resulting recombinant strains which reached maximally 318.2 mg/L.FAD overproducing strains of C. famata were also constructed. This was achieved by overexpression of FAD1 gene from D. hansenii in C. famata FMN overproducing strain. The 7- to 15-fold increase in FAD synthetase activity as compared to the wild-type strain and FAD accumulation into cultural medium were observed. The maximal FAD titer 451.5 mg/L was achieved.
Collapse
Affiliation(s)
- Dariya V Fedorovych
- Department of Molecular Biology and Biotechnology, Institute of Cell Biology, NAS of Ukraine, Lviv, Ukraine
| | - Kostyantyn V Dmytruk
- Department of Molecular Biology and Biotechnology, Institute of Cell Biology, NAS of Ukraine, Lviv, Ukraine
| | - Andriy A Sibirny
- Department of Molecular Biology and Biotechnology, Institute of Cell Biology, NAS of Ukraine, Lviv, Ukraine.
- Department of Microbiology and Biotechnology, University of Rzeszow, Rzeszow, Poland.
| |
Collapse
|
22
|
Abstract
The evolution of coenzymes, or their impact on the origin of life, is fundamental for understanding our own existence. Having established reasonable hypotheses about the emergence of prebiotic chemical building blocks, which were probably created under palaeogeochemical conditions, and surmising that these smaller compounds must have become integrated to afford complex macromolecules such as RNA, the question of coenzyme origin and its relation to the evolution of functional biochemistry should gain new impetus. Many coenzymes have a simple chemical structure and are often nucleotide-derived, which suggests that they may have coexisted with the emergence of RNA and may have played a pivotal role in early metabolism. Based on current theories of prebiotic evolution, which attempt to explain the emergence of privileged organic building blocks, this Review discusses plausible hypotheses on the prebiotic formation of key elements within selected extant coenzymes. In combination with prebiotic RNA, coenzymes may have dramatically broadened early protometabolic networks and the catalytic scope of RNA during the evolution of life.
Collapse
Affiliation(s)
- Andreas Kirschning
- Institut für Organische Chemie und Biomolekulares Wirkstoffzentrum (BMWZ)Leibniz Universität HannoverSchneiderberg 1B30167HannoverGermany
| |
Collapse
|
23
|
Dikkala PK, Usmani Z, Kumar S, Gupta VK, Bhargava A, Sharma M. Fungal Production of Vitamins and Their Food Industrial Applications. Fungal Biol 2021. [DOI: 10.1007/978-3-030-85603-8_16] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
24
|
Li Y, Yang C, Ahmad H, Maher M, Fang C, Luo J. Benefiting others and self: Production of vitamins in plants. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2021; 63:210-227. [PMID: 33289302 DOI: 10.1111/jipb.13047] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 11/26/2020] [Indexed: 06/12/2023]
Abstract
Vitamins maintain growth and development in humans, animals, and plants. Because plants serve as essential producers of vitamins, increasing the vitamin contents in plants has become a goal of crop breeding worldwide. Here, we begin with a summary of the functions of vitamins. We then review the achievements to date in elucidating the molecular mechanisms underlying how vitamins are synthesized, transported, and regulated in plants. We also stress the exploration of variation in vitamins by the use of forward genetic approaches, such as quantitative trait locus mapping and genome-wide association studies. Overall, we conclude that exploring the diversity of vitamins could provide new insights into plant metabolism and crop breeding.
Collapse
Affiliation(s)
- Yufei Li
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Chenkun Yang
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Hasan Ahmad
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Mohamed Maher
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Chuanying Fang
- College of Tropical Crops, Hainan University, Haikou, 570228, China
| | - Jie Luo
- College of Tropical Crops, Hainan University, Haikou, 570228, China
| |
Collapse
|
25
|
Kirschning A. The coenzyme/protein pair and the molecular evolution of life. Nat Prod Rep 2020; 38:993-1010. [PMID: 33206101 DOI: 10.1039/d0np00037j] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Covering: up to 2020What was first? Coenzymes or proteins? These questions are archetypal examples of causal circularity in living systems. Classically, this "chicken-and-egg" problem was discussed for the macromolecules RNA, DNA and proteins. This report focuses on coenzymes and cofactors and discusses the coenzyme/protein pair as another example of causal circularity in life. Reflections on the origin of life and hypotheses on possible prebiotic worlds led to the current notion that RNA was the first macromolecule, long before functional proteins and hence DNA. So these causal circularities of living systems were solved by a time travel into the past. To tackle the "chicken-and-egg" problem of the protein-coenzyme pair, this report addresses this problem by looking for clues (a) in the first hypothetical biotic life forms such as protoviroids and the last unified common ancestor (LUCA) and (b) in considerations and evidence of the possible prebiotic production of amino acids and coenzymes before life arose. According to these considerations, coenzymes and cofactors can be regarded as very old molecular players in the origin and evolution of life, and at least some of them developed independently of α-amino acids, which here are evolutionarily synonymous with proteins. Discussions on "chicken-and-egg" problems open further doors to the understanding of evolution.
Collapse
Affiliation(s)
- Andreas Kirschning
- Institut für Organische Chemie und Zentrum für Biomolekulare Wirkstoffchemie (BMWZ), Leibniz Universität Hannover, Schneiderberg 1B, D-30167 Hannover, Germany.
| |
Collapse
|
26
|
Engineering of Synechococcus sp. strain PCC 7002 for the photoautotrophic production of light-sensitive riboflavin (vitamin B2). Metab Eng 2020; 62:275-286. [DOI: 10.1016/j.ymben.2020.09.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 09/09/2020] [Accepted: 09/19/2020] [Indexed: 11/24/2022]
|
27
|
Affiliation(s)
- Andreas Kirschning
- Institut für Organische Chemie und Biomolekulares Wirkstoffzentrum (BMWZ) Leibniz Universität Hannover Schneiderberg 1B 30167 Hannover Deutschland
| |
Collapse
|
28
|
Molecular Elucidation of Riboflavin Production and Regulation in Candida albicans, toward a Novel Antifungal Drug Target. mSphere 2020; 5:5/4/e00714-20. [PMID: 32759338 PMCID: PMC7407072 DOI: 10.1128/msphere.00714-20] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Candida albicans is an important fungal pathogen causing common superficial infections as well as invasive diseases with an extremely high morbidity and mortality. Antifungal therapies are limited in efficiency and availability. In this research, we describe the regulation of riboflavin production in C. albicans. Since riboflavin biosynthesis is essential to this organism, we can appreciate that targeting it would be a promising new strategy to combat these fungal infections. We provide evidence that one particular enzyme in the production process, CaRib1, would be most promising as an antifungal drug target, as it plays a central role in regulation and proves to be essential in a mouse model of systemic infection. Candida albicans is a major cause of fungal infections, both superficial and invasive. The economic costs as well as consequences for patient welfare are substantial. Only a few treatment options are available due to the high resemblance between fungal targets and host molecules, as both are eukaryotes. Riboflavin is a yellow pigment, also termed vitamin B2. Unlike animals, fungi can synthesize this essential component themselves, thereby leading us to appreciate that targeting riboflavin production is a promising novel strategy against fungal infections. Here, we report that the GTP cyclohydrolase encoded by C. albicansRIB1 (CaRIB1) is essential and rate-limiting for production of riboflavin in the fungal pathogen. We confirm the high potential of CaRib1 as an antifungal drug target, as its deletion completely impairs in vivo infectibility by C. albicans in model systems. Furthermore, the stimulating effect of iron deprivation and PKA activation on riboflavin production seems to involve CaRib1 and the upstream transcription factor CaSef1. Gathering insights in the synthesis mechanism of riboflavin in pathogenic fungi, like C. albicans, will allow us to design a novel strategy and specifically target this process to combat fungal infections. IMPORTANCECandida albicans is an important fungal pathogen causing common superficial infections as well as invasive diseases with an extremely high morbidity and mortality. Antifungal therapies are limited in efficiency and availability. In this research, we describe the regulation of riboflavin production in C. albicans. Since riboflavin biosynthesis is essential to this organism, we can appreciate that targeting it would be a promising new strategy to combat these fungal infections. We provide evidence that one particular enzyme in the production process, CaRib1, would be most promising as an antifungal drug target, as it plays a central role in regulation and proves to be essential in a mouse model of systemic infection.
Collapse
|
29
|
Schneider C, Konjik V, Kißling L, Mack M. The novel phosphatase RosC catalyzes the last unknown step of roseoflavin biosynthesis in Streptomyces davaonensis. Mol Microbiol 2020; 114:609-625. [PMID: 32621340 DOI: 10.1111/mmi.14567] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 06/25/2020] [Accepted: 06/26/2020] [Indexed: 12/31/2022]
Abstract
The bacterium Streptomyces davaonensis produces the antibiotic roseoflavin, which is a riboflavin (vitamin B2 ) analog. The key enzyme of roseoflavin biosynthesis is the 8-demethyl-8-amino-riboflavin-5'-phosphate (AFP) synthase RosB which synthesizes AFP from riboflavin-5'-phosphate. AFP is not a substrate for the last enzyme of roseoflavin biosynthesis the N, N-dimethyltransferase RosA, which generates roseoflavin from 8-demethyl-8-amino-riboflavin (AF). Consequently, the roseoflavin biosynthetic pathway depends on a phosphatase, which dephosphorylates AFP to AF. Here, we report on the identification and characterization of such an AFP phosphatase which we named RosC. The gene rosC is located immediately downstream of rosA and both genes are part of a cluster comprising 10 genes. Deletion of rosC from the chromosome of S. davaonensis led to reduced roseoflavin levels in the corresponding recombinant strain. In contrast to wild-type S. davaonensis, cell-free extracts of the rosC deletion strain did not catalyze dephosphorylation of AFP. RosC was purified from an overproducing Escherichia coli strain. RosC is the fastest enzyme of roseoflavin biosynthesis (kcat 31.3 ± 1.4 min-1 ). The apparent KM for the substrate AFP was 34.5 µM. Roseoflavin biosynthesis is now completely understood--it takes three enzymes (RosB, RosC, and RosA) to convert the flavin cofactor riboflavin-5'-phosphate into a potent antibiotic.
Collapse
Affiliation(s)
- Carmen Schneider
- Department of Biotechnology, Institute for Technical Microbiology, Mannheim University of Applied Sciences, Mannheim, Germany
| | - Valentino Konjik
- Department of Biotechnology, Institute for Technical Microbiology, Mannheim University of Applied Sciences, Mannheim, Germany
| | - Lena Kißling
- Department of Biotechnology, Institute for Technical Microbiology, Mannheim University of Applied Sciences, Mannheim, Germany
| | - Matthias Mack
- Department of Biotechnology, Institute for Technical Microbiology, Mannheim University of Applied Sciences, Mannheim, Germany
| |
Collapse
|
30
|
Tsyrulnyk AO, Andreieva YA, Ruchala J, Fayura LR, Dmytruk KV, Fedorovych DV, Sibirny AA. Expression of yeast homolog of the mammalBCRPgene coding for riboflavin efflux protein activates vitamin B2production in the flavinogenic yeastCandida famata. Yeast 2020; 37:467-473. [DOI: 10.1002/yea.3470] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 04/13/2020] [Accepted: 05/05/2020] [Indexed: 01/07/2023] Open
Affiliation(s)
- Andriy O. Tsyrulnyk
- Department of Molecular Biology and Biotechnology, Institute of Cell Biology NAS of Ukraine Lviv Ukraine
| | - Yuliia A. Andreieva
- Department of Molecular Biology and Biotechnology, Institute of Cell Biology NAS of Ukraine Lviv Ukraine
| | - Justyna Ruchala
- Department of Microbiology and Biotechnology University of Rzeszow Rzeszow Poland
| | - Lyubov R. Fayura
- Department of Molecular Biology and Biotechnology, Institute of Cell Biology NAS of Ukraine Lviv Ukraine
| | - Kostyantyn V. Dmytruk
- Department of Molecular Biology and Biotechnology, Institute of Cell Biology NAS of Ukraine Lviv Ukraine
| | - Daria V. Fedorovych
- Department of Molecular Biology and Biotechnology, Institute of Cell Biology NAS of Ukraine Lviv Ukraine
| | - Andriy A. Sibirny
- Department of Molecular Biology and Biotechnology, Institute of Cell Biology NAS of Ukraine Lviv Ukraine
- Department of Microbiology and Biotechnology University of Rzeszow Rzeszow Poland
| |
Collapse
|
31
|
Kißling L, Schneider C, Seibel K, Dorjjugder N, Busche T, Kalinowski J, Mack M. The roseoflavin producer
Streptomyces davaonensis
has a high catalytic capacity and specific genetic adaptations with regard to the biosynthesis of riboflavin. Environ Microbiol 2020; 22:3248-3265. [DOI: 10.1111/1462-2920.15066] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 05/06/2020] [Accepted: 05/10/2020] [Indexed: 11/29/2022]
Affiliation(s)
- Lena Kißling
- Institute for Technical Microbiology, Department of Biotechnology Mannheim University of Applied Sciences Mannheim 68163 Germany
| | - Carmen Schneider
- Institute for Technical Microbiology, Department of Biotechnology Mannheim University of Applied Sciences Mannheim 68163 Germany
| | - Katharina Seibel
- Institute for Technical Microbiology, Department of Biotechnology Mannheim University of Applied Sciences Mannheim 68163 Germany
| | - Nasanjargal Dorjjugder
- Institute for Technical Microbiology, Department of Biotechnology Mannheim University of Applied Sciences Mannheim 68163 Germany
| | - Tobias Busche
- Center for Biotechnology Bielefeld University Bielefeld 33594 Germany
| | - Jörn Kalinowski
- Center for Biotechnology Bielefeld University Bielefeld 33594 Germany
| | - Matthias Mack
- Institute for Technical Microbiology, Department of Biotechnology Mannheim University of Applied Sciences Mannheim 68163 Germany
| |
Collapse
|
32
|
Dmytruk KV, Ruchala J, Fedorovych DV, Ostapiv RD, Sibirny AA. Modulation of the Purine Pathway for Riboflavin Production in Flavinogenic Recombinant Strain of the Yeast Candida famata. Biotechnol J 2020; 15:e1900468. [PMID: 32087089 DOI: 10.1002/biot.201900468] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 02/10/2020] [Indexed: 11/10/2022]
Abstract
Riboflavin (vitamin B2 ) is an indispensable nutrient for humans and animals, since it is the precursor of the essential coenzymes flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD), involved in variety of metabolic reactions. Riboflavin is produced on commercial scale and is used for feed and food fortification purposes, and in medicine. Until recently, the mutant strains of the flavinogenic yeast Candida famata were used in industry for riboflavin production. Guanosine triphosphate is the immediate precursor of riboflavin synthesis. Therefore, the activation of metabolic flux toward purine nucleotide biosynthesis is a promising approach to improve riboflavin production. The phosphoribosyl pyrophosphate synthetase and phosphoribosyl pyrophosphate amidotransferase are the rate limiting enzymes in purine biosynthesis. Corresponding genes PRS3 and ADE4 from yeast Debaryomyces hansenii are modified to avoid feedback inhibition and cooverexpressed on the background of a previously constructed riboflavin overproducing strain of C. famata. Constructed strain accumulates twofold more riboflavin when compared to the parental strain.
Collapse
Affiliation(s)
- Kostyantyn V Dmytruk
- Department of Molecular Biology and Biotechnology, Institute of Cell Biology, NAS of Ukraine, Drahomanov Street, 14/16, Lviv, 79005, Ukraine
| | - Justyna Ruchala
- Department of Microbiology and Biotechnology, University of Rzeszow, Zelwerowicza, 4, Rzeszow, 35-601, Poland
| | - Daria V Fedorovych
- Department of Molecular Biology and Biotechnology, Institute of Cell Biology, NAS of Ukraine, Drahomanov Street, 14/16, Lviv, 79005, Ukraine
| | - Roman D Ostapiv
- Laboratory of high-performance liquid chromatography, State Scientific-Research Control Institute of Veterinary Medicinal Products and Feed Additives, Donetska Street, 11, Lviv, 79019, Ukraine
| | - Andriy A Sibirny
- Department of Molecular Biology and Biotechnology, Institute of Cell Biology, NAS of Ukraine, Drahomanov Street, 14/16, Lviv, 79005, Ukraine.,Department of Microbiology and Biotechnology, University of Rzeszow, Zelwerowicza, 4, Rzeszow, 35-601, Poland
| |
Collapse
|
33
|
Bourdeaux F, Ludwig P, Paithankar K, Sander B, Essen LO, Grininger M, Mack M. Comparative biochemical and structural analysis of the flavin-binding dodecins from Streptomyces davaonensis and Streptomyces coelicolor reveals striking differences with regard to multimerization. MICROBIOLOGY-SGM 2020; 165:1095-1106. [PMID: 31339487 DOI: 10.1099/mic.0.000835] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Dodecins are small flavin-binding proteins that are widespread amongst haloarchaeal and bacterial species. Haloarchaeal dodecins predominantly bind riboflavin, while bacterial dodecins have been reported to bind riboflavin-5'-phosphate, also called flavin mononucleotide (FMN), and the FMN derivative, flavin adenine dinucleotide (FAD). Dodecins form dodecameric complexes and represent buffer systems for cytoplasmic flavins. In this study, dodecins of the bacteria Streptomyces davaonensis (SdDod) and Streptomyces coelicolor (ScDod) were investigated. Both dodecins showed an unprecedented low affinity for riboflavin, FMN and FAD when compared to other bacterial dodecins. Significant binding of FMN and FAD occurred at relatively low temperatures and under acidic conditions. X-ray diffraction analyses of SdDod and ScDod revealed that the structures of both Streptomyces dodecins are highly similar, which explains their similar binding properties for FMN and FAD. In contrast, SdDod and ScDod showed very different properties with regard to the stability of their dodecameric complexes. Site-directed mutagenesis experiments revealed that a specific salt bridge (D10-K62) is responsible for this difference in stability.
Collapse
Affiliation(s)
- Florian Bourdeaux
- Institute of Organic Chemistry and Chemical Biology, Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany
| | - Petra Ludwig
- Institute for Technical Microbiology, Faculty for Biotechnology, Mannheim University of Applied Sciences, 68163 Mannheim, Germany
| | - Karthik Paithankar
- Institute of Organic Chemistry and Chemical Biology, Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany
| | - Bodo Sander
- Unit for Structural Biology, Department of Chemistry and Biology, Philipps University Marburg, 35032 Marburg, Germany
| | - Lars-Oliver Essen
- Unit for Structural Biology, Department of Chemistry and Biology, Philipps University Marburg, 35032 Marburg, Germany
| | - Martin Grininger
- Institute of Organic Chemistry and Chemical Biology, Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany
| | - Matthias Mack
- Institute for Technical Microbiology, Faculty for Biotechnology, Mannheim University of Applied Sciences, 68163 Mannheim, Germany
| |
Collapse
|
34
|
Jung T, Mack M. Interaction of enzymes of the tricarboxylic acid cycle in Bacillus subtilis and Escherichia coli: a comparative study. FEMS Microbiol Lett 2019; 365:4931716. [PMID: 29546354 DOI: 10.1093/femsle/fny055] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 03/08/2018] [Indexed: 12/27/2022] Open
Abstract
We studied the interaction of the tricarboxylic acid cycle enzymes citrate synthase, isocitrate dehydrogenase and malate dehydrogenase in the bacteria Bacillus subtilis and Escherichia coli in vivo. In B. subtilis, the genes encoding citrate synthase, isocitrate dehydrogenase and malate dehydrogenase form an operon (citZ-icd-mdh) and predominantly are co-transcribed from a single promoter. In E. coli the corresponding genes gltA, icd and mdh do not form a transcription unit, are scattered around the chromosome and are expressed from different promoters. We found that co-transcription of genes and subsequent co-translation of the corresponding mRNAs promotes the formation of protein complexes and give support for the previous findings that in B. subtilis citrate synthase, isocitrate dehydrogenase and malate dehydrogenase form an enzyme complex (metabolon).
Collapse
Affiliation(s)
- Tobias Jung
- Department of Biotechnology, Institute for Technical Microbiology, Mannheim University of Applied Sciences, 68163 Mannheim, Germany
| | - Matthias Mack
- Department of Biotechnology, Institute for Technical Microbiology, Mannheim University of Applied Sciences, 68163 Mannheim, Germany
| |
Collapse
|
35
|
Schüssler S, Haase I, Perbandt M, Illarionov B, Siemens A, Richter K, Bacher A, Fischer M, Gräwert T. Structure of GTP cyclohydrolase I from Listeria monocytogenes, a potential anti-infective drug target. Acta Crystallogr F Struct Biol Commun 2019; 75:586-592. [PMID: 31475925 PMCID: PMC6718149 DOI: 10.1107/s2053230x19010902] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 08/04/2019] [Indexed: 12/03/2022] Open
Abstract
A putative open reading frame encoding GTP cyclohydrolase I from Listeria monocytogenes was expressed in a recombinant Escherichia coli strain. The recombinant protein was purified and was confirmed to convert GTP to dihydroneopterin triphosphate (Km = 53 µM; vmax = 180 nmol mg-1 min-1). The protein was crystallized from 1.3 M sodium citrate pH 7.3 and the crystal structure was solved at a resolution of 2.4 Å (Rfree = 0.226) by molecular replacement using human GTP cyclohydrolase I as a template. The protein is a D5-symmetric decamer with ten topologically equivalent active sites. Screening a small library of about 9000 compounds afforded several inhibitors with IC50 values in the low-micromolar range. Several inhibitors had significant selectivity with regard to human GTP cyclohydrolase I. Hence, GTP cyclohydrolase I may be a potential target for novel drugs directed at microbial infections, including listeriosis, a rare disease with high mortality.
Collapse
Affiliation(s)
- Sonja Schüssler
- Hamburg School of Food Science, Universität Hamburg, Grindelallee 117, 20146 Hamburg, Germany
| | - Ilka Haase
- Hamburg School of Food Science, Universität Hamburg, Grindelallee 117, 20146 Hamburg, Germany
| | - Markus Perbandt
- Institute for Biochemistry and Molecular Biology, Laboratory for Structural Biology of Infection and Inflammation, Universität Hamburg, Notkestrasse 85, 22607 Hamburg, Germany
- The Hamburg Center for Ultrafast Imaging, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Boris Illarionov
- Hamburg School of Food Science, Universität Hamburg, Grindelallee 117, 20146 Hamburg, Germany
| | - Alexandra Siemens
- Hamburg School of Food Science, Universität Hamburg, Grindelallee 117, 20146 Hamburg, Germany
| | - Klaus Richter
- Department of Chemistry, Technical University of Munich, Lichtenbergstrasse 4, 85748 Garching, Germany
| | - Adelbert Bacher
- Hamburg School of Food Science, Universität Hamburg, Grindelallee 117, 20146 Hamburg, Germany
- Department of Chemistry, Technical University of Munich, Lichtenbergstrasse 4, 85748 Garching, Germany
| | - Markus Fischer
- Hamburg School of Food Science, Universität Hamburg, Grindelallee 117, 20146 Hamburg, Germany
| | - Tobias Gräwert
- Hamburg School of Food Science, Universität Hamburg, Grindelallee 117, 20146 Hamburg, Germany
- Hamburg Outstation, European Molecular Biology Laboratory Hamburg, Notkestrasse 85, 22607 Hamburg, Germany
| |
Collapse
|
36
|
Youn UJ, Lee JH, Han SJ. Diketopiperazine and alloxazine alkaloids from the antarctic bacteria, Pseudorhodobacter psychrotolerans sp. nov. BIOCHEM SYST ECOL 2019. [DOI: 10.1016/j.bse.2019.04.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
37
|
Serer MI, Carrica MDC, Trappe J, López Romero S, Bonomi HR, Klinke S, Cerutti ML, Goldbaum FA. A high-throughput screening for inhibitors of riboflavin synthase identifies novel antimicrobial compounds to treat brucellosis. FEBS J 2019; 286:2522-2535. [PMID: 30927485 DOI: 10.1111/febs.14829] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 02/26/2019] [Accepted: 03/29/2019] [Indexed: 10/27/2022]
Abstract
Brucella spp. are pathogenic intracellular Gram-negative bacteria adapted to life within cells of several mammals, including humans. These bacteria are the causative agent of brucellosis, one of the zoonotic infections with the highest incidence in the world and for which a human vaccine is still unavailable. Current therapeutic treatments against brucellosis are based on the combination of two or more antibiotics for prolonged periods, which may lead to antibiotic resistance in the population. Riboflavin (vitamin B2) is biosynthesized by microorganisms and plants but mammals, including humans, must obtain it from dietary sources. Owing to the absence of the riboflavin biosynthetic enzymes in animals, this pathway is nowadays regarded as a rich resource of targets for the development of new antimicrobial agents. In this work, we describe a high-throughput screening approach to identify inhibitors of the enzymatic activity of riboflavin synthase, the last enzyme in this pathway. We also provide evidence for their subsequent validation as potential drug candidates in an in vitro brucellosis infection model. From an initial set of 44 000 highly diverse low molecular weight compounds with drug-like properties, we were able to identify ten molecules with 50% inhibitory concentrations in the low micromolar range. Further Brucella culture and intramacrophagic replication experiments showed that the most effective bactericidal compounds share a 2-Phenylamidazo[2,1-b][1,3]benzothiazole chemical scaffold. Altogether, these findings set up the basis for the subsequent lead optimization process and represent a promising advancement in the pursuit of novel and effective antimicrobial compounds against brucellosis.
Collapse
Affiliation(s)
- María Inés Serer
- Fundación Instituto Leloir, IIBBA-CONICET, Buenos Aires, Argentina
| | | | - Jörg Trappe
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | | | | | - Sebastián Klinke
- Fundación Instituto Leloir, IIBBA-CONICET, Buenos Aires, Argentina.,Plataforma Argentina de Biología Estructural y Metabolómica PLABEM, Buenos Aires, Argentina
| | - María Laura Cerutti
- Fundación Instituto Leloir, IIBBA-CONICET, Buenos Aires, Argentina.,Plataforma Argentina de Biología Estructural y Metabolómica PLABEM, Buenos Aires, Argentina
| | - Fernando Alberto Goldbaum
- Fundación Instituto Leloir, IIBBA-CONICET, Buenos Aires, Argentina.,Plataforma Argentina de Biología Estructural y Metabolómica PLABEM, Buenos Aires, Argentina
| |
Collapse
|
38
|
Kundu B, Sarkar D, Ray N, Talukdar A. Understanding the riboflavin biosynthesis pathway for the development of antimicrobial agents. Med Res Rev 2019; 39:1338-1371. [PMID: 30927319 DOI: 10.1002/med.21576] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 02/14/2019] [Accepted: 03/08/2019] [Indexed: 12/13/2022]
Abstract
Life on earth depends on the biosynthesis of riboflavin, which plays a vital role in biological electron transport processes. Higher mammals obtain riboflavin from dietary sources; however, various microorganisms, including Gram-negative pathogenic bacteria and yeast, lack an efficient riboflavin-uptake system and are dependent on endogenous riboflavin biosynthesis. Consequently, the inhibition of enzymes in the riboflavin biosynthesis pathway would allow selective toxicity to a pathogen and not the host. Thus, the riboflavin biosynthesis pathway is an attractive target for designing novel antimicrobial drugs, which are urgently needed to address the issue of multidrug resistance seen in various pathogens. The enzymes involved in riboflavin biosynthesis are lumazine synthase (LS) and riboflavin synthase (RS). Understanding the details of the mechanisms of the enzyme-catalyzed reactions and the structural changes that occur in the enzyme active sites during catalysis can facilitate the design and synthesis of suitable analogs that can specifically inhibit the relevant enzymes and stop the generation of riboflavin in pathogenic bacteria. The present review is the first compilation of the work that has been carried out over the last 25 years focusing on the design of inhibitors of the biosynthesis of riboflavin based on an understanding of the mechanisms of LS and RS. This review aimed to address the fundamental advances in our understanding of riboflavin biosynthesis as applied to the rational design of a novel class of inhibitors. These advances have been aided by X-ray structures of ligand-enzyme complexes, rotational-echo, double-resonance nuclear magnetic resonance spectroscopy, high-throughput screening, virtual screenings, and various mechanistic probes.
Collapse
Affiliation(s)
- Biswajit Kundu
- Department of Organic and Medicinal Chemistry, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Dipayan Sarkar
- Department of Organic and Medicinal Chemistry, CSIR-Indian Institute of Chemical Biology, Kolkata, India.,Academy of Scientific and Innovative Research, Kolkata, India
| | - Namrata Ray
- Department of Organic and Medicinal Chemistry, CSIR-Indian Institute of Chemical Biology, Kolkata, India.,Department of Chemistry, Adamas University, Kolkata, India
| | - Arindam Talukdar
- Department of Organic and Medicinal Chemistry, CSIR-Indian Institute of Chemical Biology, Kolkata, India.,Academy of Scientific and Innovative Research, Kolkata, India
| |
Collapse
|
39
|
Ludwig P, Sévin DC, Busche T, Kalinowski J, Bourdeaux F, Grininger M, Mack M. Characterization of the small flavin-binding dodecin in the roseoflavin producer Streptomyces davawensis. MICROBIOLOGY-SGM 2019; 164:908-919. [PMID: 29856311 DOI: 10.1099/mic.0.000662] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Genes encoding dodecin proteins are present in almost 20 % of archaeal and in more than 50 % of bacterial genomes. Archaeal dodecins bind riboflavin (vitamin B2), are thought to play a role in flavin homeostasis and possibly also help to protect cells from radical or oxygenic stress. Bacterial dodecins were found to bind riboflavin-5'-phosphate (also called flavin mononucleotide or FMN) and coenzyme A, but their physiological function remained unknown. In this study, we set out to investigate the relevance of dodecins for flavin metabolism and oxidative stress management in the phylogenetically related bacteria Streptomyces coelicolor and Streptomyces davawensis. Additionally, we explored the role of dodecins with regard to resistance against the antibiotic roseoflavin, a riboflavin analogue produced by S. davawensis. Our results show that the dodecin of S. davawensis predominantly binds FMN and is neither involved in roseoflavin biosynthesis nor in roseoflavin resistance. In contrast to S. davawensis, growth of S. coelicolor was not reduced in the presence of plumbagin, a compound, which induces oxidative stress. Plumbagin treatment stimulated expression of the dodecin gene in S. davawensis but not in S. coelicolor. Deletion of the dodecin gene in S. davawensis generated a recombinant strain which, in contrast to the wild-type, was fully resistant to plumbagin. Subsequent metabolome analyses revealed that the S. davawensis dodecin deletion strain exhibited a very different stress response when compared to the wild-type indicating that dodecins broadly affect cellular physiology.
Collapse
Affiliation(s)
- Petra Ludwig
- Institute for Technical Microbiology, Mannheim University of Applied Sciences, 68163 Mannheim, Germany
| | - Daniel C Sévin
- Institute of Molecular Systems Biology, ETH Zürich, 8093 Zürich, Switzerland
| | - Tobias Busche
- Center for Biotechnology, Bielefeld University, 33615 Bielefeld, Germany
| | - Jörn Kalinowski
- Center for Biotechnology, Bielefeld University, 33615 Bielefeld, Germany
| | - Florian Bourdeaux
- Institute of Organic Chemistry and Chemical Biology, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany
| | - Martin Grininger
- Institute of Organic Chemistry and Chemical Biology, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany
| | - Matthias Mack
- Institute for Technical Microbiology, Mannheim University of Applied Sciences, 68163 Mannheim, Germany
| |
Collapse
|
40
|
Validation and Development of an Escherichia coli Riboflavin Pathway Phenotypic Screen Hit as a Small-Molecule Ligand of the Flavin Mononucleotide Riboswitch. Methods Mol Biol 2019; 1787:19-40. [PMID: 29736707 DOI: 10.1007/978-1-4939-7847-2_2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
A riboflavin biosynthesis pathway-specific phenotypic screen using a library of compounds, all with unspecified antibiotic activity, identified one small molecule later named ribocil, for which intrinsic antibacterial activity against Escherichia coli was completely suppressed by addition of exogenous riboflavin to the bacterial growth medium. The ability of riboflavin to suppress the activity of ribocil, and further demonstration that ribocil inhibited riboflavin synthesis (IC50 = 0.3 μM), supported that a component of the riboflavin synthesis pathway was the molecular target. Remarkably, resistance mutation selection and whole-genome sequencing showed that the target of ribocil was not an enzyme in the riboflavin biosynthesis pathway, but instead the flavin mononucleotide riboswitch, a noncoding structural RNA element in the ribB gene that encodes a key riboflavin synthesis enzyme. Although ribocil is structurally distinct from the natural riboswitch regulatory ligand flavin mononucleotide, ribocil binding to the riboswitch results in efficient repression of ribB expression and inhibition of riboflavin biosynthesis and bacterial growth. A cell-based riboswitch regulated gene reporter assay as well as an in vitro riboswitch RNA aptamer-binding assay, both of which are described in detail here along with the riboflavin pathway-specific screen, were developed to further validate the mechanism of action of ribocil and to facilitate the discovery of more potent analogues.
Collapse
|
41
|
Zhang Y, Blaby-Haas CE, Steimle S, Verissimo AF, Garcia-Angulo VA, Koch HG, Daldal F, Khalfaoui-Hassani B. Cu Transport by the Extended Family of CcoA-like Transporters (CalT) in Proteobacteria. Sci Rep 2019; 9:1208. [PMID: 30718766 PMCID: PMC6362234 DOI: 10.1038/s41598-018-37988-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 12/11/2018] [Indexed: 01/01/2023] Open
Abstract
Comparative genomic studies of the bacterial MFS-type copper importer CcoA, required for cbb3-type cytochrome c oxidase (cbb3-Cox) biogenesis, revealed a widespread CcoA-like transporters (CalT) family, containing the conserved CcoA Cu-binding MxxxM and HxxxM motifs. Surprisingly, this family also included the RfnT-like proteins, earlier suggested to transport riboflavin. However, presence of the Cu-binding motifs in these proteins raised the possibility that they might be Cu transporters. To test this hypothesis, the genomic context of the corresponding genes was examined, and three of such genes from Ochrobactrum anthropi, Rhodopseudomonas palustris and Agrobacterium tumefaciens were expressed in Escherichia coli (ΔribB) and Rhodobacter capsulatus (ΔccoA) mutants. Copper and riboflavin uptake abilities of these strains were compared with those expressing R. capsulatus CcoA and Rhizobium leguminosarum RibN as bona fide copper and riboflavin importers, respectively. Overall data demonstrated that the "RfnT-like" CalT proteins are unable to efficiently transport riboflavin, but they import copper like CcoA. Nevertheless, even though expressed and membrane-localized in a R. capsulatus mutant lacking CcoA, these transporters were unable to accumulate Cu or complement for cbb3-Cox defect. This lack of functional exchangeability between the different subfamilies of CalT homologs suggests that MFS-type bacterial copper importers might be species-specific.
Collapse
Affiliation(s)
- Yang Zhang
- Department of Biology, University of Pennsylvania, Philadelphia, PA, 19104, USA
- School of Life Science, Xiamen University, Xiamen, 361102, China
| | | | - Stefan Steimle
- Department of Biology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Andreia F Verissimo
- Department of Biology, University of Pennsylvania, Philadelphia, PA, 19104, USA
- bioMT-Institute for Biomolecular Targeting, Geisel School of Medicine at Dartmouth, Hanover, NH, 03755, USA
| | - Victor A Garcia-Angulo
- Microbiology and Mycology Department, Insituto de Ciencias Biomédicas, University of Chile, Santiago, Chile
| | - Hans-Georg Koch
- Institut für Biochemie und Molekularbiologie, ZBMZ, Faculty of Medicine, Stefan-Meier-Strasse 17, Albert-Ludwigs-Universität Freiburg, 79104, Freiburg, Germany
| | - Fevzi Daldal
- Department of Biology, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| | - Bahia Khalfaoui-Hassani
- Department of Biology, University of Pennsylvania, Philadelphia, PA, 19104, USA
- IPREM, UMR CNRS 5254, and Université de Pau et des Pays de l'Adour, BP1155, Pau, France
| |
Collapse
|
42
|
Atilho RM, Perkins KR, Breaker RR. Rare variants of the FMN riboswitch class in Clostridium difficile and other bacteria exhibit altered ligand specificity. RNA (NEW YORK, N.Y.) 2019; 25:23-34. [PMID: 30287481 PMCID: PMC6298564 DOI: 10.1261/rna.067975.118] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 10/02/2018] [Indexed: 05/10/2023]
Abstract
Many bacteria use flavin mononucleotide (FMN) riboswitches to control the expression of genes responsible for the biosynthesis and transport of this enzyme cofactor or its precursor, riboflavin. Rare variants of FMN riboswitches found in strains of Clostridium difficile and some other bacteria typically control the expression of proteins annotated as transporters, including multidrug efflux pumps. These RNAs no longer recognize FMN, and differ from the original riboswitch consensus sequence at nucleotide positions normally involved in binding of the ribityl and phosphate moieties of the cofactor. Representatives of one of the two variant subtypes were found to bind the FMN precursor riboflavin and the FMN degradation products lumiflavin and lumichrome. Although the biologically relevant ligand sensed by these variant FMN riboswitches remains uncertain, our findings suggest that many strains of C. difficile might use rare riboswitches to sense flavin degradation products and activate transporters for their detoxification.
Collapse
Affiliation(s)
- Ruben M Atilho
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520-8103, USA
| | - Kevin R Perkins
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut 06520-8103, USA
| | - Ronald R Breaker
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520-8103, USA
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut 06520-8103, USA
- Howard Hughes Medical Institute, Yale University, New Haven, Connecticut 06520-8103, USA
| |
Collapse
|
43
|
Wei Y, Kumar P, Wahome N, Mantis NJ, Middaugh CR. Biomedical Applications of Lumazine Synthase. J Pharm Sci 2018; 107:2283-2296. [DOI: 10.1016/j.xphs.2018.05.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 05/02/2018] [Accepted: 05/02/2018] [Indexed: 10/16/2022]
|
44
|
Microbial cell factories for the sustainable manufacturing of B vitamins. Curr Opin Biotechnol 2018; 56:18-29. [PMID: 30138794 DOI: 10.1016/j.copbio.2018.07.006] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Revised: 07/20/2018] [Accepted: 07/23/2018] [Indexed: 12/16/2022]
Abstract
Vitamins are essential compounds in human and animal diets. Their demand is increasing globally in food, feed, cosmetics, chemical and pharmaceutical industries. Most current production methods are unsustainable because they use non-renewable sources and often generate hazardous waste. Many microorganisms produce vitamins naturally, but their corresponding metabolic pathways are tightly regulated since vitamins are needed only in catalytic amounts. Metabolic engineering is accelerating the development of microbial cell factories for vitamins that could compete with chemical methods that have been optimized over decades, but scientific hurdles remain. Additional technological and regulatory issues need to be overcome for innovative bioprocesses to reach the market. Here, we review the current state of development and challenges for fermentative processes for the B vitamin group.
Collapse
|
45
|
The Dimer-of-Trimers Assembly Prevents Catalysis at the Transferase Site of Prokaryotic FAD Synthase. Biophys J 2018; 115:988-995. [PMID: 30177440 DOI: 10.1016/j.bpj.2018.08.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 07/26/2018] [Accepted: 08/13/2018] [Indexed: 12/18/2022] Open
Abstract
Flavin mononucleotide (FMN) and flavin-adenine dinucleotide (FAD) are essential flavoprotein cofactors. A riboflavin kinase (RFK) activity catalyzes riboflavin phosphorylation to FMN, which can then be transformed into FAD by an FMN:adenylyltransferase (FMNAT) activity. Two enzymes are responsible for each one of these activities in eukaryotes, whereas prokaryotes have a single bifunctional enzyme, FAD synthase (FADS). FADS folds in two independent modules: the C-terminal with RFK activity and the N-terminal with FMNAT activity. Differences in structure and chemistry for the FMNAT catalysis among prokaryotic and eukaryotic enzymes pointed to the FMNAT activity of prokaryotic FADS as a potential antimicrobial target, making the structural model of the bacterial FMNAT module in complex with substrates relevant to understand the FADS catalytic mechanism and to the discovery of antimicrobial drugs. However, such a crystallographic complex remains elusive. Here, we have used molecular docking and molecular dynamics simulations to generate energetically stable interactions of the FMNAT module of FADS from Corynebacterium ammoniagenes with ATP/Mg2+ and FMN in both the monomeric and dimer-of-trimers assemblies reported for this protein. For the monomer, we have identified the residues that accommodate the reactive phosphates in a conformation compatible with catalysis. Interestingly, for the dimer-of-trimers conformation, we have found that the RFK module negatively influences FMN binding at the interacting FMNAT module. These results agree with calorimetric data of purified samples containing nearly 100% monomer or nearly 100% dimer-of-trimers, indicating that FMN binds to the monomer but not to the dimer-of-trimers. Such observations support regulation of flavin homeostasis by quaternary C. ammoniagenes FADS assemblies.
Collapse
|
46
|
Sepúlveda Cisternas I, Salazar JC, García-Angulo VA. Overview on the Bacterial Iron-Riboflavin Metabolic Axis. Front Microbiol 2018; 9:1478. [PMID: 30026736 PMCID: PMC6041382 DOI: 10.3389/fmicb.2018.01478] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 06/13/2018] [Indexed: 01/10/2023] Open
Abstract
Redox reactions are ubiquitous in biological processes. Enzymes involved in redox metabolism often use cofactors in order to facilitate electron-transfer reactions. Common redox cofactors include micronutrients such as vitamins and metals. By far, while iron is the main metal cofactor, riboflavin is the most important organic cofactor. Notably, the metabolism of iron and riboflavin seem to be intrinsically related across life kingdoms. In bacteria, iron availability influences expression of riboflavin biosynthetic genes. There is documented evidence for riboflavin involvement in surpassing iron-restrictive conditions in some species. This is probably achieved through increase in iron bioavailability by reduction of extracellular iron, improvement of iron uptake pathways and boosting hemolytic activity. In some cases, riboflavin may also work as replacement of iron as enzyme cofactor. In addition, riboflavin is involved in dissimilatory iron reduction during extracellular respiration by some species. The main direct metabolic relationships between riboflavin and iron in bacterial physiology are reviewed here.
Collapse
Affiliation(s)
- Ignacio Sepúlveda Cisternas
- Programa de Microbiología y Micología, Instituto de Ciencias Biomédicas, Universidad de Chile, Santiago, Chile
| | - Juan C Salazar
- Programa de Microbiología y Micología, Instituto de Ciencias Biomédicas, Universidad de Chile, Santiago, Chile
| | - Víctor A García-Angulo
- Programa de Microbiología y Micología, Instituto de Ciencias Biomédicas, Universidad de Chile, Santiago, Chile
| |
Collapse
|
47
|
Meir Z, Osherov N. Vitamin Biosynthesis as an Antifungal Target. J Fungi (Basel) 2018; 4:E72. [PMID: 29914189 PMCID: PMC6023522 DOI: 10.3390/jof4020072] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 06/12/2018] [Accepted: 06/13/2018] [Indexed: 12/18/2022] Open
Abstract
The large increase in the population of immunosuppressed patients, coupled with the limited efficacy of existing antifungals and rising resistance toward them, have dramatically highlighted the need to develop novel drugs for the treatment of invasive fungal infections. An attractive possibility is the identification of possible drug targets within essential fungal metabolic pathways not shared with humans. Here, we review the vitamin biosynthetic pathways (vitamins A⁻E, K) as candidates for the development of antifungals. We present a set of ranking criteria that identify the vitamin B2 (riboflavin), B5 (pantothenic acid), and B9 (folate) biosynthesis pathways as being particularly rich in new antifungal targets. We propose that recent scientific advances in the fields of drug design and fungal genomics have developed sufficiently to merit a renewed look at these pathways as promising sources for the development of novel classes of antifungals.
Collapse
Affiliation(s)
- Zohar Meir
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel-Aviv University, Ramat-Aviv, Tel-Aviv 69978, Israel.
| | - Nir Osherov
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel-Aviv University, Ramat-Aviv, Tel-Aviv 69978, Israel.
| |
Collapse
|
48
|
Lynch JH, Sa N, Saeheng S, Raffaelli N, Roje S. Characterization of a non-nudix pyrophosphatase points to interplay between flavin and NAD(H) homeostasis in Saccharomyces cerevisiae. PLoS One 2018; 13:e0198787. [PMID: 29902190 PMCID: PMC6002036 DOI: 10.1371/journal.pone.0198787] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 05/28/2018] [Indexed: 12/11/2022] Open
Abstract
The flavin cofactors FMN and FAD are required for a wide variety of biological processes, however, little is known about their metabolism. Here, we report the cloning and biochemical characterization of the Saccharomyces cerevisiae pyrophosphatase Fpy1p. Genetic and functional studies suggest that Fpy1p may play a key role in flavin metabolism and is the first-reported non-Nudix superfamily enzyme to display FAD pyrophosphatase activity. Characterization of mutant yeast strains found that deletion of fpy1 counteracts the adverse effects that are caused by deletion of flx1, a known mitochondrial FAD transporter. We show that Fpy1p is capable of hydrolyzing FAD, NAD(H), and ADP-ribose. The enzymatic activity of Fpy1p is dependent upon the presence of K+ and divalent metal cations, with similar kinetic parameters to those that have been reported for Nudix FAD pyrophosphatases. In addition, we report that the deletion of fpy1 intensifies the FMN-dependence of null mutants of the riboflavin kinase Fmn1p, demonstrate that fpy1 mutation abolishes the decreased fitness resulting from the deletion of the flx1 ORF, and offer a possible mechanism for the genetic interplay between fpy1, flx1 and fmn1.
Collapse
Affiliation(s)
- Joseph H. Lynch
- Institute of Biological Chemistry, Washington State University, Pullman, WA, United States of America
| | - Na Sa
- Institute of Biological Chemistry, Washington State University, Pullman, WA, United States of America
| | - Sompop Saeheng
- Institute of Biological Chemistry, Washington State University, Pullman, WA, United States of America
| | - Nadia Raffaelli
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali, Università Politecnica delle Marche, Ancona, Italy
| | - Sanja Roje
- Institute of Biological Chemistry, Washington State University, Pullman, WA, United States of America
| |
Collapse
|
49
|
A comparative analysis of single cell and droplet-based FACS for improving production phenotypes: Riboflavin overproduction in Yarrowia lipolytica. Metab Eng 2018; 47:346-356. [DOI: 10.1016/j.ymben.2018.04.015] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 04/02/2018] [Accepted: 04/20/2018] [Indexed: 12/15/2022]
|
50
|
Guhr A, Horn MA, Weig AR. Vitamin B2 (riboflavin) increases drought tolerance of Agaricus bisporus. Mycologia 2018; 109:860-873. [DOI: 10.1080/00275514.2017.1414544] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Alexander Guhr
- Department of Soil Ecology, BayCEER, University of Bayreuth, Dr. Hans-Frisch-Straße 1-3, 95448 Bayreuth, Germany
| | - Marcus A. Horn
- Institute of Microbiology, Leibniz University Hannover, Herrenhäuser Straße 2, 30419 Hannover, Germany
| | - Alfons R. Weig
- Keylab of Genomics & Bioinformatics, BayCEER, University of Bayreuth, Universitätsstraße 30, 95447 Bayreuth, Germany
| |
Collapse
|