1
|
Huang YQ, Zhou W, Retailleau P, Voituriez A. Brønsted Acid Catalyzed Asymmetric Synthesis of Cyclopentenones with C4-Quaternary Centers Starting from Vinyl Sulfoxides and Allenyl Ketones or Allenoates. Org Lett 2024; 26:6637-6641. [PMID: 39052993 DOI: 10.1021/acs.orglett.4c02288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Starting with chiral vinyl sulfoxides and allenyl ketones or allenoates, a triflic acid-catalyzed asymmetric [3,3]-sigmatropic rearrangement of sulfoniums is reported to have a direct access to highly functionalized C4-chiral cyclopentenones (19 examples, up to 85% yield and >95% enantiomeric excesses). In addition to the use of these chiral compounds as key building blocks in organic synthesis, the antiproliferative activities of sulfoxide substrates and the corresponding cyclopentenones were evaluated, and promising cytotoxicity against the HL-60 human tumor cell line was found.
Collapse
Affiliation(s)
- Ya-Qing Huang
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, UPR 2301, 91198, Gif-sur-Yvette, France
| | - Weiping Zhou
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, UPR 2301, 91198, Gif-sur-Yvette, France
| | - Pascal Retailleau
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, UPR 2301, 91198, Gif-sur-Yvette, France
| | - Arnaud Voituriez
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, UPR 2301, 91198, Gif-sur-Yvette, France
| |
Collapse
|
2
|
Xu Q, Hoye TR. Free carbenes from complementarily paired alkynes. Nat Chem 2024; 16:1083-1092. [PMID: 38918579 DOI: 10.1038/s41557-024-01550-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 05/02/2024] [Indexed: 06/27/2024]
Abstract
Carbenes (R1R2C:) like radicals, arynes and nitrenes constitute an important family of neutral, high-energy, reactive intermediates-fleeting chemical entities that undergo rapid reactions. An alkyne (R3C≡CR4) is a fundamental functional group that houses a high degree of potential energy; however, the substantial kinetic stability of alkynes renders them conveniently handleable as shelf-stable chemical commodities. The ability to generate metal-free carbenes directly from alkynes, fuelled by the high potential (that is, thermodynamic) energy of the latter, would constitute a considerable advance. We report here that this can be achieved simply by warming a mixture of a 2-alkynyl iminoheterocycle (a cyclic compound containing a nucleophilic nitrogen atom) with an electrophilic alkyne. We demonstrate considerable generality for the process: many shelf-stable alkyne electrophiles engage many classes of (2-alkynyl)heterocyclic nucleophiles to produce carbene intermediates that immediately undergo many types of transformations to provide facile and practical access to a diverse array of heterocyclic products. Key mechanistic aspects of the reactions are delineated.
Collapse
Affiliation(s)
- Qian Xu
- Department of Chemistry, University of Minnesota, Minneapolis, MN, USA
| | - Thomas R Hoye
- Department of Chemistry, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
3
|
Garai B, Das A, Kumar DV, Sundararaju B. Enantioselective C-H bond functionalization under Co(III)-catalysis. Chem Commun (Camb) 2024; 60:3354-3369. [PMID: 38441168 DOI: 10.1039/d3cc05329f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
While progress in enantioselective C-H functionalization has been accomplished by employing 4d and 5d transition metal-based catalysts, the rapid depletion of these metals in the earth's crust poses a serious threat to making these protocols sustainable. On the other hand, because of their unique reactivity, low toxicity, and high earth abundance, newer strategies utilizing affordable 3d transition metals have come to the forefront. Among the first-row transition metals, high-valent cobalt has recently attracted a lot of attention for catalytic C-H functionalization with mono and bidentate directing groups. This approach was extended for asymmetric catalysis due to a fairly thorough knowledge of its catalytic cycles. Four major themes have been investigated as a result of this insight: (1) rational design of a chiral Cp#Co(III)-catalyst, (2) chiral carboxylic acid with achiral Cp*Co(III)-catalysts using monodentate directing groups, (3) cobalt/salox-based systems, and (4) cobalt/chiral phosphoric acid-based hybrid systems with bidentate directing groups. Herein, we highlight the recent developments in high-valent cobalt-catalyzed enantioselective C-H functionalization up to October 2023, with the strong belief that the current state-of-the-art can attract considerable interest in the synthetic community, encouraging discoveries in the evolving landscape of asymmetric catalysis.
Collapse
Affiliation(s)
- Bholanath Garai
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh - 208016, India.
| | - Abir Das
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh - 208016, India.
| | - Doppalapudi Vineet Kumar
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh - 208016, India.
| | - Basker Sundararaju
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh - 208016, India.
| |
Collapse
|
4
|
Yurino T, Wu Z, Suzuki K, Nitta R, Sakaguchi Y, Ohkuma T. Asymmetric Cyanation of α-Ketimino Ester Derivatives with Chiral Ru-Li Combined Catalysts. Org Lett 2024; 26:900-905. [PMID: 38251826 DOI: 10.1021/acs.orglett.3c04175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
Asymmetric cyanation of α-ketimino esters catalyzed by combined systems of amino acid/BINAP derivative/Ru(II) complexes and lithium compounds was examined. The use of an appropriate combination of amino acid and BINAP ligands achieved high enantioselectivity for a variety of α-alkynyl (Val/XylBINAP/Ru), α-alkenyl (Val/TolBINAP/Ru), and α-aryl imino esters (Val/XylBINAP/Ru) as well as an isatin-derived cyclic imino amide (t-Leu/BINAP/Ru) to afford the α-cyano-α-amino esters and the amide with an α-nitrogen-substituted quaternary chiral center with up to 98% ee.
Collapse
Affiliation(s)
- Taiga Yurino
- Division of Applied Chemistry and Frontier Chemistry Center, Faculty of Engineering, Hokkaido University, Sapporo, Hokkaido 060-8628, Japan
| | - Zhen Wu
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo, Hokkaido 060-8628, Japan
| | - Kazuaki Suzuki
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo, Hokkaido 060-8628, Japan
| | - Rino Nitta
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo, Hokkaido 060-8628, Japan
| | - Yusuke Sakaguchi
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo, Hokkaido 060-8628, Japan
| | - Takeshi Ohkuma
- Division of Applied Chemistry and Frontier Chemistry Center, Faculty of Engineering, Hokkaido University, Sapporo, Hokkaido 060-8628, Japan
| |
Collapse
|
5
|
Kasahara R, Toyoda T, Fukasawa S, Takeuchi A, Sato A, Hori A, Kitagawa O. Chirality Transfer Intramolecular Pauson-Khand Reaction with N-C Axially Chiral Sulfonamides Bearing an Ene-Yne Structure. Org Lett 2023; 25:7390-7394. [PMID: 37782042 DOI: 10.1021/acs.orglett.3c02893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
An intramolecular Pauson-Khand reaction with enantioenriched N-C axially chiral N-allyl-N-(2-alkynylphenyl)sulfonamide derivatives proceeded with complete chirality transfer from axial chirality (P configuration) to central chirality (R configuration), affording chiral nitrogen-containing tricyclic compounds (tetrahydrocyclopentaquinolin-2-one derivatives).
Collapse
Affiliation(s)
- Ryohei Kasahara
- Department of Applied Chemistry, Shibaura Institute of Technology, 3-7-5 Toyosu, Kohto-ku, Tokyo 135-8548, Japan
| | - Tatsuya Toyoda
- Department of Applied Chemistry, Shibaura Institute of Technology, 3-7-5 Toyosu, Kohto-ku, Tokyo 135-8548, Japan
| | - Sota Fukasawa
- Department of Applied Chemistry, Shibaura Institute of Technology, 3-7-5 Toyosu, Kohto-ku, Tokyo 135-8548, Japan
| | - Aoi Takeuchi
- Department of Applied Chemistry, Shibaura Institute of Technology, 3-7-5 Toyosu, Kohto-ku, Tokyo 135-8548, Japan
| | - Azusa Sato
- School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, 192-0392, Japan
| | - Akiko Hori
- Graduate School of Engineering and Science, Shibaura Institute of Technology, 307 Fukasaku, Minuma-ku, Saitama 337-8570, Japan
| | - Osamu Kitagawa
- Department of Applied Chemistry, Shibaura Institute of Technology, 3-7-5 Toyosu, Kohto-ku, Tokyo 135-8548, Japan
| |
Collapse
|
6
|
Fernandes RA. Deciphering the quest in the divergent total synthesis of natural products. Chem Commun (Camb) 2023; 59:12205-12230. [PMID: 37746673 DOI: 10.1039/d3cc03564f] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
The divergent synthesis of natural products is rapidly developing towards achieving the goal of efficiency and economy in total synthesis. However, presently, the sustainable development of the synthesis of natural products does not permit the linear synthesis of a single target. In this case, divergent total synthesis is based on the identification of an advanced intermediate with structural features that can be mapped in more than two molecules. However, the identification of this intermediate and its scalable synthesis in enantiopure form are challenging. Herein, we present the details of the ingenious efforts by researchers in the last six years toward the divergent synthesis of two to as many as eight natural products initially via a single route, and then diverging from a common intermediate and further branching out toward several natural products. The planning and strategies adopted can serve as guidelines for the future development of efficient divergent routes aimed at achieving higher efficiency toward multiple targets, causing divergent synthesis to become an accepted common practice.
Collapse
Affiliation(s)
- Rodney A Fernandes
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400 076, Maharashtra, India.
| |
Collapse
|
7
|
Radzhabov MR, Mankad NP. Activation of robust bonds by carbonyl complexes of Mn, Fe and Co. Chem Commun (Camb) 2023; 59:11932-11946. [PMID: 37727948 DOI: 10.1039/d3cc03078d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2023]
Abstract
Metal carbonyl complexes possess among the most storied histories of any compound class in organometallic chemistry. Nonetheless, these old dogs continue to be taught new tricks. In this Feature, we review the historic discoveries and recent advances in cleaving robust bonds (e.g., C-H, C-O, C-F) using carbonyl complexes of three metals: Mn, Fe, and Co. The use of Mn, Fe, and Co carbonyl catalysts in controlling selectivity during hydrofunctionalization reactions is also discussed. The chemistry of these earth-abundant metals in the field of robust bond functionalization is particularly relevant in the context of sustainability. We expect that an up-to-date perspective on these seemingly simple organometallic species will emphasize the wellspring of reactivity that continues to be available for discovery.
Collapse
Affiliation(s)
- Maxim R Radzhabov
- Department of Chemistry, University of Illinois Chicago, Chicago, Illinois 60607, USA.
| | - Neal P Mankad
- Department of Chemistry, University of Illinois Chicago, Chicago, Illinois 60607, USA.
| |
Collapse
|
8
|
Escorihuela J, Fustero S. Fluorinated Imines in Tandem and Cycloaddition Reactions. CHEM REC 2023; 23:e202200262. [PMID: 36633495 DOI: 10.1002/tcr.202200262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/23/2022] [Indexed: 01/13/2023]
Abstract
The chemistry of fluorinated compounds has experienced extraordinary growth in recent decades due to the many and varied properties which many of the compounds that contain fluorinated groups possess. Among all of them, fluorinated chiral imines, in particular the Ellman's imines, are of great importance since they are some of the most interesting building blocks for the synthesis of a large number of enantioenriched carbocycles and heterocycles with extraordinary biological and synthetic properties. This personal account covers the most significant results obtained in our research group in the last two decades concerning asymmetric tandem reactions, paying special attention to the intramolecular aza-Michael reaction (IMAMR), diversity oriented synthesis (DOS), asymmetric tandem reactions involving a p-tolylsulfinyl group as chiral inducer and cycloaddition processes, in particular, the Pauson-Khand reaction, [2+2+2]-cycloadditions and metathesis reactions, starting mainly from enyne compounds and through the use of fluorinated chiral N-sulfinyl imines and their derivatives as starting materials.
Collapse
Affiliation(s)
- Jorge Escorihuela
- Departamento de Química Orgánica, Universitat de València, Avda. Vicente Andrés Estellés s/n, Burjassot 46100, València, Spain
| | - Santos Fustero
- Departamento de Química Orgánica, Universitat de València, Avda. Vicente Andrés Estellés s/n, Burjassot 46100, València, Spain
| |
Collapse
|
9
|
Gigant N, Drège E, Joseph D. Carbon Nucleophile-Initiated Rauhut-Currier Reaction: An Atom-Economical Synthesis of Highly Functionalized Carbocycles. J Org Chem 2023; 88:12069-12073. [PMID: 37498652 DOI: 10.1021/acs.joc.3c00513] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
A Rauhut-Currier reaction cascade is achieved in the presence of carbon nucleophiles under mild conditions. This original atom-economical transformation enables an efficient one-pot synthesis of densely substituted carbocycles from readily accessible substrates. The key promoter role of the cesium cation in the cascade process was demonstrated.
Collapse
Affiliation(s)
- Nicolas Gigant
- Université Paris-Saclay, CNRS, BioCIS, 91400 Orsay, France
| | | | | |
Collapse
|
10
|
Wang H, Liu Y, Zhang H, Yang B, He H, Gao S. Asymmetric Total Synthesis of Cephalotaxus Diterpenoids: Cephinoid P, Cephafortoid A, 14- epi-Cephafortoid A and Fortalpinoids M-N, P. J Am Chem Soc 2023; 145:16988-16994. [PMID: 37493585 DOI: 10.1021/jacs.3c05455] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
Abstract
The asymmetric total syntheses of cephalotaxus C19 diterpenoids, bearing a unique cycloheptene A ring with a chiral methyl group at C-12, were disclosed based on a universal strategy. Six members, including cephinoid P, cephafortoid A, 14-epi-cephafortoid A and fortalpinoids M-N, P, were accomplished for the first time. The concise approach relies on two crucial steps: (1) a Nicholas/Hosomi-Sakurai cascade reaction was developed to efficiently generate the cycloheptene ring bearing a chiral methyl group; (2) an intramolecular Pauson-Khand reaction was followed to facilitate the construction of the complete skeleton of target molecules. Our studies provide a new strategy for the synthetic analysis of cephalotaxus diterpenoids and structurally related polycyclic natural products.
Collapse
Affiliation(s)
- Hui Wang
- State Key Laboratory of Molecular & Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P. R. China
| | - Yi Liu
- State Key Laboratory of Molecular & Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P. R. China
| | - Hongyuan Zhang
- State Key Laboratory of Molecular & Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P. R. China
| | - Baochao Yang
- State Key Laboratory of Molecular & Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P. R. China
| | - Haibing He
- State Key Laboratory of Molecular & Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P. R. China
| | - Shuanhu Gao
- State Key Laboratory of Molecular & Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, Wuhu Hospital Affiliated to East China Normal University, East China Normal University, Shanghai 200062, P. R. China
| |
Collapse
|
11
|
Yang Y, Li HX, Zhu TY, Zhang ZY, Yu ZX. Rh-Catalyzed [4 + 1] Reaction of Cyclopropyl-Capped Dienes (but not Common Dienes) and Carbon Monoxide: Reaction Development and Mechanistic Study. J Am Chem Soc 2023; 145:17087-17095. [PMID: 37523458 DOI: 10.1021/jacs.3c03047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
Transition-metal-catalyzed [4 + 1] reaction of dienes and carbon monoxide (CO) is the most straightforward and easily envisioned cyclization for the synthesis of five-membered carbocycles, which are ubiquitously found in natural products and functional molecules. Unfortunately, no test of this reaction was reported, and consequently, chemists do not know whether such kind of reaction works or not. Herein, we report that the [4 + 1] reaction of common dienes and CO cannot work, at least under the catalysis of [Rh(cod)Cl]2. However, using cyclopropyl-capped dienes (also named allylidenecyclopropanes) as substrates, the corresponding [4 + 1] reaction with CO proceeds smoothly in the presence of [Rh(cod)Cl]2. This [4 + 1] reaction, with a broad scope, provides efficient access to five-membered carbocyclic compounds of spiro[2.4]hept-6-en-4-ones. The [4 + 1] cycloadducts can be further transformed into other molecules by using the unique chemistry of cyclopropyl groups present in these molecules. The mechanism of this [4 + 1] reaction has been investigated by quantum chemical calculations, uncovering that cyclopropyl-capped dienes are strained dienes and the oxidative cyclization step in the [4 + 1] catalytic cycle can release this (angular) strain both kinetically and thermodynamically. The strain release in this step then propagates to all followed CO coordination/CO insertion/reductive elimination steps in the [4 + 1] catalytic cycle, helping the realization of this cycloaddition reaction. In contrast, common dienes (including cyclobutyl-capped dienes) do not have such advantages and their [4 + 1] reaction suffers from energy penalty in all steps involved in the [4 + 1] catalytic cycle. The reactivity of ene-allenes for the [4 + 1] reaction with CO is also discussed.
Collapse
Affiliation(s)
- Yusheng Yang
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China
| | - Han-Xiao Li
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China
| | - Tian-Yu Zhu
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China
| | - Zi-You Zhang
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China
| | - Zhi-Xiang Yu
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China
| |
Collapse
|
12
|
Zou YP, Lai ZL, Zhang MW, Peng J, Ning S, Li CC. Total Synthesis of (±)- and (-)-Daphnillonin B. J Am Chem Soc 2023; 145:10998-11004. [PMID: 37167083 DOI: 10.1021/jacs.3c03755] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
The first total synthesis of (±)- and (-)-daphnillonin B, a daphnicyclidin-type alkaloid with a new [7-6-5-7-5-5] A/B/C/D/E/F hexacyclic core, has been achieved. The [6-5-7] B/C/D ring system was efficiently and diastereoselectively constructed via a mild type I intramolecular [5+2] cycloaddition, followed by a Grubbs II catalyst-catalyzed radical cyclization. The [5-5] fused E/F ring system was synthesized via a diastereoselective intramolecular Pauson-Khand reaction. Notably, the synthetically challenging [7-6-5-7-5-5] hexacyclic core was reassembled by a unique Wagner-Meerwein-type rearrangement from the [6-6-5-7-5-5] hexacyclic framework found in calyciphylline A-type Daphniphyllum alkaloids.
Collapse
Affiliation(s)
- Yun-Peng Zou
- Shenzhen Grubbs Institute, Department of Chemistry, Guangming Advanced Research Institute, Southern University of Science and Technology, Shenzhen 518055, China
| | - Zheng-Lin Lai
- Shenzhen Grubbs Institute, Department of Chemistry, Guangming Advanced Research Institute, Southern University of Science and Technology, Shenzhen 518055, China
| | - Meng-Wei Zhang
- Shenzhen Grubbs Institute, Department of Chemistry, Guangming Advanced Research Institute, Southern University of Science and Technology, Shenzhen 518055, China
| | - Jianzhao Peng
- Shenzhen Grubbs Institute, Department of Chemistry, Guangming Advanced Research Institute, Southern University of Science and Technology, Shenzhen 518055, China
| | - Shuai Ning
- Shenzhen Grubbs Institute, Department of Chemistry, Guangming Advanced Research Institute, Southern University of Science and Technology, Shenzhen 518055, China
| | - Chuang-Chuang Li
- Shenzhen Grubbs Institute, Department of Chemistry, Guangming Advanced Research Institute, Southern University of Science and Technology, Shenzhen 518055, China
- Shenzhen Bay Laboratory, Shenzhen 518132, China
| |
Collapse
|
13
|
Huang HG, Zheng YQ, Zhong D, Deng JL, Liu WB. Reductive Aza-Pauson-Khand Reaction of Nitriles. J Am Chem Soc 2023; 145:10463-10469. [PMID: 37129915 DOI: 10.1021/jacs.3c01656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
γ-Lactams are valuable heterocycles in synthetic chemistry and drug development. Here, we report a reductive aza-Pauson-Khand reaction (aza-PKR) of an alkyne, a nitrile, and Co2(CO)8. A wide array of bicyclic α,β-unsaturated γ-lactams containing two adjacent stereocenters, including an all-carbon quaternary center, from alkyne-tethered malononitriles are efficiently accessed in high diastereoselectivity. Preliminary mechanistic investigations by experiments and DFT calculations reveal that the reaction undergoes an aza-PKR process followed by a in situ reduction. The reducing reagent generated in situ from water also provides a practical tool for deuterium incorporation into the γ-position of lactams using D2O as the deuterium source. This study represents a new mode for [2 + 2 + 1] cycloaddition that enables the direct use of nitrile in aza-heterocycle synthesis.
Collapse
Affiliation(s)
- Hong-Gui Huang
- Sauvage Center for Molecular Sciences, Engineering Research Center of Organosilicon Compounds & Materials (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Yu-Qing Zheng
- Sauvage Center for Molecular Sciences, Engineering Research Center of Organosilicon Compounds & Materials (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Dayou Zhong
- Sauvage Center for Molecular Sciences, Engineering Research Center of Organosilicon Compounds & Materials (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Jiang-Lian Deng
- Sauvage Center for Molecular Sciences, Engineering Research Center of Organosilicon Compounds & Materials (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Wen-Bo Liu
- Sauvage Center for Molecular Sciences, Engineering Research Center of Organosilicon Compounds & Materials (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
14
|
Yu T, Yang J, Wang Z, Ding Z, Xu M, Wen J, Xu L, Li P. Selective [2σ + 2σ] Cycloaddition Enabled by Boronyl Radical Catalysis: Synthesis of Highly Substituted Bicyclo[3.1.1]heptanes. J Am Chem Soc 2023; 145:4304-4310. [PMID: 36763965 DOI: 10.1021/jacs.2c13740] [Citation(s) in RCA: 49] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
In contrast to the traditional and widely-used cycloaddition reactions involving at least a π bond component, a [2σ + 2σ] radical cycloaddition between bicyclo[1.1.0]butanes (BCBs) and cyclopropyl ketones has been developed to provide a modular, concise, and atom-economical synthetic route to substituted bicyclo[3.1.1]heptane (BCH) derivatives that are 3D bioisosteres of benzenes and core skeleton of a number of terpene natural products. The reaction was catalyzed by a combination of simple tetraalkoxydiboron(4) compound B2pin2 and 3-pentyl isonicotinate. The broad substrate scope has been demonstrated by synthesizing a series of new highly functionalized BCHs with up to six substituents on the core with up to 99% isolated yield. Computational mechanistic investigations supported a pyridine-assisted boronyl radical catalytic cycle.
Collapse
Affiliation(s)
- Tao Yu
- Frontier Institute of Science and Technology and State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710054, China
| | - Jinbo Yang
- School of Chemistry and Chemical Engineering/Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, Shihezi 832003, China
| | - Zhijun Wang
- School of Chemistry and Chemical Engineering/Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, Shihezi 832003, China
| | - Zhengwei Ding
- Department of Medicinal Chemistry, School of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, China
| | - Ming Xu
- Frontier Institute of Science and Technology and State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710054, China
| | - Jingru Wen
- Frontier Institute of Science and Technology and State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710054, China
| | - Liang Xu
- School of Chemistry and Chemical Engineering/Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, Shihezi 832003, China
| | - Pengfei Li
- Frontier Institute of Science and Technology and State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710054, China
- State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
15
|
Shao J, Fu Y, Wang SR. Stereoconvergent Direct Ring Expansion of Cyclopropyl Ketones to Cyclopentanones. Org Lett 2023; 25:555-559. [PMID: 36652349 DOI: 10.1021/acs.orglett.3c00025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Recyclization of the ring-opening species of alkyl cyclopropyl ketones to cyclopentanones, which proceeds through an unfavored 5-endo-trig cyclization predicted by Baldwin's rules, is elusive. Herein, as assisted by a strong aryl donor and the Thorpe-Ingold strain on a quaternary cyclopropyl center, stereoconvergent direct ring expansion of cyclopropyl ketones to cyclopentanones promoted by TfOH or BF3·Et2O is described, providing a modular construction of polysubstituted cyclopentanones from aldehydes, alkyl methyl ketones, and α-keto esters within three steps.
Collapse
|
16
|
(µ2-η4-N-(2-Butynyl)phthalimide)(hexacarbonyl)dicobalt. MOLBANK 2023. [DOI: 10.3390/m1545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The reaction of [Co2(CO)8] with an equimolar amount of the internal alkyne N-(2-butynyl)phthalimide (1-Phthalimido-2-butyne) 1 in heptane solution yields the title compound [Co2(CO)6(µ-phthalimidoCH2C≡CMe)] 2. Compound 2 has been characterized using IR, 1H and 13C NMR spectroscopy; the tetrahedrane-type cluster framework has been ascertained using a single-crystal X-ray diffraction study performed at 100 K.
Collapse
|
17
|
Sheetal, Mehara P, Das P. Methanol as a greener C1 synthon under non-noble transition metal-catalyzed conditions. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
18
|
Alleman C, Gadais C, Legentil L, Porée FH. Strategies to access the [5-8] bicyclic core encountered in the sesquiterpene, diterpene and sesterterpene series. Beilstein J Org Chem 2023; 19:245-281. [PMID: 36895430 PMCID: PMC9989678 DOI: 10.3762/bjoc.19.23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 02/13/2023] [Indexed: 03/06/2023] Open
Abstract
Terpene compounds probably represent the most diversified class of secondary metabolites. Some classes of terpenes, mainly diterpenes (C20) and sesterterpenes (C25) and to a lesser extent sesquiterpenes (C15), share a common bicyclo[3.6.0]undecane core which is characterized by the presence of a cyclooctane ring fused to a cyclopentane ring, i.e., a [5-8] bicyclic ring system. This review focuses on the different strategies elaborated to construct this [5-8] bicyclic ring system and their application in the total synthesis of terpenes over the last two decades. The overall approaches involve the construction of the 8-membered ring from an appropriate cyclopentane precursor. The proposed strategies include metathesis, Nozaki-Hiyama-Kishi (NHK) cyclization, Pd-mediated cyclization, radical cyclization, Pauson-Khand reaction, Lewis acid-promoted cyclization, rearrangement, cycloaddition and biocatalysis.
Collapse
Affiliation(s)
- Cécile Alleman
- Université Rennes, Faculté de Pharmacie, CNRS ISCR UMR 6226, F-35000 Rennes, France
| | - Charlène Gadais
- Université Rennes, Faculté de Pharmacie, CNRS ISCR UMR 6226, F-35000 Rennes, France
| | - Laurent Legentil
- Université Rennes, Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR - UMR 6226, F-35000 Rennes, France
| | | |
Collapse
|
19
|
Bower JF, Sokolova OO, Dalling AG. C–C Bond Activations of Minimally Activated Cyclopropanes. Synlett 2022. [DOI: 10.1055/s-0042-1753177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
AbstractCatalytic processes involving oxidative addition of a C–C bond to a transition metal allow the atom economical assembly of complex scaffolds. The focus of this Account is on C–C bond activation-based methodologies that employ minimally activated cyclopropanes.
Collapse
|
20
|
Escorihuela J. A Density Functional Theory Study on the Cobalt-Mediated Intramolecular Pauson–Khand Reaction of Enynes Containing a Vinyl Fluoride Moiety. SYNTHESIS-STUTTGART 2022. [DOI: 10.1055/s-0042-1751392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
AbstractThe Co2(CO)8-mediated intramolecular Pauson–Khand reaction (PKR) is an effective method for constructing polycyclic structures. Recently, our group reported a series of this type of reaction involving fluorinated enynes that proceed with reasonable reaction rates and yields. However, mechanistic studies involving these fluorinated derivatives in intramolecular PKR are scarce. In this study, density functional theory calculations are used to clarify the mechanism and reactivity of enynes containing a vinyl fluoride moiety for this reaction. In agreement with previous studies, alkene insertion is considered to be the rate-determining step for the overall Pauson–Khand reaction of enynes containing a vinyl fluoride moiety. The effect of the substituent on the Co2(CO)8-mediated intramolecular Pauson–Khand reaction has also been investigated. When introducing heteroatoms as tethering units, the fluorinated enynes exhibited lower reactivity than the malonate homologues, whereas the use of a sulfur-based tether was unsuccessful. This computational study provides detailed information about the PKR mechanism and transition-state structures, and the results are validated with previous experimental results.
Collapse
|
21
|
Tulyabaeva LI, Salakhutdinov RR, Tulyabaev AR, Tyumkina TV, Abdullin MF. Reaction of Methylidenecycloalkanes with BF3·THF Catalyzed by Cp2TiCl2. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2022. [DOI: 10.1134/s1070428022120296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
22
|
Escorihuela J, Wolf LM. Computational Study on the Co-Mediated Intramolecular Pauson–Khand Reaction of Fluorinated and Chiral N-Tethered 1,7-Enynes. Organometallics 2022; 41:2525-2534. [PMID: 36185394 PMCID: PMC9516775 DOI: 10.1021/acs.organomet.2c00227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Indexed: 11/28/2022]
Abstract
![]()
The Co2(CO)8-mediated intramolecular
Pauson–Khand
reaction is an elegant approach to obtain cyclopentenone derivatives
containing asymmetric centers. In this work, we employed density functional
theory calculations at the M11/6-311+G(d,p) level of theory to investigate
the mechanism and reactivity for the Pauson–Khand reaction
of fluorinated and asymmetric N-tethered 1,7-enynes.
The rate-determining step was found to be the intramolecular alkene
insertion into the carbon–cobalt bond. The stereoselectivity
of the alkene insertion step was rationalized by the different transition
states showing the coordination of the alkene through the Re- and Si-face. The effects of different
fluorine groups and steric effects on both the alkenyl and alkynyl
moieties were also theoretically investigated.
Collapse
Affiliation(s)
- Jorge Escorihuela
- Departamento de Química Orgánica, Facultad de Farmacia, Universitat de València, Av. Vicent Andrés Estellés s/n, 46100Burjassot, València, Spain
| | - Lawrence M. Wolf
- Department of Chemistry, University of Massachusetts−Lowell, 1 University Avenue, Lowell, Massachusetts01854, United States
| |
Collapse
|
23
|
Wu X, Chang Y, Lin S. Titanium Radical Redox Catalysis: Recent Innovations in Catalysts, Reactions, and Modes of Activation. Chem 2022; 8:1805-1821. [PMID: 36213842 PMCID: PMC9543366 DOI: 10.1016/j.chempr.2022.06.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Radical chemistry has emerged as a cornerstone in modern organic synthesis, providing chemists with numerous new tools to rapidly expand reactivity and chemical space in academic and industrial research. In this regard, titanium complexes have been recognized as an attractive class of catalysts owing to their rich redox activities in addition to the abundance and low toxicity of this early transition metal. Traditionally employed for the activation of epoxides and carbonyl compounds, Ti radical redox catalysis has broken into new grounds in recent years, giving rise to a diverse repertoire of useful transformations. In this Perspective, we highlight recent developments in the area of TiIII/IV catalysis with respect to the activation of different types of chemical bonds. Furthermore, we discuss future opportunities in integrating Ti radical chemistry with other catalytic systems as well as with emerging new technologies such as photochemistry and electrochemistry.
Collapse
Affiliation(s)
- Xiangyu Wu
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14850, United States
| | - Yejin Chang
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14850, United States
| | - Song Lin
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14850, United States
| |
Collapse
|
24
|
|
25
|
Wang YQ, Xu K, Min L, Li CC. Asymmetric Total Syntheses of Hypoestin A, Albolic Acid, and Ceroplastol II. J Am Chem Soc 2022; 144:10162-10167. [PMID: 35657330 DOI: 10.1021/jacs.2c04633] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The first asymmetric total synthesis of bioactive diterpenoid hypoestin A with an unprecedented [5-8-5-3] tetracyclic skeleton is accomplished in 15 steps from commercially available (R)-limonene. Furthermore, the second asymmetric total syntheses of sesterterpenoids albolic acid and ceroplastol II in 21 steps are also reported. The synthetically challenging and highly functionalized [X-8-5] (X = 5 or 7) tricarbocyclic ring systems found in hypoestin A, albolic acid, ceroplastol II, and schindilactone A, as well as other natural products, are efficiently and directly constructed via a unique intramolecular Pauson-Khand reaction of an allene-yne. This work represents the first reported use of the Pauson-Khand reaction to access synthetically challenging eight-membered-ring systems in natural product synthesis.
Collapse
Affiliation(s)
- Yong-Qiang Wang
- Shenzhen Grubbs Institute, Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Kunhua Xu
- Shenzhen Grubbs Institute, Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Long Min
- Shenzhen Grubbs Institute, Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Chuang-Chuang Li
- Shenzhen Grubbs Institute, Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
26
|
Shyshkanov S, Vasilyev DV, Abhyankar KA, Stylianou KC, Dyson PJ. Tandem Pauson‐Khand Reaction Using Carbon Dioxide as the C1‐Source. Eur J Inorg Chem 2022. [DOI: 10.1002/ejic.202200037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Serhii Shyshkanov
- EPFL: Ecole Polytechnique Federale de Lausanne Institute of Chemical Sciences and Engineering SWITZERLAND
| | - Dmitry V. Vasilyev
- Helmholtz Institute Erlangen-Nürnberg for Renewable Energy: Helmholtz-Institut Erlangen-Nurnberg fur Erneuerbare Energien Electrocatalysis Egerlandstr. 3 91058 Erlangen GERMANY
| | - Kedar A. Abhyankar
- EPFL: Ecole Polytechnique Federale de Lausanne Institute of Chemical Sciences and Engineering SWITZERLAND
| | | | - Paul J. Dyson
- Ecole Polytechnique Federale de Lausanne Institute of Chemical Sciences and Engineering BCH2404 1015 Lausanne SWITZERLAND
| |
Collapse
|
27
|
Wu Y, Zhao T, Rong J, Rao Y, Zhou M, Yin B, Ni X, Osuka A, Xu L, Song J. Low-Valent Zirconocene-Mediated Synthesis of Porphyrin(2.1.2.1)s and Its Extension to Synthesis of a Porphyrin(2.1.2.1) Nanobarrel. Angew Chem Int Ed Engl 2022; 61:e202201327. [PMID: 35245411 DOI: 10.1002/anie.202201327] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Indexed: 11/11/2022]
Abstract
Rosenthal's-reagent-mediated intramolecular cyclometallation of α,α-dialkynyldipyrrin nickel(II) complex and subsequent acid treatment afforded a 1,3-butadiene-embedded porphyrin(2.1.2.1), 6, which served as a reactive diene towards dienophiles such as dimethyl acetylenedicarboxylate (DMAD) and benzyne to give corresponding Diels-Alder adducts. Diels-Alder reaction of 6 and benzdiyne gave adducts 14, 15 a, and 15 b along with a trace amount of porphyrin(2.1.2.1) barrel 13. Stepwise routes using 14 or 15 a/15 b as a substrate allowed for the synthesis of 13 as a single stereoisomer. The nanobarrel structure for 13 was revealed by X-ray diffraction, where its cavity held two chloroform molecules via C-H⋅⋅⋅π interaction. DFT calculations revealed that the electrostatic attraction was dominant with binding energy of 32.8 kcal mol-1 .
Collapse
Affiliation(s)
- Yidan Wu
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine, Ministry of Educational of China, Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, China
| | - Tingting Zhao
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine, Ministry of Educational of China, Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, China
| | - Jian Rong
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine, Ministry of Educational of China, Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, China
| | - Yutao Rao
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine, Ministry of Educational of China, Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, China
| | - Mingbo Zhou
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine, Ministry of Educational of China, Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, China
| | - Bangshao Yin
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine, Ministry of Educational of China, Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, China
| | - Xinlong Ni
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine, Ministry of Educational of China, Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, China
| | - Atsuhiro Osuka
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine, Ministry of Educational of China, Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, China
| | - Ling Xu
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine, Ministry of Educational of China, Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, China
| | - Jianxin Song
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine, Ministry of Educational of China, Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, China
| |
Collapse
|
28
|
Song J, Wu Y, Zhao T, Zhou M, Rong J, Yin B, Ni X, Osuka A, Xu L, Rao Y. Low‐Valent Zirconocene‐mediated Synthesis of Porphyrin(2.1.2.1)s and Its Extension to Synthesis of a Porphyrin(2.1.2.1) Nanobarrel. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202201327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Jianxin Song
- Hunan Normal University Chemistry Yue Lu Qu Lushan Road 36 410081 Changsha CHINA
| | - Yidan Wu
- Hunan Normal University - Erliban Campus: Hunan Normal University Chemistry CHINA
| | - Tingting Zhao
- Hunan Normal University - Erliban Campus: Hunan Normal University Chemistry CHINA
| | - Mingbo Zhou
- Hunan Normal University - Erliban Campus: Hunan Normal University Chemistry CHINA
| | - Jian Rong
- Hunan Normal University - Erliban Campus: Hunan Normal University Chemistry CHINA
| | - Bangshao Yin
- Hunan Normal University - Erliban Campus: Hunan Normal University Chemistry CHINA
| | - xinlong Ni
- Hunan Normal University - Erliban Campus: Hunan Normal University Chemistry CHINA
| | - Atsuhiro Osuka
- Hunan Normal University - Erliban Campus: Hunan Normal University Chemistry CHINA
| | - Ling Xu
- Hunan Normal University - Erliban Campus: Hunan Normal University Chemistry CHINA
| | - Yutao Rao
- Hunan Normal University - Erliban Campus: Hunan Normal University Chemistry CHINA
| |
Collapse
|
29
|
Manjón‐Mata I, Quirós MT, Velasco‐Juárez E, Buñuel E, Cárdenas DJ. Nickel‐Catalyzed Hydroborylative Polycyclization of Allenynes: an Atom‐Economical and Diastereoselective Synthesis of Bicyclic 5‐5 Fused Rings. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202101462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Inés Manjón‐Mata
- Department of Organic Chemistry Facultad de Ciencias Universidad Autónoma de Madrid Institute for Advanced Research in Chemical Sciences (IAdChem) Avd. Francisco Tomás y Valiente 7, Campus de Cantoblanco 28049 Madrid Spain
| | - M. Teresa Quirós
- Department of Organic Chemistry and Inorganic Chemistry Facultad de Farmacia Universidad de Alcalá Campus Universitario. Ctra. Madrid-Barcelona, Km. 33,600. Alcalá de Henares 28871 Madrid Spain
| | - Elena Velasco‐Juárez
- Department of Organic Chemistry Facultad de Ciencias Universidad Autónoma de Madrid Institute for Advanced Research in Chemical Sciences (IAdChem) Avd. Francisco Tomás y Valiente 7, Campus de Cantoblanco 28049 Madrid Spain
| | - Elena Buñuel
- Department of Organic Chemistry Facultad de Ciencias Universidad Autónoma de Madrid Institute for Advanced Research in Chemical Sciences (IAdChem) Avd. Francisco Tomás y Valiente 7, Campus de Cantoblanco 28049 Madrid Spain
| | - Diego J. Cárdenas
- Department of Organic Chemistry Facultad de Ciencias Universidad Autónoma de Madrid Institute for Advanced Research in Chemical Sciences (IAdChem) Avd. Francisco Tomás y Valiente 7, Campus de Cantoblanco 28049 Madrid Spain
| |
Collapse
|
30
|
Suri Babu U, Singam MKR, Kumar MN, Nanubolu JB, Sridhar Reddy M. Palladium-Catalyzed Carbo-Aminative Cyclization of 1,6-Enynes: Access to Napthyridinone Derivatives. Org Lett 2022; 24:1598-1603. [PMID: 35191708 DOI: 10.1021/acs.orglett.2c00088] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
1,6-Enynes have recently stimulated enormous attention toward paving the way to unique cascade cyclizations offering complex cyclic motifs from linear substrates. We describe herein a general approach to napthyridinones via the Pd-catalyzed annulation of 1,6-enynes with 2-iodoanilines. This protocol represents a rare carbo-aminative annulative cyclization via the 6-endo-trig mode, subduing the well-documented exo-trig/dig cyclizations. The regioselective aryl palladation of alkyne followed by Heck-type intramolecular coupling before isomerization were key in realizing this cascade.
Collapse
Affiliation(s)
- Undamatla Suri Babu
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India.,Academy of Scientific and Innovative Research, Ghaziabad 201002, India
| | - Maneesh Kumar Reddy Singam
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India.,Academy of Scientific and Innovative Research, Ghaziabad 201002, India
| | - Muniganti Naveen Kumar
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India.,Academy of Scientific and Innovative Research, Ghaziabad 201002, India
| | | | - Maddi Sridhar Reddy
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India.,Academy of Scientific and Innovative Research, Ghaziabad 201002, India
| |
Collapse
|
31
|
Accessing the main-group metal formyl scaffold through CO-activation in beryllium hydride complexes. Nat Commun 2022; 13:461. [PMID: 35075124 PMCID: PMC8786820 DOI: 10.1038/s41467-022-28095-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 01/10/2022] [Indexed: 11/15/2022] Open
Abstract
Carbon monoxide (CO) is an indispensable C1 building block. For decades this abundant gas has been employed in hydroformylation and Pausen-Khand catalysis, amongst many related chemistries, where a single, non-coupled CO fragment is delivered to an organic molecule. Despite this, organometallic species which react with CO to yield C1 products remain rare, and are elusive for main group metal complexes. Here, we describe a range of amido-beryllium hydride complexes, and demonstrate their reactivity towards CO, in its mono-insertion into the Be-H bonds of these species. The small radius of the Be2+ ion in conjunction with the non-innocent pendant phosphine moiety of the developed ligands leads to a unique beryllium formyl complex with an ylidic P-COC fragment, whereby the carbon centre, remarkably, datively binds Be. This, alongside reactivity toward carbon dioxide, sheds light on the insertion chemistry of the Be-H bond, complimenting the long-known chemistry of the heavier Alkaline Earth hydrides. Stoichiometric carbon monoxide insertion processes leading to metal-formyl complexes are scarce, even for transition metals. Here, light is shed on the underexplored chemistry of beryllium hydrides leading to a stable example of a main group metal-formyl complex.
Collapse
|
32
|
Xie Y, Miao Q, Deng W, Lu Y, Yang Y, Chen X, Liao RZ, Ye S, Tung CH, Wang W. Facile Transformations of a Binuclear Cp*Co(II) Diamidonaphthalene Complex to Mixed-Valent Co(II)Co(III), Co(III)(μ-H)Co(III), and Co(III)(μ-OH)Co(III) Derivatives. Inorg Chem 2022; 61:2204-2210. [PMID: 35049285 DOI: 10.1021/acs.inorgchem.1c03451] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
A diamido-bridged dicobalt complex supported by a diamidonaphthalene ligand, Cp*2Co2(μ-1,8-C10H8(NH)2) (1), was synthesized, and the reactivity relevant to redox transformations of the Co2N2 core was investigated. It was found that the Co(II)-Co(II) bond allows for protonation by [HPPh3][BF4] resulting in a bridging hydride, [1H]+, with pKa ∼ 7.6 in CH2Cl2. The diamidonaphthalene ligand can stabilize the binuclear system in the Co(II)Co(III) mixed-valent state (1+), which is capable of binding CO to afford [1-CO]+. Surprisingly, the mixed-valent complex also activates H2O to furnish a Co(III)Co(III) hydroxy complex [1-OH]+ accompanied by release of H2. The hydroxy ligand in [1-OH]+ is exchangeable, as demonstrated by 18O-labeling experiments on [1-OH]+ with H218O that led to the heavier isotopolog [1-18OH]+.
Collapse
Affiliation(s)
- Yufang Xie
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Qiyi Miao
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Wenhao Deng
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yilei Lu
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Yinuo Yang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Xiaohui Chen
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Rong-Zhen Liao
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Shengfa Ye
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Chen-Ho Tung
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Wenguang Wang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China.,College of Chemistry, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
33
|
Guo L, Xu Z, Tong R. Asymmetric Total Synthesis of Indole Diterpenes Paspalicine, Paspalinine, and Paspalinine‐13‐ene. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202115384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Lian‐Dong Guo
- Department of Chemistry The Hong Kong University of Science and Technology Clearwater Bay Kowloon, Hong Kong China
| | - Zejun Xu
- Department of Chemistry The Hong Kong University of Science and Technology Clearwater Bay Kowloon, Hong Kong China
| | - Rongbiao Tong
- Department of Chemistry The Hong Kong University of Science and Technology Clearwater Bay Kowloon, Hong Kong China
- Hong Kong Branch of the Guangdong Southern Marine Science and Engineering Laboratory (Guangzhou) The Hong Kong University of Science and Technology Clearwater Bay Kowloon, Hong Kong China
- HKUST Shenzhen Research Institute Shenzhen 518057 China
| |
Collapse
|
34
|
Basavaiah D, Golime G, Banoth S, Todeti S. An umpolung strategy for intermolecular [2 + 2 + 1] cycloaddition of aryl aldehydes and nitriles: a facile access to 2,4,5-trisubstituted oxazoles. Chem Sci 2022; 13:8080-8087. [PMID: 35919435 PMCID: PMC9278343 DOI: 10.1039/d2sc00046f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 06/10/2022] [Indexed: 11/21/2022] Open
Abstract
We have described the first example of an umpolung strategy for intermolecular [2 + 2 + 1] cycloaddition between two aryl aldehydes and a nitrile under the influence of TMSOTf that proceeds through the formation of N–C, O–C and C–C bonds providing a simple synthetic protocol for obtaining 2,4,5-trisubstituted oxazoles. An unprecedented intermolecular [2 + 2 + 1] cycloaddition strategy between two aryl aldehydes and a nitrile, wherein one of the aryl aldehydes serves as a carbanion (or equivalent) in the presence of TMSOTf for obtaining oxazole framework is presented.![]()
Collapse
Affiliation(s)
- Deevi Basavaiah
- School of Chemistry, University of Hyderabad, Hyderabad-500046, India
| | | | - Shivalal Banoth
- School of Chemistry, University of Hyderabad, Hyderabad-500046, India
| | - Saidulu Todeti
- School of Chemistry, University of Hyderabad, Hyderabad-500046, India
| |
Collapse
|
35
|
Le S, Bai Y, Qiu J, Zhang Z, Zheng H, Zhu G. Access to cyclopentenones via copper-catalyzed 5- endo trifluoromethylcarbocyclization of ynones. Org Chem Front 2022. [DOI: 10.1039/d2qo00843b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
A copper-catalyzed 5-endo-selective trifluoromethylcarbocyclization of ynones is realized for the direct construction of trifluoromethylated cyclopentenones.
Collapse
Affiliation(s)
- Siya Le
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, P. R. China
| | - Yihui Bai
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, P. R. China
| | - Jiayan Qiu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, P. R. China
| | - Zuxiao Zhang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, P. R. China
| | - Hanliang Zheng
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, P. R. China
| | - Gangguo Zhu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, P. R. China
| |
Collapse
|
36
|
Heravi MM, Mohammadi L. Application of Pauson-Khand reaction in the total synthesis of terpenes. RSC Adv 2021; 11:38325-38373. [PMID: 35493249 PMCID: PMC9044263 DOI: 10.1039/d1ra05673e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 10/28/2021] [Indexed: 12/28/2022] Open
Abstract
The Pauson-Khand reaction (PKR) is a formal [2 + 2 + 1] cycloaddition involving an alkyne, an alkene and carbon monoxide mediated by a hexacarbonyldicobaltalkyne complex to yield cyclopentenones in a single step. This versatile reaction has become a method of choice for the synthesis of cyclopentenone and its derivatives since its discovery in the early seventies. The aim of this review is to point out the applications of PKR in the total synthesis of terpenes.
Collapse
Affiliation(s)
- Majid M Heravi
- Department of Chemistry, School of Physics and Chemistry, Alzahra University Vanak Tehran Iran +98 2188041344 +98 9121329147
| | - Leila Mohammadi
- Department of Chemistry, School of Physics and Chemistry, Alzahra University Vanak Tehran Iran +98 2188041344 +98 9121329147
| |
Collapse
|
37
|
Guo LD, Xu Z, Tong R. Asymmetric Total Synthesis of Indole Diterpenes Paspalicine, Paspalinine, and Paspalinine-13-ene. Angew Chem Int Ed Engl 2021; 61:e202115384. [PMID: 34784090 DOI: 10.1002/anie.202115384] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Indexed: 11/08/2022]
Abstract
Paspaline-derived indole diterpenes (IDTs) are structurally complex mycotoxins with unique tremorgenic activity. Reported are asymmetric total syntheses of three paspaline-derived IDTs paspalicine, paspalinine and paspalinine-13-ene. Our synthesis features a green Achmatowicz rearrangement/bicycloketalization for the efficient construction of FG rings (75 % yield) and a cascade ring-closing metathesis of dienyne for highly regioselective formation of CD rings (72 % yield). Other highlights include four palladium-mediated reactions (Stille, aza-Wacker, Suzuki, and Heck) to forge the BE rings and the installation of two continuous all-carbon quaternary stereocenters via reductive ring-opening of cyclopropane and α-methylation of the conjugate ester. Our new synthetic strategy is expected to be applicable to the chemical synthesis of other paspaline-derived IDTs and will facilitate the bioactivity studies of these agriculturally and pharmacologically important IDTs.
Collapse
Affiliation(s)
- Lian-Dong Guo
- Department of Chemistry, The Hong Kong University of Science and Technology Clearwater Bay, Kowloon, Hong Kong, China
| | - Zejun Xu
- Department of Chemistry, The Hong Kong University of Science and Technology Clearwater Bay, Kowloon, Hong Kong, China
| | - Rongbiao Tong
- Department of Chemistry, The Hong Kong University of Science and Technology Clearwater Bay, Kowloon, Hong Kong, China.,Hong Kong Branch of the Guangdong Southern Marine Science and Engineering Laboratory (Guangzhou), The Hong Kong University of Science and Technology Clearwater Bay, Kowloon, Hong Kong, China.,HKUST Shenzhen Research Institute, Shenzhen, 518057, China
| |
Collapse
|
38
|
Yu S, Hong C, Liu Z, Zhang Y. Synthesis of Cyclopentenones through Rhodium-Catalyzed C-H Annulation of Acrylic Acids with Formaldehyde and Malonates. Org Lett 2021; 23:5054-5059. [PMID: 34151579 DOI: 10.1021/acs.orglett.1c01569] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
An efficient rhodium-catalyzed protocol for the synthesis of cyclopentenones based on a three-component reaction of acrylic acids, formaldehyde, and malonates via vinylic C-H activation is reported. Exploratory studies showed that 5-alkylation of as-prepared cyclopentenones could be realized smoothly by the treatment of a variety of alkyl halides with a Na2CO3/MeOH solution. Excess formaldehyde and malonate led to a multicomponent reaction that afforded the multisubstituted cyclopentenones through a Michael addition.
Collapse
Affiliation(s)
- Shuling Yu
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Chao Hong
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Zhanxiang Liu
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Yuhong Zhang
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China.,State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
39
|
Wang X, Li D, Zhang J, Gong J, Fu J, Yang Z. A Synthetic Route to The Core Structure of (-)-Retigeranic Acid A. Org Lett 2021; 23:5092-5097. [PMID: 34128684 DOI: 10.1021/acs.orglett.1c01633] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Retigeranic acid A is a uniquely structured pentacyclic sesterterpene bearing eight stereogenic centers. We report a concise route to the core structure of (-)-retigeranic acid A. The stereochemistry of its six chiral centers and three quaternary carbon centers was well-controlled. This route features two intramolecular Pauson-Khand reactions (IMPKRs): the first forged the D and E rings to deliver the triquinane subunit, and the second constructed the A and B rings and diastereoselectively installed the quaternary C6a center.
Collapse
Affiliation(s)
- Xiao Wang
- State Key Laboratory of Chemical Oncogenomics and Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, Guangdong 518055, China
| | - Dian Li
- State Key Laboratory of Chemical Oncogenomics and Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, Guangdong 518055, China
| | - Junlin Zhang
- State Key Laboratory of Chemical Oncogenomics and Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, Guangdong 518055, China
| | - Jianxian Gong
- State Key Laboratory of Chemical Oncogenomics and Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, Guangdong 518055, China
| | - Junkai Fu
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun, Jilin 130024, China
| | - Zhen Yang
- State Key Laboratory of Chemical Oncogenomics and Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, Guangdong 518055, China.,Beijing National Laboratory for Molecular Science and Key Laboratory of Bioorganic Chemistry and Molecular Engineering of the Ministry of Education, College of Chemistry and Molecular Engineering and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China.,Shenzhen Bay Laboratory, Shenzhen, Guangdong 518055, China
| |
Collapse
|
40
|
Nayak A, Bandyopadhyay M, Chopra D, Bera MK. An Expedient Route to Diaryl Tetrahydropentalenedione Derivatives via Intramolecular Pauson‐ Khand Carbonylative Cycloaddition‐ Oxidation Protocol. ChemistrySelect 2021. [DOI: 10.1002/slct.202101135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Abhijit Nayak
- Department of Chemistry Indian Institute of Engineering Science and Technology (IIEST), Shibpur P.O-Botanic Garden Howrah 711103 WB India
| | - Manas Bandyopadhyay
- Department of Chemistry Indian Institute of Engineering Science and Technology (IIEST), Shibpur P.O-Botanic Garden Howrah 711103 WB India
| | - Deepak Chopra
- Department of Chemistry Indian Institute of Science Education and Research (IISER) Bhauri Madhya Pradesh 462066 India
| | - Mrinal K. Bera
- Department of Chemistry Indian Institute of Engineering Science and Technology (IIEST), Shibpur P.O-Botanic Garden Howrah 711103 WB India
| |
Collapse
|
41
|
Vondran J, Furst MRL, Eastham GR, Seidensticker T, Cole-Hamilton DJ. Magic of Alpha: The Chemistry of a Remarkable Bidentate Phosphine, 1,2-Bis(di- tert-butylphosphinomethyl)benzene. Chem Rev 2021; 121:6610-6653. [PMID: 33961414 DOI: 10.1021/acs.chemrev.0c01254] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The bidentate phosphine ligand 1,2-bis(di-tert-butylphosphinomethyl)benzene (1,2-DTBPMB) has been reported over the years as being one of, if not the, best ligands for achieving the alkoxycarbonylation of various unsaturated compounds. Bonded to palladium, the ligand provides the basis for the first step in the commercial (Alpha) production of methyl methacrylate as well as very high selectivity to linear esters and acids from terminal or internal double bonds. The present review is an overview covering the literature dealing with the 1,2-DTBPMB ligand: from its first reference, its catalysis, including the alkoxycarbonylation reaction and its mechanism, its isomerization abilities including the highly selective isomerizing methoxycarbonylation, other reactions such as cross-coupling, recycling approaches, and the development of improved, modified ligands, in which some tert-butyl ligands are replaced by 2-pyridyl moieties and which show exceptional rates for carbonylation reactions at low temperatures.
Collapse
Affiliation(s)
- Johanna Vondran
- Laboratory for Industrial Chemistry, Department of Biochemical and Chemical Engineering, TU Dortmund University, Emil-Figge-Straße 66, 44227 Dortmund, Germany
| | - Marc R L Furst
- EaStCHEM, School of Chemistry, University of St Andrews, St Andrews, KY16 9ST Scotland, U.K.,Athénée du Luxembourg, 24, Boulevard Pierre Dupong, L-1430 Luxembourg, Luxembourg
| | | | - Thomas Seidensticker
- Laboratory for Industrial Chemistry, Department of Biochemical and Chemical Engineering, TU Dortmund University, Emil-Figge-Straße 66, 44227 Dortmund, Germany
| | - David J Cole-Hamilton
- EaStCHEM, School of Chemistry, University of St Andrews, St Andrews, KY16 9ST Scotland, U.K
| |
Collapse
|
42
|
Doerksen RS, Hodík T, Hu G, Huynh NO, Shuler WG, Krische MJ. Ruthenium-Catalyzed Cycloadditions to Form Five-, Six-, and Seven-Membered Rings. Chem Rev 2021; 121:4045-4083. [PMID: 33576620 DOI: 10.1021/acs.chemrev.0c01133] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Ruthenium-catalyzed cycloadditions to form five-, six-, and seven-membered rings are summarized, including applications in natural product total synthesis. Content is organized by ring size and reaction type. Coverage is limited to processes that involve formation of at least one C-C bond. Processes that are stoichiometric in ruthenium or exploit ruthenium as a Lewis acid (without intervention of organometallic intermediates), ring formations that occur through dehydrogenative condensation-reduction, σ-bond activation-initiated annulations that do not result in net reduction of bond multiplicity, and photochemically promoted ruthenium-catalyzed cycloadditions are not covered.
Collapse
Affiliation(s)
- Rosalie S Doerksen
- Department of Chemistry, University of Texas at Austin,, Welch Hall (A5300), 105 East 24th Street, Austin, Texas 78712, United States
| | - Tomáš Hodík
- Department of Chemistry, University of Texas at Austin,, Welch Hall (A5300), 105 East 24th Street, Austin, Texas 78712, United States
| | - Guanyu Hu
- Department of Chemistry, University of Texas at Austin,, Welch Hall (A5300), 105 East 24th Street, Austin, Texas 78712, United States
| | - Nancy O Huynh
- Department of Chemistry, University of Texas at Austin,, Welch Hall (A5300), 105 East 24th Street, Austin, Texas 78712, United States
| | - William G Shuler
- Department of Chemistry, University of Texas at Austin,, Welch Hall (A5300), 105 East 24th Street, Austin, Texas 78712, United States
| | - Michael J Krische
- Department of Chemistry, University of Texas at Austin,, Welch Hall (A5300), 105 East 24th Street, Austin, Texas 78712, United States
| |
Collapse
|
43
|
Quiroz RV, Reutershan MH, Schneider SE, Sloman D, Lacey BM, Swalm BM, Yeung CS, Gibeau C, Spellman DS, Rankic DA, Chen D, Witter D, Linn D, Munsell E, Feng G, Xu H, Hughes JME, Lim J, Saurí J, Geddes K, Wan M, Mansueto MS, Follmer NE, Fier PS, Siliphaivanh P, Daublain P, Palte RL, Hayes RP, Lee S, Kawamura S, Silverman S, Sanyal S, Henderson TJ, Ye Y, Gao Y, Nicholson B, Machacek MR. The Discovery of Two Novel Classes of 5,5-Bicyclic Nucleoside-Derived PRMT5 Inhibitors for the Treatment of Cancer. J Med Chem 2021; 64:3911-3939. [PMID: 33755451 DOI: 10.1021/acs.jmedchem.0c02083] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Protein arginine methyltransferase 5 (PRMT5) is a type II arginine methyltransferase that catalyzes the post-translational symmetric dimethylation of protein substrates. PRMT5 plays a critical role in regulating biological processes including transcription, cell cycle progression, RNA splicing, and DNA repair. As such, dysregulation of PRMT5 activity is implicated in the development and progression of multiple cancers and is a target of growing clinical interest. Described herein are the structure-based drug designs, robust synthetic efforts, and lead optimization strategies toward the identification of two novel 5,5-fused bicyclic nucleoside-derived classes of potent and efficacious PRMT5 inhibitors. Utilization of compound docking and strain energy calculations inspired novel designs, and the development of flexible synthetic approaches enabled access to complex chemotypes with five contiguous stereocenters. Additional efforts in balancing bioavailability, solubility, potency, and CYP3A4 inhibition led to the identification of diverse lead compounds with favorable profiles, promising in vivo activity, and low human dose projections.
Collapse
Affiliation(s)
- Ryan V Quiroz
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Michael H Reutershan
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Sebastian E Schneider
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - David Sloman
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Brian M Lacey
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Brooke M Swalm
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Charles S Yeung
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Craig Gibeau
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Daniel S Spellman
- Merck & Co., Inc., 770 Sumneytown Pike, Lansdale, Pennsylvania 19446, United States
| | - Danica A Rankic
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Dapeng Chen
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - David Witter
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Doug Linn
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Erik Munsell
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Guo Feng
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Haiyan Xu
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Jonathan M E Hughes
- Merck & Co., Inc., 126 East Lincoln Avenue, Rahway, New Jersey 07065, United States
| | - Jongwon Lim
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Josep Saurí
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Kristin Geddes
- Merck & Co., Inc., 770 Sumneytown Pike, Lansdale, Pennsylvania 19446, United States
| | - Murray Wan
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - My Sam Mansueto
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Nicole E Follmer
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Patrick S Fier
- Merck & Co., Inc., 126 East Lincoln Avenue, Rahway, New Jersey 07065, United States
| | - Phieng Siliphaivanh
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Pierre Daublain
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Rachel L Palte
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Robert P Hayes
- Merck & Co., Inc., 770 Sumneytown Pike, Lansdale, Pennsylvania 19446, United States
| | - Sandra Lee
- Merck & Co., Inc., 126 East Lincoln Avenue, Rahway, New Jersey 07065, United States
| | - Shuhei Kawamura
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Steven Silverman
- Merck & Co., Inc., 126 East Lincoln Avenue, Rahway, New Jersey 07065, United States
| | - Sulagna Sanyal
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Timothy J Henderson
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Yingchun Ye
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Yuanwei Gao
- Merck & Co., Inc., 770 Sumneytown Pike, Lansdale, Pennsylvania 19446, United States
| | - Benjamin Nicholson
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Michelle R Machacek
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| |
Collapse
|
44
|
Yang G, Zhu M, Zhao X, Lei J, Xu L. A new route to BCD tricyclic fragment of C19-diterpenoid alkaloids via intramolecular Pauson-Khand reaction followed by anionic 1,2-migration rearrangement. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2021.152975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
45
|
Manßen M, Deng D, Zheng CHM, DiPucchio RC, Chen D, Schafer LL. Ureate Titanium Catalysts for Hydroaminoalkylation: Using Ligand Design to Increase Reactivity and Utility. ACS Catal 2021. [DOI: 10.1021/acscatal.1c00014] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Manfred Manßen
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Danfeng Deng
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Cameron H. M. Zheng
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Rebecca C. DiPucchio
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Dafa Chen
- Shenzhen Grubbs Institute, Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, People’s Republic of China
| | - Laurel L. Schafer
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| |
Collapse
|
46
|
Ma D, Hu N, Ao J, Zang S, Yu G, Liang G. Pauson‐Khand Reactions with Concomitant C−O Bond Cleavage for the Preparation of 5,5‐ 5,6‐ and 5,7‐Bicyclic Ring Systems. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202001311] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Ding Ma
- State Key Laboratory of Elemento-organic Chemistry Nankai University Tianjin 300071 People's Republic of China
| | - Naifeng Hu
- State Key Laboratory of Elemento-organic Chemistry Nankai University Tianjin 300071 People's Republic of China
| | - Junli Ao
- State Key Laboratory of Elemento-organic Chemistry Nankai University Tianjin 300071 People's Republic of China
- School of Physical Science and Technology ShanghaiTech University Shanghai 201210 People's Republic of China
| | - Shaoli Zang
- State Key Laboratory of Elemento-organic Chemistry Nankai University Tianjin 300071 People's Republic of China
- School of Physical Science and Technology ShanghaiTech University Shanghai 201210 People's Republic of China
| | - Guo Yu
- School of Physical Science and Technology ShanghaiTech University Shanghai 201210 People's Republic of China
| | - Guangxin Liang
- School of Physical Science and Technology ShanghaiTech University Shanghai 201210 People's Republic of China
| |
Collapse
|
47
|
Ouyang J, Bae H, Jordi S, Dao QM, Dossenbach S, Dehn S, Lingnau JB, Kanta De C, Kraft P, List B. Das riechende Prinzip des Vetiveröls, aufgeklärt durch chemische Synthese. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202014609] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Jie Ouyang
- Max-Planck-Institut für Kohlenforschung Kaiser-Wilhelm-Platz 1 45470 Mülheim an der Ruhr Deutschland
| | - Hanyong Bae
- Department of Chemistry Sungkyunkwan University 2066, Seobu-ro Jangan-gu Suwon 16419 Republik Korea
| | - Samuel Jordi
- Givaudan Schweiz AG Fragrances S&T, Riechstoff-Forschung Kemptpark 50 8310 Kemptthal Schweiz
| | - Quang Minh Dao
- Max-Planck-Institut für Kohlenforschung Kaiser-Wilhelm-Platz 1 45470 Mülheim an der Ruhr Deutschland
| | - Sandro Dossenbach
- Givaudan Schweiz AG Fragrances S&T, Riechstoff-Forschung Kemptpark 50 8310 Kemptthal Schweiz
| | - Stefanie Dehn
- Max-Planck-Institut für Kohlenforschung Kaiser-Wilhelm-Platz 1 45470 Mülheim an der Ruhr Deutschland
| | - Julia B. Lingnau
- Max-Planck-Institut für Kohlenforschung Kaiser-Wilhelm-Platz 1 45470 Mülheim an der Ruhr Deutschland
| | - Chandra Kanta De
- Max-Planck-Institut für Kohlenforschung Kaiser-Wilhelm-Platz 1 45470 Mülheim an der Ruhr Deutschland
| | - Philip Kraft
- Givaudan Schweiz AG Fragrances S&T, Riechstoff-Forschung Kemptpark 50 8310 Kemptthal Schweiz
| | - Benjamin List
- Max-Planck-Institut für Kohlenforschung Kaiser-Wilhelm-Platz 1 45470 Mülheim an der Ruhr Deutschland
| |
Collapse
|
48
|
Oseghale CO, Mogudi BM, Onisuru OR, Akinnawo CA, Fapojuwo DP, Meijboom R. Stable and Surface‐active Co Nanoparticles Formed from Cation (
x
) Promoted Au/
x
‐Co
3
O
4
(
x
=Cs) as Selective Catalyst for [2+2+1] Cyclization Reactions. ChemCatChem 2021. [DOI: 10.1002/cctc.202001841] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Charles O. Oseghale
- Department of Chemical Sciences Research Center for Synthesis and Catalysis University of Johannesburg Auckland Park 2006 Johannesburg South Africa
| | - Batsile M. Mogudi
- Department of Chemical Sciences Research Center for Synthesis and Catalysis University of Johannesburg Auckland Park 2006 Johannesburg South Africa
| | - Oluwatayo Racheal Onisuru
- Department of Chemical Sciences Research Center for Synthesis and Catalysis University of Johannesburg Auckland Park 2006 Johannesburg South Africa
| | - Christianah Aarinola Akinnawo
- Department of Chemical Sciences Research Center for Synthesis and Catalysis University of Johannesburg Auckland Park 2006 Johannesburg South Africa
| | - Dele Peter Fapojuwo
- Department of Chemical Sciences Research Center for Synthesis and Catalysis University of Johannesburg Auckland Park 2006 Johannesburg South Africa
| | - Reinout Meijboom
- Department of Chemical Sciences Research Center for Synthesis and Catalysis University of Johannesburg Auckland Park 2006 Johannesburg South Africa
| |
Collapse
|
49
|
Haider S, Khan IA, Ding H, Chittiboyina AG. Synthetic Approaches for Building Tricyclic Cage-like Motifs Found in Indoxamycins. CURR ORG CHEM 2021. [DOI: 10.2174/1385272824999201210193141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Indoxamycins A-F, a novel class of polyketides, were isolated from the saline culture
of marine-derived actinomyces by Sato et al. in 2009. Intriguing stereochemical complexity
involving tricyclic [5.5.6] cage-like structures with six consecutive chiral centers challenged
many organic chemists. Chemical ingenuity, implementation of pioneered reactions
along with fine chemical transformations allowed not only the rapid construction of the central
core but also allowed minor structural revision and paved the information to delineate the
absolute stereostructures of these complex polyketide marine natural products. To achieve the
central core structure in indoxamycins A-F, reactions like the Ireland-Claisen rearrangement,
an enantioselective 1,6-enyne reductive cyclization, and one-pot cascade reactions of 1,2-
addition/oxa-Michael/methylenation were employed. Using the chiral pool approach, the
readily available R-carvone was employed as a cost-effective starting material to achieve the concise total syntheses
of (-)-indoxamycins A and B, in which Pauson-Khand, Cu-catalyzed Michael addition and tandem retro-oxa-Michael
addition/1,2-addition/oxa-Michael addition reactions were employed. The antipodes, (+)-indoxamycins can be easily
accessed by simply switching to S-carvone as the starting material. Synthetically prepared indoxamycins A-F are devoid
of antiproliferative properties, which disagree with the work reported by Sato and co-workers for (-)-
indoxamycins A and F. Nevertheless, ready access to such complex natural products allows probing the untapped
potential biological activities of these polyketides including cytotoxicity. A concise overview of interesting, key
chemical transformations including named reactions in establishing the architecture of indoxamycins was compiled to
inspire organic chemists and help reinvigorate novel strategies for the asymmetric synthesis as well as the development
of novel derivatives of indoxamycins with unique physicochemical and biological properties.
Collapse
Affiliation(s)
- Saqlain Haider
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi, University, MS 38677, United States
| | - Ikhlas A. Khan
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi, University, MS 38677, United States
| | - Hanfeng Ding
- Department of Chemistry, Zhejiang University, Hangzhou-310058, China
| | - Amar G. Chittiboyina
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi, University, MS 38677, United States
| |
Collapse
|
50
|
Ouyang J, Bae H, Jordi S, Dao QM, Dossenbach S, Dehn S, Lingnau JB, Kanta De C, Kraft P, List B. The Smelling Principle of Vetiver Oil, Unveiled by Chemical Synthesis. Angew Chem Int Ed Engl 2021; 60:5666-5672. [PMID: 33315304 PMCID: PMC7986879 DOI: 10.1002/anie.202014609] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 12/09/2020] [Indexed: 12/12/2022]
Abstract
Vetiver oil, produced on a multiton‐scale from the roots of vetiver grass, is one of the finest and most popular perfumery materials, appearing in over a third of all fragrances. It is a complex mixture of hundreds of molecules and the specific odorant, responsible for its characteristic suave and sweet transparent, woody‐ambery smell, has remained a mystery until today. Herein, we prove by an eleven‐step chemical synthesis, employing a novel asymmetric organocatalytic Mukaiyama–Michael addition, that (+)‐2‐epi‐ziza‐6(13)en‐3‐one is the active smelling principle of vetiver oil. Its olfactory evaluation reveals a remarkable odor threshold of 29 picograms per liter air, responsible for the special sensuous aura it lends to perfumes and the quasi‐pheromone‐like effect it has on perfumers and consumers alike.
Collapse
Affiliation(s)
- Jie Ouyang
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470, Mülheim an der Ruhr, Germany
| | - Hanyong Bae
- Department of Chemistry, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon, 16419, Republic of Korea
| | - Samuel Jordi
- Givaudan Schweiz AG, Fragrances S&T, Ingredients Research, Kemptpark 50, 8310, Kemptthal, Switzerland
| | - Quang Minh Dao
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470, Mülheim an der Ruhr, Germany
| | - Sandro Dossenbach
- Givaudan Schweiz AG, Fragrances S&T, Ingredients Research, Kemptpark 50, 8310, Kemptthal, Switzerland
| | - Stefanie Dehn
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470, Mülheim an der Ruhr, Germany
| | - Julia B Lingnau
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470, Mülheim an der Ruhr, Germany
| | - Chandra Kanta De
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470, Mülheim an der Ruhr, Germany
| | - Philip Kraft
- Givaudan Schweiz AG, Fragrances S&T, Ingredients Research, Kemptpark 50, 8310, Kemptthal, Switzerland
| | - Benjamin List
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470, Mülheim an der Ruhr, Germany
| |
Collapse
|