1
|
Wasternack J, Schröder HV, Witte JF, Ilisson M, Hupatz H, Hille JF, Gaedke M, Valkonen AM, Sobottka S, Krappe A, Schubert M, Paulus B, Rissanen K, Sarkar B, Eigler S, Resch-Genger U, Schalley CA. Switchable protection and exposure of a sensitive squaraine dye within a redox active rotaxane. Commun Chem 2024; 7:229. [PMID: 39367250 PMCID: PMC11452610 DOI: 10.1038/s42004-024-01312-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 09/19/2024] [Indexed: 10/06/2024] Open
Abstract
In nature, molecular environments in proteins can sterically protect and stabilize reactive species such as organic radicals through non-covalent interactions. Here, we report a near-infrared fluorescent rotaxane in which the stabilization of a chemically labile squaraine fluorophore by the coordination of a tetralactam macrocycle can be controlled chemically and electrochemically. The rotaxane can be switched between two co-conformations in which the wheel either stabilizes or exposes the fluorophore. Coordination by the wheel affects the squaraine's stability across four redox states and renders the radical anion significantly more stable-by a factor of 6.7-than without protection by a mechanically bonded wheel. Furthermore, the fluorescence properties can be tuned by the redox reactions in a stepwise manner. Mechanically interlocked molecules provide an excellent scaffold to stabilize and selectively expose reactive species in a co-conformational switching process controlled by external stimuli.
Collapse
Affiliation(s)
- Janos Wasternack
- Institut für Chemie und Biochemie, Freie Universität Berlin, Arnimallee 20, 14195, Berlin, Germany
| | - Hendrik V Schröder
- Institut für Chemie und Biochemie, Freie Universität Berlin, Arnimallee 20, 14195, Berlin, Germany
| | - J Felix Witte
- Institut für Chemie und Biochemie, Freie Universität Berlin, Arnimallee 22, 14195, Berlin, Germany
| | - Mihkel Ilisson
- Institut für Chemie und Biochemie, Freie Universität Berlin, Arnimallee 20, 14195, Berlin, Germany
| | - Henrik Hupatz
- Institut für Chemie und Biochemie, Freie Universität Berlin, Arnimallee 20, 14195, Berlin, Germany
| | - Julian F Hille
- Institut für Chemie und Biochemie, Freie Universität Berlin, Arnimallee 20, 14195, Berlin, Germany
| | - Marius Gaedke
- Institut für Chemie und Biochemie, Freie Universität Berlin, Arnimallee 20, 14195, Berlin, Germany
| | - Arto M Valkonen
- University of Jyvaskyla, Department of Chemistry, Survontie 9 B, 40014, Jyväskylä, Finland
| | - Sebastian Sobottka
- Institut für Chemie und Biochemie, Freie Universität Berlin, Fabeckstr. 34-36, 14195, Berlin, Germany
| | - Alexander Krappe
- Institut für Chemie und Biochemie, Freie Universität Berlin, Altensteinstraße 23A, 14195, Berlin, Germany
| | - Mario Schubert
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustraße 3, 14195, Berlin, Germany
| | - Beate Paulus
- Institut für Chemie und Biochemie, Freie Universität Berlin, Arnimallee 22, 14195, Berlin, Germany
| | - Kari Rissanen
- University of Jyvaskyla, Department of Chemistry, Survontie 9 B, 40014, Jyväskylä, Finland
| | - Biprajit Sarkar
- Institut für Chemie und Biochemie, Freie Universität Berlin, Fabeckstr. 34-36, 14195, Berlin, Germany
- Institut für Anorganische Chemie, Universität Stuttgart, Pfaffenwaldring 55, 70569, Stuttgart, Germany
| | - Siegfried Eigler
- Institut für Chemie und Biochemie, Freie Universität Berlin, Altensteinstraße 23A, 14195, Berlin, Germany
| | - Ute Resch-Genger
- Bundesanstalt für Materialforschung und -prüfung (BAM), Biophotonics, Richard Willstätter Straße 11, 12489, Berlin, Germany
| | - Christoph A Schalley
- Institut für Chemie und Biochemie, Freie Universität Berlin, Arnimallee 20, 14195, Berlin, Germany.
| |
Collapse
|
2
|
Lee CK, Gangadharappa C, Fahrenbach AC, Kim DJ. Harnessing Radicals: Advances in Self-Assembly and Molecular Machinery. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2408271. [PMID: 39177115 DOI: 10.1002/adma.202408271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/25/2024] [Indexed: 08/24/2024]
Abstract
Radicals, with their unpaired electrons, exhibit unique chemical and physical properties that have long intrigued chemists. Despite early skepticism about their stability, the discovery of persistent radicals has opened new possibilities for molecular interactions. This review examines the mechanisms and applications of radically driven self-assembly, focusing on key motifs such as naphthalene diimides, tetrathiafulvalenes, and viologens, which serve as models for radical assembly. The potential of radical interactions in the development of artificial molecular machines (AMMs) are also discussed. These AMMs, powered by radical-radical interactions, represent significant advancements in non-equilibrium chemistry, mimicking the functionalities of biological systems. From molecular switches to ratchets and pumps, the versatility and unique properties of radically powered AMMs are highlighted. Additionally, the applications of radical assembly in materials science are explored, particularly in creating smart materials with redox-responsive properties. The review concludes by comparing AMMs to biological molecular machines, offering insights into future directions. This overview underscores the impact of radical chemistry on molecular assembly and its promising applications in both synthetic and biological systems.
Collapse
Affiliation(s)
| | | | - Albert C Fahrenbach
- School of Chemistry, University of New South Wales, Sydney, NSW, 2052, Australia
- Australian Centre for Astrobiology, University of New South Wales, Sydney, NSW, 2052, Australia
- UNSW RNA Institute, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Dong Jun Kim
- School of Chemistry, University of New South Wales, Sydney, NSW, 2052, Australia
| |
Collapse
|
3
|
Casas J, Baudron SA, Bonnefont A, Chaumont A, Chauvin J, Mobian P, Ruhlmann L. Synthesis, Characterization, and Properties of a Titanium(IV)-Tetrathiafulvalene-Based Complex. Inorg Chem 2024; 63:10057-10067. [PMID: 38728673 DOI: 10.1021/acs.inorgchem.4c01389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2024]
Abstract
To deeply investigate the interaction between a tetrathiafulvalene (TTF) unit and a Ti(IV) center, a monomeric heteroleptic octahedral Ti(IV) complex containing a diimine ligand composed of a 1,10-phenanthroline core fused with a TTF fragment (ligand 2a) was prepared. The stable complex formulated as Ti(1)2(2a), where 1 is a 2,2'-biphenolato derivative, was efficiently synthesized by following a one-step approach. This complex and its model species [Ti(1)2(2b)] were fully characterized in solution, and their solid-state structures were established by single-crystal X-ray diffraction analysis. Density functional theory calculations allowed the assignment of the frontier orbitals involved in the electronic transitions characterized by ultraviolet-visible absorption spectroscopy. Electrochemical and spectroelectrochemical studies revealed that the TTF unit within Ti(1)2(2a) can undergo two reversible one-electron oxidation processes; a reversible one-electron reduction of the Ti(IV) atom was highlighted. The photophysical measurements performed for this donor-acceptor molecular system indicated that an electron transfer process upon light excitation occurred within Ti(1)2(2a).
Collapse
Affiliation(s)
- Jaison Casas
- Université de Strasbourg, CNRS, CMC UMR 7140, F-67000 Strasbourg, France
| | - Stéphane A Baudron
- Université de Strasbourg, CNRS, CMC UMR 7140, F-67000 Strasbourg, France
| | - Antoine Bonnefont
- Université de Strasbourg, CNRS, IC UMR 7177, F-67000 Strasbourg, France
- LEPMI, Université Grenoble Alpes, Université Savoie Mont Blanc, CNRS, Grenoble INP, F-38000 Grenoble, France
| | - Alain Chaumont
- Université de Strasbourg, CNRS, CMC UMR 7140, F-67000 Strasbourg, France
| | - Jérôme Chauvin
- Université Grenoble Alpes, CNRS, DCM UMR 5250, 38058 Grenoble, France
| | - Pierre Mobian
- Université de Strasbourg, CNRS, CMC UMR 7140, F-67000 Strasbourg, France
| | - Laurent Ruhlmann
- Université de Strasbourg, CNRS, IC UMR 7177, F-67000 Strasbourg, France
| |
Collapse
|
4
|
Janovský P, Springer A, Filip J, Prucková Z, Nečas M, Rouchal M, Schalley CA, Vícha R. para-Phenylenediamine Dimer as a Redox-Active Guest for Supramolecular Systems. Chemistry 2024; 30:e202400535. [PMID: 38415892 DOI: 10.1002/chem.202400535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 02/27/2024] [Accepted: 02/27/2024] [Indexed: 02/29/2024]
Abstract
Redox-active components are highly valuable in the construction of molecular devices. We combined two p-phenylenediamines (p-PDA) with a biphenyl (BiPhe) unit to prepare a supramolecular guest 4 consisting of three binding sites for cucurbit[7/8]uril (CBn) and/or cyclodextrins (CD). Supramolecular properties of 4 were investigated using NMR, UV-vis, mass spectrometry and isothermal titration calorimetry. Our analysis revealed that 4 forms higher-order host-guest complexes, wherein a CD unit occupies the central BiPhe site, secured by two CBn units at the terminal p-PDA sites. Additionally, 1 : 1 complexes with α-CD and β-CD, a 1 : 2 complex with γ-CD and 2 : 1 complexes with CB7 and CB8 were identified. Through UV-vis and cyclic voltammetry, redox processes leading to the formation of a stable, deep blue dication diradical of 4 are elucidated. Furthermore, it is demonstrated that CB7 selectively protects oxidised 4 from reduction in the presence of a reducing agent. The supramolecular and redox properties of the structural motif represented by 4 render it an interesting candidate for the construction of supramolecular devices.
Collapse
Affiliation(s)
- Petr Janovský
- Department of Chemistry, Faculty of Technology, Tomas Bata University in Zlín, Vavrečkova 5669, 760 01, Zlín, Czech Republic
| | - Andreas Springer
- Institut für Chemie und Biochemie, Freie Universität Berlin, Arnimallee 20, 14195, Berlin, Germany
| | - Jaroslav Filip
- Department of Environmental Protection Engineering, Faculty of Technology, Tomas Bata University in Zlín, Nad Ovčírnou, 3685, 760 01, Zlín, Czech Republic
| | - Zdeňka Prucková
- Department of Chemistry, Faculty of Technology, Tomas Bata University in Zlín, Vavrečkova 5669, 760 01, Zlín, Czech Republic
| | - Marek Nečas
- Department of Chemistry, Faculty of Science, Masaryk University, Kotlářská 2, 602 00, Brno, Czech Republic
| | - Michal Rouchal
- Department of Chemistry, Faculty of Technology, Tomas Bata University in Zlín, Vavrečkova 5669, 760 01, Zlín, Czech Republic
| | - Christoph A Schalley
- Institut für Chemie und Biochemie, Freie Universität Berlin, Arnimallee 20, 14195, Berlin, Germany
| | - Robert Vícha
- Department of Chemistry, Faculty of Technology, Tomas Bata University in Zlín, Vavrečkova 5669, 760 01, Zlín, Czech Republic
| |
Collapse
|
5
|
Xu J, Guo J, Li S, Yang Y, Lai W, Keoingthong P, Wang S, Zhang L, Dong Q, Zeng Z, Chen Z. Dual Charge Transfer Generated from Stable Mixed-Valence Radical Crystals for Boosting Solar-to-Thermal Conversion. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023:e2300980. [PMID: 37144542 PMCID: PMC10375089 DOI: 10.1002/advs.202300980] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/11/2023] [Indexed: 05/06/2023]
Abstract
Realizing dual charge transfer (CT) based on stable organic radicals in one system is a long-sought goal, however, remains challenging. In this work, a stable mixed-valence radical crystal is designed via a surfactant-assisted method, namely TTF-(TTF+• )2 -RC (where TTF = tetrathiafulvalene), containing dual CT interactions. The solubilization of surfactants enables successful co-crystallization of mixed-valence TTF molecules with different polarity in aqueous solutions. Short intermolecular distances between adjacent TTF moieties within TTF-(TTF+• )2 -RC facilitate both inter-valence CT (IVCT) between neutral TTF and TTF+• , and inter-radical CT (IRCT) between two TTF+• in radical π-dimer, which are confirmed by single-crystal X-ray diffraction, solid-state absorption, electron spin resonance measurements, and DFT calculations. Moreover, TTF-(TTF+• )2 -RC reveals an open-shell singlet diradical ground state with the antiferromagnetic coupling of 2J = -657 cm-1 and an unprecedented temperature-dependent magnetic property, manifesting the main monoradical characters of IVCT at 113-203 K while the spin-spin interactions in radical dimers of IRCT are predominant at 263-353 K. Notably, dual CT characters endow TTF-(TTF+• )2 -RC with strong light absorption over the full solar spectrum and outstanding stability. As a result, TTF-(TTF+• )2 -RC exhibits significantly enhanced photothermal property, an increase of 46.6 °C within 180 s upon one-sun illumination.
Collapse
Affiliation(s)
- Jieqiong Xu
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, 410082, China
| | - Jing Guo
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Hunan University, Changsha, Hunan, 410082, China
| | - Shengkai Li
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, 410082, China
| | - Yanxia Yang
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, 410082, China
| | - Weiming Lai
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Hunan University, Changsha, Hunan, 410082, China
| | - Phouphien Keoingthong
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, 410082, China
| | - Shen Wang
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, 410082, China
| | - Liang Zhang
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, 410082, China
| | - Qian Dong
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, 410082, China
| | - Zebing Zeng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Hunan University, Changsha, Hunan, 410082, China
| | - Zhuo Chen
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, 410082, China
| |
Collapse
|
6
|
Kim B, Lee J, Chen YP, Wu XQ, Kang J, Jeong H, Bae SE, Li JR, Sung J, Park J. π-Stacks of radical-anionic naphthalenediimides in a metal-organic framework. SCIENCE ADVANCES 2022; 8:eade1383. [PMID: 36563156 PMCID: PMC9788762 DOI: 10.1126/sciadv.ade1383] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 11/22/2022] [Indexed: 06/17/2023]
Abstract
Radical-ionic metal-organic frameworks (MOFs) have unique optical, magnetic, and electronic properties. These radical ions, forcibly formed by external stimulus-induced redox processes, are structurally unstable and have short radical lifetimes. Here, we report two naphthalenediimide-based (NDI-based) Ca-MOFs: DGIST-6 and DGIST-7. Neutral DGIST-6, which is generated first during solvothermal synthesis, decomposes and is converted into radical-anionic DGIST-7. Cofacial (NDI)2•- and (NDI)22- dimers are effectively stabilized in DGIST-7 by electron delocalization and spin-pairing as well as dimethylammonium counter cations in their pores. Single-crystal x-ray diffractometry was used to visualize redox-associated structural transformations, such as changes in centroid-to-centroid distance. Moreover, the unusual rapid reduction of oxidized DGIST-7 into the radical anion upon infrared irradiation results in effective and reproducible photothermal conversion. This study successfully illustrated the strategic use of in situ prepared cofacial ligand dimers in MOFs that facilitate the stabilization of radical ions.
Collapse
Affiliation(s)
- Bongkyeom Kim
- Department of Physics and Chemistry, Daegu Gyeongbuk Institute of Science and Technology (DGIST), 333 Techno Jungang-daero, Dalseong-gun, Daegu 42988, Republic of Korea
| | - Juhyung Lee
- Department of Physics and Chemistry, Daegu Gyeongbuk Institute of Science and Technology (DGIST), 333 Techno Jungang-daero, Dalseong-gun, Daegu 42988, Republic of Korea
| | - Ying-Pin Chen
- NSF’s ChemMatCARs, The University of Chicago Argonne, Chicago, IL 60439, USA
| | - Xue-Qian Wu
- Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, P.R. China
| | - Joongoo Kang
- Department of Physics and Chemistry, Daegu Gyeongbuk Institute of Science and Technology (DGIST), 333 Techno Jungang-daero, Dalseong-gun, Daegu 42988, Republic of Korea
| | - Hwakyeung Jeong
- Nuclear Chemistry Research Team, Korea Atomic Energy Research Institute, Daejeon 34057, Republic of Korea
| | - Sang-Eun Bae
- Nuclear Chemistry Research Team, Korea Atomic Energy Research Institute, Daejeon 34057, Republic of Korea
| | - Jian-Rong Li
- Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry and Chemical Engineering, College of Environmental and Energy Engineering, Beijing University of Technology, Beijing 100124, P.R. China
| | - Jooyoung Sung
- Department of Physics and Chemistry, Daegu Gyeongbuk Institute of Science and Technology (DGIST), 333 Techno Jungang-daero, Dalseong-gun, Daegu 42988, Republic of Korea
| | - Jinhee Park
- Department of Physics and Chemistry, Daegu Gyeongbuk Institute of Science and Technology (DGIST), 333 Techno Jungang-daero, Dalseong-gun, Daegu 42988, Republic of Korea
| |
Collapse
|
7
|
Wu G, Li F, Tang B, Zhang X. Molecular Engineering of Noncovalent Dimerization. J Am Chem Soc 2022; 144:14962-14975. [PMID: 35969112 DOI: 10.1021/jacs.2c02434] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Dimers are probably the simplest model to facilitate the understanding of fundamental physical and chemical processes that take place in much-expanded systems like aggregates, crystals, and other solid states. The molecular interplay within a dimer differentiates it from the corresponding monomeric state and determines its features. Molecular engineering of noncovalent dimerization through applied supramolecular restrictions enables additional control over molecular interplay, particularly over its dynamic aspect. This Perspective introduces the recent effort that has been made in the molecular engineering of noncovalent dimerization, including supramolecular dimers, folda-dimers, and macrocyclic dimers. It showcases how the variation in supramolecular restrictions endows molecular-based materials with improved performance and/or functions like enhanced emission, room-temperature phosphorescence, and effective catalysis. We particularly discuss pseudostatic dimers that can sustain molecular interplay for a long period of time, yet are still flexible enough to adapt to variations. The pseudostatic feature allows for active species to decay along an alternate pathway, thereby spinning off emerging features that are not readily accessible from conventional dynamic systems.
Collapse
Affiliation(s)
- Guanglu Wu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
| | - Fei Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
| | - Bohan Tang
- Key Laboratory of Organic Optoelectronics & Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Xi Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China.,Key Laboratory of Organic Optoelectronics & Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
8
|
Nie H, Wei Z, Ni XL, Liu Y. Assembly and Applications of Macrocyclic-Confinement-Derived Supramolecular Organic Luminescent Emissions from Cucurbiturils. Chem Rev 2022; 122:9032-9077. [PMID: 35312308 DOI: 10.1021/acs.chemrev.1c01050] [Citation(s) in RCA: 89] [Impact Index Per Article: 44.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Cucurbit[n]urils (Q[n]s or CB[n]s), as a classical of artificial organic macrocyclic hosts, were found to have excellent advantages in the fabricating of tunable and smart organic luminescent materials in aqueous media and the solid state with high emitting efficiency under the rigid pumpkin-shaped structure-derived macrocyclic-confinement effect in recent years. This review aims to give a systematically up-to-date overview of the Q[n]-based supramolecular organic luminescent emissions from the confined spaces triggered host-guest complexes, including the assembly fashions and the mechanisms of the macrocycle-based luminescent complexes, as well as their applications. Finally, challenges and outlook are provided. Since this class of Q[n]-based supramolecular organic luminescent emissions, which have essentially derived from the cavity-dependent confinement effect and the resulting assembly fashions, emerged only a few years ago, we hope this review will provide valuable information for the further development of macrocycle-based light-emitting materials and other related research fields.
Collapse
Affiliation(s)
- Haigen Nie
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine (Ministry of Educational of China), Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University, Changsha, Hunan 410081, China
| | - Zhen Wei
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China
| | - Xin-Long Ni
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine (Ministry of Educational of China), Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University, Changsha, Hunan 410081, China.,Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang 550025, China
| | - Yu Liu
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
9
|
Chen X, Mao H, Feng Y, Cai K, Shen D, Wu H, Zhang L, Zhao X, Chen H, Song B, Jiao Y, Wu Y, Stern CL, Wasielewski MR, Stoddart JF. Radically Enhanced Dual Recognition. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202109647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Xiao‐Yang Chen
- Department of Chemistry Northwestern University 2145 Sheridan Road Evanston IL 60208 USA
| | - Haochuan Mao
- Department of Chemistry Northwestern University 2145 Sheridan Road Evanston IL 60208 USA
- Institute for Sustainability and Energy at Northwestern Northwestern University 2145 Sheridan Road Evanston IL 60208 USA
| | - Yuanning Feng
- Department of Chemistry Northwestern University 2145 Sheridan Road Evanston IL 60208 USA
| | - Kang Cai
- Department of Chemistry Nankai University 94 Weijin Road, Nankai District Tianjin 300071 China
| | - Dengke Shen
- Institutes of Physical Science and Information Technology Anhui University Hefei 230601 China
| | - Huang Wu
- Department of Chemistry Northwestern University 2145 Sheridan Road Evanston IL 60208 USA
| | - Long Zhang
- Department of Chemistry Northwestern University 2145 Sheridan Road Evanston IL 60208 USA
| | - Xingang Zhao
- Department of Chemistry Northwestern University 2145 Sheridan Road Evanston IL 60208 USA
| | - Hongliang Chen
- Department of Chemistry Northwestern University 2145 Sheridan Road Evanston IL 60208 USA
| | - Bo Song
- Department of Chemistry Northwestern University 2145 Sheridan Road Evanston IL 60208 USA
| | - Yang Jiao
- Department of Chemistry Northwestern University 2145 Sheridan Road Evanston IL 60208 USA
| | - Yong Wu
- Department of Chemistry Northwestern University 2145 Sheridan Road Evanston IL 60208 USA
| | - Charlotte L. Stern
- Department of Chemistry Northwestern University 2145 Sheridan Road Evanston IL 60208 USA
| | - Michael R. Wasielewski
- Department of Chemistry Northwestern University 2145 Sheridan Road Evanston IL 60208 USA
- Institute for Sustainability and Energy at Northwestern Northwestern University 2145 Sheridan Road Evanston IL 60208 USA
| | - J. Fraser Stoddart
- Department of Chemistry Northwestern University 2145 Sheridan Road Evanston IL 60208 USA
- School of Chemistry University of New South Wales Sydney NSW 2052 Australia
- Stoddart Institute of Molecular Science Department of Chemistry Zhejiang University Hangzhou 310027 China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center Hangzhou 311215 China
| |
Collapse
|
10
|
Zheng L, Zhu W, Zhou Z, Liu K, Gao M, Tang BZ. Red-to-NIR emissive radical cations derived from simple pyrroles. MATERIALS HORIZONS 2021; 8:3082-3087. [PMID: 34505616 DOI: 10.1039/d1mh01121a] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Red-to-near-infrared (NIR) fluorophores are highly desirable in bio-imaging studies with advantages of high tissue penetration ability and less interference from auto-fluorescence. However, their preparation usually requires tedious synthetic procedures, which seriously restrict their applications. Thus, the direct preparation of red-to-NIR fluorophores from easily available substrates is highly desirable. Compared with the conventional closed-shell fluorophores, radical cations feature a large red-shift absorption, but only very few of them are fluorescent and they suffer from high instability. Herein, we proposed a convenient strategy for the preparation of red-to-NIR fluorophores through air oxidation of electron-rich 2,5-dimethylpyrroles to in situ generate red-to-NIR emissive radical cations, which can be stabilized by adsorption on silica gel-coated thin layer chromatography (TLC) plates or encapsulated in cucurbit[7]uril (CB[7]). The radical cations derived from pyrroles were verified using electron paramagnetic resonance (EPR) spectroscopy, theoretical calculations and one-electron oxidation experiments. Moreover, the pyrrole-derived radical cations encapsulated in CB[7] can be used for mitochondrial imaging in living cells with high specificity and in vivo imaging with long-term stability. The easily available pyrrole-derived radical cations with red-to-NIR emission are thus promising for biomedical applications.
Collapse
Affiliation(s)
- Lihua Zheng
- National Engineering Research Center for Tissue Restoration and Reconstruction, Key Laboratory of Biomedical Engineering of Guangdong Province, Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, Innovation Center for Tissue Restoration and Reconstruction, School of Biomedical Science and Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510006, China.
| | - Wenchao Zhu
- National Engineering Research Center for Tissue Restoration and Reconstruction, Key Laboratory of Biomedical Engineering of Guangdong Province, Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, Innovation Center for Tissue Restoration and Reconstruction, School of Biomedical Science and Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510006, China.
| | - Zikai Zhou
- National Engineering Research Center for Tissue Restoration and Reconstruction, Key Laboratory of Biomedical Engineering of Guangdong Province, Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, Innovation Center for Tissue Restoration and Reconstruction, School of Biomedical Science and Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510006, China.
| | - Kai Liu
- Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, China.
| | - Meng Gao
- National Engineering Research Center for Tissue Restoration and Reconstruction, Key Laboratory of Biomedical Engineering of Guangdong Province, Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, Innovation Center for Tissue Restoration and Reconstruction, School of Biomedical Science and Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510006, China.
| | - Ben Zhong Tang
- AIE institute, State Key Laboratory of Luminescent Materials and Devices, Center for Aggregation-Induced Emission, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, Guangzhou International Campus, South China University of Technology, Guangzhou 510640, China
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction and Institute for Advanced Study, The Hong Kong University of Science and Technology, Hong Kong 999077, China
- Shenzhen Institute of Aggregate Science and Technology, School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen 518172, China.
| |
Collapse
|
11
|
Huang B, Mao L, Shi X, Yang HB. Recent advances and perspectives on supramolecular radical cages. Chem Sci 2021; 12:13648-13663. [PMID: 34760150 PMCID: PMC8549795 DOI: 10.1039/d1sc01618k] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 08/31/2021] [Indexed: 12/20/2022] Open
Abstract
Supramolecular radical chemistry has been emerging as a cutting-edge interdisciplinary field of traditional supramolecular chemistry and radical chemistry in recent years. The purpose of such a fundamental research field is to combine traditional supramolecular chemistry and radical chemistry together, and take the benefit of both to eventually create new molecules and materials. Recently, supramolecular radical cages have been becoming one of the most frontier and challenging research focuses in the field of supramolecular chemistry. In this Perspective, we give a brief introduction to organic radical chemistry, supramolecular chemistry, and the emerging supramolecular radical chemistry along with their history and application. Subsequently, we turn to the main part of this topic: supramolecular radical cages. The design and synthesis of supramolecular cages consisting of redox-active building blocks and radical centres are summarized. The host-guest interactions between supramolecular (radical) cages and organic radicals are also surveyed. Some interesting properties and applications of supramolecular radical cages such as their unique spin-spin interactions and intriguing confinement effects in radical-mediated/catalyzed reactions are comprehensively discussed and highlighted in the main text. The purpose of this Perspective is to help students and researchers understand the development of supramolecular radical cages, and potentially to stimulate innovation and creativity and infuse new energy into the fields of traditional supramolecular chemistry and radical chemistry as well as supramolecular radical chemistry.
Collapse
Affiliation(s)
- Bin Huang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University 3663 N. Zhongshan Road Shanghai 200062 P. R. China
| | - Lijun Mao
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University 3663 N. Zhongshan Road Shanghai 200062 P. R. China
| | - Xueliang Shi
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University 3663 N. Zhongshan Road Shanghai 200062 P. R. China
| | - Hai-Bo Yang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University 3663 N. Zhongshan Road Shanghai 200062 P. R. China
| |
Collapse
|
12
|
Liu H, Lin M, Cui Y, Gan W, Sun J, Li B, Zhao Y. Single-crystal structures of cucurbituril-based supramolecular host-guest complexes for bioimaging. Chem Commun (Camb) 2021; 57:10190-10193. [PMID: 34519729 DOI: 10.1039/d1cc04823f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Two single-crystal structures of cucurbit[n]uril mediated supramolecular complexes were obtained in which [1+3] and [2+3] self-assembly modes are adopted due to the different sizes of cucurbit[7]uril and cucurbit[8]uril. An obvious red-shift in absorption and emission was observed compared to the guest molecule itself which makes them good biolabels.
Collapse
Affiliation(s)
- Hui Liu
- College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China.
| | - Min Lin
- College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China.
| | - Yu Cui
- College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China.
| | - Weijin Gan
- College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China.
| | - Jing Sun
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China.
| | - Bo Li
- Department of Cardiology, Zibo Central Hospital, Shandong University, Zibo 255000, P. R. China.
| | - Yingjie Zhao
- College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China.
| |
Collapse
|
13
|
Broløs L, Klaue K, Bendix J, Grubert L, Hecht S, Nielsen MB. Stabilizing Indigo
Z
‐Isomer through Intramolecular Associations of Redox‐Active Appendages. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100781] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Line Broløs
- Department of Chemistry University of Copenhagen Universitetsparken 5 DK-2100 Copenhagen Ø Denmark
| | - Kristin Klaue
- Department of Chemistry & IRIS Adlershof Humboldt-Universität zu Berlin Brook-Taylor-Str. 2 12489 Berlin Germany
| | - Jesper Bendix
- Department of Chemistry University of Copenhagen Universitetsparken 5 DK-2100 Copenhagen Ø Denmark
| | - Lutz Grubert
- Department of Chemistry & IRIS Adlershof Humboldt-Universität zu Berlin Brook-Taylor-Str. 2 12489 Berlin Germany
| | - Stefan Hecht
- Department of Chemistry & IRIS Adlershof Humboldt-Universität zu Berlin Brook-Taylor-Str. 2 12489 Berlin Germany
- DWI – Leibniz Institute for Interactive Materials Forckenbeckstr. 50 52074 Aachen Germany
- Institute of Technical and Macromolecular Chemistry RWTH Aachen University Worringer Weg 2 52074 Aachen Germany
| | - Mogens Brøndsted Nielsen
- Department of Chemistry University of Copenhagen Universitetsparken 5 DK-2100 Copenhagen Ø Denmark
| |
Collapse
|
14
|
Torres A, Collado A, Gómez-Gallego M, Ramírez de Arellano C, Sierra MA. Electrocatalytic Behavior of Tetrathiafulvalene (TTF) and Extended Tetrathiafulvalene (exTTF) [FeFe] Hydrogenase Mimics. ACS ORGANIC & INORGANIC AU 2021; 2:23-33. [PMID: 36855407 PMCID: PMC9954209 DOI: 10.1021/acsorginorgau.1c00011] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
TTF- and exTTF-containing [(μ-S2)Fe2(CO)6] complexes have been prepared by the photochemical reaction of TTF or exTTF and [(μ-S2)Fe2(CO)6]. These complexes are able to interact with PAHs. In the absence of air and in acid media an electrocatalytic dihydrogen evolution reaction (HER) occurs, similarly to analogous [(μ-S2)Fe2(CO)6] complexes. However, in the presence of air, the TTF and exTTF organic moieties strongly influence the electrochemistry of these systems. The reported data may be valuable in the design of [FeFe] hydrogenase mimics able to combine the HER properties of the [FeFe] cores with the unique TTF properties.
Collapse
Affiliation(s)
- Alejandro Torres
- Departamento
de Química Orgánica I, Facultad de Química, Universidad Complutense, 28040 Madrid, Spain,Center
for Innovation in Advanced Chemistry (ORFEO-CINQA), Facultad de Química, Universidad Complutense, 28040 Madrid, Spain
| | - Alba Collado
- Departamento
de Química Orgánica I, Facultad de Química, Universidad Complutense, 28040 Madrid, Spain,Center
for Innovation in Advanced Chemistry (ORFEO-CINQA), Facultad de Química, Universidad Complutense, 28040 Madrid, Spain
| | - Mar Gómez-Gallego
- Departamento
de Química Orgánica I, Facultad de Química, Universidad Complutense, 28040 Madrid, Spain,Center
for Innovation in Advanced Chemistry (ORFEO-CINQA), Facultad de Química, Universidad Complutense, 28040 Madrid, Spain
| | - Carmen Ramírez de Arellano
- Center
for Innovation in Advanced Chemistry (ORFEO-CINQA), Facultad de Química, Universidad Complutense, 28040 Madrid, Spain,Departamento
de Química Orgánica, Universidad
de Valencia, 46100 Valencia, Spain
| | - Miguel A. Sierra
- Departamento
de Química Orgánica I, Facultad de Química, Universidad Complutense, 28040 Madrid, Spain,Center
for Innovation in Advanced Chemistry (ORFEO-CINQA), Facultad de Química, Universidad Complutense, 28040 Madrid, Spain,Email for M.A.S.:
| |
Collapse
|
15
|
Chen XY, Mao H, Feng Y, Cai K, Shen D, Wu H, Zhang L, Zhao X, Chen H, Song B, Jiao Y, Wu Y, Stern CL, Wasielewski MR, Stoddart JF. Radically Enhanced Dual Recognition. Angew Chem Int Ed Engl 2021; 60:25454-25462. [PMID: 34342116 DOI: 10.1002/anie.202109647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Indexed: 11/08/2022]
Abstract
Complexation between a viologen radical cation (V.+ ) and cyclobis(paraquat-p-phenylene) diradical dication (CBPQT2(.+) ) has been investigated and utilized extensively in the construction of mechanically interlocked molecules (MIMs) and artificial molecular machines (AMMs). The selective recognition of a pair of V.+ using radical-pairing interactions, however, remains a formidable challenge. Herein, we report the efficient encapsulation of two methyl viologen radical cations (MV.+ ) in a size-matched bisradical dicationic host - namely, cyclobis(paraquat-2,6-naphthalene)2(.+) , i.e., CBPQN2(.+) . Central to this dual recognition process was the choice of 2,6-bismethylenenaphthalene linkers for incorporation into the bisradical dicationic host. They provide the space between the two bipyridinium radical cations in CBPQN2(.+) suitable for binding two MV.+ with relatively short (3.05-3.25 Å) radical-pairing distances. The size-matched bisradical dicationic host was found to exhibit highly selective and cooperative association with the two MV.+ in MeCN at room temperature. The formation of the tetrakisradical tetracationic inclusion complex - namely, [(MV)2 ⊂CBPQN]4( .+) - in MeCN was confirmed by VT 1 H NMR, as well as by EPR spectroscopy. The solid-state superstructure of [(MV)2 ⊂CBPQN]4( .+) reveals an uneven distribution of the binding distances (3.05, 3.24, 3.05 Å) between the three different V.+ , suggesting that localization of the radical-pairing interactions has a strong influence on the packing of the two MV.+ inside the bisradical dicationic host. Our findings constitute a rare example of binding two radical guests with high affinity and cooperativity using host-guest radical-pairing interactions. Moreover, they open up possibilities of harnessing the tetrakisradical tetracationic inclusion complex as a new, orthogonal and redox-switchable recognition motif for the construction of MIMs and AMMs.
Collapse
Affiliation(s)
- Xiao-Yang Chen
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - Haochuan Mao
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA.,Institute for Sustainability and Energy at Northwestern, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - Yuanning Feng
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - Kang Cai
- Department of Chemistry, Nankai University, 94 Weijin Road, Nankai District, Tianjin, 300071, China
| | - Dengke Shen
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, China
| | - Huang Wu
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - Long Zhang
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - Xingang Zhao
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - Hongliang Chen
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - Bo Song
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - Yang Jiao
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - Yong Wu
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - Charlotte L Stern
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - Michael R Wasielewski
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA.,Institute for Sustainability and Energy at Northwestern, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - J Fraser Stoddart
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA.,School of Chemistry, University of New South Wales, Sydney, NSW, 2052, Australia.,Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou, 310027, China.,ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 311215, China
| |
Collapse
|
16
|
Broløs L, Kilde MD, Brock‐Nannestad T, Nielsen MB. Dimeric Indenofluorene‐Extended Tetrathiafulvalene Motif for Enhanced Intramolecular Complexation. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100514] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Line Broløs
- Department of Chemistry University of Copenhagen Universitetsparken 5 DK-2100 Copenhagen Ø Denmark
| | - Martin Drøhse Kilde
- Department of Chemistry University of Copenhagen Universitetsparken 5 DK-2100 Copenhagen Ø Denmark
| | - Theis Brock‐Nannestad
- Department of Chemistry University of Copenhagen Universitetsparken 5 DK-2100 Copenhagen Ø Denmark
| | - Mogens Brøndsted Nielsen
- Department of Chemistry University of Copenhagen Universitetsparken 5 DK-2100 Copenhagen Ø Denmark
| |
Collapse
|
17
|
Liu Z, Zhang Z, Li T, Zhao W. Three-Dimensional Diradical Metallacage with an Open-Shell Ground State. Organometallics 2021. [DOI: 10.1021/acs.organomet.1c00285] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Zhaoyue Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Zhonghui Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Tao Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Wanxiang Zhao
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| |
Collapse
|
18
|
Cai K, Zhang L, Astumian RD, Stoddart JF. Radical-pairing-induced molecular assembly and motion. Nat Rev Chem 2021; 5:447-465. [PMID: 37118435 DOI: 10.1038/s41570-021-00283-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/16/2021] [Indexed: 12/25/2022]
Abstract
Radical-pairing interactions between conjugated organic π-radicals are relative newcomers to the inventory of molecular recognition motifs explored in supramolecular chemistry. The unique electronic, magnetic, optical and redox-responsive properties of the conjugated π-radicals render molecules designed with radical-pairing interactions useful for applications in various areas of chemistry and materials science. In particular, the ability to control formation of radical cationic or anionic species, by redox stimulation, provides a flexible trigger for directed assembly and controlled molecular motions, as well as a convenient means of inputting energy to fuel non-equilibrium processes. In this Review, we provide an overview of different examples of radical-pairing-based recognition processes and of their emerging use in (1) supramolecular assembly, (2) templation of mechanically interlocked molecules, (3) stimuli-controlled molecular switches and, by incorporation of kinetic asymmetry in the design, (4) the creation of unidirectional molecular transporters based on pumping cassettes powered by fuelled switching of radical-pairing interactions. We conclude the discussion with an outlook on future directions for the field.
Collapse
|
19
|
Construction of supramolecular hyperbranched polymers based on a tetrathiafulvalene derivative: Self-assembly and charge transfer interaction with TCNQ. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2021.152823] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
20
|
Krykun S, Croué V, Alévêque O, Levillain E, Allain M, Mézière C, Carré V, Aubriet F, Voïtenko Z, Goeb S, Sallé M. A self-assembled tetrathiafulvalene box. Org Chem Front 2021. [DOI: 10.1039/d0qo01543a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A M8L2 metalla-cage constructed through coordination-driven self-assembly from a quinonato bis-ruthenium complex and an electron-rich tetrathiafulvalene (TTF) tetrapyridyl ligand is depicted.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Vincent Carré
- LCP-A2MC
- FR 3624
- Université de Lorraine
- ICPM
- 57078 Metz Cedex 03
| | | | - Zoia Voïtenko
- Taras Shevchenko National University of Kyiv
- Kyiv 01033
- Ukraine
| | | | - Marc Sallé
- Univ Angers
- CNRS
- MOLTECH-ANJOU
- F-49000 Angers
- France
| |
Collapse
|
21
|
Jiang WL, Peng Z, Huang B, Zhao XL, Sun D, Shi X, Yang HB. TEMPO Radical-Functionalized Supramolecular Coordination Complexes with Controllable Spin–Spin Interactions. J Am Chem Soc 2020; 143:433-441. [DOI: 10.1021/jacs.0c11738] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Wei-Ling Jiang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P. R. China
| | - Zhiyong Peng
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P. R. China
| | - Bin Huang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P. R. China
| | - Xiao-Li Zhao
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P. R. China
| | - Di Sun
- Key Lab of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P. R. China
| | - Xueliang Shi
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P. R. China
| | - Hai-Bo Yang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P. R. China
| |
Collapse
|
22
|
Shiina Y, Kage Y, Furukawa K, Wang H, Yoshikawa H, Furuta H, Kobayashi N, Shimizu S. TTF‐Annulated Silicon Phthalocyanine Oligomers and Their External‐Stimuli‐Responsive Orientational Ordering. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202011025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Yuta Shiina
- Department of Chemistry Graduate School of Science Tohoku University Sendai 980-8578 Japan
| | - Yuto Kage
- Department of Chemistry and Biochemistry Graduate School of Engineering and Center for Molecular Systems Kyushu University Fukuoka 819-0395 Japan
| | - Ko Furukawa
- Center for Coordination of Research Facilities Institute for Research Promotion Niigata University Niigata 950-2181 Japan
| | - Heng Wang
- School of Material and Chemical Engineering Zhengzhou University of Light Industry Zhengzhou 450002 P. R. China
| | - Hirofumi Yoshikawa
- School of Science and Technology Kwansei Gakuin University Hyogo 669-1337 Japan
| | - Hiroyuki Furuta
- Department of Chemistry and Biochemistry Graduate School of Engineering and Center for Molecular Systems Kyushu University Fukuoka 819-0395 Japan
| | - Nagao Kobayashi
- Department of Chemistry Graduate School of Science Tohoku University Sendai 980-8578 Japan
- Faculty of Textile Science and Technology Shinshu University Ueda 386-8567 Japan
| | - Soji Shimizu
- Department of Chemistry and Biochemistry Graduate School of Engineering and Center for Molecular Systems Kyushu University Fukuoka 819-0395 Japan
| |
Collapse
|
23
|
Shiina Y, Kage Y, Furukawa K, Wang H, Yoshikawa H, Furuta H, Kobayashi N, Shimizu S. TTF‐Annulated Silicon Phthalocyanine Oligomers and Their External‐Stimuli‐Responsive Orientational Ordering. Angew Chem Int Ed Engl 2020; 59:22721-22730. [DOI: 10.1002/anie.202011025] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Indexed: 11/07/2022]
Affiliation(s)
- Yuta Shiina
- Department of Chemistry Graduate School of Science Tohoku University Sendai 980-8578 Japan
| | - Yuto Kage
- Department of Chemistry and Biochemistry Graduate School of Engineering and Center for Molecular Systems Kyushu University Fukuoka 819-0395 Japan
| | - Ko Furukawa
- Center for Coordination of Research Facilities Institute for Research Promotion Niigata University Niigata 950-2181 Japan
| | - Heng Wang
- School of Material and Chemical Engineering Zhengzhou University of Light Industry Zhengzhou 450002 P. R. China
| | - Hirofumi Yoshikawa
- School of Science and Technology Kwansei Gakuin University Hyogo 669-1337 Japan
| | - Hiroyuki Furuta
- Department of Chemistry and Biochemistry Graduate School of Engineering and Center for Molecular Systems Kyushu University Fukuoka 819-0395 Japan
| | - Nagao Kobayashi
- Department of Chemistry Graduate School of Science Tohoku University Sendai 980-8578 Japan
- Faculty of Textile Science and Technology Shinshu University Ueda 386-8567 Japan
| | - Soji Shimizu
- Department of Chemistry and Biochemistry Graduate School of Engineering and Center for Molecular Systems Kyushu University Fukuoka 819-0395 Japan
| |
Collapse
|
24
|
Wu Y, Frasconi M, Liu WG, Young RM, Goddard WA, Wasielewski MR, Stoddart JF. Electrochemical Switching of a Fluorescent Molecular Rotor Embedded within a Bistable Rotaxane. J Am Chem Soc 2020; 142:11835-11846. [PMID: 32470290 PMCID: PMC8007092 DOI: 10.1021/jacs.0c03701] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
![]()
We
report how the nanoconfined environment, introduced by the mechanical
bonds within an electrochemically switchable bistable [2]rotaxane,
controls the rotation of a fluorescent molecular rotor, namely, an
8-phenyl-substituted boron dipyrromethene (BODIPY). The electrochemical
switching of the bistable [2]rotaxane induces changes in the ground-state
coconformation and in the corresponding excited-state properties of
the BODIPY rotor. In the starting redox state, when no external potential
is applied, the cyclobis(paraquat-p-phenylene) (CBPQT4+) ring component encircles the tetrathiafulvalene (TTF) unit
on the dumbbell component, leaving the BODIPY rotor unhindered and
exhibiting low fluorescence. Upon oxidation of the TTF unit to a TTF2+ dication, the CBPQT4+ ring is forced toward the
molecular rotor, leading to an increased energy barrier for the excited
state to rotate the rotor into the state with a high nonradiative
rate constant, resulting in an overall 3.4-fold fluorescence enhancement.
On the other hand, when the solvent polarity is high enough to stabilize
the excited charge-transfer state between the BODIPY rotor and the
CBPQT4+ ring, movement of the ring toward the BODIPY rotor
produces an unexpectedly strong fluorescence signal decrease as the
result of photoinduced electron transfer from the BODIPY rotor to
the CBPQT4+ ring. The nanoconfinement effect introduced
by mechanical bonding can effectively lead to modulation of the physicochemical
properties as observed in this bistable [2]rotaxane. On account of
the straightforward synthetic strategy and the facile modulation of
switchable electrochromic behavior, our approach could pave the way
for the development of new stimuli-responsive materials based on mechanically
interlocked molecules for future electro-optical applications, such
as sensors, molecular memories, and molecular logic gates.
Collapse
Affiliation(s)
| | - Marco Frasconi
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, Padova 35131, Italy
| | - Wei-Guang Liu
- Materials and Process Simulation Center, California Institute of Technology, Pasadena, California 91125, United States
| | | | - William A Goddard
- Materials and Process Simulation Center, California Institute of Technology, Pasadena, California 91125, United States
| | | | - J Fraser Stoddart
- Institute for Molecular Design and Synthesis, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, China.,School of Chemistry, University of New South Wales, Sydney, New South Wales 2052, Australia
| |
Collapse
|
25
|
Wu K, Li K, Chen S, Hou Y, Lu Y, Wang J, Wei M, Pan M, Su C. The Redox Coupling Effect in a Photocatalytic Ru
II
‐Pd
II
Cage with TTF Guest as Electron Relay Mediator for Visible‐Light Hydrogen‐Evolving Promotion. Angew Chem Int Ed Engl 2020; 59:2639-2643. [DOI: 10.1002/anie.201913303] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 11/19/2019] [Indexed: 12/11/2022]
Affiliation(s)
- Kai Wu
- MOE Laboratory of Bioinorganic and Synthetic ChemistryLehn Institute of Functional MaterialsSchool of ChemistrySun Yat-Sen University Guangzhou 510275 China
| | - Kang Li
- MOE Laboratory of Bioinorganic and Synthetic ChemistryLehn Institute of Functional MaterialsSchool of ChemistrySun Yat-Sen University Guangzhou 510275 China
| | - Sha Chen
- MOE Laboratory of Bioinorganic and Synthetic ChemistryLehn Institute of Functional MaterialsSchool of ChemistrySun Yat-Sen University Guangzhou 510275 China
| | - Ya‐Jun Hou
- MOE Laboratory of Bioinorganic and Synthetic ChemistryLehn Institute of Functional MaterialsSchool of ChemistrySun Yat-Sen University Guangzhou 510275 China
| | - Yu‐Lin Lu
- MOE Laboratory of Bioinorganic and Synthetic ChemistryLehn Institute of Functional MaterialsSchool of ChemistrySun Yat-Sen University Guangzhou 510275 China
| | - Jing‐Si Wang
- MOE Laboratory of Bioinorganic and Synthetic ChemistryLehn Institute of Functional MaterialsSchool of ChemistrySun Yat-Sen University Guangzhou 510275 China
| | - Mei‐Juan Wei
- MOE Laboratory of Bioinorganic and Synthetic ChemistryLehn Institute of Functional MaterialsSchool of ChemistrySun Yat-Sen University Guangzhou 510275 China
| | - Mei Pan
- MOE Laboratory of Bioinorganic and Synthetic ChemistryLehn Institute of Functional MaterialsSchool of ChemistrySun Yat-Sen University Guangzhou 510275 China
| | - Cheng‐Yong Su
- MOE Laboratory of Bioinorganic and Synthetic ChemistryLehn Institute of Functional MaterialsSchool of ChemistrySun Yat-Sen University Guangzhou 510275 China
- State Key Laboratory of Organometallic ChemistryShanghai Institute of Organic ChemistryChinese Academy of Sciences China
| |
Collapse
|
26
|
Wang F, Wang J, Maehrlein SF, Ma Y, Liu F, Zhu XY. Broad-Band Near-Infrared Doublet Emission in a Tetrathiafulvalene-Based Metal-Organic Framework. J Phys Chem Lett 2020; 11:762-766. [PMID: 31935326 DOI: 10.1021/acs.jpclett.9b03383] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The upper limit in LED quantum efficiency from conventional closed-shell molecules is 25% as dictated by singlet and triplet spin statistics. Spin-doublet organic molecules are attractive candidates to exceed this limit, thanks to their 100% theoretical quantum efficiency in radiative recombination. However, examples of stable spin-doublet molecules in the solid state are rare. Here we show broad-band near-infrared emission in the columnar π-π stacked tetrathiafulvalene (TTF) in a metal organic framework (MOF) single crystal. The broad emission is similar to known TTF+• doublet emission and is stabilized in the MOF crystal. This interpretation is supported by the observation of enhanced PL emission following UV oxidation of the MOF crystal to increase the doublet concentration. The findings suggest tetrathiafulvalene-based MOFs as promising materials for near-IR light emission and the MOF structure may be a general strategy to stabilize radical cation species in the solid state.
Collapse
Affiliation(s)
- Feifan Wang
- Department of Chemistry , Columbia University , New York , New York 10027 , United States
| | - Jue Wang
- Department of Chemistry , Columbia University , New York , New York 10027 , United States
| | - Sebastian F Maehrlein
- Department of Chemistry , Columbia University , New York , New York 10027 , United States
| | - Yingzi Ma
- Department of Chemistry , Columbia University , New York , New York 10027 , United States
| | - Fang Liu
- Department of Chemistry , Columbia University , New York , New York 10027 , United States
| | - X-Y Zhu
- Department of Chemistry , Columbia University , New York , New York 10027 , United States
| |
Collapse
|
27
|
Tang B, Zhao J, Xu JF, Zhang X. Tuning the stability of organic radicals: from covalent approaches to non-covalent approaches. Chem Sci 2020; 11:1192-1204. [PMID: 34123243 PMCID: PMC8148027 DOI: 10.1039/c9sc06143f] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 12/26/2019] [Indexed: 12/22/2022] Open
Abstract
Organic radicals are important species with single electrons. Because of their open-shell structure, they are widely used in functional materials, such as spin probes, magnetic materials and optoelectronic materials. Owing to the high reactivity of single electrons, they often serve as a key intermediate in organic synthesis. Therefore, tuning the stability of radicals is crucial for their functions. Herein, we summarize covalent and non-covalent approaches to tune the stability of organic radicals through steric effects and tuning the delocalization of spin density. Covalent approaches can tune the stability of radicals effectively and non-covalent approaches benefit from dynamicity and reversibility. It is anticipated that the further development of covalent and non-covalent approaches, as well as the interplay between them, may push the fields forward by enriching new radical materials and radical mediated reactions.
Collapse
Affiliation(s)
- Bohan Tang
- Key Laboratory of Organic Optoelectronics & Molecular Engineering, Department of Chemistry, Tsinghua University Beijing 100084 China
| | - Jiantao Zhao
- Key Laboratory of Organic Optoelectronics & Molecular Engineering, Department of Chemistry, Tsinghua University Beijing 100084 China
| | - Jiang-Fei Xu
- Key Laboratory of Organic Optoelectronics & Molecular Engineering, Department of Chemistry, Tsinghua University Beijing 100084 China
| | - Xi Zhang
- Key Laboratory of Organic Optoelectronics & Molecular Engineering, Department of Chemistry, Tsinghua University Beijing 100084 China
| |
Collapse
|
28
|
Wu K, Li K, Chen S, Hou Y, Lu Y, Wang J, Wei M, Pan M, Su C. The Redox Coupling Effect in a Photocatalytic Ru
II
‐Pd
II
Cage with TTF Guest as Electron Relay Mediator for Visible‐Light Hydrogen‐Evolving Promotion. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201913303] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Kai Wu
- MOE Laboratory of Bioinorganic and Synthetic ChemistryLehn Institute of Functional MaterialsSchool of ChemistrySun Yat-Sen University Guangzhou 510275 China
| | - Kang Li
- MOE Laboratory of Bioinorganic and Synthetic ChemistryLehn Institute of Functional MaterialsSchool of ChemistrySun Yat-Sen University Guangzhou 510275 China
| | - Sha Chen
- MOE Laboratory of Bioinorganic and Synthetic ChemistryLehn Institute of Functional MaterialsSchool of ChemistrySun Yat-Sen University Guangzhou 510275 China
| | - Ya‐Jun Hou
- MOE Laboratory of Bioinorganic and Synthetic ChemistryLehn Institute of Functional MaterialsSchool of ChemistrySun Yat-Sen University Guangzhou 510275 China
| | - Yu‐Lin Lu
- MOE Laboratory of Bioinorganic and Synthetic ChemistryLehn Institute of Functional MaterialsSchool of ChemistrySun Yat-Sen University Guangzhou 510275 China
| | - Jing‐Si Wang
- MOE Laboratory of Bioinorganic and Synthetic ChemistryLehn Institute of Functional MaterialsSchool of ChemistrySun Yat-Sen University Guangzhou 510275 China
| | - Mei‐Juan Wei
- MOE Laboratory of Bioinorganic and Synthetic ChemistryLehn Institute of Functional MaterialsSchool of ChemistrySun Yat-Sen University Guangzhou 510275 China
| | - Mei Pan
- MOE Laboratory of Bioinorganic and Synthetic ChemistryLehn Institute of Functional MaterialsSchool of ChemistrySun Yat-Sen University Guangzhou 510275 China
| | - Cheng‐Yong Su
- MOE Laboratory of Bioinorganic and Synthetic ChemistryLehn Institute of Functional MaterialsSchool of ChemistrySun Yat-Sen University Guangzhou 510275 China
- State Key Laboratory of Organometallic ChemistryShanghai Institute of Organic ChemistryChinese Academy of Sciences China
| |
Collapse
|
29
|
Huo GF, Shi X, Tu Q, Hu YX, Wu GY, Yin GQ, Li X, Xu L, Ding HM, Yang HB. Radical-Induced Hierarchical Self-Assembly Involving Supramolecular Coordination Complexes in Both Solution and Solid States. J Am Chem Soc 2019; 141:16014-16023. [PMID: 31509391 DOI: 10.1021/jacs.9b08149] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
To explore a new supramolecular interaction as the main driving force to induce hierarchical self-assembly (HSA) is of great importance in supramolecular chemistry. Herein, we present a radical-induced HSA process through the construction of well-defined rhomboidal metallacycles containing triphenylamine (TPA) moieties. The light-induced radical generation of the TPA-based metallacycle has been demonstrated, which was found to subsequently drive hierarchical self-assembly of metallacycles in both solution and solid states. The morphologies of nanovesicle structures and nanospheres resulting from hierarchical self-assembly have been well-illustrated by using TEM and high-angle annular dark-field STEM (HAADF-STEM) micrographs. The mechanism of HSA is supposed to be associated with the TPA radical interaction and metallacycle stacking interaction, which has been supported by the coarse-grained molecular dynamics simulations. This study provides important information to understand the fundamental TPA radical interaction, which thus injects new energy into the hierarchical self-assembly of supramolecular coordination complexes (SCCs). More interestingly, the stability of TPA radical cations was significantly increased in these metallacycles during the hierarchical self-assembly process, thereby opening a new way to develop stable organic radical cations in the future.
Collapse
Affiliation(s)
- Gui-Fei Huo
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering , East China Normal University , Shanghai 200062 , P. R. China
| | - Xueliang Shi
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering , East China Normal University , Shanghai 200062 , P. R. China
| | - Qian Tu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering , East China Normal University , Shanghai 200062 , P. R. China
| | - Yi-Xiong Hu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering , East China Normal University , Shanghai 200062 , P. R. China
| | - Gui-Yuan Wu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering , East China Normal University , Shanghai 200062 , P. R. China
| | - Guang-Qiang Yin
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering , East China Normal University , Shanghai 200062 , P. R. China.,Department of Chemistry , University of South Florida , Tampa , Florida 33620 , United States
| | - Xiaopeng Li
- Department of Chemistry , University of South Florida , Tampa , Florida 33620 , United States
| | - Lin Xu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering , East China Normal University , Shanghai 200062 , P. R. China
| | - Hong-Ming Ding
- Center for Soft Condensed Matter Physics and Interdisciplinary Research, School of Physical Science and Technology , Soochow University , Suzhou 215006 , P. R. China
| | - Hai-Bo Yang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering , East China Normal University , Shanghai 200062 , P. R. China
| |
Collapse
|
30
|
Tang B, Li WL, Chang Y, Yuan B, Wu Y, Zhang MT, Xu JF, Li J, Zhang X. A Supramolecular Radical Dimer: High-Efficiency NIR-II Photothermal Conversion and Therapy. Angew Chem Int Ed Engl 2019; 58:15526-15531. [PMID: 31478324 DOI: 10.1002/anie.201910257] [Citation(s) in RCA: 125] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Indexed: 12/15/2022]
Abstract
Photothermal therapy at the NIR-II biowindow (1000-1350 nm) is drawing increasing interest because of its large penetration depth and maximum permissible exposure. Now, the supramolecular radical dimer, fabricated by N,N'-dimethylated dipyridinium thiazolo[5,4-d]thiazole radical cation (MPT.+ ) and cucurbit[8]uril (CB[8]), achieves strong absorption at NIR-II biowindow. The supramolecular radical dimer (2MPT.+ -CB[8]) showed highly efficient photothermal conversion and improved stability, thus contributing to the strong inhibition on HegG2 cancer cell under 1064 nm irradiation even penetrating through chicken breast tissue. This work provides a novel approach to construct NIR-II chromophore by tailor-made assembly of organic radicals. It is anticipated that this study provides a new strategy to achieve NIR-II photothermal therapy and holds promises in luminescence materials, optoelectronic materials, and also biosensing.
Collapse
Affiliation(s)
- Bohan Tang
- Key Laboratory of Organic Optoelectronics & Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Wan-Lu Li
- Key Laboratory of Organic Optoelectronics & Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Yincheng Chang
- Key Laboratory of Organic Optoelectronics & Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Bin Yuan
- Key Laboratory of Organic Optoelectronics & Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Yukun Wu
- Key Laboratory of Organic Optoelectronics & Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Ming-Tian Zhang
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Jiang-Fei Xu
- Key Laboratory of Organic Optoelectronics & Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Jun Li
- Key Laboratory of Organic Optoelectronics & Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Xi Zhang
- Key Laboratory of Organic Optoelectronics & Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
31
|
A Supramolecular Radical Dimer: High‐Efficiency NIR‐II Photothermal Conversion and Therapy. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201910257] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
32
|
Wu K, Hou Y, Lu Y, Fan Y, Fan Y, Yu H, Li K, Pan M, Su C. Redox‐Guest‐Induced Multimode Photoluminescence Switch for Sequential Logic Gates in a Photoactive Coordination Cage. Chemistry 2019; 25:11903-11909. [DOI: 10.1002/chem.201901612] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 07/01/2019] [Indexed: 12/19/2022]
Affiliation(s)
- Kai Wu
- MOE Laboratory of Bioinorganic and Synthetic ChemistryLehn Institute of Functional MaterialsSchool of ChemistrySun Yat-Sen University Guangzhou 510275 P.R. China
| | - Ya‐Jun Hou
- MOE Laboratory of Bioinorganic and Synthetic ChemistryLehn Institute of Functional MaterialsSchool of ChemistrySun Yat-Sen University Guangzhou 510275 P.R. China
| | - Yu‐Lin Lu
- MOE Laboratory of Bioinorganic and Synthetic ChemistryLehn Institute of Functional MaterialsSchool of ChemistrySun Yat-Sen University Guangzhou 510275 P.R. China
| | - Yan‐Zhong Fan
- MOE Laboratory of Bioinorganic and Synthetic ChemistryLehn Institute of Functional MaterialsSchool of ChemistrySun Yat-Sen University Guangzhou 510275 P.R. China
| | - Ya‐Nan Fan
- MOE Laboratory of Bioinorganic and Synthetic ChemistryLehn Institute of Functional MaterialsSchool of ChemistrySun Yat-Sen University Guangzhou 510275 P.R. China
| | - Hui‐Juan Yu
- MOE Laboratory of Bioinorganic and Synthetic ChemistryLehn Institute of Functional MaterialsSchool of ChemistrySun Yat-Sen University Guangzhou 510275 P.R. China
| | - Kang Li
- MOE Laboratory of Bioinorganic and Synthetic ChemistryLehn Institute of Functional MaterialsSchool of ChemistrySun Yat-Sen University Guangzhou 510275 P.R. China
| | - Mei Pan
- MOE Laboratory of Bioinorganic and Synthetic ChemistryLehn Institute of Functional MaterialsSchool of ChemistrySun Yat-Sen University Guangzhou 510275 P.R. China
| | - Cheng‐Yong Su
- MOE Laboratory of Bioinorganic and Synthetic ChemistryLehn Institute of Functional MaterialsSchool of ChemistrySun Yat-Sen University Guangzhou 510275 P.R. China
- State Key Laboratory of Applied Organic ChemistryLanzhou University Lanzhou 730000 P.R. China
| |
Collapse
|
33
|
Wang Y, Yu X, Li Y, Zhang Y, Geng L, Shen F, Ren J. Hydrogelation Landscape Engineering and a Novel Strategy To Design Radically Induced Healable and Stimuli-Responsive Hydrogels. ACS APPLIED MATERIALS & INTERFACES 2019; 11:19605-19612. [PMID: 31062584 DOI: 10.1021/acsami.9b02592] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Herein, we report the versatile ways to prepare both low-molecular weight hydrogels and polymeric hydrogels based on various types of supramolecular interactions, starting from a simple amphiphilic terpyridine-based molecule TPYA. Notably, we report that stable terpyridine-based radicals can be generated by light or heat irradiation in polymeric hydrogels based on hydrogen bonding interactions between -COOH of PAA and the terpyridine motif of TPYA for the first time. The generation of radicals is confirmed by EPR and UV-vis experiments, and the process is accompanied by significant color changes from white to dark purple. The stable radical hydrogels prepared by the supramolecular strategy are self-healing, stretchable, and self-supporting and can be molded into different geometrical shapes. It is deduced that the generation of terpyridine-based radicals enhances the intermolecular hydrogen bonding and π-π interaction of molecules in a hydrogel matrix, which is responsible for the self-healing ability. Finally, we also show that the radical gels can selectively respond to ammonia and stretch with reversible color changes based on the reversible hydrogen-bonding interaction.
Collapse
Affiliation(s)
- Yanqiu Wang
- College of Science, and Hebei Research Center of Pharmaceutical and Chemical Engineering , Hebei University of Science and Technology , Yuhua Road 70 , Shijiazhuang 050080 , PR China
| | - Xudong Yu
- College of Science, and Hebei Research Center of Pharmaceutical and Chemical Engineering , Hebei University of Science and Technology , Yuhua Road 70 , Shijiazhuang 050080 , PR China
| | - Yajuan Li
- College of Science, and Hebei Research Center of Pharmaceutical and Chemical Engineering , Hebei University of Science and Technology , Yuhua Road 70 , Shijiazhuang 050080 , PR China
| | - Yajun Zhang
- College of Science, and Hebei Research Center of Pharmaceutical and Chemical Engineering , Hebei University of Science and Technology , Yuhua Road 70 , Shijiazhuang 050080 , PR China
| | - Lijun Geng
- College of Science, and Hebei Research Center of Pharmaceutical and Chemical Engineering , Hebei University of Science and Technology , Yuhua Road 70 , Shijiazhuang 050080 , PR China
| | - Fengjuan Shen
- College of Science, and Hebei Research Center of Pharmaceutical and Chemical Engineering , Hebei University of Science and Technology , Yuhua Road 70 , Shijiazhuang 050080 , PR China
| | - Jujie Ren
- College of Science, and Hebei Research Center of Pharmaceutical and Chemical Engineering , Hebei University of Science and Technology , Yuhua Road 70 , Shijiazhuang 050080 , PR China
| |
Collapse
|
34
|
Olaya AJ, Omatsu T, Hidalgo-Acosta JC, Riva JS, Bassetto VC, Gasilova N, Girault HH. A Self-Assembled Organic/Metal Junction for Water Photo-Oxidation. J Am Chem Soc 2019; 141:6765-6774. [PMID: 30966745 DOI: 10.1021/jacs.9b02693] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We report the in situ self-assembly of TTF, TTF•+, and BF4- or PF6- into p-type semiconductors on the surface of Pt microparticles dispersed in water/acetonitrile mixtures. The visible light photoactivation of these self-assemblies leads to water oxidation forming O2 and H+, with an efficiency of 100% with respect to the initial concentration of TTF•+. TTF•+ is then completely reduced to TTF upon photoreduction with water. The Pt microparticles act as floating microelectrodes whose Fermi level is imposed by the different redox species in solution; here predominantly TTF, TTF•+, and HTTF+, which furthermore showed no signs of decomposition in solution.
Collapse
Affiliation(s)
- Astrid J Olaya
- Laboratory of Physical and Analytical Electrochemistry, EPFL Valais Wallis , École Polytechnique Fédérale de Lausanne , CH-1951 Sion , Switzerland
| | - Terumasa Omatsu
- Faculty of Molecular Chemistry and Engineering , Kyoto Institute of Technology , Kyoto , 606-8585 , Japan
| | - Jonnathan C Hidalgo-Acosta
- Laboratory of Physical and Analytical Electrochemistry, EPFL Valais Wallis , École Polytechnique Fédérale de Lausanne , CH-1951 Sion , Switzerland
| | - Julieta S Riva
- Laboratory of Physical and Analytical Electrochemistry, EPFL Valais Wallis , École Polytechnique Fédérale de Lausanne , CH-1951 Sion , Switzerland.,Consejo Nacional de Investigaciones Científicas y Técnicas, CONICET, Facultad de Matemática, Astronomía, Física y Computación , Universidad Nacional de Córdoba . Medina Allende s/n. Ciudad Universitaria , X5000HUA , Córdoba , Argentina
| | - Victor Costa Bassetto
- Laboratory of Physical and Analytical Electrochemistry, EPFL Valais Wallis , École Polytechnique Fédérale de Lausanne , CH-1951 Sion , Switzerland
| | - Natalia Gasilova
- Laboratory of Physical and Analytical Electrochemistry, EPFL Valais Wallis , École Polytechnique Fédérale de Lausanne , CH-1951 Sion , Switzerland
| | - Hubert H Girault
- Laboratory of Physical and Analytical Electrochemistry, EPFL Valais Wallis , École Polytechnique Fédérale de Lausanne , CH-1951 Sion , Switzerland
| |
Collapse
|
35
|
Jung J, Liu W, Kim S, Lee D. Redox-Driven Folding, Unfolding, and Refolding of Bis(tetrathiafulvalene) Molecular Switch. J Org Chem 2019; 84:6258-6269. [DOI: 10.1021/acs.joc.9b00541] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Jiyoung Jung
- Penn State Scranton, 120 Ridge View Drive, Dunmore, Pennsylvania 18512, United States
| | - Wenjun Liu
- Analytical Research & Development, Merck Research Laboratories, Merck & Company, Incorporation, Rahway, New Jersey 07065, United States
| | - Seyong Kim
- Department of Chemistry, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea
| | - Dongwhan Lee
- Department of Chemistry, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea
| |
Collapse
|
36
|
Zhou F, Wang J, Zhang Y, Wang Q, Guo C, Wang F, Zhang H. Comparative studies on the effect of CB[8] on the charge transfer interaction. Theor Chem Acc 2019. [DOI: 10.1007/s00214-019-2447-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
37
|
Liu H, Zhang Z, Zhao Y, Zhou Y, Xue B, Han Y, Wang Y, Mu X, Zang S, Zhou X, Li Z. A water-soluble two-dimensional supramolecular organic framework with aggregation-induced emission for DNA affinity and live-cell imaging. J Mater Chem B 2019; 7:1435-1441. [PMID: 32255014 DOI: 10.1039/c8tb03206h] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A water-soluble two-dimensional supramolecular organic framework (2D SOF) was prepared via self-assembly of cucurbit[8]uril (CB[8]) and a three-arm flat linker molecule, which contains a benzene ring as the core and three Brooker's merocyanine (BM) analogs as arms. The strong host-guest interactions between BM and CB[8] and the directional head-to-tail stacking modes between the BM arms synergistically led to the formation of a 2D SOF. The structure of the 2D SOF was verified by 1H NMR, 2D 1H NMR NOESY, and DLS characterizations, while the monolayer structure was characterized by Cryo-TEM and AFM measurements. The 2D SOF exhibited an obvious AIE enhancement effect in H2O. In addition, DNA induced photoluminescence enhancement was observed for the monomer. As a result, this AIEgen-based 2D SOF could feature not only as a cell visualizer but also as a tracker for the nucleus in biological imaging due to the dynamic assembly process.
Collapse
Affiliation(s)
- Hui Liu
- Key Laboratory of Biobased Polymer Materials, Shandong Provincial Education Department, College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Schröder HV, Witte F, Gaedke M, Sobottka S, Suntrup L, Hupatz H, Valkonen A, Paulus B, Rissanen K, Sarkar B, Schalley CA. An aryl-fused redox-active tetrathiafulvalene with enhanced mixed-valence and radical-cation dimer stabilities. Org Biomol Chem 2019; 16:2741-2747. [PMID: 29594290 DOI: 10.1039/c8ob00415c] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Molecular recognition of stable organic radicals is a relatively novel, but important structural binding motif in supramolecular chemistry. Here, we report on a redox-switchable veratrole-fused tetrathiafulvalene derivative VTTF which is ideally suited for this purpose and for the incorporation into stimuli-responsive systems. As revealed by electrochemistry, UV/Vis measurements, X-ray analysis, and electrocrystallisation, VTTF can be reversibly oxidised to the corresponding radical-cation or dication which shows optoelectronic and structural propterties similar to tetrathiafulvalene and tetrakis(methylthio)tetrathiafulvalene. However, theoretical calculations, variable temperature EPR, and NIR spectroscopy indicate that the dispersion-driven binding in the mixed-valence dimer (VTTF2)˙+ (KMV = 69 M-1 in CH2Cl2) and the radical-cation dimer (VTTF˙+)2 (KRC = 38 M-1 in CH3CN) is significantly enhanced by the additional veratrole π-surface in comparison to pristine tetrathiafulvalene.
Collapse
Affiliation(s)
- Hendrik V Schröder
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Antonijević IS, Malenov DP, Hall MB, Zarić SD. Study of stacking interactions between two neutral tetrathiafulvalene molecules in Cambridge Structural Database crystal structures and by quantum chemical calculations. ACTA CRYSTALLOGRAPHICA SECTION B-STRUCTURAL SCIENCE CRYSTAL ENGINEERING AND MATERIALS 2019; 75:1-7. [DOI: 10.1107/s2052520618015494] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 11/02/2018] [Indexed: 11/10/2022]
Abstract
Tetrathiafulvalene (TTF) and its derivatives are very well known as electron donors with widespread use in the field of organic conductors and superconductors. Stacking interactions between two neutral TTF fragments were studied by analysing data from Cambridge Structural Database crystal structures and by quantum chemical calculations. Analysis of the contacts found in crystal structures shows high occurrence of parallel displaced orientations of TTF molecules. In the majority of the contacts, two TTF molecules are displaced along their longer C
2 axis. The most frequent geometry has the strongest TTF–TTF stacking interaction, with CCSD(T)/CBS energy of −9.96 kcal mol−1. All the other frequent geometries in crystal structures are similar to geometries of the minima on the calculated potential energy surface.
Collapse
|
40
|
Faour L, Adam C, Gautier C, Goeb S, Allain M, Levillain E, Canevet D, Sallé M. Redox-controlled hybridization of helical foldamers. Chem Commun (Camb) 2019; 55:5743-5746. [DOI: 10.1039/c9cc02498k] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Redox stimulations allow controlling the hybridization equilibrium of foldamers.
Collapse
Affiliation(s)
- Lara Faour
- Laboratoire MOLTECH-Anjou
- UMR CNRS 6200
- UNIV Angers
- SFR MATRIX
- 49045 Angers Cedex
| | - Catherine Adam
- Laboratoire MOLTECH-Anjou
- UMR CNRS 6200
- UNIV Angers
- SFR MATRIX
- 49045 Angers Cedex
| | - Christelle Gautier
- Laboratoire MOLTECH-Anjou
- UMR CNRS 6200
- UNIV Angers
- SFR MATRIX
- 49045 Angers Cedex
| | - Sébastien Goeb
- Laboratoire MOLTECH-Anjou
- UMR CNRS 6200
- UNIV Angers
- SFR MATRIX
- 49045 Angers Cedex
| | - Magali Allain
- Laboratoire MOLTECH-Anjou
- UMR CNRS 6200
- UNIV Angers
- SFR MATRIX
- 49045 Angers Cedex
| | - Eric Levillain
- Laboratoire MOLTECH-Anjou
- UMR CNRS 6200
- UNIV Angers
- SFR MATRIX
- 49045 Angers Cedex
| | - David Canevet
- Laboratoire MOLTECH-Anjou
- UMR CNRS 6200
- UNIV Angers
- SFR MATRIX
- 49045 Angers Cedex
| | - Marc Sallé
- Laboratoire MOLTECH-Anjou
- UMR CNRS 6200
- UNIV Angers
- SFR MATRIX
- 49045 Angers Cedex
| |
Collapse
|
41
|
Schröder HV, Mekic A, Hupatz H, Sobottka S, Witte F, Urner LH, Gaedke M, Pagel K, Sarkar B, Paulus B, Schalley CA. Switchable synchronisation of pirouetting motions in a redox-active [3]rotaxane. NANOSCALE 2018; 10:21425-21433. [PMID: 30427015 DOI: 10.1039/c8nr05534c] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
In this study, the crown/ammonium [3]rotaxane R2 is reported which allows a switchable synchronisation of wheel pirouetting motions. The rotaxane is composed of a dumbbell-shaped axle molecule with two mechanically interlocked macrocycles which are decorated with a redox-active tetrathiafulvalene (TTF) unit. Electrochemical, spectroscopic, and electron paramagnetic resonance experiments reveal that rotaxane R2 can be reversibly switched between four stable oxidation states (R2, R2˙+, R22(˙+), and R24+). The oxidations enable non-covalent, cofacial interactions between the TTF units in each state-including a stabilised mixed-valence (TTF2)˙+ and a radical-cation (TTF˙+)2 dimer interaction-which dictate a syn (R2, R2˙+, and R22(˙+)) or anti (R24+) ground state co-conformation of the wheels in the rotaxane. Furthermore, the strength of these wheel-wheel interactions varies with the oxidation state, and thus electrochemical switching allows a controllable synchronisation of the wheels' pirouetting motions. DFT calculations explore the potential energy surface of the counter-rotation of the two interacting wheels in all oxidation states. The controlled coupling of pirouetting motions in rotaxanes can lead to novel molecular gearing systems which transmit rotational motion by switchable non-covalent interactions.
Collapse
Affiliation(s)
- Hendrik V Schröder
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustraße 3, 14195 Berlin, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Schröder HV, Schalley CA. Tetrathiafulvalene - a redox-switchable building block to control motion in mechanically interlocked molecules. Beilstein J Org Chem 2018; 14:2163-2185. [PMID: 30202469 PMCID: PMC6122308 DOI: 10.3762/bjoc.14.190] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 08/01/2018] [Indexed: 11/23/2022] Open
Abstract
With the rise of artificial molecular machines, control of motion on the nanoscale has become a major contemporary research challenge. Tetrathiafulvalenes (TTFs) are one of the most versatile and widely used molecular redox switches to generate and control molecular motion. TTF can easily be implemented as functional unit into molecular and supramolecular structures and can be reversibly oxidized to a stable radical cation or dication. For over 20 years, TTFs have been key building blocks for the construction of redox-switchable mechanically interlocked molecules (MIMs) and their electrochemical operation has been thoroughly investigated. In this review, we provide an introduction into the field of TTF-based MIMs and their applications. A brief historical overview and a selection of important examples from the past until now are given. Furthermore, we will highlight our latest research on TTF-based rotaxanes.
Collapse
Affiliation(s)
- Hendrik V Schröder
- Institut für Chemie und Biochemie, Organische Chemie, Freie Universität Berlin, Takustraße 3, 14195 Berlin, Germany
| | - Christoph A Schalley
- Institut für Chemie und Biochemie, Organische Chemie, Freie Universität Berlin, Takustraße 3, 14195 Berlin, Germany
| |
Collapse
|
43
|
Jiang H, Jin Q, Li J, Chen S, Zhang L, Liu M. Photoirradiation-generated radicals in two-component supramolecular gel for polymerization. SOFT MATTER 2018; 14:2295-2300. [PMID: 29498737 DOI: 10.1039/c8sm00153g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
While supramolecular gels have been attracting great interest due to their easy design and fabrication, development of new applications based on these gels is always a challenging topic. Here, we report a two-component supramolecular gel that can generate and stabilize radicals through photo-irradiation, which can be subsequently used for polymerization. It has been found that the electrostatic interactions between a cationic amphiphile and anionic sulfonate could afford co-assembly into a two-component supramolecular gel. Upon photo-irradiation, the gel changed colour and produced the radicals, as verified from the EPR measurements. The radical thus formed in the supramolecular gel is relatively stable and could be used to polymerize acrylic acid directly without deoxygenation. In contrast, acrylic acid could not be polymerized in solution under the same conditions. This work expands the application scope of supramolecular gels.
Collapse
Affiliation(s)
- Hejin Jiang
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun North First Street 2, Beijing 100190, China. and University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qingxian Jin
- Henan Provincial Key Laboratory of Surface & Interface Science, Zhengzhou University of Light Industry, Zhengzhou, Henan 450002, China
| | - Jing Li
- Henan Provincial Key Laboratory of Surface & Interface Science, Zhengzhou University of Light Industry, Zhengzhou, Henan 450002, China
| | - Shuyu Chen
- Henan Provincial Key Laboratory of Surface & Interface Science, Zhengzhou University of Light Industry, Zhengzhou, Henan 450002, China
| | - Li Zhang
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun North First Street 2, Beijing 100190, China.
| | - Minghua Liu
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun North First Street 2, Beijing 100190, China. and University of Chinese Academy of Sciences, Beijing 100049, China and National Center for Nanoscience and Technology, Beijing, 100190, China and A Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
| |
Collapse
|
44
|
Yokoi H, Hiroto S, Shinokubo H. Reversible σ-Bond Formation in Bowl-Shaped π-Radical Cations: The Effects of Curved and Planar Structures. J Am Chem Soc 2018. [DOI: 10.1021/jacs.8b00798] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Hiroki Yokoi
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Nagoya, Aichi 464-8603, Japan
| | - Satoru Hiroto
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Nagoya, Aichi 464-8603, Japan
| | - Hiroshi Shinokubo
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Nagoya, Aichi 464-8603, Japan
| |
Collapse
|
45
|
Ahmed SM, Bond AM, Martin LL. Voltammetric, Spectroscopic, and Microscopic Investigation of the Oxidation of Solid and Solution Phases of Tetrathiafulvalene (TTF) to (TTF)
2
MO
4
(M=Mo, W). ChemElectroChem 2018. [DOI: 10.1002/celc.201700463] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Shaimaa M. Ahmed
- School of Chemistry Monash University Clayton, Victoria 3800 Australia
| | - Alan M. Bond
- School of Chemistry Monash University Clayton, Victoria 3800 Australia
| | | |
Collapse
|
46
|
Fumanal M, Capdevila-Cortada M, Novoa JJ. Understanding room-temperature π-dimerisation of radical ions: intramolecular π-[TTF] 22+ in functionalised calix[4]arenes. Phys Chem Chem Phys 2018; 19:3807-3819. [PMID: 28102383 DOI: 10.1039/c6cp07794c] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Long, multicentre π-dimers of radical ions are weakly bound and can only be observed in solution at low temperature. However, recent supramolecular approaches induce the extra stabilisation required to preserve them at room temperature, by different means depending on the approach. In particular, π-[TTF]22+ dimers (TTF = tetrathiafulvalene) were detected upon oxidation of a TTF-based calix[4]arene in acetonitrile solution at room temperature, manifesting intramolecular [R-TTF]˙+[R-TTF]˙+ interactions (Chem. Commun. 2006, 2, 2233). In this work, the reasons behind the remarkable formation of these π-dimers in the calix[4]arene, [calix], molecule are unravelled by means of DFT calculations. We first demonstrate that the properties of the π-[R-TTF]22+ dimers are preserved in the [calix]2+. Most importantly, our results show that the π-dimerised and non-dimerised forms of the [calix]2+ are isoenergetic at room temperature, and that the activation energy for this process is ca. 9.5 kcal mol-1. Hence, both forms coexist in equilibrium at 298 K, as the intramolecular nature of the interaction ensures a high reaction rate. The role of the Na+ cation in preventing the π-[R-TTF]22+ dimerisation of the [calix]2+ receptor is also examined, unveiling that this effect is mostly due to the electrostatic repulsion induced by the cation. Finally, we provide a revision on room-temperature stable supramolecular long, multicentre π-dimers of radical ions, a class of systems with great potential as molecular switches.
Collapse
Affiliation(s)
- Maria Fumanal
- Departament de Química Física and IQTCUB, Universitat de Barcelona, Av. Diagonal 645, 08028, Barcelona, Spain.
| | - Marçal Capdevila-Cortada
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007 Tarragona, Spain.
| | - Juan J Novoa
- Departament de Química Física and IQTCUB, Universitat de Barcelona, Av. Diagonal 645, 08028, Barcelona, Spain.
| |
Collapse
|
47
|
Affiliation(s)
- Stephan Sinn
- Institute of Nanotechnology (INT); Karlsruhe Institute of Technology (KIT); Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Deutschland/Germany
| | - Frank Biedermann
- Institute of Nanotechnology (INT); Karlsruhe Institute of Technology (KIT); Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Deutschland/Germany
| |
Collapse
|
48
|
Wang Y, Frasconi M, Stoddart JF. Introducing Stable Radicals into Molecular Machines. ACS CENTRAL SCIENCE 2017; 3:927-935. [PMID: 28979933 PMCID: PMC5620985 DOI: 10.1021/acscentsci.7b00219] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Indexed: 06/07/2023]
Abstract
Ever since their discovery, stable organic radicals have received considerable attention from chemists because of their unique optical, electronic, and magnetic properties. Currently, one of the most appealing challenges for the chemical community is to develop sophisticated artificial molecular machines that can do work by consuming external energy, after the manner of motor proteins. In this context, radical-pairing interactions are important in addressing the challenge: they not only provide supramolecular assistance in the synthesis of molecular machines but also open the door to developing multifunctional systems relying on the various properties of the radical species. In this Outlook, by taking the radical cationic state of 1,1'-dialkyl-4,4'-bipyridinium (BIPY•+) as an example, we highlight our research on the art and science of introducing radical-pairing interactions into functional systems, from prototypical molecular switches to complex molecular machines, followed by a discussion of the (i) limitations of the current systems and (ii) future research directions for designing BIPY•+-based molecular machines with useful functions.
Collapse
Affiliation(s)
- Yuping Wang
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Marco Frasconi
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, Padova 35131, Italy
| | - J. Fraser Stoddart
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| |
Collapse
|
49
|
Petersen JF, Frederickson CK, Marshall JL, Rudebusch GE, Zakharov LN, Hammerich O, Haley MM, Nielsen MB. Expanded Indacene–Tetrathiafulvalene Scaffolds: Structural Implications for Redox Properties and Association Behavior. Chemistry 2017; 23:13120-13130. [DOI: 10.1002/chem.201702347] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Indexed: 11/06/2022]
Affiliation(s)
- Johannes Fabritius Petersen
- Department of Chemistry University of Copenhagen Universitetsparken 5 2100 Copenhagen Ø Denmark
- Department of Chemistry and Biochemistry and Materials Science Institute University of Oregon Eugene OR 97403-1253 USA
| | - Conerd K. Frederickson
- Department of Chemistry and Biochemistry and Materials Science Institute University of Oregon Eugene OR 97403-1253 USA
| | - Jonathan L. Marshall
- Department of Chemistry and Biochemistry and Materials Science Institute University of Oregon Eugene OR 97403-1253 USA
| | - Gabriel E. Rudebusch
- Department of Chemistry and Biochemistry and Materials Science Institute University of Oregon Eugene OR 97403-1253 USA
| | - Lev N. Zakharov
- CAMCOR-Center for Advanced Materials Characterization in Oregon University of Oregon Eugene OR 97403-1433 USA
| | - Ole Hammerich
- Department of Chemistry University of Copenhagen Universitetsparken 5 2100 Copenhagen Ø Denmark
| | - Michael M. Haley
- Department of Chemistry and Biochemistry and Materials Science Institute University of Oregon Eugene OR 97403-1253 USA
| | | |
Collapse
|
50
|
Fukino T, Yamagishi H, Aida T. Redox-Responsive Molecular Systems and Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2017; 29:1603888. [PMID: 27990693 DOI: 10.1002/adma.201603888] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 09/15/2016] [Indexed: 06/06/2023]
Abstract
Redox reactions can alter the electronic, optical, and magnetic properties of molecules and their ensembles by adding or removing electrons. Here, the developments made over the past 10 years using molecular events are discussed, such as assembly/disassembly, transformation of ensembles, geometric changes, and molecular motions that are designed to be redox-responsive. Considerable progress has occurred in the application of these events to the realization of electronic memory, color displays, actuators, adhesives, and drug delivery. In these cases, systems behave in either a highly or a poorly correlated manner depending on the number of redox-active units involved, based on the method of integration. One of the great advantages of redox-responsive devices and materials is that they have the potential to be readily integrated into existing electronic technologies.
Collapse
Affiliation(s)
- Takahiro Fukino
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Hiroshi Yamagishi
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Takuzo Aida
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
- RIKEN Center for Emergent Matter Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| |
Collapse
|