1
|
Das S, Sahoo A, Baitalik S. Advancing Molecular-Scale Logic Devices through Multistage Switching in a Luminescent Bimetallic Ru(II)-Terpyridine Complex. Inorg Chem 2024; 63:14933-14942. [PMID: 39091180 DOI: 10.1021/acs.inorgchem.4c01456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Stimuli-responsive multistep switching phenomena of a luminescent bimetallic Ru(II) complex are employed herein to fabricate multiple configurable logic devices. The complex exhibits "off-on" and "on-off" emission switching upon alternative treatment with visible and UV light. Additionally, remarkable augmentation of the rate as well as quantum yield of photoisomerization was achieved via the use of a chemical oxidant (Ce4+) as well as a reductant (metallic sodium). Upon exploiting the emission spectral response of the complex, several advanced Boolean logic functions, including IMPLICATION as well as 2-input 2-output and 3-input 2-output complex combinational logic gates, are successfully implemented. Additionally, by utilizing the vast efficacy of Python, a novel "logic_circuit" model is devised that is capable of making accurate decisions under the influence of various input combinations. This model transcends traditional Boolean logic gates, offering flexibility and intuition to design logical functions tailored to specific chemical contexts. By integrating principles of logic circuits with chemical processes, this innovative approach enables structure determination of the chemical states based on input conditions, thereby unlocking avenues for exploring intricate interactions and reactions beyond conventional Boolean logic paradigms.
Collapse
Affiliation(s)
- Soumi Das
- Inorganic Chemistry Section, Department of Chemistry, Jadavpur University, Kolkata 700032, India
| | - Anik Sahoo
- Inorganic Chemistry Section, Department of Chemistry, Jadavpur University, Kolkata 700032, India
| | - Sujoy Baitalik
- Inorganic Chemistry Section, Department of Chemistry, Jadavpur University, Kolkata 700032, India
| |
Collapse
|
2
|
Das S, Bar M, Ganguly T, Baitalik S. Control of Photoisomerization Kinetics via Multistage Switching in Bimetallic Ru(II)-Terpyridine Complexes. Inorg Chem 2024; 63:6600-6615. [PMID: 38557011 DOI: 10.1021/acs.inorgchem.3c04255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
In this study, we carried out detailed experimental and theoretical investigation on photophysical, electrochemical, and photoisomerization behaviors of a new array of luminescent binuclear Ru(II) complexes derived from a phenylene-vinylene-substituted terpyridyl ligand possessing RT lifetimes within 60.3-410.5 ns. The complexes experienced trans-to-cis isomerization in MeCN on irradiation with visible light, accompanied by significant changes in their absorption and emission spectral profiles. The reverse cis-to-trans process is also possible with the use of ultraviolet (UV) light. On conversion from trans to cis isomers, the emission intensity increases substantially, while for the reverse process, luminescence quenching occurs. Thus, "off-on" and "on-off" emission switching is facilitated upon treatment with visible and UV light alternatively. By the use of chemical oxidants (ceric ammonium nitrate and potassium permanganate) and reductants (metallic sodium) as well as light of appropriate wavelengths, multistate switching phenomena involving reversible oxidation-reduction and trans-cis isomerization have been achieved. Interestingly, the rate of this multistate photoswitching process becomes much faster compared to only two-state trans-cis isomerization of these complexes. Density functional theory (DFT) and time-dependent-DFT (TD-DFT) calculations are also performed to obtain a clear picture of the electronic environment of the complexes and also for the appropriate assignment of absorption and emission spectral bands.
Collapse
Affiliation(s)
- Soumi Das
- Department of Chemistry, Inorganic Chemistry Section, Jadavpur University, Kolkata 700032, India
| | - Manoranjan Bar
- Department of Chemistry, Inorganic Chemistry Section, Jadavpur University, Kolkata 700032, India
| | - Tanusree Ganguly
- Department of Chemistry, Inorganic Chemistry Section, Jadavpur University, Kolkata 700032, India
| | - Sujoy Baitalik
- Department of Chemistry, Inorganic Chemistry Section, Jadavpur University, Kolkata 700032, India
| |
Collapse
|
3
|
Bhattacharya S, Pal P, Baitalik S. Design of molecular sensors and switches based on luminescent ruthenium-terpyridine complexes bearing active methylene and triphenylphosphonium motifs as anion recognition sites: experimental and DFT/TD-DFT investigation. Dalton Trans 2024; 53:1307-1321. [PMID: 38115813 DOI: 10.1039/d3dt03681b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Synthesis, characterization and thorough investigation of the photophysical and electrochemical properties of a new category of emissive homo- and heteroleptic Ru(II)-complexes derived from the [4'-(p-triphenylphosphonium methyl phenyl)-2,2':6',2''-terpyridine]bromide (tpy-PhCH2PPh3Br) ligand have been executed in this work. Incorporation of the PhCH2PPh3+Br- group at the terpyridine motif appropriately adjusts the triplet metal-to-ligand charge transfer (3MLCT) and metal-centered (3MC) excited states so that the complexes luminesce at room temperature (RT) having lifetimes within the range of 6.82-9.63 ns. The RT emission characteristics of the complexes get further enhanced via aggregation phenomena through the use of different solvent/non-solvent mixtures (DMSO/H2O and DMSO/PhCH3 mixtures). Temperature dependent emission spectral measurements indicate that the emission intensity, quantum yield and lifetime increase upon dropping down the temperature, thereby designated as the on-state, while the increase of temperature causes a reduction of the said properties, indicating the off-state and the process is fully reversible. Taking advantage of the active methylene group coupled with a phosphonium motif, anion sensing characteristics of the complexes are investigated systematically in DMSO through the use of various optical channels and spectroscopic tools. The complexes are very much sensitive to fluoride and to a lesser extent acetate and dihydrogen phosphate among the studied anions. In essence, the complexes function as sensors for temperature and fluoride ion. Computational investigations were also executed via density functional theory (DFT) and time-dependent (TD)-DFT to obtain a clear understanding of the electronic structures of the metalloreceptors, appropriate assignment of the spectral bands and their mode of interaction with selected anions.
Collapse
Affiliation(s)
- Sohini Bhattacharya
- Department of Chemistry, Inorganic Chemistry Section, Jadavpur University, Kolkata 700032, India.
| | - Poulami Pal
- Department of Chemistry, Inorganic Chemistry Section, Jadavpur University, Kolkata 700032, India.
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & B Raja S C Mullick Road, Kolkata 700032, India
| | - Sujoy Baitalik
- Department of Chemistry, Inorganic Chemistry Section, Jadavpur University, Kolkata 700032, India.
| |
Collapse
|
4
|
Gupta R, Sahni P, Jana SK, Negi A, Pal AK. Effect of substitution on deep-blue Ir(III) N-heterocyclic carbene (NHC) emitters. Dalton Trans 2023; 52:15597-15607. [PMID: 37840343 DOI: 10.1039/d3dt01947k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
The development of Ir(III)-NHC phosphors that display deep-blue luminescence without sacrificing the high photoluminescence quantum yield (PLQY) has become a pivotal area of research. In this respect, two novel deep-blue Ir-NHC emitters (C1 and C2) with strategically designed pro-carbenic imidazolium ligands (L1 and L2) incorporating a heavy bromine atom at the ligand-scaffold were synthesized in good yields (∼80% for L1, L2 and 65% for C1, C2). The ground and excited state properties of the complexes were photophysically determined and the results were found to be in accordance with theoretical calculations at the DFT and TD-DFT levels. Due to the strong σ-donation of the carbene ligands, complexes C1 and C2 displayed oxidation at low anodic potentials. Both the complexes showed deep-blue emission either in solution (λem ∼ 400-425 nm) or as PMMA-doped films of varying concentrations (λem ∼ 400 nm) with an ∼15 times enhanced PLQY with respect to benchmark Ir-NHC complexes. The strategy of incorporating the heavy bromine atom to reduce the molecular vibrations in C1 and C2 was further supported by ∼250 times reduced non-radiative decay constants (knr) and Huang-Rhys constants of C1 and C2 in comparison to those of the benchmark complexes. These facts were also supported by triplet frequency calculations of C1 and C2 to identify the absence of vibrations.
Collapse
Affiliation(s)
- Rahat Gupta
- Department of Chemistry, Indian Institute of Technology Jammu, Nagrota Bypass Road, Jammu and Kashmir-181221, India.
| | - Priya Sahni
- Department of Chemistry, Indian Institute of Technology Jammu, Nagrota Bypass Road, Jammu and Kashmir-181221, India.
| | - Salil K Jana
- Department of Chemistry, Indian Institute of Technology Jammu, Nagrota Bypass Road, Jammu and Kashmir-181221, India.
| | - Anshul Negi
- Department of Chemistry, Indian Institute of Technology Jammu, Nagrota Bypass Road, Jammu and Kashmir-181221, India.
| | - Amlan K Pal
- Department of Chemistry, Indian Institute of Technology Jammu, Nagrota Bypass Road, Jammu and Kashmir-181221, India.
| |
Collapse
|
5
|
Ganguly T, Pal P, Maity D, Baitalik S. Synthesis, characterization and emission switching behaviors of styrylphenyl-conjugated Ru(II)-terpyridine complexes via aggregation and trans–cis photoisomerization. J Photochem Photobiol A Chem 2023. [DOI: 10.1016/j.jphotochem.2023.114662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
|
6
|
Deb S, Sahoo A, Mondal P, Baitalik S. Analysis and prediction of anion- and temperature responsive behaviours of luminescent Ru(II)-terpyridine complexes by using Boolean, fuzzy logic, artificial neural network and adapted neuro fuzzy inference models. Dalton Trans 2022; 51:15601-15613. [PMID: 36169624 DOI: 10.1039/d2dt02611b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Anion- and temperature responsive behaviors of three luminescent Ru(II)-terpyridine complexes are utilized here to demonstrate multiple Boolean (BL) and fuzzy logic (FL) operations. Taking advantage of the imidazole NH protons, anion-promoted alteration of the photophysical characteristics of the complexes was thoroughly investigated via absorption, and emission spectral and lifetime measurements. In their free state, the complexes display luminescence representing the "on-state", whereas quenching of luminescence is observed with anions demonstrating the "off-state". Likewise, lowering of temperature induces a substantial increase of luminescence and lifetime demonstrating the "on-state", while the increase of temperature induces a significant decrease of emission intensity and lifetime indicating the "off-state" and the process is reversible in both cases. The complexes thus can act as anion- and temperature-responsive molecular switches. The spectral signatures of the complexes under the influence of anions and temperature were employed to mimic multiple BL and FL functions. Performing very detailed sensing studies by varying the analyte concentration within a wide domain is very tedious, time-consuming and expensive. In order to overcome the lacuna, we implemented machine learning and soft computing tools such as artificial neural networks (ANNs), fuzzy-logic and adaptive neuro-fuzzy inference system (ANFIS) to predict the experimental anion sensing data of the complexes.
Collapse
Affiliation(s)
- Sourav Deb
- Inorganic Chemistry Section, Department of Chemistry, Jadavpur University, Kolkata 700032, India.
| | - Anik Sahoo
- Inorganic Chemistry Section, Department of Chemistry, Jadavpur University, Kolkata 700032, India.
| | - Priyam Mondal
- Inorganic Chemistry Section, Department of Chemistry, Jadavpur University, Kolkata 700032, India.
| | - Sujoy Baitalik
- Inorganic Chemistry Section, Department of Chemistry, Jadavpur University, Kolkata 700032, India.
| |
Collapse
|
7
|
Doistau B, Jiménez JR, Lawson Daku LM, Piguet C. Complex-as-Ligand Strategy as a Tool for the Design of a Binuclear Nonsymmetrical Chromium(III) Assembly: Near-Infrared Double Emission and Intramolecular Energy Transfer. Inorg Chem 2022; 61:11023-11031. [PMID: 35820089 DOI: 10.1021/acs.inorgchem.2c01940] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The chromium(III) polypyridyl complexes are appealing for their long-lived near-infrared (NIR) emission reaching the millisecond range and for the strong circularly polarized luminescence of their isolated enantiomers. However, harnessing those properties in functional polynuclear CrIII devices remains mainly inaccessible because of the lack of synthetic methods for their design and functionalization. Even the preparation and investigation of most basic nonsymmetrical CrIII dyads exhibiting directional intramolecular intermetallic energy transfer remain unexplored. Taking advantage of the inertness of heteroleptic chromium(III) polypyridyl building blocks, we herein adapt the "complex-as-ligand" strategy, largely used with precious 4d and 5d metals, for the preparation of a binuclear nonsymmetrical CrIII complex (3d metal). The resulting [(phen)2Cr(L)Cr(tpy)]6+ dyad shows dual long-lived NIR emission and a directional intermetallic energy transfer that is controlled by the specific arrangements of the different coordination spheres. This strategy opens a route for building predetermined polynuclear assemblies with this earth-abundant metal.
Collapse
Affiliation(s)
- Benjamin Doistau
- Department of Inorganic and Analytical Chemistry, University of Geneva, 30 quai Ernest Ansermet, CH-1211 Geneva 4, Switzerland
| | - Juan-Ramón Jiménez
- Department of Inorganic Chemistry, University of Granada and "Unidad de Excelencia en Química", Avenida Fuentenueva, E-18071 Granada, Spain
| | - Latévi Max Lawson Daku
- Department of Physical Chemistry, University of Geneva, 30 quai Ernest Ansermet, CH-1211 Geneva 4, Switzerland
| | - Claude Piguet
- Department of Inorganic and Analytical Chemistry, University of Geneva, 30 quai Ernest Ansermet, CH-1211 Geneva 4, Switzerland
| |
Collapse
|
8
|
Chong J, Besnard C, Cruz CM, Piguet C, Jiménez JR. Heteroleptic mer-[Cr(N ∩N ∩N)(CN) 3] complexes: synthetic challenge, structural characterization and photophysical properties. Dalton Trans 2022; 51:4297-4309. [PMID: 35195140 PMCID: PMC8922558 DOI: 10.1039/d2dt00126h] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The substitution of three water molecules around trivalent chromium in CrBr3·6H2O with the tridentate 2,2′:6′,2′′-terpyridine (tpy), N,N′-dimethyl-N,N′-di(pyridine-2-yl)pyridine-2,6-diamine (ddpd) or 2,6-di(quinolin-8-yl)pyridine (dqp) ligands gives the heteroleptic mer-[Cr(L)Br3] complexes. Stepwise treatments with Ag(CF3SO3) and KCN under microwave irradiations provide mer-[Cr(L)(CN)3] in moderate yields. According to their X-ray crystal structures, the associated six-coordinate meridional [CrN3C3] chromophores increasingly deviate from a pseudo-octahedral arrangement according to L = ddpd ≈ dpq ≪ tpy; a trend in line with the replacement of six-membered with five-membered chelate rings around CrIII. Room-temperature ligand-centered UV-excitation at 18 170 cm−1 (λexc = 350 nm), followed by energy transfer and intersystem crossing eventually yield microsecond metal-centered Cr(2E → 4A2) phosphorescence in the red to near infrared domain 13 150–12 650 cm−1 (760 ≤ λem ≤ 790 nm). Decreasing the temperature to liquid nitrogen (77 K) extends the emission lifetimes to reach the millisecond regime with a record of 4.02 ms for mer-[Cr(dqp)(CN)3] in frozen acetonitrile. The heteroleptic mer-[Cr(L)(CN)3] (L = tpy, ddpd, dqp) complexes with their C2v-symmetrical [CrC3N3] luminescent chromophores represent the missing links between pseudo-octahedral [CrN6] and [CrC6] units found in their well-known homoleptic parents.![]()
Collapse
Affiliation(s)
- Julien Chong
- Department of Inorganic and Analytical Chemistry, University of Geneva, 30 quai E. Ansermet, CH-1211 Geneva 4, Switzerland.
| | - Céline Besnard
- Laboratory of Crystallography, University of Geneva, 24 quai E. Ansermet, CH-1211 Geneva 4, Switzerland
| | - Carlos M Cruz
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Claude Piguet
- Department of Inorganic and Analytical Chemistry, University of Geneva, 30 quai E. Ansermet, CH-1211 Geneva 4, Switzerland.
| | - Juan-Ramón Jiménez
- Department of Inorganic and Analytical Chemistry, University of Geneva, 30 quai E. Ansermet, CH-1211 Geneva 4, Switzerland. .,Department of Inorganic Chemistry, University of Granada and "Unidad de Excelencia en Química" (UEQ), Avda. Fuentenueva, E-18071 Granada, España.
| |
Collapse
|
9
|
Paul A, Sahoo A, Bhattacharya S, Baitalik S. Anion and Temperature Responsive Molecular Switches Based on Trimetallic Complexes of Ru(II) and Os(II) That Demonstrate Advanced Boolean and Fuzzy Logic Functions. Inorg Chem 2022; 61:3186-3201. [PMID: 35144385 DOI: 10.1021/acs.inorgchem.1c03644] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Anion- and temperature-induced alteration of the photoredox behaviors of our recently reported trimetallic complexes was carried out to fabricate potential molecular switches. The triads [(phen)2Ru(d-HIm-t)M(t-HIm-d)Ru(phen)2]6+ (phen = 1,10-phenanthroline, d-HIm-t = heterotopic bipyridine-terpyridne type bridging ligand, and M = RuII and OsII) possess two acidic imidazole NH protons that upon interaction with anions give rise to considerable changes in their photophysical and electrochemical behaviors. Red-shifts of the absorption and emission maximum and a decrease in the M3+/M2+ potential occur when the triads are treated with basic anions. In fact, the triads can function as triple-channel sensors for F-, AcO-, CN-, OH-, and H2PO4- in acetonitrile and as selective probes for CN- and SCN- in water. The equilibrium constants for the receptor-anion interaction are on the order of 106 M-1, while the limit of detection was on the order of 10-9 M. Temperature plays a key role in the luminescence properties of the triads by adjusting the energy barrier between the emitting triplet metal-to-ligand charge transfer and non-emitting triplet metal-centered levels. A decrease in temperature leads to increases in the emission intensity and lifetime of the triads displaying the "on state", whereas an increase in temperature leads to a decrease in their emission characteristics and thus indicates the "off state" and that the process is fully reversible. In essence, the triads could function as potential switches on the basis of the reversible change in their spectral and redox behaviors under the influence of anion, acid, and temperature. The most important outcome of this study is mimicking several advanced Boolean and fuzzy logic functions by utilizing the spectral response of the triads upon the action of said external stimuli.
Collapse
Affiliation(s)
- Animesh Paul
- Inorganic Chemistry Section, Department of Chemistry, Jadavpur University, Kolkata 700032, India
| | - Anik Sahoo
- Inorganic Chemistry Section, Department of Chemistry, Jadavpur University, Kolkata 700032, India
| | - Sohini Bhattacharya
- Inorganic Chemistry Section, Department of Chemistry, Jadavpur University, Kolkata 700032, India
| | - Sujoy Baitalik
- Inorganic Chemistry Section, Department of Chemistry, Jadavpur University, Kolkata 700032, India
| |
Collapse
|
10
|
Bolvin H, Fürstenberg A, Golesorkhi B, Nozary H, Taarit I, Piguet C. Metal-Based Linear Light Upconversion Implemented in Molecular Complexes: Challenges and Perspectives. Acc Chem Res 2022; 55:442-456. [PMID: 35067044 DOI: 10.1021/acs.accounts.1c00685] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The piling up of low-energy photons to produce light beams of higher energies while exploiting the nonlinear optical response of matter was conceived theoretically around 1930 and demonstrated 30 years later with the help of the first coherent ruby lasers. The vanishingly small efficacy of the associated light-upconversion process was rapidly overcome by the implementation of powerful successive absorptions of two photons using linear optics in materials that possess real intermediate excited states working as relays. In these systems, the key point requires a favorable competition between the rate constant of the excited-state absorption (ESA) and the relaxation rate of the intermediate excited state, the lifetime of which should be thus maximized. Chemists and physicists therefore selected long-lived intermediate excited states found (i) in trivalent lanthanide cations doped into ionic solids or into nanoparticles (2S+1LJ spectroscopic levels) or (ii) in polyaromatic molecules (triplet states) as the logical activators for designing light upconverters using linear optics. Their global efficiency has been stepwise optimized during the past five decades by using indirect intermolecular sensitization mechanisms (energy transfer upconversion = ETU) combined with large absorption cross sections.The induction of light-upconversion operating in a single discrete entity at the molecular level is limited to metal-based units and remained a challenge for a long time because coordination complexes possess high-frequency oscillators incompatible with the existence of (i) scales of accessible excited relays with long lifetimes and (ii) final high-energy emissive levels with noticeable intrinsic quantum yields. In contrast to intermolecular energy transfer processes operating in metal-based doped solids, which require statistical models, the combination of sensitizers and activators within the same molecule limits energy transfers to easily tunable intramolecular processes with first-order kinetic rate constants. Their successful programming in a trinuclear CrErCr complex in 2011 led to the first detectable near-infrared to green light upconversion induced in a molecular unit under reasonable excitation intensity. The subsequent progress in the modeling and understanding of the key factors controlling metal-based light upconversion operating in molecular complexes led to a burst of various designs exploiting different mechanisms, excited-state absorption (ESA), energy transfer upconversion (ETU), cooperative luminescence (CL), and cooperative upconversion (CU), which are discussed in this Account.
Collapse
Affiliation(s)
- Hélène Bolvin
- Laboratoire de Chimie et Physique Quantiques, CNRS, Université Toulouse III, 118 route de Narbonne, F-31062 Toulouse, France
| | - Alexandre Fürstenberg
- Department of Inorganic and Analytical Chemistry, University of Geneva, 30 quai E. Ansermet, CH-1211 Geneva 4, Switzerland
- Department of Physical Chemistry, University of Geneva, 30 quai E. Ansermet, CH-1211 Geneva 4. Switzerland
| | - Bahman Golesorkhi
- Department of Inorganic and Analytical Chemistry, University of Geneva, 30 quai E. Ansermet, CH-1211 Geneva 4, Switzerland
| | - Homayoun Nozary
- Department of Inorganic and Analytical Chemistry, University of Geneva, 30 quai E. Ansermet, CH-1211 Geneva 4, Switzerland
| | - Inès Taarit
- Department of Inorganic and Analytical Chemistry, University of Geneva, 30 quai E. Ansermet, CH-1211 Geneva 4, Switzerland
| | - Claude Piguet
- Department of Inorganic and Analytical Chemistry, University of Geneva, 30 quai E. Ansermet, CH-1211 Geneva 4, Switzerland
| |
Collapse
|
11
|
Ölmez Nalcıoğlu Ö, Kılıç E, Haspulat Taymaz B, Kamış H. Synthesis of new azobenzo[c]cinnolines and investigation of electronic spectra and spectroelectrochemical behaviours. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 263:120175. [PMID: 34304013 DOI: 10.1016/j.saa.2021.120175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 06/13/2021] [Accepted: 07/08/2021] [Indexed: 06/13/2023]
Abstract
A series of disazobenzo[c]cinnoline dyes was prepared by coupling reaction of 3,8-dihydroxybenzo[c]cinnoline with diazotised aromatic amines. The structures of these dyes were confirmed using UV-Vis, FTIR, 1H NMR, LC-MS/MS and LC-MS/TOF spectroscopic techniques. 13C NMR, 13C-DEPT, 1H-1H COSY, 1H-13C HMQC and 1H-13C HMBC spectra of dye 12 were demonstrated in this study. In addition, the effects of the substituent attached to the phenyl ring, solvent and acid-base on the UV-Vis spectra of the dyes were investigated. Besides, voltammetric and spectroelectrochemical behaviours of four disazobenzo[c]cinnolines (2, 8, 11 and 13) in acetonitrile (ACN) solution were also evaluated. It was observed that the disazobenzo[c]cinnoline derivatives indicated reversible voltammetric behaviour in acetonitrile-tetrabutylammonium perchlorate (ACN-TBAP) solution. A square-wave potential step method coupled with optical spectroscopy was used to probe switching times and optic contrast of the dyes.
Collapse
Affiliation(s)
- Öznur Ölmez Nalcıoğlu
- Department of Chemistry, Ankara University Faculty of Science, 06100 Ankara, Turkey; Department of Mathematics and Science Education, Science Education, Giresun University Faculty of Education, 28200 Giresun, Turkey.
| | - Emine Kılıç
- Department of Chemistry, Ankara University Faculty of Science, 06100 Ankara, Turkey.
| | - Bircan Haspulat Taymaz
- Department of Chemical Engineering, Konya Technical University Faculty of Engineering and Natural Sciences, 42250 Konya, Turkey.
| | - Handan Kamış
- Department of Chemical Engineering, Konya Technical University Faculty of Engineering and Natural Sciences, 42250 Konya, Turkey.
| |
Collapse
|
12
|
Dipyridylmethane Ethers as Ligands for Luminescent Ir Complexes. Molecules 2021; 26:molecules26237161. [PMID: 34885742 PMCID: PMC8659258 DOI: 10.3390/molecules26237161] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/23/2021] [Accepted: 11/24/2021] [Indexed: 11/17/2022] Open
Abstract
This work reports two new cationic heteroleptic cyclometalated iridium complexes, containing ether derivatives of di(pyridin-2-yl)methanol. The new ligands are based on dipyridin-2-ylmethane and are designed to obtain ether-based intermediates with extended electronic conjugation by insertion of π system such as phenyl, allyl and ethynyl. Different synthetic strategies were employed to introduce these units, as molecular wires, between the dipyridin-2-ylmethane chelating portion and the terminal N-containing functional group, such as amine and carbamide. The corresponding complexes show luminescence in the blue region of the spectrum, lifetimes between 0.6 and 2.1 μs, high quantum yield and good electrochemical behavior. The computational description (DFT) of the electronic structure highlights the key role of the conjugated π systems on optical and electrochemical properties of the final products.
Collapse
|
13
|
Paul A, Das S, Bar M, Baitalik S. Tuning of photo-redox behaviours and thermodynamic and kinetic aspects of intercomponent energy transfer in trimetallic complexes of Ru(II) and Os(II) by exploiting their second coordination sphere. Dalton Trans 2021; 50:14872-14883. [PMID: 34604872 DOI: 10.1039/d1dt02544a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This paper deals with a thorough investigation of pH-induced tuning of the ground and excited state photophysical as well as electrochemical behaviours of two series of our recently reported homo- and heterotrimetallic complexes of the type [(bpy)2Ru(d-HIm-t)M(t-HIm-d)Ru(bpy)2]6+ and [(bpy)2Os(d-HIm-t)M(t-HIm-d)Os(bpy)2]6+ (M = RuII and OsII) derived from a heteroditopic bpy-tpy (d-HIm-t) type bridging ligand through the exploitation of their second coordination sphere. A small bathochromic shift of the absorption and emission spectral band along with substantial alteration of emission intensity and lifetime of the triads is noted upon deprotonation of the NH motifs at elevated pH values. The lowering of the half wave potential of a M3+/M2+ couple is also observed upon removal of the NH protons. Both ground and excited state pKa values of the triads are estimated from their absorption/emission versus pH spectral profiles. In addition, the variation of the free energy change (ΔG) and the rate of intercomponent energy transfer (ken) in the triads upon stepwise deprotonation of the NH motifs are also addressed in the present study.
Collapse
Affiliation(s)
- Animesh Paul
- Inorganic Chemistry Section, Department of Chemistry, Jadavpur University, Kolkata 700032, India.
| | - Soumi Das
- Inorganic Chemistry Section, Department of Chemistry, Jadavpur University, Kolkata 700032, India.
| | - Manoranjan Bar
- Inorganic Chemistry Section, Department of Chemistry, Jadavpur University, Kolkata 700032, India.
| | - Sujoy Baitalik
- Inorganic Chemistry Section, Department of Chemistry, Jadavpur University, Kolkata 700032, India.
| |
Collapse
|
14
|
Xue X, Fu Y, He L, Salassa L, He LF, Hao YY, Koh MJ, Soulié C, Needham RJ, Habtemariam A, Garino C, Lomachenko KA, Su Z, Qian Y, Paterson MJ, Mao ZW, Liu HK, Sadler PJ. Photoactivated Osmium Arene Anticancer Complexes. Inorg Chem 2021; 60:17450-17461. [PMID: 34503331 DOI: 10.1021/acs.inorgchem.1c00241] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Half-sandwich Os-arene complexes exhibit promising anticancer activity, but their photochemistry has hardly been explored. To exploit the photocytotoxicity and photochemistry of Os-arenes, O,O-chelated complexes [Os(η6-p-cymene)(Curc)Cl] (OsCUR-1, Curc = curcumin) and [Os(η6-biphenyl)(Curc)Cl] (OsCUR-2), and N,N-chelated complexes [Os(η6-biphenyl)(dpq)I]PF6 (OsDPQ-2, dpq = pyrazino[2,3-f][1,10]phenanthroline) and [Os(η6-biphenyl)(bpy)I]PF6 (OsBPY-2, bpy = 2,2'-bipyridine), have been investigated. The Os-arene curcumin complexes showed remarkable photocytotoxicity toward a range of cancer cell lines (blue light IC50: 2.6-5.8 μM, photocytotoxicity index PI = 23-34), especially toward cisplatin-resistant cancer cells, but were nontoxic to normal cells. They localized mainly in mitochondria in the dark but translocated to the nucleus upon photoirradiation, generating DNA and mitochondrial damage, which might contribute toward overcoming cisplatin resistance. Mitochondrial damage, apoptosis, ROS generation, DNA damage, angiogenesis inhibition, and colony formation were observed when A549 lung cancer cells were treated with OsCUR-2. The photochemistry of these Os-arene complexes was investigated by a combination of NMR, HPLC-MS, high energy resolution fluorescence detected (HERFD), X-ray adsorption near edge structure (XANES) spectroscopy, total fluorescence yield (TFY) XANES spectra, and theoretical computation. Selective photodissociation of the arene ligand and oxidation of Os(II) to Os(III) occurred under blue light or UVA excitation. This new approach to the design of novel Os-arene complexes as phototherapeutic agents suggests that the novel curcumin complex OsCUR-2, in particular, is a potential candidate for further development as a photosensitizer for anticancer photoactivated chemotherapy (PACT).
Collapse
Affiliation(s)
- Xuling Xue
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Ying Fu
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, U.K.,National Center for Advancing Translational Sciences (NCATS/NIH), Rockville, Maryland 20850, United States
| | - Liang He
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Luca Salassa
- Donostia International Physics Center, Paseo Manuel de Lardizabal 4, Donostia 20018, Spain.,Ikerbasque, Basque Foundation for Science, Bilbao 48011, Spain.,Kimika Fakultatea, Euskal Herriko Unibertsitatea, UPV/EHU, Donostia 20080, Spain
| | - Ling-Feng He
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing 210023, China
| | - Yuan-Yuan Hao
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Madeleine J Koh
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, U.K
| | - Clément Soulié
- Institute of Chemical Sciences, School of Engineering & Physical Sciences, Heriot-Watt University, Edinburgh, Scotland EH14 4AS, U.K
| | - Russell J Needham
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, U.K
| | | | - Claudio Garino
- Department of Chemistry and NIS Interdepartmental Center, University of Turin, Turin I-10135, Italy
| | - Kirill A Lomachenko
- Department of Chemistry and NIS Interdepartmental Center, University of Turin, Turin I-10135, Italy.,European Synchrotron Radiation Facility, 71 avenue des Martyrs, CS 40220, 38043 Grenoble Cedex 9, France.,The Smart Materials Research Institute, Southern Federal University, Rostov-on-Don 344090, Russia
| | - Zhi Su
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Yong Qian
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Martin J Paterson
- Institute of Chemical Sciences, School of Engineering & Physical Sciences, Heriot-Watt University, Edinburgh, Scotland EH14 4AS, U.K
| | - Zong-Wan Mao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Hong-Ke Liu
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Peter J Sadler
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, U.K
| |
Collapse
|
15
|
Deb S, Sahoo A, Ahmed T, Baitalik S. Stimuli-Responsive Molecular Switches and Logic Devices Based on Ru(II)-Terpyridyl-Imidazole Coordination Motif. J Phys Chem B 2021; 125:8919-8931. [PMID: 34323072 DOI: 10.1021/acs.jpcb.1c05305] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We report herein the synthesis, photophysics, and electrochemistry of three Ru(II)-terpyridine complexes derived from a new terpyridyl-imidazole ligand (tpy-HImzPh3F2) and study their pH- and temperature-responsive behaviors toward the fabrication of molecular switches. The complexes emitted at room temperature (RT) have a lifetime within the 4.5-49.0 ns domain, depending on the auxiliary ligand and the solvent used. In the acidic region, the complexes exhibit emission, indicating the "on-state", while in the basic condition, the emission is totally quenched, indicating the "off-state". Similarly, when the temperature is lowered, the emission intensity and lifetime are enhanced, demonstrating the on-state, while increase of temperature leads to quenching of the emission intensity and lifetime, designated as the off-state. In both cases, the process is reversible. The bathochromic shift of the spectral band together with the emission quenching and lowering of the Ru3+/Ru2+ potential is also observed upon deprotonation at elevated pH. In addition, systematic variation of the absorption spectral behaviors upon variation of pH helps in evaluation of the pKa's of the complexes. In essence, the complexes can act as switches emanated from a huge change in their absorption, emission, and redox behaviors as a function of their acidity/basicity (pH) and temperature. Moreover, their emission spectral responses as a function of pH and temperature were utilized for the fabrication of two-input binary logic gates. Density-functional theory (DFT) and time-dependent density-functional theory (TD-DFT) computations are performed for appropriate interpretation of the spectral bands.
Collapse
Affiliation(s)
- Sourav Deb
- Inorganic Chemistry Section, Department of Chemistry, Jadavpur University, Kolkata 700 032, India
| | - Anik Sahoo
- Inorganic Chemistry Section, Department of Chemistry, Jadavpur University, Kolkata 700 032, India
| | - Toushique Ahmed
- Inorganic Chemistry Section, Department of Chemistry, Jadavpur University, Kolkata 700 032, India
| | - Sujoy Baitalik
- Inorganic Chemistry Section, Department of Chemistry, Jadavpur University, Kolkata 700 032, India
| |
Collapse
|
16
|
Microwave-Assisted Synthesis, Optical and Theoretical Characterization of Novel 2-(imidazo[1,5-a]pyridine-1-yl)pyridinium Salts. CHEMISTRY 2021. [DOI: 10.3390/chemistry3030050] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
In the last few years, imidazo[1,5-a]pyridine scaffolds and derivatives have attracted growing attention due to their unique chemical structure and optical behaviors. In this work, a series of pyridylimidazo[1,5-a]pyridine derivatives and their corresponding pyridinium salts were synthesized and their optical properties investigated to evaluate the effect of the quaternization on the optical features both in solution and polymeric matrix. A critical analysis based on the spectroscopic data, chemical structures along with density functional theory calculation is reported to address the best strategies to prevent aggregation and optimize the photophysical properties. The obtained results describe the relationship between chemical structure and optical behaviors, highlighting the role of pendant pyridine. Finally, the presence of a positive charge is fundamental to avoid any possible aggregation process in polymeric films.
Collapse
|
17
|
Deb S, Sahoo A, Pal P, Baitalik S. Exploitation of the Second Coordination Sphere to Promote Significant Increase of Room-Temperature Luminescence Lifetime and Anion Sensing in Ruthenium-Terpyridine Complexes. Inorg Chem 2021; 60:6836-6851. [PMID: 33885303 DOI: 10.1021/acs.inorgchem.1c00821] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
This paper deals with the synthesis, characterization, and photophysical behaviors of three Ru(II)-terpyridine complexes derived from a terpyridyl-imidazole ligand (tpy-HImzPh3Me2), wherein a terpyridine moiety has been coupled with a dimethylbenzil unit through a phenylimidazole spacer. The three complexes display strong emission at RT having excited-state lifetimes in the range of 2.3-43.7 ns, depending upon the co-ligand present and the solvents used. Temperature-dependent emission spectral measurements have demonstrated that the energy separation between emitting metal-to-ligand charge transfer state and non-emitting metal-centered state is increased relative to that of [Ru(tpy)2]2+. In contrast to our previously studied Ru(II) complexes containing similar terpyridyl-imidazole motif but differing by peripheral methyl groups, significant enhancement of RT emission intensity and quantum yield and remarkable increase of emission lifetime occur for the present complexes upon protonation of the imidazole nitrogen(s) with perchloric acid. Additionally, by exploiting imidazole NH motif(s), we have examined their anion recognition behaviors in organic and aqueous media. Interestingly, the complexes are capable of visually recognizing cyanide ions in aqueous medium up to the concentration limit of 10-8 M. Computational studies involving density functional theory (DFT) and time-dependent DFT methods have been carried out to obtain insights into their electronic structures and to help with the assignment of absorption and emission bands.
Collapse
Affiliation(s)
- Sourav Deb
- Inorganic Chemistry Section, Department of Chemistry, Jadavpur University, Kolkata 700 032, India
| | - Anik Sahoo
- Inorganic Chemistry Section, Department of Chemistry, Jadavpur University, Kolkata 700 032, India
| | - Poulami Pal
- Inorganic Chemistry Section, Department of Chemistry, Jadavpur University, Kolkata 700 032, India
| | - Sujoy Baitalik
- Inorganic Chemistry Section, Department of Chemistry, Jadavpur University, Kolkata 700 032, India
| |
Collapse
|
18
|
Pal P, Ganguly T, Sahoo A, Baitalik S. Emission Switching in the Near-Infrared by Reversible Trans-Cis Photoisomerization of Styrylbenzene-Conjugated Osmium Terpyridine Complexes. Inorg Chem 2021; 60:4869-4882. [PMID: 33755458 DOI: 10.1021/acs.inorgchem.0c03788] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A new array of homoleptic osmium(II) complexes based on styrylbenzene-conjugated terpyridine ligands (tpy-pvp-X) were synthesized and their photophysical, electrochemical, and photoisomerization behaviors thoroughly investigated in this work. Both electron-donating and -withdrawing substituents were incorporated onto a tpy-pvp-X (X = H, Me, Cl, NO2, and Ph) moiety to tune the optical properties and also the rate of photoisomerization behaviors in the complexes. All complexes display strong spin-allowed singlet metal-to-ligand charge-transfer bands in the visible (495-506 nm) and weak singlet ground state to triplet metal-to-ligand charge-transfer (3MLCT) broad bands within the 600-700 nm range. The complexes also exhibit strong phosphorescence emission from their 3MLCT state in the near-infrared domain (737-752 nm) at room temperature with excited-state lifetimes spanning between 107 and 165 ns. Two styrylbenzene units promote reversible trans-trans to trans-cis/cis-cis isomerization induced by light. The rate constants and quantum yields of photoisomerization were found to vary linearly with the Hammett σp parameters of the substituents. The rate and quantum yields were also found to decrease with increasing polarity of the solvents. Considerable modulation of the optical behavior along with luminescence switching in the complexes has been achieved upon photoisomerization. Moreover, the optical outputs as a function of two photonic stimuli inputs were used to demonstrate the binary function of a two-input IMPLICATION logic gate. In conjunction with the experimental study, computational investigations were also carried out in all three conformations of the complexes (trans-trans, trans-cis, and cis-cis) to have a perception of their electronic structures and for correct assignment of their absorption and emission spectral bands.
Collapse
Affiliation(s)
- Poulami Pal
- Department of Chemistry, Inorganic Chemistry Section, Jadavpur University,Kolkata 700032, India
| | - Tanusree Ganguly
- Department of Chemistry, Inorganic Chemistry Section, Jadavpur University,Kolkata 700032, India
| | - Anik Sahoo
- Department of Chemistry, Inorganic Chemistry Section, Jadavpur University,Kolkata 700032, India
| | - Sujoy Baitalik
- Department of Chemistry, Inorganic Chemistry Section, Jadavpur University,Kolkata 700032, India
| |
Collapse
|
19
|
El Harakeh N, Morais ACP, Rani N, Gomez JAG, Cousino A, Lanznaster M, Mazumder S, Verani CN. Reactivity and Mechanisms of Photoactivated Heterometallic [Ru
II
Ni
II
] and [Ru
II
Ni
II
Ru
II
] Catalysts for Dihydrogen Generation from Water. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202013678] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Nour El Harakeh
- Department of Chemistry Wayne State University Detroit MI 48202 USA
| | - Ana C. P. Morais
- Instituto de Química Universidade Federal Fluminense 24020-141 Niterói RJ Brazil
| | - Neha Rani
- Department of Chemistry Indian Institute of Technology Jammu Jammu 181221 India
| | - Javier A. G. Gomez
- Instituto de Química Universidade Federal Fluminense 24020-141 Niterói RJ Brazil
| | - Abigail Cousino
- Department of Chemistry Wayne State University Detroit MI 48202 USA
| | - Mauricio Lanznaster
- Instituto de Química Universidade Federal Fluminense 24020-141 Niterói RJ Brazil
| | - Shivnath Mazumder
- Department of Chemistry Indian Institute of Technology Jammu Jammu 181221 India
| | | |
Collapse
|
20
|
Farley SJ, Salassa L, Pizarro AM, Sadler PJ. Photoactive Platinum(II) Azopyridine Complexes †. Photochem Photobiol 2021; 98:92-101. [PMID: 33616206 DOI: 10.1111/php.13405] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 02/14/2021] [Accepted: 02/18/2021] [Indexed: 11/30/2022]
Abstract
Platinum(II) complexes containing the strong π-acceptor N,N-chelating ligand phenylazopyridine (Ph-azpy) [Pt(p-R-Ph-azpy)X2 ], R = H, NMe2 or OH, X = Cl or N3 , have been synthesized and characterized to explore the effects of monodentate ligands and phenyl substituents on their absorption spectra and photoactivation. Time-dependent density functional theory calculations showed that the complexes have a low-lying unoccupied orbital with strong σ-antibonding character toward the majority of the coordination bonds. The UV-visible absorption bands were assigned as mainly ligand-centered or metal-to-ligand charge-transfer transitions, with strong contributions from the chlorido and azido groups. In complexes with substituted Ph-azpy ligands, σ-donation from NMe2 and OH/O- groups results in a redshift of the main absorption bands compared with unsubstituted Ph-azpy complexes. The diazido complexes are photoactive in solution upon irradiation with either UVA or visible light for R = H or NMe2 , or UVA only when R = OH/O- . Intriguingly, the phenolate group of the latter complex undergoes very slow protonation in solution. Biological screening was limited by poor solubility; however, initial tests showed that the phenolato diazido complex is rapidly taken up into the nuclei of HaCaT keratinocytes, which are stained intensely blue, and its cytotoxicity is increased upon irradiation with UVA light.
Collapse
Affiliation(s)
- Sarah J Farley
- Department of Chemistry, University of Warwick, Coventry, UK
| | - Luca Salassa
- Department of Chemistry, University of Warwick, Coventry, UK.,Donostia International Physics Center, Donostia, Spain.,Polimero eta Material Aurreratuak: Fisika, Kimika eta Teknologia, Kimika Fakultatea, Euskal Herriko Unibertsitatea UPV/EHU, Donostia, Spain.,Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| | - Ana M Pizarro
- Department of Chemistry, University of Warwick, Coventry, UK.,IMDEA Nanociencia, Madrid, Spain
| | - Peter J Sadler
- Department of Chemistry, University of Warwick, Coventry, UK
| |
Collapse
|
21
|
El Harakeh N, de Morais ACP, Rani N, Gomez JAG, Cousino A, Lanznaster M, Mazumder S, Verani CN. Reactivity and Mechanisms of Photoactivated Heterometallic [Ru II Ni II ] and [Ru II Ni II Ru II ] Catalysts for Dihydrogen Generation from Water. Angew Chem Int Ed Engl 2021; 60:5723-5728. [PMID: 33319451 DOI: 10.1002/anie.202013678] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Indexed: 11/07/2022]
Abstract
Two heterometallic photocatalysts were designed and probed for water reduction. Both [(bpy)2 RuII NiII (L1 )](ClO4 )2 (1) and [(bpy)2 RuII NiII (L2 )2 RuII (bpy)2 ](ClO4 )2 (2) can generate the low-valent precursor involved in hydride formation prior to dihydrogen generation. However, while the bimetallic [RuII NiII ] (1) requires the presence of an external photosensitizer to trigger catalytic activity, the trimetallic [RuII NiII RuII ] (2) displays significant coupling between the catalytic and light-harvesting units to promote intramolecular multielectron transfer and perform photocatalysis at the Ni center. A concerted experimental and theoretical effort proposes mechanisms to explain why 1 is unable to achieve self-supported catalysis, while 2 is fully photocatalytic.
Collapse
Affiliation(s)
- Nour El Harakeh
- Department of Chemistry, Wayne State University, Detroit, MI, 48202, USA
| | - Ana C P de Morais
- Instituto de Química, Universidade Federal Fluminense, 24020-141, Niterói, RJ, Brazil
| | - Neha Rani
- Department of Chemistry, Indian Institute of Technology Jammu, Jammu, 181221, India
| | - Javier A G Gomez
- Instituto de Química, Universidade Federal Fluminense, 24020-141, Niterói, RJ, Brazil
| | - Abigail Cousino
- Department of Chemistry, Wayne State University, Detroit, MI, 48202, USA
| | - Mauricio Lanznaster
- Instituto de Química, Universidade Federal Fluminense, 24020-141, Niterói, RJ, Brazil
| | - Shivnath Mazumder
- Department of Chemistry, Indian Institute of Technology Jammu, Jammu, 181221, India
| | - Cláudio N Verani
- Department of Chemistry, Wayne State University, Detroit, MI, 48202, USA
| |
Collapse
|
22
|
Pal P, Ganguly T, Das S, Baitalik S. pH-Responsive colorimetric, emission and redox switches based on Ru(ii)-terpyridine complexes. Dalton Trans 2021; 50:186-196. [PMID: 33290452 DOI: 10.1039/d0dt03537h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We have undertaken a thorough investigation on pH-responsive optical and redox switching behaviors of our recently reported trans form of bis-tridentate Ru(ii) luminophores, [(H2pbbzim)Ru(tpy-pvp-X)]2+ where X = H, Me, Cl, NO2, and Ph. The complexes possess two benzimidazole protons in their second coordination sphere, which became acidic upon coordinating influence of Ru2+ and could be successively deprotonated with the increase of pH. The effect of pH on photophysical and electrochemical behaviours of the complexes was thoroughly studied. Substantial quenching of emission together with the red-shift of both absorption (color change) and emission bands is noticed for all complexes upon dissociation of NH protons. Absorption vs. pH data were employed for determination of ground-state pKa values, while excited-state pKa (pKa*) values were estimated by employing the Förster cycle based equation. The electronic nature of X induces a small but finite effect on the pKa values and a linear correlation is found by plotting pKavs. Hammett σp parameters of X. Proton-coupled electrochemical behaviours were investigated within the pH range of 1-10. From the E1/2vs. pH plot, acid dissociation constants in different protonation states of the complexes were estimated in both Ru2+ and Ru3+ states. Compared with their protonated forms which exhibit reversible oxidation within 0.91-0.95 V, the oxidation potential of the doubly deprotonated forms shifted remarkably to the cathodic region (0.61-0.66 V). In essence, the present complexes act as potential pH-responsive colorimetric, emission and redox switches.
Collapse
Affiliation(s)
- Poulami Pal
- Inorganic Chemistry Section, Department of Chemistry, Jadavpur University, Kolkata 700032, India.
| | | | | | | |
Collapse
|
23
|
Heideman GH, Berrocal JA, Stöhr M, Meijer EW, Feringa BL. Stepwise Adsorption of Alkoxy-Pyrene Derivatives onto a Lamellar, Non-Porous Naphthalenediimide-Template on HOPG. Chemistry 2021; 27:207-211. [PMID: 32893412 PMCID: PMC7821129 DOI: 10.1002/chem.202004008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Indexed: 01/07/2023]
Abstract
The development of new strategies for the preparation of multicomponent supramolecular assemblies is a major challenge on the road to complex functional molecular systems. Here we present the use of a non-porous self-assembled monolayer from uC33 -NDI-uC33 , a naphthalenediimide symmetrically functionalized with unsaturated 33 carbon-atom-chains, to prepare bicomponent supramolecular surface systems with a series of alkoxy-pyrene (PyrOR) derivatives at the liquid/HOPG interface. While previous attempts at directly depositing many of these PyrOR units at the liquid/HOPG interface failed, the multicomponent approach through the uC33 -NDI-uC33 template enabled control over molecular interactions and facilitated adsorption. The PyrOR deposition restructured the initial uC33 -NDI-uC33 monolayer, causing an expansion in two dimensions to accommodate the guests. As far as we know, this represents the first example of a non-porous or non-metal complex-bearing monolayer that allows the stepwise formation of multicomponent supramolecular architectures on surfaces.
Collapse
Affiliation(s)
- G Henrieke Heideman
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747, AG, Groningen, The Netherlands
| | - José Augusto Berrocal
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747, AG, Groningen, The Netherlands.,Institute for Complex Molecular Systems and, Laboratory of Macromolecular and Organic Chemistry, Eindhoven University of Technology, 5600 MB, Eindhoven, The Netherlands
| | - Meike Stöhr
- Zernike Institute for Advanced Materials, University of Groningen, 9747 AG Groningen, The Netherlands
| | - E W Meijer
- Institute for Complex Molecular Systems and, Laboratory of Macromolecular and Organic Chemistry, Eindhoven University of Technology, 5600 MB, Eindhoven, The Netherlands
| | - Ben L Feringa
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747, AG, Groningen, The Netherlands
| |
Collapse
|
24
|
Miao L, Liu L, Zhang K, Chen J. Molecular Design Strategy for High-Redox-Potential and Poorly Soluble n-Type Phenazine Derivatives as Cathode Materials for Lithium Batteries. CHEMSUSCHEM 2020; 13:2337-2344. [PMID: 31968154 DOI: 10.1002/cssc.202000004] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 01/18/2020] [Indexed: 06/10/2023]
Abstract
The n-type phenazine (PZ) derivatives represent an emerging class of cathode materials in lithium batteries for low-cost and sustainable energy storage. However, their low redox potential (<2 V) and high solubility hinder their application to battery systems. To explore and solve such problems in lithium batteries, we investigate the redox characteristics of 13 n-type PZ derivatives and their dissolution behavior in seven organic electrolytes systematically by using DFT calculations. Two decisive factors are observed to tune the redox potentials for these molecules: the first is the electron density around the N active sites and the second is the chelation on lithium by both the active N and the substituent group. Specific approaches that include the reduction of aromatic rings and the introduction of functional groups at β sites in n-type PZ derivatives can improve the redox potential to approximately 3 V. In addition, we develop a new index denoted as Ediff to investigate the solubility of n-type PZ derivatives. The most effective way to reduce the dissolution of electrodes in solvents is to improve intermolecular attraction between the electrode molecules by introducing π-π stacking and hydrogen bonds. Such all-around guidelines should promote the application of n-type PZ-based organic cathodes with a high redox potential and low electrode solubility for lithium batteries.
Collapse
Affiliation(s)
- Licheng Miao
- Key Laboratory of Advanced Energy Materials Chemistry, (Ministry of Education), Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Luojia Liu
- Key Laboratory of Advanced Energy Materials Chemistry, (Ministry of Education), Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Kai Zhang
- Key Laboratory of Advanced Energy Materials Chemistry, (Ministry of Education), Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Jun Chen
- Key Laboratory of Advanced Energy Materials Chemistry, (Ministry of Education), Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| |
Collapse
|
25
|
Li G, Zhu D, Wang X, Su Z, Bryce MR. Dinuclear metal complexes: multifunctional properties and applications. Chem Soc Rev 2020; 49:765-838. [DOI: 10.1039/c8cs00660a] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Dinuclear metal complexes have enabled breakthroughs in OLEDs, photocatalytic water splitting and CO2reduction, DSPEC, chemosensors, biosensors, PDT and smart materials.
Collapse
Affiliation(s)
- Guangfu Li
- Department of Chemistry
- Northeast Normal University
- Changchun
- P. R. China
| | - Dongxia Zhu
- Department of Chemistry
- Northeast Normal University
- Changchun
- P. R. China
| | - Xinlong Wang
- Department of Chemistry
- Northeast Normal University
- Changchun
- P. R. China
| | - Zhongmin Su
- Department of Chemistry
- Northeast Normal University
- Changchun
- P. R. China
- School of Chemistry and Environmental Engineering
| | | |
Collapse
|
26
|
Beltrán-Leiva MJ, Solis-Céspedes E, Páez-Hernández D. The role of the excited state dynamic of the antenna ligand in the lanthanide sensitization mechanism. Dalton Trans 2020; 49:7444-7450. [DOI: 10.1039/d0dt01132k] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A fragmentation scheme has been used to describe the photophysical phenomena associated with the antenna effect in organometallic lanthanide complexes. The theoretical protocol allows justifying the sensitization pathways.
Collapse
|
27
|
Yang L, Reimers JR, Kobayashi R, Hush NS. Competition between charge migration and charge transfer induced by nuclear motion following core ionization: Model systems and application to Li 2. J Chem Phys 2019; 151:124108. [PMID: 31575213 DOI: 10.1063/1.5117246] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Attosecond and femtosecond spectroscopies present opportunities for the control of chemical reaction dynamics and products, as well as for quantum information processing; we address the somewhat unique situation of core-ionization spectroscopy which, for dimeric chromophores, leads to strong valence charge localization and hence tightly paired potential-energy surfaces of very similar shape. Application is made to the quantum dynamics of core-ionized Li2 +. This system is chosen as Li2 is the simplest stable molecule facilitating both core ionization and valence ionization. First, the quantum dynamics of some model surfaces are considered, with the surprising result that subtle differences in shape between core-ionization paired surfaces can lead to dramatic differences in the interplay between electronic charge migration and charge transfer induced by nuclear motion. Then, equation-of-motion coupled-cluster calculations are applied to determine potential-energy surfaces for 8 core-excited state pairs, calculations believed to be the first of their type for other than the lowest-energy core-ionized molecular pair. While known results for the lowest-energy pair suggest that Li2 + is unsuitable for studying charge migration, higher-energy pairs are predicted to yield results showing competition between charge migration and charge transfer. Central is a focus on the application of Hush's 1975 theory for core-ionized X-ray photoelectron spectroscopy to understand the shapes of the potential-energy surfaces and hence predict key features of charge migration.
Collapse
Affiliation(s)
- Likun Yang
- International Centre for Quantum and Molecular Structures and Department of Physics, Shanghai University, Shanghai 200444, China
| | - Jeffrey R Reimers
- School of Mathematical and Physical Sciences, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Rika Kobayashi
- International Centre for Quantum and Molecular Structures and Department of Physics, Shanghai University, Shanghai 200444, China
| | - Noel S Hush
- School of Molecular Biosciences, The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
28
|
Roveda AC, Santos WG, Souza ML, Adelson CN, Gonçalves FS, Castellano EE, Garino C, Franco DW, Cardoso DR. Light-activated generation of nitric oxide (NO) and sulfite anion radicals (SO3˙−) from a ruthenium(ii) nitrosylsulphito complex. Dalton Trans 2019; 48:10812-10823. [DOI: 10.1039/c9dt01432b] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
This manuscript describes the preparation of a new Ru(ii) nitrosylsulphito complex,trans-[Ru(NH3)4(isn)(N(O)SO3)]+(complex1), its spectroscopic and structural characterization, photochemistry, and thermal reactivity.
Collapse
Affiliation(s)
- Antonio C. Roveda
- São Carlos Institute of Chemistry
- University of São Paulo
- São Carlos
- Brazil
| | - Willy G. Santos
- São Carlos Institute of Chemistry
- University of São Paulo
- São Carlos
- Brazil
| | - Maykon L. Souza
- São Carlos Institute of Chemistry
- University of São Paulo
- São Carlos
- Brazil
| | | | | | | | - Claudio Garino
- Dept. of Chemistry and NIS Interdepartmental Centre
- University of Turin
- Italy
| | - Douglas W. Franco
- São Carlos Institute of Chemistry
- University of São Paulo
- São Carlos
- Brazil
| | - Daniel R. Cardoso
- São Carlos Institute of Chemistry
- University of São Paulo
- São Carlos
- Brazil
| |
Collapse
|
29
|
Pal P, Mukherjee S, Maity D, Baitalik S. Synthesis, Photophysics, and Switchable Luminescence Properties of a New Class of Ruthenium(II)-Terpyridine Complexes Containing Photoisomerizable Styrylbenzene Units. ACS OMEGA 2018; 3:14526-14537. [PMID: 31458137 PMCID: PMC6645016 DOI: 10.1021/acsomega.8b01927] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 10/19/2018] [Indexed: 06/10/2023]
Abstract
We report here the synthesis and structural characterization of a new class of homoleptic terpyridine complexes of Ru(II) containing styrylbenzene moieties to improve room-temperature luminescence properties. Solid-state structure determination of 2 was done through single-crystal X-ray diffraction. Tuning of photophysical properties was done by incorporating both electron-donating and electron-withdrawing substituents in the ligand. The complexes exhibit strong emission having lifetimes in the range of 10.0-158.5 ns, dependent on the substituent and the solvent. Good correlations were also observed between Hammett σp parameters with the lifetimes of the complexes. Styrylbenzene moieties in the complexes induce trans-trans to trans-cis isomerization accompanied by huge alteration of their spectral profiles upon treating with UV light. Reversal of trans-cis to trans-trans forms was also achieved on interacting with visible light. Change from trans-trans to the corresponding trans-cis form leads to emission quenching, whereas trans-cis to the corresponding trans-trans form leads to restoration of emission. In essence, "on-off" and "off-on" photoswitching of luminescence was observed. Calculations involving density functional theory (DFT) and time-dependent-DFT methods were performed to understand the electronic structures as well as for appropriate assignment of the absorption and emission bands.
Collapse
Affiliation(s)
- Poulami Pal
- Department
of Chemistry, Inorganic Chemistry Section, Jadavpur University, Kolkata 700032, India
| | - Shruti Mukherjee
- Department
of Chemistry, Inorganic Chemistry Section, Jadavpur University, Kolkata 700032, India
| | - Dinesh Maity
- Department
of Chemistry, Inorganic Chemistry Section, Jadavpur University, Kolkata 700032, India
- Department
of Chemistry, Katwa College, Purba Bardhaman, West Bengal 713130, India
| | - Sujoy Baitalik
- Department
of Chemistry, Inorganic Chemistry Section, Jadavpur University, Kolkata 700032, India
| |
Collapse
|
30
|
Kia R, Batmanghelich S, Raithby PR. First heterobimetallic Ag I-Co III coordination compound with both bridging and terminal -NO 2 coordination modes: synthesis, characterization, structural and computational studies of (PPh 3) 2Ag I-(μ-κ 2O,O':κN-NO 2)-Co III(DMGH) 2(κN-NO 2). ACTA CRYSTALLOGRAPHICA SECTION C-STRUCTURAL CHEMISTRY 2018; 74:882-888. [PMID: 30080161 DOI: 10.1107/s2053229618009257] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 06/26/2018] [Indexed: 11/10/2022]
Abstract
An unusual heterobimetallic bis(triphenylphosphane)(NO2)AgI-CoIII(dimethylglyoximate)(NO2) coordination compound with both bridging and terminal -NO2 (nitro) coordination modes has been isolated and characterized from the reaction of [CoCl(DMGH)2(PPh3)] (DMGH2 is dimethylglyoxime or N,N'-dihydroxybutane-2,3-diimine) with excess AgNO2. In the title compound, namely bis(dimethylglyoximato-1κ2O,O')(μ-nitro-1κN:2κ2O,O')(nitro-1κN)bis(triphenylphosphane-2κP)cobalt(III)silver(I), [AgCo(C4H7N2O2)2(NO2)2(C18H15P)2], one of the ambidentate -NO2 ligands, in a bridging mode, chelates the AgI atom in an isobidentate κ2O,O'-manner and its N atom is coordinated to the CoIII atom. The other -NO2 ligand is terminally κN-coordinated to the CoIII atom. The structure has been fully characterized by X-ray crystallography and spectroscopic methods. Density functional theory (DFT) and time-dependent density functional theory (TD-DFT) have been used to study the ground-state electronic structure and elucidate the origin of the electronic transitions, respectively.
Collapse
Affiliation(s)
- Reza Kia
- Department of Chemistry, Sharif University of Technology, Tehran 11155-3516, Iran
| | - Shiva Batmanghelich
- Department of Chemistry, Sharif University of Technology, Tehran 11155-3516, Iran
| | - Paul R Raithby
- Chemistry Department, University of Bath, Bath BA2 7AY, UK
| |
Collapse
|
31
|
Pal P, Mukherjee S, Maity D, Baitalik S. Synthesis, Structural Characterization, and Luminescence Switching of Diarylethene-Conjugated Ru(II)-Terpyridine Complexes by trans-cis Photoisomerization: Experimental and DFT/TD-DFT Investigation. Inorg Chem 2018; 57:5743-5753. [PMID: 29701476 DOI: 10.1021/acs.inorgchem.7b03096] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We synthesized and thoroughly characterized a new family of diarylethene-conjugated mononuclear Ru(II)-terpyridine complexes and investigated in detail their photophysical, electrochemical, and spectroelectrochemical behaviors. Interestingly, the compounds show moderately strong room-temperature luminescence predominantly from their 3MLCT state with luminescence lifetime varying between 8.43 and 22.82 ns. Because of the presence of diarylethene unit, all the monometallic complexes underwent trans-to-cis photoisomerization upon interaction with UV light with substantial changes in their absorption and luminescence spectra. Reverting back from the cis to the trans form is also made possible upon treatment with visible light or by heat. Trans-to-cis isomerization leads to almost complete quenching of luminescence, while backward cis-to-trans isomerization gives rise to restoration of the original luminescence for all the complexes. Thus, "on-off" and "off-on" emission switching was made possible upon successive interaction of the complexes with UV and visible light. Computational investigation involving density functional theory (DFT) and time-dependent DFT methods was done for proper assignment of the experimental absorption and emission spectral bands in the complexes. Finally, experimentally observed trend on the absorption and emission spectral behaviors of the complexes upon photoisomerization was also compared with the calculated results.
Collapse
Affiliation(s)
- Poulami Pal
- Department of Chemistry, Inorganic Chemistry Section , Jadavpur University , Kolkata 700032 , India
| | - Shruti Mukherjee
- Department of Chemistry, Inorganic Chemistry Section , Jadavpur University , Kolkata 700032 , India
| | - Dinesh Maity
- Department of Chemistry, Inorganic Chemistry Section , Jadavpur University , Kolkata 700032 , India
| | - Sujoy Baitalik
- Department of Chemistry, Inorganic Chemistry Section , Jadavpur University , Kolkata 700032 , India
| |
Collapse
|
32
|
Beltrán-Leiva MJ, Páez-Hernández D, Arratia-Pérez R. Theoretical Determination of Energy Transfer Processes and Influence of Symmetry in Lanthanide(III) Complexes: Methodological Considerations. Inorg Chem 2018; 57:5120-5132. [DOI: 10.1021/acs.inorgchem.8b00159] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- María J. Beltrán-Leiva
- Relativistic Molecular Physics (ReMoPh) Group, Ph.D. Program in Molecular Physical Chemistry, Universidad Andrés Bello, Av. República 275, Santiago 8370146, Chile
| | - Dayán Páez-Hernández
- Relativistic Molecular Physics (ReMoPh) Group, Ph.D. Program in Molecular Physical Chemistry, Universidad Andrés Bello, Av. República 275, Santiago 8370146, Chile
- Center of Applied Nanosciences (CANS), Facultad de Ciencias Exactas, Universidad Andrés Bello, Av. República 275, Santiago 8370146, Chile
| | - Ramiro Arratia-Pérez
- Relativistic Molecular Physics (ReMoPh) Group, Ph.D. Program in Molecular Physical Chemistry, Universidad Andrés Bello, Av. República 275, Santiago 8370146, Chile
- Center of Applied Nanosciences (CANS), Facultad de Ciencias Exactas, Universidad Andrés Bello, Av. República 275, Santiago 8370146, Chile
| |
Collapse
|
33
|
Shahsavari HR, Fereidoonnezhad M, Niazi M, Mosavi ST, Habib Kazemi S, Kia R, Shirkhan S, Abdollahi Aghdam S, Raithby PR. Cyclometalated platinum(ii) complexes of 2,2'-bipyridine N-oxide containing a 1,1'-bis(diphenylphosphino)ferrocene ligand: structural, computational and electrochemical studies. Dalton Trans 2018; 46:2013-2022. [PMID: 28116396 DOI: 10.1039/c6dt04085c] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The preparation and characterization of new heteronuclear-platinum(ii) complexes containing a 1,1'-bis(diphenylphosphino)ferrocene (dppf) ligand are described. The reaction of the known starting complex [PtMe(κ2N,C-bipyO-H)(SMe2)], A, in which bipyO-H is a cyclometalated rollover 2,2'-bipyridine N-oxide, with the dppf ligand in a 2 : 1 ratio or an equimolar ratio led to the formation of the corresponding binuclear complex [Pt2Me2(κ2N,C-bipyO-H)2(μ-dppf)], 1, or the mononuclear complex [PtMe(κ1C-bipyO-H)(dppf)], 2, respectively. According to the reaction conditions, the dppf ligand in 1 and 2 behaves as either a bridging or chelating ligand. All complexes were characterized by NMR spectroscopy. The solid-state structure of 2 was determined by the single-crystal X-ray diffraction method and it was shown that the chelating dppf ligand in this complex was arranged in a "synclinal-staggered" conformation. Also, the occurrence of intermolecular C-HCpObipyO-H interactions in the solid-state gave rise to an extended 1-D network. The electronic absorption spectra and the electrochemical behavior of these complexes are discussed. Density functional theory (DFT) was used for geometry optimization of the singlet states in solution and for electronic structure calculations. The analysis of the molecular orbital (MO) compositions in terms of occupied and unoccupied fragment orbitals in 2 was performed.
Collapse
Affiliation(s)
- Hamid R Shahsavari
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Yousef Sobouti Blvd., Zanjan 45137-6731, Iran.
| | - Masood Fereidoonnezhad
- Department of Medicinal Chemistry, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran. and Cancer, Environmental and Petroleum Pollutants Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Maryam Niazi
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Yousef Sobouti Blvd., Zanjan 45137-6731, Iran.
| | - S Talaat Mosavi
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Yousef Sobouti Blvd., Zanjan 45137-6731, Iran.
| | - Sayed Habib Kazemi
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Yousef Sobouti Blvd., Zanjan 45137-6731, Iran.
| | - Reza Kia
- Chemistry Department, Sharif University of Technology, P.O. Box 11155-3516, Tehran, Iran.
| | - Shima Shirkhan
- Department of Medicinal Chemistry, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Siamak Abdollahi Aghdam
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Yousef Sobouti Blvd., Zanjan 45137-6731, Iran.
| | - Paul R Raithby
- Department of Chemistry, University of Bath, Claverton Down, Bath, Avon BA2 7AY, UK
| |
Collapse
|
34
|
Bar M, Maity D, Deb S, Das S, Baitalik S. Ru-Os dyads based on a mixed bipyridine-terpyridine bridging ligand: modulation of the rate of energy transfer and pH-induced luminescence switching in the infrared domain. Dalton Trans 2018; 46:12950-12963. [PMID: 28929158 DOI: 10.1039/c7dt02192e] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A series of heterobimetallic complexes of compositions [(bpy/phen)2Ru(dipy-Hbzim-tpy)Os (tpy-PhCH3/H2pbbzim)]4+ (bpy = 2,2'-bipyridine, phen = 1,10-phenanthroline, tpy-PhCH3 = 4'-(4-methylphenyl)-2,2':6',2''-terpyridine and H2pbbzim = 2,6-bis(benzimidazole-2-yl)pyridine)), derived from a heteroditopic bpy-tpy bridging ligand, were synthesized and thoroughly characterized in this work. The heterometallic complexes exhibit two successive one-electron reversible metal-centered oxidations corresponding to OsII/OsIII at lower potential and RuII/RuIII at higher potential. All the four dyads exhibit very intense, ligand centered absorption bands in the UV region and moderately intense MLCT bands in the visible region. The dyads also show intense infrared emission with the emission maximum spanning between 734 nm and 775 nm with reasonably long room temperature lifetimes varying between 30 ns and 104 ns. Both steady state and time resolved luminescence spectroscopic investigations indicate that efficient and fast intramolecular energy transfer from the 3MLCT state of the Ru(ii) center to the Os-center takes place in all the four dyads. In addition, the rate of energy transfer was found to depend on the terminal ligand on the Os-site. Due to the presence of a number of imidazole NH protons in the dyads, significant modulation of both the ground and excited state properties of the complexes was made possible by varying the pH of the solution. By varying the terminal ligand, pH-induced "on-off", "off-off-on" and "on-off-on" emission switching of the complexes was nicely demonstrated in the infrared region.
Collapse
Affiliation(s)
- Manoranjan Bar
- Department of Chemistry, Inorganic Chemistry Section, Jadavpur University, Kolkata 700032, India.
| | | | | | | | | |
Collapse
|
35
|
Kajjam AB, Vaidyanathan S. Tuning the photophysical properties of heteroleptic Ir(III) complexes through ancillary ligand substitution: Experimental and theoretical investigation. J Photochem Photobiol A Chem 2018. [DOI: 10.1016/j.jphotochem.2017.09.054] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
36
|
Rommel SA, Sorsche D, Fleischmann M, Rau S. Optical Sensing of Anions via Supramolecular Recognition with Biimidazole Complexes. Chemistry 2017; 23:18101-18119. [PMID: 28317177 DOI: 10.1002/chem.201605782] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Indexed: 12/30/2022]
Abstract
Phosphorescent metal complexes with peripheral N-H donor functionalities have attracted great attention as potential molecular sensing units for anionic species lately. In this contribution we discuss the development and potential of anion recognition and sensing features of recent examples of luminescent 2,2'-biimidazole complexes of ruthenium(II), iridium(III), osmium(II) and cobalt(III). The general dependency of photophysical features in these complexes regarding the acid-base chemistry of the peripheral N-H functionalities will be outlined as a basic requirement for optical ion recognition. Systematic strategies for the tuning and specific improvement by synthetic means will be discussed regarding recent reports. With respect to their distinct photophysical features, different transition metals are considered individually to demonstrate particular trends regarding ligand modification within the respective groups. In summary, this review elucidates the current state-of-the-art and future potential of the versatile class of 2,2'-biimidazole based sensor chromophores.
Collapse
Affiliation(s)
- Sebastian A Rommel
- Institute for Inorganic Chemistry I, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Dieter Sorsche
- Institute for Inorganic Chemistry I, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Maximilian Fleischmann
- Institute for Inorganic Chemistry I, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Sven Rau
- Institute for Inorganic Chemistry I, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| |
Collapse
|
37
|
Near-Infrared Fluorescence of Silicon Phthalocyanine Carboxylate Esters. Sci Rep 2017; 7:12282. [PMID: 28947759 PMCID: PMC5612943 DOI: 10.1038/s41598-017-12374-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 09/07/2017] [Indexed: 01/08/2023] Open
Abstract
Seven silicon(IV) phthalocyanine carboxylate esters (SiPcs, 1–7) with non-, partially- and per-fluorinated aliphatic (linear or branched at the alpha-carbon) and aromatic ester groups have been synthesized, their solid-state structures determined and their optoelectronic properties characterized. The SiPcs exhibit quasi-reversible oxidation waves (vs. Fc+/Fc) at 0.58–0.75 V and reduction waves at −0.97 to −1.16 V centered on the phthalocyanine ring with a narrow redox gap range of 1.70–1.75 V. Strong absorbance in the near-infrared (NIR) region is observed for 1–7 with the lowest-energy absorption maximum (Q band) varying little as a function of ester between 682 and 691 nm. SiPcs 1–7 fluorescence in the near-infrared with emission maxima at 691–700 nm. The photoluminescence quantum yields range from 40 to 52%. As a function of esterification, the SiPcs 1–7 exhibit moderate-to-good solubility in chlorinated solvents, such as 1,2-dichlorobenzene and chloroform.
Collapse
|
38
|
Mondal D, Biswas S, Paul A, Baitalik S. Luminescent Dinuclear Ruthenium Terpyridine Complexes with a Bis-Phenylbenzimidazole Spacer. Inorg Chem 2017; 56:7624-7641. [PMID: 28654273 DOI: 10.1021/acs.inorgchem.6b02937] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
A conjugated bis-terpyridine bridging ligand, 2-(4-(2,6-di(pyridin-2-yl)pyridin-4-yl)phenyl)-6-(2-(4-(2,6-di(pyridin-2-yl)pyridin-4-yl)phenyl)-1H-benzo[d]imidazol-6-yl)-1H-benzo[d] imidazole (tpy-BPhBzimH2-tpy), was designed in this work by covalent coupling of 3,3'-diaminobenzidine and two 4'-(p-formylphenyl)-2,2':6',2″-terpyridine units to synthesize a new series of bimetallic Ru(II)-terpyridine light-harvesting complexes. Photophysical and electrochemical properties were modulated by the variation of the terminal ligands in the complexes. The new compounds were thoroughly characterized by 1H NMR spectroscopy, high-resolution mass spectrometry, and elemental analysis. Absorption spectra of the complexes consist of very strong ligand-centered π-π* and n-π* transitions in the UV, metal-to-ligand, and intraligand charge transfer bands in the visible regions. Steady-state and time-resolved emission spectral measurements indicate that the complexes exhibit moderately intense luminescence at room temperature within the spectral domain of 653-687 nm having luminescence lifetimes in the range between 6.3 and 55.2 ns, depending upon terminal tridentate ligand and solvent. Variable-temperature luminescence measurements suggest substantial increase of the energy gap between luminescent 3metal-to-ligand charge transfer state and nonluminescent 3metal centered in the complexes compared to the parent [Ru(tpy)2]2+. Each of the three bimetallic complexes exhibits only one reversible couple in the positive potential window with almost no detectable splitting corresponding to simultaneous oxidation of the two remote Ru centers. All the complexes possess a number of imidazole NH protons, which became sufficiently acidic upon metal ion coordination. By utilizing these NH protons, we thoroughly studied anion recognition properties of the complexes in pure organic as well as predominantly aqueous media through multiple optical channels and spectroscopic methods. Finally computation investigations employing density functional theory (DFT) and time-dependent DFT were done to examine the electronic structures of the complexes and accurate assignment of experimentally observed optical spectral bands.
Collapse
Affiliation(s)
- Debiprasad Mondal
- Department of Chemistry, Inorganic Chemistry Section, Jadavpur University , Kolkata 700032, India
| | - Sourav Biswas
- Department of Chemistry, Inorganic Chemistry Section, Jadavpur University , Kolkata 700032, India
| | - Animesh Paul
- Department of Chemistry, Inorganic Chemistry Section, Jadavpur University , Kolkata 700032, India
| | - Sujoy Baitalik
- Department of Chemistry, Inorganic Chemistry Section, Jadavpur University , Kolkata 700032, India
| |
Collapse
|
39
|
Kia R, Safari F. Synthesis, spectral and structural characterization and computational studies of rhenium(I)-tricarbonyl nitrito complexes of 2,2′-bipyridine and 2,9-dimethylphenanthroline ligands: π-Accepting character of the diimine ligands. Inorganica Chim Acta 2016. [DOI: 10.1016/j.ica.2016.08.041] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
40
|
Mondal D, Bar M, Mukherjee S, Baitalik S. Design of Ru(II) Complexes Based on Anthraimidazoledione-Functionalized Terpyridine Ligand for Improvement of Room-Temperature Luminescence Characteristics and Recognition of Selective Anions: Experimental and DFT/TD-DFT Study. Inorg Chem 2016; 55:9707-9724. [PMID: 27617341 DOI: 10.1021/acs.inorgchem.6b01483] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
In this work we report synthesis and characterization of three rigid and linear rodlike monometallic Ru(II) complexes based on a terpyridine ligand tightly connected to 9,10-anthraquinone electron-acceptor unit through phenyl-imidazole spacer. The motivation of designing these complexes is to enhance their excited-state lifetimes at room temperature. Interestingly it is found that all three complexes exhibit luminescence at room temperature with excited-state lifetimes in the range of 1.6-52.8 ns, depending upon the coligand as well as the solvent. Temperature-dependent luminescence investigations indicate that the energy gap between the emitting 3MLCT state and nonemitting metal-centered state 3MC in the complexes increased enormously compared with parent [Ru(tpy)2]2+. In addition, by taking advantage of the imidazole NH proton(s), which became appreciably acidic upon combined effect of electron accepting anthraquinone moiety as well as metal ion coordination, we also examined anion recognition and sensing behaviors of the complexes in organic, mixed aqueous-organic as well as in solid medium through different optical channels such as absorption, steady-state and time-resolved emission, and 1H NMR spectroscopic techniques. In conjunction with the experiment, computational investigation was also employed to examine the electronic structures of the complexes and accurate assignment of experimentally observed spectral and redox behaviors.
Collapse
Affiliation(s)
- Debiprasad Mondal
- Department of Chemistry, Inorganic Chemistry Section, Jadavpur University , Kolkata 700032, India
| | - Manoranjan Bar
- Department of Chemistry, Inorganic Chemistry Section, Jadavpur University , Kolkata 700032, India
| | - Shruti Mukherjee
- Department of Chemistry, Inorganic Chemistry Section, Jadavpur University , Kolkata 700032, India
| | - Sujoy Baitalik
- Department of Chemistry, Inorganic Chemistry Section, Jadavpur University , Kolkata 700032, India
| |
Collapse
|
41
|
Yu F, Shen C, Zheng T, Chu W, Xiang J, Luo Y, Ko C, Guo Z, Lau T. Acid–Base Behaviour in the Absorption and Emission Spectra of Ruthenium(II) Complexes with Hydroxy‐Substituted Bipyridine and Phenanthroline Ligands. Eur J Inorg Chem 2016. [DOI: 10.1002/ejic.201600460] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Fei Yu
- College of Chemistry and Environmental Engineering Yangtze University 434020 Jingzhou HuBei P. R. China
| | - Chang Shen
- College of Chemistry and Environmental Engineering Yangtze University 434020 Jingzhou HuBei P. R. China
| | - Tao Zheng
- Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions 199 Ren'ai Road 215123 Suzhou China
| | - Wing‐Kin Chu
- Department of Biology and Chemistry Institute of Molecular Functional Materials City University of Hong Kong Tat Chee Avenue Kowloon Tong Hong Kong China
- Faculty of Science and Technology Technological and Higher Education Institute of Hong Kong 20A Tsing Yi Road Tsing Yi Hong Kong China
| | - Jing Xiang
- College of Chemistry and Environmental Engineering Yangtze University 434020 Jingzhou HuBei P. R. China
| | - Ya Luo
- College of Chemistry and Environmental Engineering Yangtze University 434020 Jingzhou HuBei P. R. China
| | - Chi‐Chiu Ko
- Department of Biology and Chemistry Institute of Molecular Functional Materials City University of Hong Kong Tat Chee Avenue Kowloon Tong Hong Kong China
| | - Zheng‐Qing Guo
- Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions 199 Ren'ai Road 215123 Suzhou China
| | - Tai‐Chu Lau
- Department of Biology and Chemistry Institute of Molecular Functional Materials City University of Hong Kong Tat Chee Avenue Kowloon Tong Hong Kong China
| |
Collapse
|
42
|
A new tetranuclear copper(I) cluster of 1,3-bis(4-bromophenyl)triazene ligand: Synthesis, characterization, structural and computational studies. Inorganica Chim Acta 2016. [DOI: 10.1016/j.ica.2016.02.037] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
43
|
Mardanya S, Karmakar S, Mondal D, Baitalik S. Homo- and Heterobimetallic Ruthenium(II) and Osmium(II) Complexes Based on a Pyrene-Biimidazolate Spacer as Efficient DNA-Binding Probes in the Near-Infrared Domain. Inorg Chem 2016; 55:3475-89. [PMID: 27011117 DOI: 10.1021/acs.inorgchem.5b02912] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We report in this work a new family of homo- and heterobimetallic complexes of the type [(bpy)2M(Py-Biimz)M'(II)(bpy)2](2+) (M = M' = Ru(II) or Os(II); M = Ru(II) and M' = Os(II)) derived from a pyrenyl-biimidazole-based bridge, 2-imidazolylpyreno[4,5-d]imidazole (Py-BiimzH2). The homobimetallic Ru(II) and Os(II) complexes were found to crystallize in monoclinic form with space group P21/n. All the complexes exhibit strong absorptions throughout the entire UV-vis region and also exhibit luminescence at room temperature. For osmium-containing complexes (2 and 3) both the absorption and emission band stretched up to the NIR region and thus afford more biofriendly conditions for probable applications in infrared imaging and phototherapeutic studies. Detailed luminescence studies indicate that the emission originates from the respective (3)MLCT excited state mainly centered in the [M(bpy)2](2+) moiety of the complexes and is only slightly affected by the pyrene moiety. The bimetallic complexes show two successive one-electron reversible metal-centered oxidations in the positive potential window and several reduction processes in the negative potential window. An efficient intramolecular electronic energy transfer is found to occur from the Ru center to the Os-based component in the heterometallic dyad. The binding studies of the complexes with DNA were thoroughly studied through different spectroscopic techniques such as UV-vis absorption, steady-state and time-resolved emission, circular dichroism, and relative DNA binding study using ethidium bromide. The intercalative mode of binding was suggested to be operative in all cases. Finally, computational studies employing DFT and TD-DFT were also carried out to interpret the experimentally observed absorption and emission bands of the complexes.
Collapse
Affiliation(s)
- Sourav Mardanya
- Department of Chemistry, Inorganic Chemistry Section, Jadavpur University , Kolkata 700032, India
| | - Srikanta Karmakar
- Department of Chemistry, Inorganic Chemistry Section, Jadavpur University , Kolkata 700032, India
| | - Debiprasad Mondal
- Department of Chemistry, Inorganic Chemistry Section, Jadavpur University , Kolkata 700032, India
| | - Sujoy Baitalik
- Department of Chemistry, Inorganic Chemistry Section, Jadavpur University , Kolkata 700032, India
| |
Collapse
|
44
|
Ruggiero E, Garino C, Mareque-Rivas JC, Habtemariam A, Salassa L. Upconverting Nanoparticles Prompt Remote Near-Infrared Photoactivation of Ru(II)-Arene Complexes. Chemistry 2016; 22:2801-11. [PMID: 26785101 DOI: 10.1002/chem.201503991] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Indexed: 12/28/2022]
Abstract
The synthesis and full characterisation (including X-ray diffraction studies and DFT calculations) of two new piano-stool Ru(II) -arene complexes, namely [(η(6) -p-cym)Ru(bpy)(m-CCH-Py)][(PF)6]2 (1) and [(η(6) -p-cym)Ru(bpm)(m-CCH-Py)][(PF)6]2 (2; p-cym=p-cymene, bpy=2,2'-bipyridine, bpm=2,2'-bipyrimidine, and m-CCH-Py=3-ethynylpyridine), is described and discussed. The reaction of the m-CCH-Py ligand of 1 and 2 with diethyl-3-azidopropyl phosphonate by Cu-catalysed click chemistry affords [(η(6) -p-cym)Ru(bpy)(P-Trz-Py)][(PF)6]2 (3) and [(η(6) -p-cym)Ru(bpm)(P-Trz-Py)][(PF)6]2 (4; P-Trz-Py=[3-(1-pyridin-3-yl-[1,2,3]triazol-4-yl)-propyl]phosphonic acid diethyl ester). Upon light excitation at λ=395 nm, complexes 1-4 photodissociate the monodentate pyridyl ligand and form the aqua adduct ions [(η(6) -p-cym)Ru(bpy)(H2O)](2+) and [(η(6) -p-cym)Ru(bpm)(H2O)](2+). Thulium -doped upconverting nanoparticles (UCNPs) are functionalised with 4, thus exploiting their surface affinity for the phosphonate group in the complex. The so-obtained nanosystem UCNP@4 undergoes near-infrared (NIR) photoactivation at λ=980 nm, thus producing the corresponding reactive aqua species that binds the DNA-model base guanosine 5'-monophosphate.
Collapse
Affiliation(s)
- Emmanuel Ruggiero
- CIC biomaGUNE, Paseo de Miramón182, 20009, Donostia-San Sebastián, Euskadi, Spain
| | - Claudio Garino
- Department of Chemistry and NIS Centre of Excellence, University of Turin, via Pietro Giuria 7, 10125, Turin, Italy
| | - Juan C Mareque-Rivas
- CIC biomaGUNE, Paseo de Miramón182, 20009, Donostia-San Sebastián, Euskadi, Spain.,Ikerbasque, Basque Foundation for Science, 48011, Bilbao, Spain
| | - Abraha Habtemariam
- CIC biomaGUNE, Paseo de Miramón182, 20009, Donostia-San Sebastián, Euskadi, Spain. .,Ikerbasque, Basque Foundation for Science, 48011, Bilbao, Spain. .,Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK.
| | - Luca Salassa
- CIC biomaGUNE, Paseo de Miramón182, 20009, Donostia-San Sebastián, Euskadi, Spain. .,Kimika Fakultatea, Euskal Herriko Unibertsitatea and Donostia International Physics Center (DIPC) P.K., 1072, Donostia-San Sebastián, Euskadi, Spain.
| |
Collapse
|
45
|
Bar M, Maity D, Das S, Baitalik S. Demonstration of intramolecular energy transfer in asymmetric bimetallic ruthenium(ii) complexes. Dalton Trans 2016; 45:17241-17253. [DOI: 10.1039/c6dt03250h] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Asymmetric bimetallic Ru(ii) complexes exhibit photo-induced intramolecular energy transfer with rate constant values on the order of 107 s−1.
Collapse
Affiliation(s)
- Manoranjan Bar
- Department of Chemistry
- Inorganic Chemistry Section
- Jadavpur University
- Kolkata 700032
- India
| | - Dinesh Maity
- Department of Chemistry
- Inorganic Chemistry Section
- Jadavpur University
- Kolkata 700032
- India
| | - Shyamal Das
- Department of Chemistry
- Inorganic Chemistry Section
- Jadavpur University
- Kolkata 700032
- India
| | - Sujoy Baitalik
- Department of Chemistry
- Inorganic Chemistry Section
- Jadavpur University
- Kolkata 700032
- India
| |
Collapse
|
46
|
Senthan SA, Alexander V. Synthesis, luminescence, and electrochemical studies of tetra- and octanuclear ruthenium(ii) complexes of tolylterpyridine appended calixarenes. NEW J CHEM 2016. [DOI: 10.1039/c6nj02564a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Tetra- and octanuclear ruthenium(ii) complexes of tolylterpyridine appended calixarenes are synthesized and their luminescence and electrochemical properties are investigated.
Collapse
|
47
|
Weber MD, Garino C, Volpi G, Casamassa E, Milanesio M, Barolo C, Costa RD. Origin of a counterintuitive yellow light-emitting electrochemical cell based on a blue-emitting heteroleptic copper(i) complex. Dalton Trans 2016; 45:8984-93. [DOI: 10.1039/c6dt00970k] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A new copper(i) complex, which lacks of charge transfer character in the excited state, features a blue fluorescence and yellow phosphorescence photo- and electro-responses, respectively.
Collapse
Affiliation(s)
- Michael D. Weber
- Department of Physical Chemistry 1
- University of Erlangen-Nürnberg
- 91058 Erlangen
- Germany
| | - Claudio Garino
- Department of Chemistry and NIS Interdepartmental Centre
- University of Torino
- 10125 Torino
- Italy
| | - Giorgio Volpi
- Department of Chemistry and NIS Interdepartmental Centre
- University of Torino
- 10125 Torino
- Italy
| | - Enrico Casamassa
- Department of Chemistry and NIS Interdepartmental Centre
- University of Torino
- 10125 Torino
- Italy
| | - Marco Milanesio
- Dipartimento di Scienze e Innovazione and CrisDi Interdepartmental Center for Crystallography
- Università del Piemonte Orientale Tecnologica
- 15121 Alessandria
- Italy
| | - Claudia Barolo
- Department of Chemistry and NIS Interdepartmental Centre
- University of Torino
- 10125 Torino
- Italy
| | - Rubén D. Costa
- Department of Physical Chemistry 1
- University of Erlangen-Nürnberg
- 91058 Erlangen
- Germany
| |
Collapse
|
48
|
Cooke MW, Santoni MP, Hasenknopf B, Hanan GS. Heteroleptic ruthenium(ii) chromophores based on tunable polytopic 4′-(benzamidinato)-2,2′:6′,2′′-terpyridines. Dalton Trans 2016; 45:17850-17858. [DOI: 10.1039/c6dt03169b] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A modulable approach for heteroleptic Ru(ii)-polypyridine complexes based on amidines allows the tuning of properties for larger multi-functional arrays.
Collapse
Affiliation(s)
- Michael W. Cooke
- Department of Chemistry
- Université de Montréal
- Québec
- Canada
- Radiation Surveillance Division
| | | | - Bernold Hasenknopf
- Sorbonne Universités
- UPMC Univ. Paris6
- Institut Parisien de Chimie Moléculaire
- CNRS UMR 8232
- 75005 Paris
| | - Garry S. Hanan
- Department of Chemistry
- Université de Montréal
- Québec
- Canada
| |
Collapse
|
49
|
Chowdhury B, Dutta R, Khatua S, Ghosh P. A Cyanuric Acid Platform Based Tripodal Bis-heteroleptic Ru(II) Complex of Click Generated Ligand for Selective Sensing of Phosphates via C-H···Anion Interaction. Inorg Chem 2015; 55:259-71. [PMID: 26653882 DOI: 10.1021/acs.inorgchem.5b02243] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
A new bis-heteroleptic trinuclear Ru(II) complex (1[PF6]6) has been synthesized from electron deficient cyanuric acid platform based copper-catalyzed azide-alkyne cycloaddition, i.e., CuAAC click generated ligand, 1,3,5-tris [(2-aminoethyl-1H-1,2,3-triazol-4-yl)-pyridine]-1,3,5-triazinane-2,4,6-trione (L1). Complex 1[PF6]6 displays weak luminescence (ϕf = 0.002) at room temperature with a short lifetime of ∼5 ns in acetonitrile. It shows selective sensing of hydrogen pyrophosphate (HP2O7(3-)) through 20-fold enhanced emission intensity (ϕf = 0.039) with a 15 nm red shift in emission maxima even in the presence of a large excess of various competitive anions like F(-), Cl(-), AcO(-), BzO(-), NO3(-), HCO3(-), HSO4(-), HO(-), and H2PO4(-) in acetonitrile. Selective change in the decay profile as well as in the lifetime of 1[PF6]6 in the presence of HP2O7(3-) (108 ns) further supports its selectivity toward HP2O7(3-). UV-vis and photoluminescence titration profiles and corresponding Job's plot analyses suggest 1:3 host-guest stoichiometric binding between 1[PF6]6 and HP2O7(3-). High emission enhancement of 1[PF6]6 in the presence of HP2O7(3-) has resulted in the detection limit of the anion being as low as 0.02 μM. However, 1[PF6]6 shows selectivity toward higher analogues of phosphates (e.g., ATP, ADP, and AMP) over HP2O7(3-)/H2PO4(-) in 10% Tris HCl buffer (10 mM)/acetonitrile medium. Downfield shifting of the triazole C-H in a (1)H NMR titration study confirms that the binding of HP2O7(3-)/H2PO4(-) is occurring via C-H···anion interaction. The single crystal X-ray structure of complex 1 having NO3(-) counteranion, 1[NO3]6 shows binding of NO3(-) with complex 1 via C-H···NO3(-) interactions.
Collapse
Affiliation(s)
| | | | | | - Pradyut Ghosh
- Department of Inorganic Chemistry, Indian Association for the Cultivation of Science , 2A & 2B Raja S. C. Mullick Road, Kolkata 700 032, India
| |
Collapse
|
50
|
Jäger M, Freitag L, González L. Using computational chemistry to design Ru photosensitizers with directional charge transfer. Coord Chem Rev 2015. [DOI: 10.1016/j.ccr.2015.03.019] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|