1
|
Najera D, Fout AR. Iron-Catalyzed Parahydrogen Induced Polarization. J Am Chem Soc 2023; 145:21086-21095. [PMID: 37698953 PMCID: PMC10863066 DOI: 10.1021/jacs.3c07735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Indexed: 09/14/2023]
Abstract
Parahydrogen induced polarization (PHIP) can address the low sensitivity problem intrinsic to nuclear magnetic resonance spectroscopy. Using a catalyst capable of reacting with parahydrogen and substrate in either a hydrogenative or nonhydrogenative manner can result in signal enhancement of the substrate. This work describes the development of a rare example of an iron catalyst capable of reacting with parahydrogen to hyperpolarize olefins. Complexes of the form (MesCCC)Fe(H)(L)(N2) (L = Py (Py = pyridine), PMe3, PPh3) were synthesized from the reaction of the parent complexes (MesCCC)FeMes(L) (Mes = mesityl) with H2. The isolated low-spin iron(II) hydride compounds were characterized via multinuclear NMR spectroscopy, infrared spectroscopy, and single crystal X-ray diffraction. (MesCCC)Fe(H)(Py)(N2) is competent in the hydrogenation of olefins and demonstrated high activity toward the hydrogenation of monosubstituted terminal olefins. Reactions with p-H2 resulted in the first PHIP effect mediated by iron which requires diamagnetism throughout the reaction sequence. This work represents the development of a new PHIP catalyst featuring iron, unlocking potential to develop more PHIP catalysts based on first-row transition metals.
Collapse
Affiliation(s)
- Daniel
C. Najera
- School
of Chemical Sciences, University of Illinois
at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Alison R. Fout
- Department
of Chemistry, Texas A&M University, College Station, Texas 77840, United States
| |
Collapse
|
2
|
Adams RW, John RO, Blazina D, Eguillor B, Cockett MCR, Dunne JP, López‐Serrano J, Duckett SB. Contrasting Photochemical and Thermal Catalysis by Ruthenium Arsine Complexes Revealed by Parahydrogen Enhanced NMR Spectroscopy. Eur J Inorg Chem 2022. [DOI: 10.1002/ejic.202100991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Ralph W. Adams
- Department of Chemistry University of York Heslington, York YO10 5DD UK
- Current address: School of Chemistry University of Manchester Manchester M13 9PL UK
| | - Richard O. John
- Department of Chemistry University of York Heslington, York YO10 5DD UK
- Current address: Department of Physics University of York Heslington, York YO10 5DD UK
| | - Damir Blazina
- Department of Chemistry University of York Heslington, York YO10 5DD UK
| | - Beatriz Eguillor
- Department of Chemistry University of York Heslington, York YO10 5DD UK
- Current address: Departamento de Química Inorgánica Instituto de Síntesis Química y Catálisis Homogénea (ISQCH) Centro de Innovación en Química Avanzada (ORFEO-CINQA) Universidad de Zaragoza – CSIC 50009 Zaragoza Spain
| | | | - John P. Dunne
- Department of Chemistry University of York Heslington, York YO10 5DD UK
| | - Joaquín López‐Serrano
- Department of Chemistry University of York Heslington, York YO10 5DD UK
- Current address: Departmento de Química Inorgánica Universidad de Sevilla 41012 Sevilla, Andalucía Spain
| | - Simon B. Duckett
- Department of Chemistry University of York Heslington, York YO10 5DD UK
| |
Collapse
|
3
|
Muhammad SR, Nugent JW, Greer RB, Lee BC, Mahmoud J, Ramirez SB, Goodson BM, Fout AR. Effects of a Tridentate Pincer Ligand on Parahydrogen Induced Polarization. Chemphyschem 2021; 22:1518-1526. [PMID: 34043874 DOI: 10.1002/cphc.202100178] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 05/26/2021] [Indexed: 10/21/2022]
Abstract
The role of ligands in rhodium- and iridium-catalyzed Parahydrogen Induced Polarization (PHIP) and SABRE (signal amplification by reversible exchange) chemistry has been studied in the benchmark systems, [Rh(diene)(diphos)]+ and [Ir(NHC)(sub)3 (H)2 ]+ , and shown to have a great impact on the degree of hyperpolarization observed. Here, we examine the role of the flanking moieties in the electron-rich monoanionic bis(carbene) aryl pincer ligand, Ar CCC (Ar=Dipp, 2,6-diisopropyl or Mes, 2,4,6-trimethylphenyl) on the cobalt-catalyzed PHIP and PHIP-IE (PHIP via Insertion and Elimination) chemistry that we have previously reported. The mesityl groups were exchanged for diisopropylphenyl groups to generate the (Dipp CCC)Co(N2 ) catalyst, which resulted in faster hydrogenation and up to 390-fold 1 H signal enhancements, larger than that of the (Mes CCC)Co-py (py=pyridine) catalyst. Additionally, the synthesis of the (Dipp CCC)Rh(N2 ) complex is reported and applied towards the hydrogenation of ethyl acrylate with parahydrogen to generate modest signal enhancements of both 1 H and 13 C nuclei. Lastly, the generation of two (Mes CCC)Ir complexes is presented and applied towards SABRE and PHIP-IE chemistry to only yield small 1 H signal enhancements of the partially hydrogenated product (PHIP) with no SABRE hyperpolarization.
Collapse
Affiliation(s)
- Safiyah R Muhammad
- Department of Chemistry, University of Illinois at Urbana-Champaign, 601 S Goodwin Avenue, Urbana, Illinois, 61801, United States
| | - Joseph W Nugent
- Department of Chemistry, University of Illinois at Urbana-Champaign, 601 S Goodwin Avenue, Urbana, Illinois, 61801, United States
| | - Rianna B Greer
- Department of Chemistry, University of Illinois at Urbana-Champaign, 601 S Goodwin Avenue, Urbana, Illinois, 61801, United States
| | - Brian C Lee
- Department of Chemistry, University of Illinois at Urbana-Champaign, 601 S Goodwin Avenue, Urbana, Illinois, 61801, United States
| | - Jumanah Mahmoud
- Department of Chemistry, University of Illinois at Urbana-Champaign, 601 S Goodwin Avenue, Urbana, Illinois, 61801, United States
| | - Steven B Ramirez
- Department of Chemistry, University of Illinois at Urbana-Champaign, 601 S Goodwin Avenue, Urbana, Illinois, 61801, United States
| | - Boyd M Goodson
- Department of Chemistry and Biochemistry and Materials Technology Center, Southern Illinois University, 1245 Lincoln Drive, Carbondale, Illinois, 62901, United States
| | - Alison R Fout
- Department of Chemistry, University of Illinois at Urbana-Champaign, 601 S Goodwin Avenue, Urbana, Illinois, 61801, United States
| |
Collapse
|
4
|
Pokochueva E, Burueva DB, Kovtunova LM, Bukhtiyarov AV, Gladky AY, Kovtunov KV, Koptyug IV, Bukhtiyarov VI. Mechanistic in situ investigation of heterogeneous hydrogenation over Rh/TiO2 catalysts: selectivity, pairwise route and catalyst nature. Faraday Discuss 2021; 229:161-175. [DOI: 10.1039/c9fd00138g] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report a catalyst with the highest selectivity toward pairwise hydrogen addition of 7% among supported metal catalysts, found as a result of variation of Rh/TiO2 catalyst preparation procedures.
Collapse
Affiliation(s)
- Ekaterina V. Pokochueva
- Laboratory of Magnetic Resonance Microimaging
- International Tomography Center SB RAS
- 630090 Novosibirsk
- Russia
- Novosibirsk State University
| | - Dudari B. Burueva
- Laboratory of Magnetic Resonance Microimaging
- International Tomography Center SB RAS
- 630090 Novosibirsk
- Russia
- Novosibirsk State University
| | - Larisa M. Kovtunova
- Boreskov Institute of Catalysis SB RAS
- 630090 Novosibirsk
- Russia
- Novosibirsk State University
- 630090 Novosibirsk
| | - Andrey V. Bukhtiyarov
- Boreskov Institute of Catalysis SB RAS
- 630090 Novosibirsk
- Russia
- Novosibirsk State University
- 630090 Novosibirsk
| | | | - Kirill V. Kovtunov
- Laboratory of Magnetic Resonance Microimaging
- International Tomography Center SB RAS
- 630090 Novosibirsk
- Russia
- Novosibirsk State University
| | - Igor V. Koptyug
- Laboratory of Magnetic Resonance Microimaging
- International Tomography Center SB RAS
- 630090 Novosibirsk
- Russia
- Boreskov Institute of Catalysis SB RAS
| | - Valerii I. Bukhtiyarov
- Boreskov Institute of Catalysis SB RAS
- 630090 Novosibirsk
- Russia
- Novosibirsk State University
- 630090 Novosibirsk
| |
Collapse
|
5
|
Miloserdov FM, Isaac CJ, Beck ML, Burnage AL, Farmer JCB, Macgregor SA, Mahon MF, Whittlesey MK. Impact of the Novel Z-Acceptor Ligand Bis{( ortho-diphenylphosphino)phenyl}zinc (ZnPhos) on the Formation and Reactivity of Low-Coordinate Ru(0) Centers. Inorg Chem 2020; 59:15606-15619. [PMID: 33074685 DOI: 10.1021/acs.inorgchem.0c01683] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The preparation and reactivity with H2 of two Ru complexes of the novel ZnPhos ligand (ZnPhos = Zn(o-C6H4PPh2)2) are described. Ru(ZnPhos)(CO)3 (2) and Ru(ZnPhos)(IMe4)2 (4; IMe4 = 1,3,4,5-tetramethylimidazol-2-ylidene) are formed directly from the reaction of Ru(PPh3)(C6H4PPh2)2(ZnMe)2 (1) or Ru(PPh3)3HCl/LiCH2TMS/ZnMe2 with CO and IMe4, respectively. Structural and electronic structure analyses characterize both 2 and 4 as Ru(0) species in which Ru donates to the Z-type Zn center of the ZnPhos ligand; in 2, Ru adopts an octahedral coordination, while 4 displays square-pyramidal coordination with Zn in the axial position. Under photolytic conditions, 2 loses CO to give Ru(ZnPhos)(CO)2 that then adds H2 over the Ru-Zn bond to form Ru(ZnPhos)(CO)2(μ-H)2 (3). In contrast, 4 reacts directly with H2 to set up an equilibrium with Ru(ZnPhos)(IMe4)2H2 (5), the product of oxidative addition at the Ru center. DFT calculations rationalize these different outcomes in terms of the energies of the square-pyramidal Ru(ZnPhos)L2 intermediates in which Zn sits in a basal site: for L = CO, this is readily accessed and allows H2 to add across the Ru-Zn bond, but for L = IMe4, this species is kinetically inaccessible and reaction can only occur at the Ru center. This difference is related to the strong π-acceptor ability of CO compared to IMe4. Steric effects associated with the larger IMe4 ligands are not significant. Species 4 can be considered as a Ru(0)L4 species that is stabilized by the Ru→Zn interaction. As such, it is a rare example of a stable Ru(0)L4 species devoid of strong π-acceptor ligands.
Collapse
Affiliation(s)
- Fedor M Miloserdov
- Department of Chemistry, University of Bath, Bath BA2 3QD, United Kingdom
| | - Connie J Isaac
- Department of Chemistry, University of Bath, Bath BA2 3QD, United Kingdom
| | - Madeleine L Beck
- Department of Chemistry, University of Bath, Bath BA2 3QD, United Kingdom
| | - Arron L Burnage
- Institute of Chemical Sciences, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, United Kingdom
| | - James C B Farmer
- Institute of Chemical Sciences, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, United Kingdom
| | - Stuart A Macgregor
- Institute of Chemical Sciences, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, United Kingdom
| | - Mary F Mahon
- Department of Chemistry, University of Bath, Bath BA2 3QD, United Kingdom
| | | |
Collapse
|
6
|
|
7
|
Sun X, J. Rocha MV, Hamlin TA, Poater J, Bickelhaupt FM. Understanding the differences between iron and palladium in cross-coupling reactions. Phys Chem Chem Phys 2019; 21:9651-9664. [PMID: 30847454 PMCID: PMC8610147 DOI: 10.1039/c8cp07671e] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Accepted: 02/22/2019] [Indexed: 11/21/2022]
Abstract
We aim at developing design principles, based on quantum chemical analyses, for a novel type of iron-based catalysts that mimic the behavior of their well-known palladium analogs in the bond activation step of cross coupling reactions. To this end, we have systematically explored C-X bond activation via oxidative addition of CH3X substrates (X = H, Cl, CH3) to model catalysts mFe(CO)4q (q = 0, -2; m = singlet, triplet) and, for comparison, Pd(PH3)2 and Pd(CO)2, using relativistic density functional theory at the ZORA-OPBE/TZ2P level. We find that the neutral singlet iron catalyst 1Fe(CO)4 activates all three C-X bonds via barriers that are lower than those for Pd(PH3)2 and Pd(CO)2. This is a direct consequence of the capability of the iron complex to engage not only in π-backdonation, but also in comparably strong σ-donation. Interestingly, whereas the palladium complexes favor C-Cl activation, 1Fe(CO)4 shows a strong preference for activating the C-H bond, with a barrier as low as 10.4 kcal mol-1. Our results suggest a high potential for iron to feature in palladium-type cross-coupling reactions.
Collapse
Affiliation(s)
- Xiaobo Sun
- Department of Theoretical Chemistry and Amsterdam Center for Multiscale Modeling (ACMM), VU University AmsterdamDe Boelelaan 10831081 HV AmsterdamThe Netherlands
| | - Marcus V. J. Rocha
- Department of Theoretical Chemistry and Amsterdam Center for Multiscale Modeling (ACMM), VU University AmsterdamDe Boelelaan 10831081 HV AmsterdamThe Netherlands
- Institute of Chemistry – Departament of Physical Chemistry, Fluminense Federal UniversityOuteiro De São João Baptista24020-141 NiteroiRio de JaneiroBrazil
| | - Trevor A. Hamlin
- Department of Theoretical Chemistry and Amsterdam Center for Multiscale Modeling (ACMM), VU University AmsterdamDe Boelelaan 10831081 HV AmsterdamThe Netherlands
| | - Jordi Poater
- ICREAPg. Lluís Companys 2308010 BarcelonaSpain
- Departament de Química Inorgànica i Orgànica & IQTCUB, Universitat de Barcelona08028BarcelonaCataloniaSpain
| | - F. Matthias Bickelhaupt
- Department of Theoretical Chemistry and Amsterdam Center for Multiscale Modeling (ACMM), VU University AmsterdamDe Boelelaan 10831081 HV AmsterdamThe Netherlands
- Institute for Molecules and Materials (IMM), Radboud University NijmegenHeyendaalseweg 1356525 AJ NijmegenThe Netherlands
| |
Collapse
|
8
|
Wu X, Liu Z, Murphy TS, Sun XZ, Hanson-Heine MWD, Towrie M, Harvey JN, George MW. The effect of coordination of alkanes, Xe and CO 2 (η 1-OCO) on changes in spin state and reactivity in organometallic chemistry: a combined experimental and theoretical study of the photochemistry of CpMn(CO) 3. Faraday Discuss 2019; 220:86-104. [PMID: 31608916 DOI: 10.1039/c9fd00067d] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A combined experimental and theoretical study is presented of several ligand addition reactions of the triplet fragment 3CpMn(CO)2 formed upon photolysis of CpMn(CO)3. Experimental data are provided for reactions in n-heptane and perfluoromethylcyclohexane (PFMCH), as well as in PFMCH doped with C2H6, Xe and CO2. In PFMCH we find that the conversion of 3CpMn(CO)2 to 1CpMn(CO)2(PFMCH) is much slower (τ = 18 (±3) ns) than the corresponding reactions in conventional alkanes (τ = 111 (±10) ps). We measure the effect of the coordination ability by doping PFMCH with alkane, Xe and CO2; these doped ligands form the corresponding singlet adducts with significantly variable formation rates. The reactivity as measured by the addition timescale follows the order 1CpMn(CO)2(C5H10) (τ = 270 (±10) ps) > 1CpMn(CO)2Xe (τ = 3.9 (±0.4) ns) ∼ 1CpMn(CO)2(CO2) (τ = 4.7 (±0.5) ns) > 1CpMn(CO)2(C7F14) (τ = 18 (±3) ns). Electronic structure theory calculations of the singlet and triplet potential energy surfaces and of their intersections, together with non-adiabatic statistical rate theory, reproduce the observed rates semi-quantitatively. It is shown that triplet adducts of the ligand and 3CpMn(CO)2 play a role in the kinetics, and account for the variable timescales observed experimentally.
Collapse
Affiliation(s)
- Xue Wu
- School of Chemistry, University of Nottingham, University Park, Nottingham, NG7 2RD, UK.
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Tokmic K, Greer RB, Zhu L, Fout AR. 13C NMR Signal Enhancement Using Parahydrogen-Induced Polarization Mediated by a Cobalt Hydrogenation Catalyst. J Am Chem Soc 2018; 140:14844-14850. [DOI: 10.1021/jacs.8b08614] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Kenan Tokmic
- School of Chemical Sciences, University of Illinois at Urbana−Champaign, 600 S. Mathews Avenue, Urbana, Illinois 61801, United States
| | - Rianna B. Greer
- School of Chemical Sciences, University of Illinois at Urbana−Champaign, 600 S. Mathews Avenue, Urbana, Illinois 61801, United States
| | - Lingyang Zhu
- School of Chemical Sciences, University of Illinois at Urbana−Champaign, 600 S. Mathews Avenue, Urbana, Illinois 61801, United States
| | - Alison R. Fout
- School of Chemical Sciences, University of Illinois at Urbana−Champaign, 600 S. Mathews Avenue, Urbana, Illinois 61801, United States
| |
Collapse
|
10
|
Dai H, Guan H. Iron Dihydride Complexes: Synthesis, Reactivity, and Catalytic Applications. Isr J Chem 2017. [DOI: 10.1002/ijch.201700101] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Huiguang Dai
- Department of Chemistry University of Cincinnati Cincinnati, OH 45221-0172 USA
| | - Hairong Guan
- Department of Chemistry University of Cincinnati Cincinnati, OH 45221-0172 USA
| |
Collapse
|
11
|
Smith SAM, Prokopchuk DE, Morris RH. Asymmetric Transfer Hydrogenation of Ketones Using New Iron(II) (P-NH-N-P′) Catalysts: Changing the Steric and Electronic Properties at Phosphorus P′. Isr J Chem 2017. [DOI: 10.1002/ijch.201700019] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Samantha A. M. Smith
- Department of Chemistry; University of Toronto; 80 Saint George St. Toronto Ont. Canada M5S 3H6
| | - Demyan E. Prokopchuk
- Department of Chemistry; University of Toronto; 80 Saint George St. Toronto Ont. Canada M5S 3H6
| | - Robert H. Morris
- Department of Chemistry; University of Toronto; 80 Saint George St. Toronto Ont. Canada M5S 3H6
| |
Collapse
|
12
|
DFT study of isomers of the ruthenium dihydride complex RuH 2(CO) 2(AsMe 2Ph) 2. J Mol Model 2017; 23:146. [PMID: 28364308 DOI: 10.1007/s00894-017-3263-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 01/30/2017] [Indexed: 10/19/2022]
Abstract
A density functional theory (DFT) study of cct-As, ccc, and cct-CO isomers of the ruthenium dihydride complex RuH2(CO)2(AsMe2Ph)2 is reported (see Scheme for the labeling isomer 34 structures of RuH2(CO)2(AsMe2Ph)2). Complex geometries and relative energies of different isomers have been calculated with both B3LYP and M06-2X functionals. The results show that the B3LYP calculated Boltzmann populations of cct-As, ccc, and cct-CO isomers are 65.5, 34.2, and 0.3%, respectively. These are in better agreement with the experimental data than those calculated at the M06-2X level. However, the calculations of 1H NMR chemical shifts were found to be better described with M06-2X than with B3LYP or with HF level of theories. In addition, a transition state between the two most stable isomers was determined through DFT/(B3LYP or M06-2X) calculations. Graphical Abstract Scheme: Labeling structure of RuH2(CO)2(AsMe2Ph)2.
Collapse
|
13
|
Sonnenberg JF, Wan KY, Sues PE, Morris RH. Ketone Asymmetric Hydrogenation Catalyzed by P-NH-P′ Pincer Iron Catalysts: An Experimental and Computational Study. ACS Catal 2016. [DOI: 10.1021/acscatal.6b02489] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Jessica F. Sonnenberg
- Department of Chemistry, University of Toronto, 80 Saint George Street, Toronto, Ontario M5S 3H6, Canada
| | - Kai Y. Wan
- Department of Chemistry, University of Toronto, 80 Saint George Street, Toronto, Ontario M5S 3H6, Canada
| | - Peter E. Sues
- Department of Chemistry, University of Toronto, 80 Saint George Street, Toronto, Ontario M5S 3H6, Canada
| | - Robert H. Morris
- Department of Chemistry, University of Toronto, 80 Saint George Street, Toronto, Ontario M5S 3H6, Canada
| |
Collapse
|
14
|
Affiliation(s)
- Robin N. Perutz
- Department of Chemistry, University of York, York YO10 5DD, United Kingdom
| | - Barbara Procacci
- Department of Chemistry, University of York, York YO10 5DD, United Kingdom
| |
Collapse
|
15
|
|
16
|
Torres O, Procacci B, Halse ME, Adams RW, Blazina D, Duckett SB, Eguillor B, Green RA, Perutz RN, Williamson DC. Photochemical Pump and NMR Probe: Chemically Created NMR Coherence on a Microsecond Time Scale. J Am Chem Soc 2014; 136:10124-31. [DOI: 10.1021/ja504732u] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Olga Torres
- Department
of Chemistry, University of York, Heslington, York YO10
5DD, U.K
| | - Barbara Procacci
- Department
of Chemistry, University of York, Heslington, York YO10
5DD, U.K
| | - Meghan E. Halse
- Department
of Chemistry, University of York, Heslington, York YO10
5DD, U.K
| | - Ralph W. Adams
- Department
of Chemistry, University of York, Heslington, York YO10
5DD, U.K
| | - Damir Blazina
- Department
of Chemistry, University of York, Heslington, York YO10
5DD, U.K
| | - Simon B. Duckett
- Department
of Chemistry, University of York, Heslington, York YO10
5DD, U.K
| | - Beatriz Eguillor
- Department
of Chemistry, University of York, Heslington, York YO10
5DD, U.K
| | - Richard A. Green
- Department
of Chemistry, University of York, Heslington, York YO10
5DD, U.K
| | - Robin N. Perutz
- Department
of Chemistry, University of York, Heslington, York YO10
5DD, U.K
| | | |
Collapse
|
17
|
Kozinets EM, Fekete M, Filippov OA, Belkova NV, Shubina ES, Poli R, Duckett SB, Manoury E. Activation of a (cyclooctadiene) rhodium(I) complex supported by a chiral ferrocenyl phosphine thioether ligand for hydrogenation catalysis: a combined parahydrogen NMR and DFT study. Dalton Trans 2013; 42:11720-30. [PMID: 23851567 DOI: 10.1039/c3dt51429c] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The reaction of [RhCl(P,S(t)Bu)(COD)] (1) or [Rh(P,S(t)Bu)(COD)]BF4 (2) where (P,S(t)Bu) is CpFe[η(5)-1,2-C5H3(PPh2)(CH2S(t)Bu)] with H2 in MeOH gives rise to COD hydrogenation and formation of a solvent-stabilized product. The formation of hydride species cannot be observed in view of a very rapid H/D exchange between H2 and the solvent. Introduction of pyridine or acetonitrile slows down this exchange process and allows observation of diastereometric dihydride complexes, [Rh(P,S(t)Bu)(H)2(L)2](+), the stereochemistry of which was fully elucidated. The hydride site exchange rates have been derived from EXSY NMR experiments and used, with assistance from DFT calculation, to elucidate the isomerization and site exchange mechanisms.
Collapse
|
18
|
Green RA, Adams RW, Duckett SB, Mewis RE, Williamson DC, Green GGR. The theory and practice of hyperpolarization in magnetic resonance using parahydrogen. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2012; 67:1-48. [PMID: 23101588 DOI: 10.1016/j.pnmrs.2012.03.001] [Citation(s) in RCA: 258] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2012] [Accepted: 03/05/2012] [Indexed: 05/03/2023]
Affiliation(s)
- Richard A Green
- Department of Chemistry, University of York, Heslington, York YO10 5DD, United Kingdom
| | | | | | | | | | | |
Collapse
|
19
|
Eguillor B, Caldwell PJ, Cockett MCR, Duckett SB, John RO, Lynam JM, Sleigh CJ, Wilson I. Detection of Unusual Reaction Intermediates during the Conversion of W(N2)2(dppe)2 to W(H)4(dppe)2 and of H2O into H2. J Am Chem Soc 2012; 134:18257-65. [DOI: 10.1021/ja302202q] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Beatriz Eguillor
- Department of Chemistry, University of York, Heslington, York , U.K. YO10 5DD
| | - Patrick J. Caldwell
- Department of Chemistry, University of York, Heslington, York , U.K. YO10 5DD
| | | | - Simon B. Duckett
- Department of Chemistry, University of York, Heslington, York , U.K. YO10 5DD
| | - Richard O. John
- Department of Chemistry, University of York, Heslington, York , U.K. YO10 5DD
| | - Jason M. Lynam
- Department of Chemistry, University of York, Heslington, York , U.K. YO10 5DD
| | | | - Ian Wilson
- Department of Safety of Medicines, AstraZeneca, Alderley Park, Macclesfield, Cheshire,
U.K. SK10
| |
Collapse
|
20
|
Kadlecek S, Vahdat V, Nakayama T, Ng D, Emami K, Rizi R. A simple and low-cost device for generating hyperpolarized contrast agents using parahydrogen. NMR IN BIOMEDICINE 2011; 24:933-42. [PMID: 21845739 DOI: 10.1002/nbm.1757] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2010] [Revised: 04/28/2011] [Accepted: 05/09/2011] [Indexed: 05/12/2023]
Abstract
A detailed description of the construction and use of a device for hyperpolarization of select contrast agents is presented. The device is based on molecular incorporation of the spin-order inherent to parahydrogen, followed by order transfer to a metastable heteronuclear alignment. Design considerations and experimental results relating to catalyst/solvent choice and handling, solvent heating, efficient gas entrainment and spin-order transfer are described. The resulting degree of hyperpolarization is shown to be substantial, ranging from a few to over 50%, depending on the choice of target molecule. Finally, the use of the hyperpolarized agent is demonstrated in a series of in vivo images.
Collapse
Affiliation(s)
- Stephen Kadlecek
- Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | | | | | | | | | | |
Collapse
|
21
|
Girotti R, Romerosa A, Mañas S, Serrano-Ruiz M, Perutz R. Photo-aquation of cis-[RuCl2(mPTA)4](CF3SO3)4in water (mPTA = N-methyl-1,3,5-triaza-7-phosphaadamantane). Dalton Trans 2011; 40:828-36. [DOI: 10.1039/c0dt00885k] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
22
|
Ball GE. In situ photochemistry with NMR detection of organometallic complexes. SPECTROSCOPIC PROPERTIES OF INORGANIC AND ORGANOMETALLIC COMPOUNDS 2010. [DOI: 10.1039/9781849730853-00262] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
A review focusing on the application of NMR spectroscopy to the study of organometallic photochemistry where the photochemical step is performed in situ, i.e. the irradiation of the sample takes place within the probe of the NMR spectrometer. Various experimental designs, taken from all areas of chemical and biological study, that facilitate in situ irradiation are discussed, paying attention to light sources and light delivery methods. The literature covering the application of the in situ method across the field of organometallic chemistry is then reviewed. There is particular emphasis on studies of reactive organometallic compounds with weakly coordinating ligands such as alkane, xenon and other “solvent” species, as complexes with short lifetimes benefit most from application of the in situ illumination method.
Collapse
Affiliation(s)
- Graham E. Ball
- School of Chemistry, University of New South Wales UNSW Sydney 2052, Australia
| |
Collapse
|
23
|
Girotti R, Romerosa A, Mañas S, Serrano-Ruiz M, Perutz RN. Visible-Light Photoisomerization and Photoaquation of trans-[Ru(1,3,5-triaza-7-phosphaadamantane)4Cl2] in Organic Solvent and Water. Inorg Chem 2009; 48:3692-8. [DOI: 10.1021/ic802284j] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Rugiada Girotti
- Área de Química Inorgánica, Facultad de Cien-16.50cias, Universidad de Almería, Almería, Almería, 04120, Spain, Organometallic and Photochemistry Laboratory for Sustainable Chemistry, C.I.E.S.O.L., Almería, 04120, Spain, and Department of Chemistry, University of York, Heslington York YO10 5DD, U.K
| | - Antonio Romerosa
- Área de Química Inorgánica, Facultad de Cien-16.50cias, Universidad de Almería, Almería, Almería, 04120, Spain, Organometallic and Photochemistry Laboratory for Sustainable Chemistry, C.I.E.S.O.L., Almería, 04120, Spain, and Department of Chemistry, University of York, Heslington York YO10 5DD, U.K
| | - Sonia Mañas
- Área de Química Inorgánica, Facultad de Cien-16.50cias, Universidad de Almería, Almería, Almería, 04120, Spain, Organometallic and Photochemistry Laboratory for Sustainable Chemistry, C.I.E.S.O.L., Almería, 04120, Spain, and Department of Chemistry, University of York, Heslington York YO10 5DD, U.K
| | - Manuel Serrano-Ruiz
- Área de Química Inorgánica, Facultad de Cien-16.50cias, Universidad de Almería, Almería, Almería, 04120, Spain, Organometallic and Photochemistry Laboratory for Sustainable Chemistry, C.I.E.S.O.L., Almería, 04120, Spain, and Department of Chemistry, University of York, Heslington York YO10 5DD, U.K
| | - Robin N. Perutz
- Área de Química Inorgánica, Facultad de Cien-16.50cias, Universidad de Almería, Almería, Almería, 04120, Spain, Organometallic and Photochemistry Laboratory for Sustainable Chemistry, C.I.E.S.O.L., Almería, 04120, Spain, and Department of Chemistry, University of York, Heslington York YO10 5DD, U.K
| |
Collapse
|
24
|
Besora M, Carreón-Macedo JL, Cimas Á, Harvey JN. Spin-state changes and reactivity in transition metal chemistry: Reactivity of iron tetracarbonyl. ADVANCES IN INORGANIC CHEMISTRY 2009. [DOI: 10.1016/s0898-8838(09)00210-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
25
|
Ledger AEW, Slatford PA, Lowe JP, Mahon MF, Whittlesey MK, Williams JMJ. Ruthenium xantphos complexes in hydrogen transfer processes: reactivity and mechanistic studies. Dalton Trans 2009:716-22. [DOI: 10.1039/b813543f] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
26
|
Korchak SE, Ivanov KL, Yurkovskaya AV, Vieth HM. Para-hydrogen induced polarization in multi-spin systems studied at variable magnetic field. Phys Chem Chem Phys 2009; 11:11146-56. [DOI: 10.1039/b914188j] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
27
|
Duckett SB, Wood NJ. Parahydrogen-based NMR methods as a mechanistic probe in inorganic chemistry. Coord Chem Rev 2008. [DOI: 10.1016/j.ccr.2008.01.028] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
28
|
|
29
|
Blazina D, Dunne JP, Aiken S, Duckett SB, Elkington C, McGrady JE, Poli R, Walton SJ, Anwar MS, Jones JA, Carteret HA. Contrasting photochemical and thermal reactivity of Ru(CO)2(PPh3)(dppe) towards hydrogen rationalised by parahydrogen NMR and DFT studies. Dalton Trans 2006:2072-80. [PMID: 16625251 DOI: 10.1039/b510616h] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The synthesis, characterisation and thermal and photochemical reactivity of Ru(CO)2(PPh3)(dppe) 1 towards hydrogen are described. Compound proved to exist in both fac (major) and mer forms in solution. Under thermal conditions, PPh3 is lost from 1 in the major reaction pathway and the known complex Ru(CO)2(dppe)(H)2 2 is formed. Photochemically, CO loss is the dominant process, leading to the alternative dihydride Ru(CO)(PPh3)(dppe)(H)2 3. The major isomer of 3, viz. 3a, contains hydride ligands that are trans to CO and trans to one of the phosphorus atoms of the dppe ligand but a second isomer, 3b, where both hydride ligands are trans to distinct phosphines, is also formed. On the NMR timescale, no interconversion of 3a and 3b was observed, although hydride site interchange is evident with activation parameters of DeltaH(double dagger) = 95 +/- 6 kJ mol(-1) and DeltaS(double dagger) = 26 +/- 17 J K(-1) mol(-1). Density functional theory confirms that the observed species are the most stable isomeric forms, and suggests that hydride exchange occurs via a transition state featuring an eta2-coordinated H2 unit.
Collapse
Affiliation(s)
- Damir Blazina
- Department of Chemistry, University of York, Heslington, York, UKYO10 5DD
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Malacea R, Daran JC, Duckett SB, Dunne JP, Godard C, Manoury E, Poli R, Whitwood AC. Parahydrogen studies of H2addition to Ir(i) complexes containing chiral phosphine–thioether ligands: implications for catalysis. Dalton Trans 2006:3350-9. [PMID: 16820847 DOI: 10.1039/b601980c] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ir(CO)[CpFe{eta5-C5H3(PPh2)CH2SR}]Cl [R = Ph and (t)Bu], containing a kappa2:P,S ligand, undergoes H2 addition across the S-Ir-CO axis under kinetic control to form two distinct diastereoisomeric products, which then rearrange via S dissociation in a process that can be hijacked for useful catalysis, but ultimately form a single diastereoisomer of the thermodynamic product where the hydride ligands are trans to chloride and phosphine.
Collapse
Affiliation(s)
- Raluca Malacea
- Laboratoire de Chimie de Coordination, CNRS, 205 Route de Narbonne, 31077, Toulouse Cedex, France
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Carreón-Macedo JL, Harvey JN. Computational study of the energetics of3Fe(CO)4,1Fe(CO)4and1Fe(CO)4(L), L = Xe, CH4, H2and CO. Phys Chem Chem Phys 2006; 8:93-100. [PMID: 16482248 DOI: 10.1039/b513325d] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Large basis CCSD(T) calculations are used to calculate the energetics of 3Fe(CO)4, 1Fe(CO)4 and 1Fe(CO)4(L), L = Xe, CH4, H2 and CO. . The relative energy of the excited singlet state of Fe(CO)4 with respect to the ground triplet state is not known experimentally, and various lower levels of theory predict very different results. Upon extrapolating to the infinite basis set limit, and including corrections for core-core and core-valence correlation, scalar relativity, and multi-reference character of the wavefunction, the best CCSD(T) estimate for the spin-state splitting in iron tetracarbonyl is 2 kcal mol(-1). Calculation of the dissociation energy of 1Fe(CO)4(L) into singlet fragments, taken together with known experimental behaviour of triplet Fe(CO)4, provides independent evidence for the fact that the spin-state splitting is smaller than 3 kcal mol(-1). These calculations highlight some of the challenges involved in benchmark calculations on transition metal containing systems.
Collapse
|