1
|
Loague Q, Heidari M, Mann HJ, Danilov EO, Castellano FN, Galoppini E, Meyer GJ. Structural Gating Enhances Long-Distance Light-Driven Interfacial Electron Transfer. ACS CENTRAL SCIENCE 2024; 10:2132-2144. [PMID: 39634217 PMCID: PMC11613339 DOI: 10.1021/acscentsci.4c01106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 10/16/2024] [Accepted: 11/01/2024] [Indexed: 12/07/2024]
Abstract
Structural gating provides a molecular means to transfer electrons preferentially in one desired vectorial direction, a behavior needed for applications in artificial photosynthesis. At the interfaces utilized herein, visible-light absorption by a transition metal complex opens a "structural gate" by planarization of otherwise rotating phenyl rings in p-phenylene ethynylene (PE) bridge units. Planarization provides a conjugated pathway for electron flow toward a conductive oxide surface. Interfacial electron transfer to the oxide restores rotation and closes the gate to the unwanted recombination reaction. This structural gating results in nearly quantitative long-distance (>20 Å) interfacial electron transfer that occurs ∼1000 times faster than transfer in the opposite direction. A comparative kinetic study of these complexes with those that contain ionic bridge units, without gating function, as a function of the applied potential and hence -ΔG° provided a physical basis for the structural gating. A small distance-dependent reorganization energy with weak electronic coupling underlies the success of this gate that enables efficient long-distance electron transfer and slow recombination.
Collapse
Affiliation(s)
- Quentin
R. Loague
- Department
of Chemistry, University of North Carolina
at Chapel Hill, Chapel
Hill, North Carolina 27599, United States
| | - Marzieh Heidari
- Department
of Chemistry, Rutgers University, 73 Warren Street, Newark, New Jersey 07102, United States
| | - Hayden J. Mann
- Department
of Chemistry, University of North Carolina
at Chapel Hill, Chapel
Hill, North Carolina 27599, United States
| | - Evgeny O. Danilov
- Department
of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, United
States
| | - Felix N. Castellano
- Department
of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, United
States
| | - Elena Galoppini
- Department
of Chemistry, Rutgers University, 73 Warren Street, Newark, New Jersey 07102, United States
| | - Gerald J. Meyer
- Department
of Chemistry, University of North Carolina
at Chapel Hill, Chapel
Hill, North Carolina 27599, United States
| |
Collapse
|
2
|
Lambert C, Roger C, Schmiedel A, Holzapfel M, Lukzen N, Steiner UE. Control of electronic and exchange coupling by bridge substituents in donor acceptor triads with triptycene bridges. Phys Chem Chem Phys 2024; 26:24983-24994. [PMID: 39297794 DOI: 10.1039/d4cp03148b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2024]
Abstract
A series of triads, consisting of a triarylamine electron donor and a perylene diimide electron acceptor which were attached to two different wings of a triptycene bridging unit, was investigated concerning the dynamics of photoinduced charge separation and charge recombination processes with a particular focus on the involved spin-chemical aspects. Attaching electron-donating or electron-withdrawing substituents to the third wing of the triptycene bridge allowed tuning the electron transfer processes. These processes were investigated via fs-transient absorption spectroscopy and ns-transient absorption spectroscopy in an external magnetic field. The resulting magnetic field-dependent decay dynamics were analysed and modelled using the stochastic Liouville equation which yielded rate constants for the charge recombination and the exchange energy. In combination with a diabatic rate theory and Anderson's perturbative treatment of the exchange energy, these data gave a complete set of rate constants for charge separation and charge recombination from which the diverse electronic couplings between the involved states were derived. These couplings depend linearly on the inverse energy of virtual triptycene bridge states which allows tuning the electron transfer dynamics by modifying the triptycene bridge.
Collapse
Affiliation(s)
- Christoph Lambert
- Institut für Organische Chemie, Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany.
- Center for Nanosystems Chemistry, Universität Würzburg, Theodor-Boveri-Weg, D-97074 Würzburg, Germany
| | - Chantal Roger
- Institut für Organische Chemie, Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany.
| | - Alexander Schmiedel
- Institut für Organische Chemie, Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany.
| | - Marco Holzapfel
- Institut für Organische Chemie, Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany.
| | - Nikita Lukzen
- International Tomography Center, Russia and Novosibirsk State Universit, Institutskaya 3a, Novosibirsk, Novosibirsk 630090, Russia
| | - Ulrich E Steiner
- Department of Chemistry, University of Konstanz, Universitätsstraße 10, 78464 Konstanz, Germany
| |
Collapse
|
3
|
Goodwin MJ, Dickenson JC, Ripak A, Deetz AM, McCarthy JS, Meyer GJ, Troian-Gautier L. Factors that Impact Photochemical Cage Escape Yields. Chem Rev 2024; 124:7379-7464. [PMID: 38743869 DOI: 10.1021/acs.chemrev.3c00930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
The utilization of visible light to mediate chemical reactions in fluid solutions has applications that range from solar fuel production to medicine and organic synthesis. These reactions are typically initiated by electron transfer between a photoexcited dye molecule (a photosensitizer) and a redox-active quencher to yield radical pairs that are intimately associated within a solvent cage. Many of these radicals undergo rapid thermodynamically favored "geminate" recombination and do not diffuse out of the solvent cage that surrounds them. Those that do escape the cage are useful reagents that may undergo subsequent reactions important to the above-mentioned applications. The cage escape process and the factors that determine the yields remain poorly understood despite decades of research motivated by their practical and fundamental importance. Herein, state-of-the-art research on light-induced electron transfer and cage escape that has appeared since the seminal 1972 review by J. P. Lorand entitled "The Cage Effect" is reviewed. This review also provides some background for those new to the field and discusses the cage escape process of both homolytic bond photodissociation and bimolecular light induced electron transfer reactions. The review concludes with some key goals and directions for future research that promise to elevate this very vibrant field to even greater heights.
Collapse
Affiliation(s)
- Matthew J Goodwin
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - John C Dickenson
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Alexia Ripak
- Université catholique de Louvain (UCLouvain), Institut de la Matière Condensée et des Nanosciences (IMCN), Molecular Chemistry, Materials and Catalysis (MOST), Place Louis Pasteur 1, bte L4.01.02, 1348 Louvain-la-Neuve, Belgium
| | - Alexander M Deetz
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Jackson S McCarthy
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Gerald J Meyer
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Ludovic Troian-Gautier
- Université catholique de Louvain (UCLouvain), Institut de la Matière Condensée et des Nanosciences (IMCN), Molecular Chemistry, Materials and Catalysis (MOST), Place Louis Pasteur 1, bte L4.01.02, 1348 Louvain-la-Neuve, Belgium
- Wel Research Institute, Avenue Pasteur 6, 1300 Wavre, Belgium
| |
Collapse
|
4
|
Li Q, Wu K, Zhu H, Yang Y, He S, Lian T. Charge Transfer from Quantum-Confined 0D, 1D, and 2D Nanocrystals. Chem Rev 2024; 124:5695-5763. [PMID: 38629390 PMCID: PMC11082908 DOI: 10.1021/acs.chemrev.3c00742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 03/29/2024] [Accepted: 04/02/2024] [Indexed: 05/09/2024]
Abstract
The properties of colloidal quantum-confined semiconductor nanocrystals (NCs), including zero-dimensional (0D) quantum dots, 1D nanorods, 2D nanoplatelets, and their heterostructures, can be tuned through their size, dimensionality, and material composition. In their photovoltaic and photocatalytic applications, a key step is to generate spatially separated and long-lived electrons and holes by interfacial charge transfer. These charge transfer properties have been extensively studied recently, which is the subject of this Review. The Review starts with a summary of the electronic structure and optical properties of 0D-2D nanocrystals, followed by the advances in wave function engineering, a novel way to control the spatial distribution of electrons and holes, through their size, dimension, and composition. It discusses the dependence of NC charge transfer on various parameters and the development of the Auger-assisted charge transfer model. Recent advances in understanding multiple exciton generation, decay, and dissociation are also discussed, with an emphasis on multiple carrier transfer. Finally, the applications of nanocrystal-based systems for photocatalysis are reviewed, focusing on the photodriven charge separation and recombination processes that dictate the function and performance of these materials. The Review ends with a summary and outlook of key remaining challenges and promising future directions in the field.
Collapse
Affiliation(s)
- Qiuyang Li
- Department
of Physics, University of Michigan, 450 Church St, Ann Arbor, Michigan 48109, United States
| | - Kaifeng Wu
- State
Key Laboratory of Molecular Reaction Dynamics and Collaborative Innovation
Center of Chemistry for Energy Materials (iChEM), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Haiming Zhu
- Department
of Chemistry, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Ye Yang
- The
State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM
(Collaborative Innovation Center of Chemistry for Energy Materials),
College of Chemistry & Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Sheng He
- Department
of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Tianquan Lian
- Department
of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| |
Collapse
|
5
|
Roger C, Schmiedel A, Holzapfel M, Lukzen NN, Steiner UE, Lambert C. The influence of hindered rotation on electron transfer and exchange interaction in triarylamine-triptycene-perylene diimide triads. Phys Chem Chem Phys 2024; 26:4954-4967. [PMID: 38277181 DOI: 10.1039/d3cp05785b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
Stretched electron-donor-bridge-acceptor triads that exhibit intramolecular twisting degrees of freedom are capable of modulating exchange interaction (J) as well as electronic couplings through variable π-overlap at the linear bond links, affecting the rate constants of photoinduced charge separation and recombination. Here we present an in-depth investigation of such effects induced by methyl substituents leading to controlled steric hindrance of intramolecular twisting around biaryl axes. Starting from the parent structure, consisting of a triphenyl amine donor, a triptycene (TTC) bridge and a phenylene-perylene diimide acceptor (Me0), one of the two phenylene linkers attached to the TTC was ortho-substituted by two methyl groups (Me2, Me3), or both such phenylene linkers by two pairs of methyl groups (Me23). Photoinduced charge separation (kCS) leading to a charge-separated (CS) state was studied by fs-laser spectroscopy, charge recombination to either singlet ground state (kS) or to the first excited local triplet state of the acceptor (kT) by ns-laser spectroscopy, whereby kinetic magnetic field effects in an external magnetic field were recorded and analysed using quantum dynamic simulations of the spin dependent kinetics of the CS state. Kinetic spectra of the initial first order rate constants of charge recombination (k(B)) exhibited characteristic J-resonances progressing to lower fields in the series Me0, Me2, Me3, Me23. From the quantum simulations, the values of the parameters J, kS, kT and kSTD, the singlet/triplet dephasing constant, were obtained. They were analysed in terms of molecular dynamics simulations of the intramolecular twisting dynamics based on potentials calculated by density functional theory. Apart from kT, all of the parameters exhibit a clear correlation with the averaged cosine square products of the biaryl angles.
Collapse
Affiliation(s)
- Chantal Roger
- Institut für Organische Chemie, Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany.
| | - Alexander Schmiedel
- Institut für Organische Chemie, Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany.
| | - Marco Holzapfel
- Institut für Organische Chemie, Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany.
| | - Nikita N Lukzen
- International Tomography Center, Russia and Novosibirsk State University, Institutskaya 3a, Novosibirsk, Novosibirsk 630090, Russia
| | - Ulrich E Steiner
- Department of Chemistry, University of Konstanz, Universitätsstraße 10, 78464 Konstanz, Germany.
| | - Christoph Lambert
- Institut für Organische Chemie, Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany.
- Center for Nanosystems Chemistry, Universität Würzburg, Theodor-Boveri-Weg, D-97074 Würzburg, Germany
| |
Collapse
|
6
|
Ghosh G, Mukherjee D, Ghosh R, Singh P, Pal U, Chattopadhyay A, Santra M, Ahn KH, Mosae Selvakumar P, Das R, Pal SK. A novel molecular reporter for probing protein DNA recognition: An optical spectroscopic and molecular modeling study. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 291:122313. [PMID: 36628863 DOI: 10.1016/j.saa.2022.122313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 12/11/2022] [Accepted: 12/31/2022] [Indexed: 06/17/2023]
Abstract
A novel benzo[a]phenoxazine-based fluorescent dye LV2 has been employed as a molecular reporter to probe recognition of a linker histone protein H1 by calf-thymus DNA (DNA). Fluorescence lifetime of LV2 buried in the globular domain of H1 (∼2.1 ns) or in the minor groove of DNA (∼0.93 ns) increases significantly to 2.65 ns upon interaction of the cationic protein with DNA indicating formation of the H1-DNA complex. The rotational relaxation time of the fluorophore buried in the globular domain of H1 increases significantly from 2.2 ns to 8.54 ns in the presence of DNA manifesting the recognition of H1 by DNA leading to formation of the H1-DNA complex. Molecular docking and molecular dynamics (MD) simulations have shown that binding of LV2 is energetically most favourable in the interface of the H1-DNA complex than in the globular domain of H1 or in the minor groove of DNA. As a consequence, orientational relaxation of the LV2 is significantly hindered in the protein-DNA interface compared to H1 or DNA giving rise to a much longer rotational relaxation time (8.54 ns) in the H1-DNA complex relative to that in pure H1 (2.2 ns) or DNA (5.7 ns). Thus, via a significant change of fluorescence lifetime and rotational relaxation time, the benzo[a]phenoxazine-based fluorescent dye buried within the globular domain of the cationic protein, or within the minor groove of DNA, reports on recognition of H1 by DNA.
Collapse
Affiliation(s)
- Gourab Ghosh
- Dept. of Chemistry, West Bengal State University, Barasat, Kolkata 700126, India
| | - Dipanjan Mukherjee
- Department of Chemical, Biological & Macromolecular Sciences, S. N. Bose National Centre for Basic Sciences, Block JD, Sector III, Salt Lake, Kolkata, India
| | - Ria Ghosh
- Technical Research Centre, S. N. Bose National Centre for Basic Sciences, Kolkata, India
| | - Priya Singh
- Department of Chemical, Biological & Macromolecular Sciences, S. N. Bose National Centre for Basic Sciences, Block JD, Sector III, Salt Lake, Kolkata, India
| | - Uttam Pal
- Technical Research Centre, S. N. Bose National Centre for Basic Sciences, Kolkata, India
| | - Arpita Chattopadhyay
- Department of Basic Science and Humanities, Techno International New Town, Rajarhat, Kolkata 700156, India
| | - Mithun Santra
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, Pohang, Gyungbuk 37673, Republic of Korea
| | - Kyo Han Ahn
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, Pohang, Gyungbuk 37673, Republic of Korea
| | - P Mosae Selvakumar
- Science and Math Program, Asian University for Women, Chittagong, Bangladesh
| | - Ranjan Das
- Dept. of Chemistry, West Bengal State University, Barasat, Kolkata 700126, India.
| | - Samir Kumar Pal
- Department of Chemical, Biological & Macromolecular Sciences, S. N. Bose National Centre for Basic Sciences, Block JD, Sector III, Salt Lake, Kolkata, India.
| |
Collapse
|
7
|
Mang A, Rotthowe N, Beltako K, Linseis M, Pauly F, Winter RF. Single-molecule conductance studies on quasi- and metallaaromatic dibenzoylmethane coordination compounds and their aromatic analogs. NANOSCALE 2023; 15:5305-5316. [PMID: 36811332 DOI: 10.1039/d2nr05670d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The ability to predict the conductive behaviour of molecules, connected to macroscopic electrodes, represents a crucial prerequisite for the design of nanoscale electronic devices. In this work, we investigate whether the notion of a negative relation between conductance and aromaticity (the so-called NRCA rule) also pertains to quasi-aromatic and metallaaromatic chelates derived from dibenzoylmethane (DBM) and Lewis acids (LAs) that either do or do not contribute two extra dπ electrons to the central resonance-stabilised β-ketoenolate binding pocket. We therefore synthesised a family of methylthio-functionalised DBM coordination compounds and subjected them, along with their truly aromatic terphenyl and 4,6-diphenylpyrimidine congeners, to scanning tunneling microscope break-junction (STM-BJ) experiments on gold nanoelectrodes. All molecules share the common motif of three π-conjugated, six-membered, planar rings with a meta-configuration at the central ring. According to our results, their molecular conductances fall within a factor of ca. 9 in an ordering aromatic < metallaaromatic < quasi-aromatic. The experimental trends are rationalised by quantum transport calculations based on density functional theory (DFT).
Collapse
Affiliation(s)
- André Mang
- Chemistry Department, University of Konstanz, 78457 Konstanz, Germany.
| | - Nils Rotthowe
- Chemistry Department, University of Konstanz, 78457 Konstanz, Germany.
| | - Katawoura Beltako
- Physics Department, University of Lomé, 1515 Lomé, Togo
- Institute of Physics, University of Augsburg, 86159 Augsburg, Germany.
| | - Michael Linseis
- Chemistry Department, University of Konstanz, 78457 Konstanz, Germany.
| | - Fabian Pauly
- Institute of Physics, University of Augsburg, 86159 Augsburg, Germany.
| | - Rainer F Winter
- Chemistry Department, University of Konstanz, 78457 Konstanz, Germany.
| |
Collapse
|
8
|
Roh DH, Park JH, Han HG, Kim YJ, Motoyoshi D, Hwang E, Kim WH, Mapley JI, Gordon KC, Mori S, Kwon OH, Kwon TH. Molecular design strategy for realizing vectorial electron transfer in photoelectrodes. Chem 2022. [DOI: 10.1016/j.chempr.2022.01.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
9
|
Barrett BJ, Jimenez D, Klausen RS, Bragg AE. Intramolecular Photoinduced Charge Transfer and Recombination Dynamics in Vinylarene Terminated Organosilanes. J Phys Chem B 2021; 125:8460-8471. [PMID: 34296881 DOI: 10.1021/acs.jpcb.1c01297] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We report on charge-transfer dynamics of newly designed acceptor-donor-acceptor organosilanes, with a specific focus on how donor-acceptor combination and local chemical environment can be used to control the lifetime for intramolecular charge-separation between silane electron donors and organic acceptors. In this work linear oligosilanes were capped with arene-vinyl end groups of variable electron-accepting strength: weak (diester vinyl), intermediate (ester,cyano vinyl), and strong (dicyanovinyl). Ultrafast transient absorption spectroscopy was used to characterize their structure-dependent charge-transfer and recombination behaviors. All structures exhibit similar photoinduced ultrafast spectral dynamics that we ascribe to relaxation of the nascent charge-separated excited state followed by a return to the ground state via charge recombination. We find that relaxation of the nascent "hot" charge-separated excited state scales with the strength of dipole-dipole interactions between solvent molecules and the polar arene-vinyl acceptor. Furthermore, electron-accepting strength governs whether electronic coupling dictates charge recombination rate: weak acceptors produce charge-separated states that exhibit relatively large electronic coupling for back-electron transfer (approaching the adiabatic limit) that result in fast recombination, whereas the strong and moderate-strength acceptors support more stable charge-separated states with weaker coupling and longer lifetimes. We find that recombination rates increase substantially for structures with weak and moderate-strength acceptors in cyclohexane (i.e., negligible solvent reorganization energy), which we attribute to an increased electronic coupling in a nonpolar solvent environment where charge pairs are weakly screened. In contrast, for structures with strong electron acceptors, the very low reorganization energy of cyclohexane places back-electron transfer even further into the Marcus inverted regime, with a resultant increase in charge-separation lifetime. Together these results provide critical insights on how to tune photoinduced charge-transfer behavior in organic-inorganic hybrids that have potential material applications in molecular electronics and optoelectronics.
Collapse
Affiliation(s)
- Brandon J Barrett
- Department of Chemistry, Johns Hopkins University, 3400 N. Charles Street, Baltimore, Maryland 21218, United States
| | - Daniel Jimenez
- Department of Chemistry, Johns Hopkins University, 3400 N. Charles Street, Baltimore, Maryland 21218, United States
| | - Rebekka S Klausen
- Department of Chemistry, Johns Hopkins University, 3400 N. Charles Street, Baltimore, Maryland 21218, United States
| | - Arthur E Bragg
- Department of Chemistry, Johns Hopkins University, 3400 N. Charles Street, Baltimore, Maryland 21218, United States
| |
Collapse
|
10
|
Kang DH, Kim J, Kim SK. Recapture of the Nonvalence Excess Electron into the Excited Valence Orbital Leads to the Chemical Bond Cleavage in the Anion. J Phys Chem Lett 2021; 12:6383-6388. [PMID: 34232669 DOI: 10.1021/acs.jpclett.1c01789] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The excess electron in the dipole-bound state (DBS) of the anion is found to be recaptured into the excited valence orbital localized at the positive end of the dipole, leading to the chemical bond cleavage of the anion. In the DBS of the 4-iodophenoxide anion, the extremely loosely bound electron (binding energy of 53 cm-1) is recaptured into the πσ* valence orbital, which is repulsive along the C-I bond extension coordinate, leading to the iodide (I-) and phenoxyl diradical (·C6H4O·) channel at the asymptotic limit. This is the first real-time observation of the state-specific relaxation (other than autodetachment) dynamics of the DBS and subsequent chemical reaction. The lifetime of the 4-iodophenoxide DBS at its zero-point energy (ZPE), which is measured for the cryogenically cooled trapped anion using the picosecond laser pump-probe scheme, has been estimated to be ∼9.5 ± 0.3 ps. Quantum mechanical calculations support the efficient transition from the DBS (below the detachment threshold) to the low-lying πσ* valence orbital of the first excited state of the anion. Similar experiments on 4-chlorophenoxide and 4-bromophenoxide anions indicate that the electron recaptures into excited valence orbitals hardly occur in the DBS of those anions, giving the long lifetimes (≫ns) at ZPE, suggesting that the internal conversion to S0 may be the major relaxation pathway for those anions.
Collapse
Affiliation(s)
- Do Hyung Kang
- Department of Chemistry, KAIST, Daejeon 34141, Republic of Korea
| | - Jinwoo Kim
- Department of Chemistry, KAIST, Daejeon 34141, Republic of Korea
| | - Sang Kyu Kim
- Department of Chemistry, KAIST, Daejeon 34141, Republic of Korea
| |
Collapse
|
11
|
Kretsch J, Kreyenschmidt A, Schillmöller T, Lõkov M, Herbst‐Irmer R, Leito I, Stalke D. Bis(4-benzhydryl-benzoxazol-2-yl)methane - from a Bulky NacNac Alternative to a Trianion in Alkali Metal Complexes. Chemistry 2021; 27:9858-9865. [PMID: 34036637 PMCID: PMC8361911 DOI: 10.1002/chem.202100616] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Indexed: 11/25/2022]
Abstract
A novel sterically demanding bis(4-benzhydryl-benzoxazol-2-yl)methane ligand 6 (4-BzhH2 BoxCH2 ) was gained in a straightforward six-step synthesis. Starting from this ligand monomeric [M(4-BzhH2 BoxCH)] (M=Na (7), K (81 )) and dimeric [{M(4-BzhH2 BoxCH)}2 ] (M=K (82 ), Rb (9), Cs (10)) alkali metal complexes were synthesised by deprotonation. Abstraction of the potassium ion of 8 by reaction with 18-crown-6 resulted in the solvent separated ion pair [{(THF)2 K@(18-crown-6)}{bis(4-benzhydryl-benzoxazol-2-yl)methanide}] (11), including the energetically favoured monoanionic (E,E)-(4-BzhH2 BoxCH) ligand. Further reaction of 4-BzhH2 BoxCH2 with three equivalents KH and two equivalents 18-crown-6 yielded polymeric [{(THF)2 K@(18-crown-6)}{K@(18-crown-6)K(4-Bzh BoxCH)}]n (n→∞) (12) containing a trianionic ligand. The neutral ligand and herein reported alkali complexes were characterised by single X-ray analyses identifying the latter as a promising precursor for low-valent main group complexes.
Collapse
Affiliation(s)
- Johannes Kretsch
- Institut für Anorganische ChemieGeorg-August-Universität GöttingenTammannstraße 437077GöttingenGermany
| | | | - Timo Schillmöller
- Institut für Anorganische ChemieGeorg-August-Universität GöttingenTammannstraße 437077GöttingenGermany
| | - Märt Lõkov
- Institute of ChemistryUniversity of TartuRavila 14a50411TartuEstonia
| | - Regine Herbst‐Irmer
- Institut für Anorganische ChemieGeorg-August-Universität GöttingenTammannstraße 437077GöttingenGermany
| | - Ivo Leito
- Institute of ChemistryUniversity of TartuRavila 14a50411TartuEstonia
| | - Dietmar Stalke
- Institut für Anorganische ChemieGeorg-August-Universität GöttingenTammannstraße 437077GöttingenGermany
| |
Collapse
|
12
|
du Fossé I, Boehme SC, Infante I, Houtepen AJ. Dynamic Formation of Metal-Based Traps in Photoexcited Colloidal Quantum Dots and Their Relevance for Photoluminescence. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2021; 33:3349-3358. [PMID: 34054218 PMCID: PMC8154315 DOI: 10.1021/acs.chemmater.1c00561] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 04/09/2021] [Indexed: 05/11/2023]
Abstract
Trap states play a crucial role in the design of colloidal quantum dot (QD)-based technologies. The presence of these in-gap states can either significantly limit the efficiency of devices (e.g., in solar cells or LEDs) or play a pivotal role in the functioning of the technology (e.g., in catalysis). Understanding the atomistic nature of traps is therefore of the highest importance. Although the mechanism through which undercoordinated chalcogenide atoms can lead to trap states in II-VI QDs is generally well understood, the nature of metal-based traps remains more elusive. Previous research has shown that reduction of metal sites in negatively charged QDs can lead to in-gap states. Here, we use density functional theory to show that metal-based traps are also formed in charge-neutral but photoexcited CdSe QDs. It is found that Cd-Cd dimers and the concomitant trap states are transient in nature and appear and disappear on the picosecond time scale. Subsequent nonradiative recombination from the trap is shown to be much faster than radiative recombination, indicating that dimer-related trap states can quench the photoluminescence. These results are expected to be transferable to other II-VI materials and highlight the importance of surface redox reactions for the optical properties of QDs. Moreover, they show that photoexcitation can lead to atomic rearrangements on the surface and thus create transient in-gap states.
Collapse
Affiliation(s)
- Indy du Fossé
- Optoelectronic
Materials Section, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Simon C. Boehme
- Laboratory
of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1, 8093 Zürich, Switzerland
- Empa-Swiss
Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, 8600 Dübendorf, Switzerland
| | - Ivan Infante
- Department
of Nanochemistry, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Arjan J. Houtepen
- Optoelectronic
Materials Section, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| |
Collapse
|
13
|
Kumar S, Tao Y. Coronenes, Benzocoronenes and Beyond: Modern Aspects of Their Syntheses, Properties, and Applications. Chem Asian J 2021; 16:621-647. [DOI: 10.1002/asia.202001465] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/24/2021] [Indexed: 12/29/2022]
Affiliation(s)
- Sushil Kumar
- Institute of Chemistry Academia Sinica Taipei 11529 Taiwan
| | - Yu‐Tai Tao
- Institute of Chemistry Academia Sinica Taipei 11529 Taiwan
| |
Collapse
|
14
|
Zarrabi N, Poddutoori PK. Aluminum(III) porphyrin: A unique building block for artificial photosynthetic systems. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2020.213561] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
15
|
Le HN, Brazard J, Barnoin G, Vincent S, Michel BY, Leonard J, Burger A. Control of Intermolecular Photoinduced Electron Transfer in Deoxyadenosine-Based Fluorescent Probes. Chemistry 2021; 27:1364-1373. [PMID: 32767410 DOI: 10.1002/chem.202003456] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Indexed: 12/12/2022]
Abstract
In this work, we report on the Photoinduced Electron Transfer (PET) reaction between a donor (adenine analogue) and an acceptor (3-methoxychromone dye, 3MC) in the context of designing efficient fluorescent probes as DNA sensors. Firstly, Gibbs energy was investigated in disconnected donor-acceptor systems by Rehm-Weller equation. The oxidation potential of the adenine derivative was responsible for exergonicity of the PET reaction in separated combinations. Then, the PET reaction in donor-π-acceptor conjugates was investigated using steady-state fluorescence spectroscopy, acid-mediated PET inhibition and transient absorption techniques. In conjugated systems, PET is a favorable pathway of fluorescent quenching when an electron-rich adenine analogue (d7A) was connected to the fluorophore (3MC). We found that formation of ground-state complexes even at nm concentration range dominated the dye photophysics and generated poorly emissive species likely through intermolecular PET from d7A to 3MC. On the other hand, solution acidification disrupts complexation and turns on the dye emission. Bridging an electron-poor adenine analogue with high oxidation potential (8 d7A) to 3MC presenting low reduction potential is another alternative to prevent complex formation and produce highly emissive monomer conjugates.
Collapse
Affiliation(s)
- Hoang-Ngoan Le
- Université Côte d'Azur, Institut de Chimie de Nice, UMR 7272, CNRS, Parc Valrose, 06108, Nice cedex 2, France
| | - Johanna Brazard
- Université de Strasbourg, Institut de Physique et Chimie, des Matériaux de Strasbourg and Labex NIE, UMR 7504, CNRS, 67200, Strasbourg, France.,Present address: Université de Genève, Département de Chimie Physique, 1211, Genève, France
| | - Guillaume Barnoin
- Université Côte d'Azur, Institut de Chimie de Nice, UMR 7272, CNRS, Parc Valrose, 06108, Nice cedex 2, France
| | - Steve Vincent
- Université Côte d'Azur, Institut de Chimie de Nice, UMR 7272, CNRS, Parc Valrose, 06108, Nice cedex 2, France
| | - Benoît Y Michel
- Université Côte d'Azur, Institut de Chimie de Nice, UMR 7272, CNRS, Parc Valrose, 06108, Nice cedex 2, France
| | - Jérémie Leonard
- Université de Strasbourg, Institut de Physique et Chimie, des Matériaux de Strasbourg and Labex NIE, UMR 7504, CNRS, 67200, Strasbourg, France
| | - Alain Burger
- Université Côte d'Azur, Institut de Chimie de Nice, UMR 7272, CNRS, Parc Valrose, 06108, Nice cedex 2, France
| |
Collapse
|
16
|
Zhang M, Guo Y, Feng X, Jin X, Qiu L, Zhu L, Cui S, Sun Y, Ma Y, Ma X, Wang H, Zhao G. Site-Selective Photoinduced Electron Transfer of Excited-State Intermolecular Hydrogen-Bonded Cluster in Solution. J CLUST SCI 2021. [DOI: 10.1007/s10876-020-01765-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
17
|
Kellett CW, Berlinguette CP. Defining Direct Orbital Pathways for Intermolecular Electron Transfer Using Sensitized Semiconducting Surfaces. Inorg Chem 2020; 59:14696-14705. [PMID: 32997937 DOI: 10.1021/acs.inorgchem.0c02251] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
High-performance electronic materials and redox catalysts often rely on fast rates of intermolecular electron transfer (IET). Maximizing IET rates requires strong electronic coupling (HDA) between the electron donor and acceptor, yet universal structure-property relationships governing HDA in outer-sphere IET reactions have yet to be developed. For ground-state IET reactions, HDA is reasonably approximated by the extent of overlap between the frontier donor and acceptor orbitals involved in the electron-transfer reaction. Intermolecular interactions that encourage overlap between these orbitals, thereby creating a direct orbital pathway for IET, have a strong impact on HDA and, by extension, the IET rates. In this Forum Article, we present a set of intuitive molecular design strategies employing this direct orbital pathway principle to maximize HDA for IET reactions. We highlight how the careful design of redox-active molecules anchored to solid semiconducting substrates provides a powerful experimental platform for elucidating how electronic structure and specific intermolecular interactions affect IET reactions.
Collapse
Affiliation(s)
- Cameron W Kellett
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | - Curtis P Berlinguette
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada.,Department of Chemical and Biological Engineering, The University of British Columbia, 2360 East Mall, Vancouver, British Columbia V6T 1Z3, Canada.,Stewart Blusson Quantum Matter Institute, The University of British Columbia, 2355 East Mall, Vancouver, British Columbia V6T 1Z4, Canada.,Canadian Institute for Advanced Research, 661 University Avenue, Toronto, Ontario M5G 1M1, Canada
| |
Collapse
|
18
|
Duan K, Wang D, Yang M, Liu Z, Wang C, Tsuboi T, Deng C, Zhang Q. Weakly Conjugated Phosphine Oxide Hosts for Efficient Blue Thermally Activated Delayed Fluorescence Organic Light-Emitting Diodes. ACS APPLIED MATERIALS & INTERFACES 2020; 12:30591-30599. [PMID: 32459084 DOI: 10.1021/acsami.0c02800] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The development of host materials with high first-triplet state (T1) energy and high charge mobility is a key to achieve efficient true-blue organic light-emitting diodes (OLEDs), employing phosphorescence and thermally activated delayed fluorescence (TADF). An ether-bridged double triphenylphosphine oxide (TPPO) compound, bis(2-(diphenylphosphino)phenyl)ether oxide (DPEPO), was reported to have a very high T1 energy of 3.3 eV but suffers from poor charge mobility. Here, five bridge-controlled multi-TPPO derivatives were studied through a combination of experiments and theory. We demonstrate that the push-pull electron capability of the bridge group governs the T1 energy and electron mobility of these materials. Replacing the ether bridge by a bis(trifluoromethyl)methylene group can reduce the energy barrier for intramolecular electron exchange and consequently enhance the electron mobility by two orders of magnitude without lowering the T1 energy. A blue TADF OLED employing this bis(trifluoromethyl)methylene-bridged compound achieves the same high external quantum efficiency but a much higher current density compared to the control device employing DPEPO. In contrast, a bridge group with strong electron-withdrawing capability, such as phosphine oxygen or sulfone, lowers the T1 energy of the compound by enhancing the electronic coupling between TPPO subunits and inhibits intermolecular electron transfer by trapping the electron charge around the bridge.
Collapse
Affiliation(s)
- Ke Duan
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Dan Wang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Ming Yang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Ziyang Liu
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry and Center for Flexible Electronics Technology, Tsinghua University, Beijing 100084, China
| | - Chao Wang
- Singapore University of Technology and Design, 8 Somapah Road, 487372, Singapore
| | - Taiju Tsuboi
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Chao Deng
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Qisheng Zhang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
19
|
Zarrabi N, Seetharaman S, Chaudhuri S, Holzer N, Batista VS, van der Est A, D'Souza F, Poddutoori PK. Decelerating Charge Recombination Using Fluorinated Porphyrins in N,N-Bis(3,4,5-trimethoxyphenyl)aniline-Aluminum(III) Porphyrin-Fullerene Reaction Center Models. J Am Chem Soc 2020; 142:10008-10024. [PMID: 32343561 DOI: 10.1021/jacs.0c01574] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In supramolecular reaction center models, the lifetime of the charge-separated state depends on many factors. However, little attention has been paid to the redox potential of the species that lie between the donor and acceptor in the final charge separated state. Here, we report on a series of self-assembled aluminum porphyrin-based triads that provide a unique opportunity to study the influence of the porphyrin redox potential independently of other factors. The triads, BTMPA-Im→AlPorFn-Ph-C60 (n = 0, 3, 5), were constructed by linking the fullerene (C60) and bis(3,4,5-trimethoxyphenyl)aniline (BTMPA) to the aluminum(III) porphyrin. The porphyrin (AlPor, AlPorF3, or AlPorF5) redox potentials are tuned by the substitution of phenyl (Ph), 3,4,5-trifluorophenyl (PhF3), or 2,3,4,5,6-pentafluorophenyl (PhF5) groups in its meso positions. The C60 and BTMPA units are bound axially to opposite faces of the porphyrin plane via covalent and coordination bonds, respectively. Excitation of all of the triads results in sequential electron transfer that generates the identical final charge separated state, BTMPA•+-Im→AlPorFn-Ph-C60•-, which lies energetically 1.50 eV above the ground state. Despite the fact that the radical pair is identical in all of the triads, remarkably, the lifetime of the BTMPA•+-Im→AlPorFn-Ph-C60•- radical pair was found to be very different in each of them, that is, 1240, 740, and 56 ns for BTMPA-Im→AlPorF5-Ph-C60, BTMPA-Im→AlPorF3-Ph-C60, and BTMPA-Im→AlPor-Ph-C60, respectively. These results clearly suggest that the charge recombination is an activated process that depends on the midpoint potential of the central aluminum(III) porphyrin (AlPorFn).
Collapse
Affiliation(s)
- Niloofar Zarrabi
- Department of Chemistry & Biochemistry, University of Minnesota Duluth, 1038 University Drive, Duluth, Minnesota 55812, United States
| | - Sairaman Seetharaman
- Department of Chemistry, University of North Texas, 1155 Union Circle, # 305070, Denton, Texas 76203-5017, United States
| | - Subhajyoti Chaudhuri
- Department of Chemistry, Yale University, P.O. Box 208107, New Haven, Connecticut 06520-8107, United States
| | - Noah Holzer
- Department of Chemistry & Biochemistry, University of Minnesota Duluth, 1038 University Drive, Duluth, Minnesota 55812, United States
| | - Victor S Batista
- Department of Chemistry, Yale University, P.O. Box 208107, New Haven, Connecticut 06520-8107, United States
| | - Art van der Est
- Department of Chemistry, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, ON L2S 3A1, Canada
| | - Francis D'Souza
- Department of Chemistry, University of North Texas, 1155 Union Circle, # 305070, Denton, Texas 76203-5017, United States
| | - Prashanth K Poddutoori
- Department of Chemistry & Biochemistry, University of Minnesota Duluth, 1038 University Drive, Duluth, Minnesota 55812, United States
| |
Collapse
|
20
|
Castrogiovanni A, Herr P, Larsen CB, Guo X, Sparr C, Wenger OS. Shortcuts for Electron-Transfer through the Secondary Structure of Helical Oligo-1,2-Naphthylenes. Chemistry 2019; 25:16748-16754. [PMID: 31674695 DOI: 10.1002/chem.201904771] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 10/30/2019] [Indexed: 01/24/2023]
Abstract
Atropisomeric 1,2-naphthylene scaffolds provide access to donor-acceptor compounds with helical oligomer-based bridges, and transient absorption studies revealed a highly unusual dependence of the electron-transfer rate on oligomer length, which is due to their well-defined secondary structure. Close noncovalent intramolecular contacts enable shortcuts for electron transfer that would otherwise have to occur over longer distances along covalent pathways, reminiscent of the behavior seen for certain proteins. The simplistic picture of tube-like electron transfer can describe this superposition of different pathways including both the covalent helical backbone, as well as noncovalent contacts, contrasting the wire-like behavior reported many times before for more conventional molecular bridges. The exquisite control over the molecular architecture, achievable with the configurationally stable and topologically defined 1,2-naphthylene-based scaffolds, is of key importance for the tube-like electron transfer behavior. Our insights are relevant for the emerging field of multidimensional electron transfer and for possible future applications in molecular electronics.
Collapse
Affiliation(s)
| | - Patrick Herr
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056, Basel, Switzerland
| | - Christopher B Larsen
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056, Basel, Switzerland
| | - Xingwei Guo
- Current address: Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing, 100084, P.R. China
| | - Christof Sparr
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056, Basel, Switzerland
| | - Oliver S Wenger
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056, Basel, Switzerland
| |
Collapse
|
21
|
Banziger SD, Zeller M, Ren T. New Synthetic Route for Cobalt(III) Dissymmetric Bisalkynyl Complexes Based on Cobalt(III)(cyclam)(C
2
NAP
Mes
). Eur J Inorg Chem 2019. [DOI: 10.1002/ejic.201901070] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Susannah D. Banziger
- Department of Chemistry Purdue University 560 Oval Drive 47906 West Lafayette IN USA
| | - Matthias Zeller
- Department of Chemistry Purdue University 560 Oval Drive 47906 West Lafayette IN USA
| | - Tong Ren
- Department of Chemistry Purdue University 560 Oval Drive 47906 West Lafayette IN USA
| |
Collapse
|
22
|
Tsuga Y, Katou M, Kuwabara S, Kanamori T, Ogura SI, Okazaki S, Ohtani H, Yuasa H. A Twist-Assisted Biphenyl Photosensitizer Passable Through Glucose Channel. Chem Asian J 2019; 14:2067-2071. [PMID: 30942532 DOI: 10.1002/asia.201900378] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 04/03/2019] [Indexed: 12/12/2022]
Abstract
While the development of low-molecular-weight drugs is saturating, agents for photodynamic therapies (PDTs) may become alternative seeds in pharmaceutical industry. Among them, orally administrative, cancer-selective, and side effect-free photosensitizers (PSs) that can be activated by tissue-penetrative near-infrared (NIR) lights are strongly demanded. We discovered such a PS from scratch by focusing on a twist-assisted spin-orbit charge transfer intersystem crossing (ISC) mechanism in a biphenyl derivative, which was demonstrated by thorough photophysical studies. The unique ISC mechanism enables the PS to be small and slim so as to pass through glucose transporters and exert a PDT effect selectively on a cancer cell line. The smallness will allow for oral administration and fast clearance, which have been agenda of approved PSs with larger molecular weights. We also demonstrated that our PS was able to be activated with an NIR pulse laser through two-photon excitation.
Collapse
Affiliation(s)
- Yuki Tsuga
- School of Life Science and Technology, Tokyo Institute of Technology, J2-10 4259 Nagatsuta, Midoriku, Yokohama, 226-8501, Japan
| | - Masataka Katou
- School of Life Science and Technology, Tokyo Institute of Technology, J2-10 4259 Nagatsuta, Midoriku, Yokohama, 226-8501, Japan
| | - Satoshi Kuwabara
- School of Life Science and Technology, Tokyo Institute of Technology, J2-10 4259 Nagatsuta, Midoriku, Yokohama, 226-8501, Japan
| | - Takashi Kanamori
- School of Life Science and Technology, Tokyo Institute of Technology, J2-10 4259 Nagatsuta, Midoriku, Yokohama, 226-8501, Japan
| | - Shun-Ichiro Ogura
- School of Life Science and Technology, Tokyo Institute of Technology, J2-10 4259 Nagatsuta, Midoriku, Yokohama, 226-8501, Japan
| | - Shigetoshi Okazaki
- Department of Medical Spectroscopy, Preeminent Medical Photonics Education & Research Center, Hamamatsu University School of Medicine, Handayama 1-20-1, Higashi-ku, Hamamatsu, Shizuoka, 431-3192, Japan
| | - Hiroyuki Ohtani
- School of Life Science and Technology, Tokyo Institute of Technology, J2-10 4259 Nagatsuta, Midoriku, Yokohama, 226-8501, Japan
| | - Hideya Yuasa
- School of Life Science and Technology, Tokyo Institute of Technology, J2-10 4259 Nagatsuta, Midoriku, Yokohama, 226-8501, Japan
| |
Collapse
|
23
|
Kielesiński Ł, Morawski OW, Sobolewski AL, Gryko DT. The synthesis and photophysical properties of tris-coumarins. Phys Chem Chem Phys 2019; 21:8314-8325. [PMID: 30951072 DOI: 10.1039/c9cp00978g] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A structurally unique cyclic tris-coumarin possessing three identical coumarin units bridged by amide linkers as well as two linear analogs has been synthesized. There is a remarkable agreement between crystallographic data, 1H NMR and results of calculations for the cyclic tris-coumarin, showing in all cases a non-symmetric arrangement of identical coumarin moieties. Weak polarization of the coumarin subunits, resulting from the presence of only CONH- groups as electron-donors, results in a hypsochromic shift of both absorption and emission in this dye. We have proven that in non-cyclic, head-to-tail linked tris-coumarins, the photophysics is controlled not only by the substituents but also by the conformation of the molecule, which in turn depends on the nature of the linker's interactions. These can be controlled by the presence/absence of an amide-type hydrogen atom responsible for the formation of intramolecular hydrogen bonds. The presence of a hydrogen bond favors a stretched trans conformation of the dye, while in its absence, folding of the molecule occurs leading to a more compact conformation. Although, the increased number of covalently linked coumarin units does not drastically change the preferred conformation, the fluorescence quantum yields of tris-coumarins are significantly lower than for analogous bis-coumarins composed of the same units.
Collapse
Affiliation(s)
- Łukasz Kielesiński
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland.
| | | | | | | |
Collapse
|
24
|
Durka K, Urban M, Dąbrowski M, Jankowski P, Kliś T, Luliński S. Cationic and Betaine-Type Boronated Acridinium Dyes: Synthesis, Characterization, and Photocatalytic Activity. ACS OMEGA 2019; 4:2482-2492. [PMID: 31459486 PMCID: PMC6648561 DOI: 10.1021/acsomega.8b03290] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 01/18/2019] [Indexed: 05/07/2023]
Abstract
A series of isomeric boronated acridinium dyes were obtained by reactions of 10-(4'-octyloxyphenyl) functionalized 9(10H)-acridanone derivative with lithiated phenylboronic azaesters followed by aromatization with perchloric acid. The effect of the position of boronic group attached at ortho, meta, and para positions of the 9-phenyl ring on the photophysical properties was investigated. Conversion to related betaine trifluoroborato-substituted compounds was successfully performed, and the effect of this structural change on UV-vis absorption and fluorescence spectroscopy characteristics was established. Furthermore, cyclic voltammetry studies revealed that electrochemical behavior of cationic versus betaine structures is different in terms of redox potential values as well as stability. The theoretical calculations revealed a different scheme for molecular excitation processes in B(OH)2 versus BF3 --substituted compounds as charge transfer to acridinium core is observed from N-aryl or B-aryl moiety, respectively. Obtained compounds were active as photocatalysts in selected visible-light-promoted addition reactions to unsaturated substrates.
Collapse
|
25
|
Karpiuk J, Gawryś P, Karpiuk E, Suwińska K. Electron transfer across a spiro link: extreme solvatofluorochromism of a compact spiro-bridged N, N-dimethylaniline-phthalide dyad. Chem Commun (Camb) 2019; 55:8414-8417. [DOI: 10.1039/c9cc02933h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Ultrafast intramolecular electron transfer over a spiro link leads to record-breaking solvatofluorochromism [11 600 cm−1, from 357 (hexane) to 595 nm (acetonitrile)].
Collapse
Affiliation(s)
- Jerzy Karpiuk
- Institute of Physics
- Polish Academy of Sciences
- 02-668 Warsaw
- Poland
| | - Paweł Gawryś
- Institute of Physics
- Polish Academy of Sciences
- 02-668 Warsaw
- Poland
| | - Elena Karpiuk
- Institute of Physics
- Polish Academy of Sciences
- 02-668 Warsaw
- Poland
| | - Kinga Suwińska
- Faculty of Mathematics and Natural Sciences
- Cardinal Stefan Wyszyński University in Warsaw
- 01-938 Warsaw
- Poland
| |
Collapse
|
26
|
Malzkuhn S, Guo X, Häussinger D, Wenger OS. Electron Transfer across o-Phenylene Wires. J Phys Chem A 2018; 123:96-102. [PMID: 30592217 DOI: 10.1021/acs.jpca.8b11236] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Photoinduced electron transfer across rigid rod-like oligo- p-phenylenes has been thoroughly investigated in the past, but their o-connected counterparts are yet entirely unexplored in this regard. We report on three molecular dyads comprised of a triarylamine donor and a Ru(bpy)32+ (bpy =2,2'-bipyridine) acceptor connected covalently by 2 to 6 o-phenylene units. Pulsed excitation of the Ru(II) sensitizer at 532 nm leads to the rapid formation of oxidized triarylamine and reduced ruthenium complex via intramolecular electron transfer. The subsequent thermal reverse charge-shift reaction to reinstate the electronic ground-state occurs on a time scale of 120-220 ns in deaerated CH3CN at 25 °C. The conformational flexibility of the o-phenylene bridges causes multiexponential transient absorption kinetics for the photoinduced forward process, but the thermal reverse reaction produces single-exponential transient absorption decays. The key finding is that the flexible o-phenylene bridges permit rapid formation of photoproducts storing ca. 1.7 eV of energy with lifetimes on the order of hundreds of nanoseconds, similar to what is possible with rigid rod-like donor-acceptor compounds. Thus, the conformational flexibility of the o-phenylenes represents no disadvantage with regard to the photoproduct lifetimes, and this is relevant in the greater context of light-to-chemical energy conversion.
Collapse
Affiliation(s)
- Sabine Malzkuhn
- Department of Chemistry , University of Basel , St. Johanns-Ring 19 , 4056 Basel , Switzerland
| | - Xingwei Guo
- Department of Chemistry , University of Basel , St. Johanns-Ring 19 , 4056 Basel , Switzerland
| | - Daniel Häussinger
- Department of Chemistry , University of Basel , St. Johanns-Ring 19 , 4056 Basel , Switzerland
| | - Oliver S Wenger
- Department of Chemistry , University of Basel , St. Johanns-Ring 19 , 4056 Basel , Switzerland
| |
Collapse
|
27
|
Neumann S, Wenger OS. Fundamentally Different Distance Dependences of Electron-Transfer Rates for Low and High Driving Forces. Inorg Chem 2018; 58:855-860. [DOI: 10.1021/acs.inorgchem.8b02973] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Svenja Neumann
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland
| | - Oliver S. Wenger
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland
| |
Collapse
|
28
|
Chen HW, Mallick S, Zou SF, Meng M, Liu CY. Mapping Bridge Conformational Effects on Electronic Coupling in Mo 2-Mo 2 Mixed-Valence Systems. Inorg Chem 2018; 57:7455-7467. [PMID: 29809000 DOI: 10.1021/acs.inorgchem.8b01056] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The large bridging ligand 9,10-anthracenedicarboxylate and its thiolated derivatives have been employed to assemble two dimolybdenum complex units and develop three Mo2 dimers, [Mo2(DAniF)3]2(μ-9,10-O2CC14H8CO2), [Mo2(DAniF)3]2(μ-9,10-OSCC14H8COS), and [Mo2(DAniF)3]2(μ-9,10-S2CC14H8CS2) (DAniF = N, N'-di( p-anisyl)formamidinate), for the study of conformation dependence of the electronic coupling between the two Mo2 centers. These compounds feature a large deviation of the central anthracene ring from the plane defined by the Mo-Mo bond vectors, with the torsion angles (ϕ = 50-76°) increasing as the chelating atoms of the bridging ligand vary from O to S. Consequently, the corresponding mixed-valence complexes do not exhibit characteristic intervalence charge transfer absorptions in the near-IR spectra, in contrast to the phenylene and naphthalene analogues, from which these systems are assigned to the Class I in Robin-Day's scheme. Together with the phenylene and naphthalene series, the nine total mixed-valence complexes in three series complete a transition from the electronically uncoupled Class I to the strongly coupled Class II-III borderline via moderately coupled Class II and permit a systematic mapping of the bridge conformation effects on electronic coupling. Density functional theory calculations show that the HOMO-LUMO energy gap, corresponding to the metal (δ) to ligand (π*) transition energy, and the magnitude of HOMO-HOMO-1 splitting in energy are linearly related to cos2 ϕ. Therefore, our experimental and theoretical results concur to indicate that the coupling strength decreases in the order of the bridging units: phenylene > naphthalene > anthracene, which verifies the through-bond superexchange mechanism for electronic coupling and electron transfer.
Collapse
Affiliation(s)
- Huo Wen Chen
- Department of Chemistry , Jinan University , 601 Huang-Pu Avenue West , Guangzhou 510632 , China
| | - Suman Mallick
- Department of Chemistry , Jinan University , 601 Huang-Pu Avenue West , Guangzhou 510632 , China
| | - Shan Feng Zou
- Department of Chemistry , Jinan University , 601 Huang-Pu Avenue West , Guangzhou 510632 , China
| | - Miao Meng
- Department of Chemistry , Jinan University , 601 Huang-Pu Avenue West , Guangzhou 510632 , China
| | - Chun Y Liu
- Department of Chemistry , Jinan University , 601 Huang-Pu Avenue West , Guangzhou 510632 , China
| |
Collapse
|
29
|
Eberhard J, Peuntinger K, Fröhlich R, Guldi DM, Mattay J. Synthesis and Properties of Acridine and Acridinium Dye Functionalized Bis(terpyridine) Ruthenium(II) Complexes. European J Org Chem 2018. [DOI: 10.1002/ejoc.201800257] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Jens Eberhard
- Organische Chemie I; Fakultät für Chemie; Universität Bielefeld; Universitätsstr. 25 33501 Bielefeld Germany
| | - Katrin Peuntinger
- Physikalische Chemie I; Department of Chemistry and Pharmacy and Interdisciplinary Center for Molecular Materials; Friedrich-Alexander-Universität Erlangen-Nürnberg; Egerlandstr. 3 91058 Erlangen Germany
| | - Roland Fröhlich
- Röntgenstrukturanalyse; Organisch-Chemisches Institut; Westfälische Wilhelms-Universität Münster; Corrensstr. 40 48149 Münster Germany
| | - Dirk M. Guldi
- Physikalische Chemie I; Department of Chemistry and Pharmacy and Interdisciplinary Center for Molecular Materials; Friedrich-Alexander-Universität Erlangen-Nürnberg; Egerlandstr. 3 91058 Erlangen Germany
| | - Jochen Mattay
- Organische Chemie I; Fakultät für Chemie; Universität Bielefeld; Universitätsstr. 25 33501 Bielefeld Germany
| |
Collapse
|
30
|
Schmidt HC, Larsen CB, Wenger OS. Electron Transfer around a Molecular Corner. Angew Chem Int Ed Engl 2018; 57:6696-6700. [DOI: 10.1002/anie.201800396] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 02/02/2018] [Indexed: 11/11/2022]
Affiliation(s)
- Hauke C. Schmidt
- Department of ChemistryUniversity of Basel St. Johanns-Ring 19 4056 Basel Switzerland
| | - Christopher B. Larsen
- Department of ChemistryUniversity of Basel St. Johanns-Ring 19 4056 Basel Switzerland
| | - Oliver S. Wenger
- Department of ChemistryUniversity of Basel St. Johanns-Ring 19 4056 Basel Switzerland
| |
Collapse
|
31
|
Piechota EJ, Troian-Gautier L, Sampaio RN, Brennaman MK, Hu K, Berlinguette CP, Meyer GJ. Optical Intramolecular Electron Transfer in Opposite Directions through the Same Bridge That Follows Different Pathways. J Am Chem Soc 2018; 140:7176-7186. [DOI: 10.1021/jacs.8b02715] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Eric J. Piechota
- Department of Chemistry, The University of North Carolina at Chapel Hill, Murray Hall 2202B, Chapel Hill, North Carolina 27599, United States
| | - Ludovic Troian-Gautier
- Department of Chemistry, The University of North Carolina at Chapel Hill, Murray Hall 2202B, Chapel Hill, North Carolina 27599, United States
| | - Renato N. Sampaio
- Department of Chemistry, The University of North Carolina at Chapel Hill, Murray Hall 2202B, Chapel Hill, North Carolina 27599, United States
| | - M. Kyle Brennaman
- Department of Chemistry, The University of North Carolina at Chapel Hill, Murray Hall 2202B, Chapel Hill, North Carolina 27599, United States
| | - Ke Hu
- Department of Chemistry, The University of North Carolina at Chapel Hill, Murray Hall 2202B, Chapel Hill, North Carolina 27599, United States
| | - Curtis P. Berlinguette
- Departments of Chemistry and Chemical & Biological Engineering, and the Stewart Blusson Quantum Matter Institute, The University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | - Gerald J. Meyer
- Department of Chemistry, The University of North Carolina at Chapel Hill, Murray Hall 2202B, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
32
|
Jones L, Lin L, Chamberlain TW. Oxygen, sulfur and selenium terminated single-walled heterocyclic carbon nanobelts (SWHNBs) as potential 3D organic semiconductors. NANOSCALE 2018; 10:7639-7648. [PMID: 29645046 DOI: 10.1039/c8nr01216d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Carbon nanomaterials such as polyaromatic hydrocarbons (PAHs), graphene, fullerenes and nanotubes are on the frontline of materials research due to their excellent physical properties, which in recent years, have started to compete with conventional inorganic materials in charge transfer based applications. Recently, a variety of new structures such as single-walled carbon nanobelts (SWCNBs) have been conceived, however, to date only one 'all-phenyl' example has been synthesised, due to problems with their stability and the challenging synthetic methodologies required. This study introduces a new class of phenacene-based SWCNBs and their chalcogenide derivatives, forming the new sub-class of single-walled heterocyclic carbon nanobelts (SWHNBs) which are expected to be both more stable and easier to synthesise than the all carbon analogues. Subsequent theoretical examination of the structure-property relationships found that unlike the small-molecule acene homologues (tetracene, pentacene etc.) which become more reactive with addition of oxygen, an increase in the molecular size of the SWCNBs actually stabilises the HOMO energy level, in correlation with the increasingly negative nuclear independent chemical shift (NICS) calculations of their cylindrical aromaticities. The FMO energies of the phenacene SWCNBs are similar to that of the nanobelt reported by Itami and co-workers, but those of the SWHNBs are deeper and thus more stable. The sulfur derivative of one SWHNB was found to give hole-charge transfer mobilities as high as 1.12 cm2 V-1 s-1, which is three orders of magnitude larger than the corresponding unsubstituted SWCNB (3 × 10-3 cm2 V-1 s-1). These findings suggest the candidates are air-stable and potentially high-performing organic semiconductors for organic thin film transistor (OTFT) devices, while the structure-property relationships uncovered here will aid the design and synthesis of future three-dimensional organic nanomaterials.
Collapse
Affiliation(s)
- L Jones
- Centre for Industrial Collaboration, School of Chemistry, University of Leeds, LS2 9JT, UK
| | | | | |
Collapse
|
33
|
Affiliation(s)
- Hauke C. Schmidt
- Departement ChemieUniversität Basel St. Johanns-Ring 19 4056 Basel Schweiz
| | | | - Oliver S. Wenger
- Departement ChemieUniversität Basel St. Johanns-Ring 19 4056 Basel Schweiz
| |
Collapse
|
34
|
Buades AB, Sanchez Arderiu V, Olid-Britos D, Viñas C, Sillanpää R, Haukka M, Fontrodona X, Paradinas M, Ocal C, Teixidor F. Electron Accumulative Molecules. J Am Chem Soc 2018; 140:2957-2970. [PMID: 29397708 DOI: 10.1021/jacs.7b12815] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
With the goal to produce molecules with high electron accepting capacity and low reorganization energy upon gaining one or more electrons, a synthesis procedure leading to the formation of a B-N(aromatic) bond in a cluster has been developed. The research was focused on the development of a molecular structure able to accept and release a specific number of electrons without decomposing or change in its structural arrangement. The synthetic procedure consists of a parallel decomposition reaction to generate a reactive electrophile and a synthesis reaction to generate the B-N(aromatic) bond. This procedure has paved the way to produce the metallacarboranylviologen [M(C2B9H11)(C2B9H10)-NC5H4-C5H4N-M'(C2B9H11)(C2B9H10)] (M = M' = Co, Fe and M = Co and M' = Fe) and semi(metallacarboranyl)viologen [3,3'-M(8-(NC5H4-C5H4N-1,2-C2B9H10)(1',2'-C2B9H11)] (M = Co, Fe) electron cumulative molecules. These molecules are able to accept up to five electrons and to donate one in single electron steps at accessible potentials and in a reversible way. By targeted synthesis and corresponding electrochemical tests each electron transfer (ET) step has been assigned to specific fragments of the molecules. The molecules have been carefully characterized, and the electronic communication between both metal centers (when this situation applies) has been definitely observed through the coplanarity of both pyridine fragments. The structural characteristics of these molecules imply a low reorganization energy that is a necessary requirement for low energy ET processes. This makes them electronically comparable to fullerenes, but on their side, they have a wide range of possible solvents. The ET from one molecule to another has been clearly demonstrated as well as their self-organizing capacity. We consider that these molecules, thanks to their easy synthesis, ET, self-organizing capacity, wide range of solubility, and easy processability, can find important application in any area where ET is paramount.
Collapse
Affiliation(s)
- Ana B Buades
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC) , Campus UAB, Bellaterra, 08193 Barcelona, Spain
| | - Víctor Sanchez Arderiu
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC) , Campus UAB, Bellaterra, 08193 Barcelona, Spain
| | - David Olid-Britos
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC) , Campus UAB, Bellaterra, 08193 Barcelona, Spain
| | - Clara Viñas
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC) , Campus UAB, Bellaterra, 08193 Barcelona, Spain
| | - Reijo Sillanpää
- Dept. of Chemistry, University of Jyväskylä , FIN-40014 Jyvaskyla, Finland
| | - Matti Haukka
- Dept. of Chemistry, University of Jyväskylä , FIN-40014 Jyvaskyla, Finland
| | - Xavier Fontrodona
- Dept. de Química and Serveis Tècnics de Recerca, Universitat de Girona , Campus de Montilivi, E-17071 Girona, Spain
| | - Markos Paradinas
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC) , Campus UAB, Bellaterra, 08193 Barcelona, Spain
| | - Carmen Ocal
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC) , Campus UAB, Bellaterra, 08193 Barcelona, Spain
| | - Francesc Teixidor
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC) , Campus UAB, Bellaterra, 08193 Barcelona, Spain
| |
Collapse
|
35
|
Larsen CB, Wenger OS. Circular Photoinduced Electron Transfer in a Donor‐Acceptor‐Acceptor Triad. Angew Chem Int Ed Engl 2018; 57:841-845. [DOI: 10.1002/anie.201708207] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 11/29/2017] [Indexed: 01/14/2023]
Affiliation(s)
- Christopher B. Larsen
- Department of ChemistryUniversity of Basel St Johanns-Ring 19 4056 Basel Switzerland
| | - Oliver S. Wenger
- Department of ChemistryUniversity of Basel St Johanns-Ring 19 4056 Basel Switzerland
| |
Collapse
|
36
|
Cupellini L, Giannini S, Mennucci B. Electron and excitation energy transfers in covalently linked donor–acceptor dyads: mechanisms and dynamics revealed using quantum chemistry. Phys Chem Chem Phys 2018; 20:395-403. [DOI: 10.1039/c7cp07002k] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A quantum chemical strategy is developed to study photoinduced electron and energy transfer processes in covalently linked dyads. The strategy is applied to two zinc and free-based porphyrin–naphthalenediimide dyads in solution.
Collapse
Affiliation(s)
- Lorenzo Cupellini
- Dipartimento di Chimica e Chimica Industriale
- University of Pisa
- 56124 Pisa
- Italy
| | - Samuele Giannini
- Dipartimento di Chimica e Chimica Industriale
- University of Pisa
- 56124 Pisa
- Italy
| | - Benedetta Mennucci
- Dipartimento di Chimica e Chimica Industriale
- University of Pisa
- 56124 Pisa
- Italy
| |
Collapse
|
37
|
Larsen CB, Wenger OS. Kreisförmiger lichtinduzierter Elektronentransfer in einer Donor‐ Akzeptor‐Akzeptor‐Triade. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201708207] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
| | - Oliver S. Wenger
- Departement ChemieUniversität Basel St Johanns-Ring 19 4056 Basel Schweiz
| |
Collapse
|
38
|
Yao HH, Chung MR, Huang C, Lin SMH, Chen CH, Luh TY, Chen IC. Charge and Energy Transfer Dynamics in Dimethylsilylene-Spaced Aminostyrene Stilbene Monomer Using Time-Resolved Techniques. J Phys Chem A 2017; 121:7079-7088. [DOI: 10.1021/acs.jpca.7b07282] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Hsuan-Hsiao Yao
- Department
of Chemistry, National Tsing Hua University, Hsinchu, Taiwan 30013, Republic of China
| | - Meng-Ru Chung
- Department
of Chemistry, National Tsing Hua University, Hsinchu, Taiwan 30013, Republic of China
| | - Chiling Huang
- Department
of Chemistry, National Tsing Hua University, Hsinchu, Taiwan 30013, Republic of China
| | - Sandra Meng-Hsuan Lin
- Department
of Chemistry, National Tsing Hua University, Hsinchu, Taiwan 30013, Republic of China
| | - Chih-Hsien Chen
- Department
of Chemical Engineering, Feng Chia University, No. 100, Wenhwa Road, Seatwen, Taichung, Taiwan 40724, Republic of China
| | - Tien-Yau Luh
- Department
of Chemistry, National Taiwan University, Taipei, Taiwan 10617, Republic of China
| | - I-Chia Chen
- Department
of Chemistry, National Tsing Hua University, Hsinchu, Taiwan 30013, Republic of China
| |
Collapse
|
39
|
Luo Y, Yuan C, Xu J, Li Y, Liu H, Semin S, Rasing T, Yang W, Li Y. Controlling the Growth of Molecular Crystal Aggregates with Distinct Linear and Nonlinear Optical Properties. ACS APPLIED MATERIALS & INTERFACES 2017; 9:30862-30871. [PMID: 28836426 DOI: 10.1021/acsami.7b10109] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Two novel donor-acceptor molecules, 2,7-diphenylbenzo[1,2-b:4,3-b']difuran-4,5-dicarbonitrile and 2,7-bis(4-methoxyphenyl)benzo[1,2-b:4,3-b']difuran-4,5-dicarbonitrile containing cyano group as the electron acceptor, were synthesized. Their single-crystal structures, molecular packing, and self-assembly behaviors were also investigated. By simple solvent evaporation techniques, these compounds self-assemble into various low-dimensional microstructures that demonstrate distinctive nonlinear optical properties depending on the orientations of their transition dipoles. This study highlights the importance of the transition dipole moment in the construction of low-dimensional molecular materials with highly efficient nonlinear optical properties.
Collapse
Affiliation(s)
- Yusen Luo
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Organic Solids, Institute of Chemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Chinese Academy of Sciences , Beijing 100190, P. R. China
- State Key Laboratory for Supramolecular Structures and Materials, College of Chemistry, Jilin University , Changchun 130012, P. R. China
| | - Chunqing Yuan
- School of Chemical Engineering and Technology, Tianjin University , Yaguan Road 135, Tianjin 300350, P. R. China
| | - Jialiang Xu
- School of Chemical Engineering and Technology, Tianjin University , Yaguan Road 135, Tianjin 300350, P. R. China
| | - Yongjun Li
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Organic Solids, Institute of Chemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Chinese Academy of Sciences , Beijing 100190, P. R. China
| | - Huibiao Liu
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Organic Solids, Institute of Chemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Chinese Academy of Sciences , Beijing 100190, P. R. China
| | - Sergey Semin
- Institute for Molecules and Materials (IMM), Radboud University , Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Theo Rasing
- Institute for Molecules and Materials (IMM), Radboud University , Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Wensheng Yang
- State Key Laboratory for Supramolecular Structures and Materials, College of Chemistry, Jilin University , Changchun 130012, P. R. China
| | - Yuliang Li
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Organic Solids, Institute of Chemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Chinese Academy of Sciences , Beijing 100190, P. R. China
| |
Collapse
|
40
|
A theoretical study on the isomers of the B5TB heteroacene for improved semiconductor properties in organic electronics. COMPUT THEOR CHEM 2017. [DOI: 10.1016/j.comptc.2017.05.039] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
41
|
Alcón I, Reta D, Moreira IDPR, Bromley ST. Design of multi-functional 2D open-shell organic networks with mechanically controllable properties. Chem Sci 2017; 8:1027-1039. [PMID: 28451241 PMCID: PMC5380917 DOI: 10.1039/c6sc01412g] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 08/30/2016] [Indexed: 01/12/2023] Open
Abstract
Triarylmethyls (TAMs) are prominent highly attractive open shell organic molecular building blocks for materials science, having been used in breakthrough syntheses of organic magnetic polymers and metal organic frameworks. With their radical π-conjugated nature and a proven capacity to possess high stability via suitable chemical design, TAMs display a variety of desirable characteristics which can be exploited for a wide range of applications. Due to their particular molecular and electronic structure, the spin localization in TAMs almost entirely depends on the dihedral angles of their three aryl rings with respect to the central methyl carbon atom plane, which opens up the possibility of controlling their fundamental properties by twisting the three aryl rings. Aryl ring twist angles can be tuned to a single value by specific chemical functionalisation but controlling them by external means in organic materials or devices represents a challenging task which has not yet been experimentally achieved. Herein, through rational chemical design we propose two 2D covalent organic frameworks (2D-COFs) based on specific TAM building blocks. By employing ab initio computational modeling we demonstrate that it is possible to externally manipulate the aryl ring twist angles in these 2D-linked TAM frameworks by external mechanical means. Furthermore, we show this structural manipulation allows for finely tuning the most important characteristics of these materials such as spin localization, optical electronic transitions and magnetic interactions. Due to the enormous technological potential offered by this new class of material and the fact that our work is guided by real advances in organic materials synthesis, we believe that our predictions will inspire the experimental realization of radical-2D-COFs with externally controllable characteristics.
Collapse
Affiliation(s)
- Isaac Alcón
- Institut de Química Teòrica i Computacional de la Universitat de Barcelona (IQTC-UB) , Departament de Ciència de Materiales i Química Física de la Universitat de Barcelona , C/Martí I Franqués 1 , 08028 Barcelona , Spain .
| | - Daniel Reta
- Institut de Química Teòrica i Computacional de la Universitat de Barcelona (IQTC-UB) , Departament de Ciència de Materiales i Química Física de la Universitat de Barcelona , C/Martí I Franqués 1 , 08028 Barcelona , Spain .
| | - Iberio de P R Moreira
- Institut de Química Teòrica i Computacional de la Universitat de Barcelona (IQTC-UB) , Departament de Ciència de Materiales i Química Física de la Universitat de Barcelona , C/Martí I Franqués 1 , 08028 Barcelona , Spain .
| | - Stefan T Bromley
- Institut de Química Teòrica i Computacional de la Universitat de Barcelona (IQTC-UB) , Departament de Ciència de Materiales i Química Física de la Universitat de Barcelona , C/Martí I Franqués 1 , 08028 Barcelona , Spain .
- Institució Catalana de Recerca i Estudis Avançats (ICREA) , 08010 Barcelona , Spain
| |
Collapse
|
42
|
Bertocchi MJ, Bajpai A, Moorthy JN, Weiss RG. New Insights into an Old Problem. Fluorescence Quenching of Sterically-Graded Pyrenes by Tertiary Aliphatic Amines. J Phys Chem A 2017; 121:458-470. [DOI: 10.1021/acs.jpca.6b11382] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | - Alankriti Bajpai
- Department
of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208 016, India
| | - Jarugu N. Moorthy
- Department
of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208 016, India
| | | |
Collapse
|
43
|
Abstract
![]()
The field of organic
photovoltaics has developed rapidly over the
last 2 decades, and small solar cells with power conversion efficiencies
of 13% have been demonstrated. Light absorbed in the organic layers
forms tightly bound excitons that are split into free electrons and
holes using heterojunctions of electron donor and acceptor materials,
which are then extracted at electrodes to give useful electrical power.
This review gives a concise description of the fundamental processes
in photovoltaic devices, with the main emphasis on the characterization
of energy transfer and its role in dictating device architecture,
including multilayer planar heterojunctions, and on the factors that
impact free carrier generation from dissociated excitons. We briefly
discuss harvesting of triplet excitons, which now attracts substantial
interest when used in conjunction with singlet fission. Finally, we
introduce the techniques used by researchers for characterization
and engineering of bulk heterojunctions to realize large photocurrents,
and examine the formed morphology in three prototypical blends.
Collapse
Affiliation(s)
- Gordon J Hedley
- Organic Semiconductor Centre, SUPA, School of Physics and Astronomy, University of St Andrews , North Haugh, St Andrews, Fife KY16 9SS, U.K
| | - Arvydas Ruseckas
- Organic Semiconductor Centre, SUPA, School of Physics and Astronomy, University of St Andrews , North Haugh, St Andrews, Fife KY16 9SS, U.K
| | - Ifor D W Samuel
- Organic Semiconductor Centre, SUPA, School of Physics and Astronomy, University of St Andrews , North Haugh, St Andrews, Fife KY16 9SS, U.K
| |
Collapse
|
44
|
Talipov MR, Navale TS, Hossain MM, Shukla R, Ivanov MV, Rathore R. Dihedral‐Angle‐Controlled Crossover from Static Hole Delocalization to Dynamic Hopping in Biaryl Cation Radicals. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201609695] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Marat R. Talipov
- Department of Chemistry Marquette University Milwaukee WI 53201-1881 USA
| | - Tushar S. Navale
- Department of Chemistry Marquette University Milwaukee WI 53201-1881 USA
| | | | - Ruchi Shukla
- Department of Chemistry Marquette University Milwaukee WI 53201-1881 USA
| | - Maxim V. Ivanov
- Department of Chemistry Marquette University Milwaukee WI 53201-1881 USA
| | - Rajendra Rathore
- Department of Chemistry Marquette University Milwaukee WI 53201-1881 USA
| |
Collapse
|
45
|
Talipov MR, Navale TS, Hossain MM, Shukla R, Ivanov MV, Rathore R. Dihedral-Angle-Controlled Crossover from Static Hole Delocalization to Dynamic Hopping in Biaryl Cation Radicals. Angew Chem Int Ed Engl 2016; 56:266-269. [DOI: 10.1002/anie.201609695] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Indexed: 11/10/2022]
Affiliation(s)
- Marat R. Talipov
- Department of Chemistry; Marquette University; Milwaukee WI 53201-1881 USA
| | - Tushar S. Navale
- Department of Chemistry; Marquette University; Milwaukee WI 53201-1881 USA
| | | | - Ruchi Shukla
- Department of Chemistry; Marquette University; Milwaukee WI 53201-1881 USA
| | - Maxim V. Ivanov
- Department of Chemistry; Marquette University; Milwaukee WI 53201-1881 USA
| | - Rajendra Rathore
- Department of Chemistry; Marquette University; Milwaukee WI 53201-1881 USA
| |
Collapse
|
46
|
Li X, Markandeya N, Jonusauskas G, McClenaghan ND, Maurizot V, Denisov SA, Huc I. Photoinduced Electron Transfer and Hole Migration in Nanosized Helical Aromatic Oligoamide Foldamers. J Am Chem Soc 2016; 138:13568-13578. [DOI: 10.1021/jacs.6b05668] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Xuesong Li
- Univ. de Bordeaux, CBMN (UMR 5248), Institut Européen
de Chimie et Biologie, 2 rue Robert Escarpit, 33600 Pessac, France
- CNRS, CBMN (UMR 5248), Institut Européen
de Chimie et Biologie, 2 rue Robert Escarpit, 33600 Pessac, France
| | - Nagula Markandeya
- Univ. de Bordeaux, CBMN (UMR 5248), Institut Européen
de Chimie et Biologie, 2 rue Robert Escarpit, 33600 Pessac, France
- CNRS, CBMN (UMR 5248), Institut Européen
de Chimie et Biologie, 2 rue Robert Escarpit, 33600 Pessac, France
| | - Gediminas Jonusauskas
- Univ. de Bordeaux, Laboratoire Ondes et Matières
d’Aquitaine (UMR5798), 351 cours de la Libération, 33405 Talence cedex, France
| | - Nathan D. McClenaghan
- Univ. de Bordeaux, Institut des Sciences Moléculaires
(UMR5255), 351 cours de
la Libération, 33405 Talence cedex, France
| | - Victor Maurizot
- CNRS, CBMN (UMR 5248), Institut Européen
de Chimie et Biologie, 2 rue Robert Escarpit, 33600 Pessac, France
| | - Sergey A. Denisov
- Univ. de Bordeaux, Institut des Sciences Moléculaires
(UMR5255), 351 cours de
la Libération, 33405 Talence cedex, France
| | - Ivan Huc
- CNRS, CBMN (UMR 5248), Institut Européen
de Chimie et Biologie, 2 rue Robert Escarpit, 33600 Pessac, France
| |
Collapse
|
47
|
Thakare S, Stachelek P, Mula S, More AB, Chattopadhyay S, Ray AK, Sekar N, Ziessel R, Harriman A. Solvent-Driven Conformational Exchange for Amide-Linked Bichromophoric BODIPY Derivatives. Chemistry 2016; 22:14356-66. [DOI: 10.1002/chem.201602354] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Indexed: 01/09/2023]
Affiliation(s)
- Shrikant Thakare
- Department of Dyestuff Technology; Institute of Chemical Technology; Mumbai 400019 India
| | - Patrycja Stachelek
- Molecular Photonics Laboratory; School of Chemistry; Newcastle University; Bedson Building Newcastle upon Tyne NE1 7RU UK
| | - Soumyaditya Mula
- Bio-Organic Division; Bhabha Atomic Research Centre; Mumbai 400085 India
| | - Ankush B. More
- Department of Dyestuff Technology; Institute of Chemical Technology; Mumbai 400019 India
| | | | - Alok K. Ray
- Laser and Plasma Technology Division; Bhabha Atomic Research Centre; Mumbai 400085 India
| | - Nagaiyan Sekar
- Department of Dyestuff Technology; Institute of Chemical Technology; Mumbai 400019 India
| | - Raymond Ziessel
- Laboratoire de Chimie Organique et Spectroscopies Avancées (LCOSA); Ecole Européenne de Chimie; Polymères et Matériaux; Université de Strasbourg; 25 rue Becquerel 67087 Strasbourg Cedex 02 France
| | - Anthony Harriman
- Molecular Photonics Laboratory; School of Chemistry; Newcastle University; Bedson Building Newcastle upon Tyne NE1 7RU UK
| |
Collapse
|
48
|
Hildebrandt N, Spillmann CM, Algar WR, Pons T, Stewart MH, Oh E, Susumu K, Díaz SA, Delehanty JB, Medintz IL. Energy Transfer with Semiconductor Quantum Dot Bioconjugates: A Versatile Platform for Biosensing, Energy Harvesting, and Other Developing Applications. Chem Rev 2016; 117:536-711. [DOI: 10.1021/acs.chemrev.6b00030] [Citation(s) in RCA: 457] [Impact Index Per Article: 50.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Niko Hildebrandt
- NanoBioPhotonics
Institut d’Electronique Fondamentale (I2BC), Université Paris-Saclay, Université Paris-Sud, CNRS, 91400 Orsay, France
| | | | - W. Russ Algar
- Department
of Chemistry, University of British Columbia, Vancouver, BC V6T 1Z1, Canada
| | - Thomas Pons
- LPEM;
ESPCI Paris, PSL Research University; CNRS; Sorbonne Universités, UPMC, F-75005 Paris, France
| | | | - Eunkeu Oh
- Sotera Defense Solutions, Inc., Columbia, Maryland 21046, United States
| | - Kimihiro Susumu
- Sotera Defense Solutions, Inc., Columbia, Maryland 21046, United States
| | - Sebastian A. Díaz
- American Society for Engineering Education, Washington, DC 20036, United States
| | | | | |
Collapse
|
49
|
Abstract
Understanding photoinduced charge transfer from nanomaterials is essential to the many applications of these materials. This review summarizes recent progress in understanding charge transfer from quantum dots (QDs), an ideal model system for investigating fundamental charge transfer properties of low-dimensional quantum-confined nanomaterials. We first discuss charge transfer from QDs to weakly coupled acceptors within the framework of Marcus nonadiabatic electron transfer (ET) theory, focusing on the dependence of ET rates on reorganization energy, electronic coupling, and driving force. Because of the strong electron-hole interaction, we show that ET from QDs should be described by the Auger-assisted ET model, which is significantly different from ET between molecules or from bulk semiconductor electrodes. For strongly quantum-confined QDs on semiconductor surfaces, the coupling can fall within the strong coupling limit, in which case the donor-acceptor interaction and ET properties can be described by the Newns-Anderson model of chemisorption. We also briefly discuss recent progress in controlling charge transfer properties in quantum-confined nanoheterostructures through wavefunction engineering and multiple exciton dissociation. Finally, we identify a few key areas for further research.
Collapse
Affiliation(s)
- Haiming Zhu
- Department of Chemistry, Emory University, Atlanta, Georgia 30322;
| | - Ye Yang
- Department of Chemistry, Emory University, Atlanta, Georgia 30322;
| | - Kaifeng Wu
- Department of Chemistry, Emory University, Atlanta, Georgia 30322;
| | - Tianquan Lian
- Department of Chemistry, Emory University, Atlanta, Georgia 30322;
| |
Collapse
|
50
|
Kang MT, Meng M, Tan YN, Cheng T, Liu CY. Tuning the Electronic Coupling and Electron Transfer in Mo2 Donor-Acceptor Systems by Variation of the Bridge Conformation. Chemistry 2016; 22:3115-26. [PMID: 26807909 DOI: 10.1002/chem.201504033] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Indexed: 11/12/2022]
Abstract
Assembling two quadruply bonded dimolybdenum units [Mo2 (DAniF)3 ](+) (DAniF=N,N'-di(p-anisyl)formamidinate) with 1,4-naphthalenedicarboxylate and its thiolated derivatives produced three complexes [{Mo2 (DAniF)3 }2 (μ-1,4-O2 CC10 H6 CO2 )], [{Mo2 (DAniF)3 }2 (μ-1,4-OSCC10 H6 COS)], and [{Mo2 (DAniF)3 }2 (μ-1,4-S2 CC10 H6 CS2 )]. In the X-ray structures, the naphthalene bridge deviates from the plane defined by the two Mo-Mo bond vectors with the torsion angle increasing as the chelating atoms of the bridging ligand vary from O to S. The mixed-valent species exhibit intervalence transition absorption bands with high energy and very low intensity. In comparison with the data for the phenylene analogues, the optically determined electronic coupling matrix elements (Hab =258-345 cm(-1) ) are lowered by a factor of two or more, and the electron-transfer rate constants (ket ≈10(11) s(-1) ) are reduced by about one order of magnitude. These results show that, when the electron-transporting ability of the bridge and electron-donating (electron-accepting) ability of the donor (acceptor) are both variable, the former plays a dominant role in controlling the intramolecular electron transfer. DFT calculations revealed that increasing the torsion angle enlarges the HOMO-LUMO energy gap by elevating the (bridging) ligand-based LUMO energy. Therefore, our experimental results and theoretical analyses verify the superexchange mechanism for electronic coupling and electron transfer.
Collapse
Affiliation(s)
- Mei Ting Kang
- Department of Chemistry, Jinan University, 601 Huang-Pu Avenue West, Guangzhou, P.R. China
| | - Miao Meng
- Department of Chemistry, Jinan University, 601 Huang-Pu Avenue West, Guangzhou, P.R. China
| | - Ying Ning Tan
- Department of Chemistry, Jinan University, 601 Huang-Pu Avenue West, Guangzhou, P.R. China
| | - Tao Cheng
- Department of Chemistry, Jinan University, 601 Huang-Pu Avenue West, Guangzhou, P.R. China
| | - Chun Y Liu
- Department of Chemistry, Jinan University, 601 Huang-Pu Avenue West, Guangzhou, P.R. China.
| |
Collapse
|