1
|
Tobolska A, Wezynfeld NE, Wawrzyniak UE, Bal W, Wróblewski W. Tuning Receptor Properties of Metal-Amyloid Beta Complexes. Studies on the Interaction between Ni(II)-Aβ 5-9 and Phosphates/Nucleotides. Inorg Chem 2021; 60:19448-19456. [PMID: 34878265 PMCID: PMC8693174 DOI: 10.1021/acs.inorgchem.1c03285] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Indexed: 01/03/2023]
Abstract
Amyloid-beta (Aβ) peptides, potentially relevant in the pathology of Alzheimer's disease, possess distinctive coordination properties, enabling an effective binding of transition-metal ions, with a preference for Cu(II). In this work, we found that a N-truncated Aβ analogue bearing a His-2 motif, Aβ5-9, forms a stable Ni(II) high-spin octahedral complex at a physiological pH of 7.4 with labile coordination sites and facilitates ternary interactions with phosphates and nucleotides. As the pH increased above 9, a spin transition from a high-spin to a low-spin square-planar Ni(II) complex was observed. Employing electrochemical techniques, we showed that interactions between the binary Ni(II)-Aβ5-9 complex and phosphate species result in significant changes in the Ni(II) oxidation signal. Thus, the Ni(II)-Aβ5-9 complex could potentially serve as a receptor in electrochemical biosensors for phosphate species. The obtained results could also be important for nickel toxicology.
Collapse
Affiliation(s)
- Aleksandra Tobolska
- Chair
of Medical Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, Warsaw 00-664, Poland
- Faculty
of Chemistry, University of Warsaw, Pasteura 1, Warsaw 02-093, Poland
| | - Nina E. Wezynfeld
- Chair
of Medical Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, Warsaw 00-664, Poland
| | - Urszula E. Wawrzyniak
- Chair
of Medical Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, Warsaw 00-664, Poland
| | - Wojciech Bal
- Institute
of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, Warsaw 02-106, Poland
| | - Wojciech Wróblewski
- Chair
of Medical Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, Warsaw 00-664, Poland
| |
Collapse
|
2
|
Sousa FM, Lima LMP, Arnarez C, Pereira MM, Melo MN. Coarse-Grained Parameterization of Nucleotide Cofactors and Metabolites: Protonation Constants, Partition Coefficients, and Model Topologies. J Chem Inf Model 2021; 61:335-346. [PMID: 33400529 DOI: 10.1021/acs.jcim.0c01077] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Nucleotides are structural units relevant not only in nucleic acids but also as substrates or cofactors in key biochemical reactions. The size- and timescales of such nucleotide-protein interactions fall well within the scope of coarse-grained molecular dynamics, which holds promise of important mechanistic insight. However, the lack of specific parameters has prevented accurate coarse-grained simulations of protein interactions with most nucleotide compounds. In this work, we comprehensively develop coarse-grained parameters for key metabolites/cofactors (FAD, FMN, riboflavin, NAD, NADP, ATP, ADP, AMP, and thiamine pyrophosphate) in different oxidation and protonation states as well as for smaller molecules derived from them (among others, nicotinamide, adenosine, adenine, ribose, thiamine, and lumiflavin), summing up a total of 79 different molecules. In line with the Martini parameterization methodology, parameters were tuned to reproduce octanol-water partition coefficients. Given the lack of existing data, we set out to experimentally determine these partition coefficients, developing two methodological approaches, based on 31P-NMR and fluorescence spectroscopy, specifically tailored to the strong hydrophilicity of most of the parameterized compounds. To distinguish the partition of each relevant protonation species, we further potentiometrically characterized the protonation constants of key molecules. This work successfully builds a comprehensive and relevant set of computational models that will boost the biochemical application of coarse-grained simulations. It does so based on the measurement of partition and acid-base physicochemical data that, in turn, covers important gaps in nucleotide characterization.
Collapse
Affiliation(s)
- Filipe M Sousa
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, Oeiras 2780-157, Portugal
| | - Luís M P Lima
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, Oeiras 2780-157, Portugal
| | - Clément Arnarez
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, Oeiras 2780-157, Portugal
| | - Manuela M Pereira
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, Oeiras 2780-157, Portugal.,BIOISI - Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, Campo Grande, Lisboa 1749-016, Portugal
| | - Manuel N Melo
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, Oeiras 2780-157, Portugal
| |
Collapse
|
3
|
Selective adsorption of a new depressant Na2ATP on dolomite: Implications for effective separation of magnesite from dolomite via froth flotation. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.117278] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
4
|
Sugiyama H, Osaki T, Takeuchi S, Toyota T. Hydrodynamic accumulation of small molecules and ions into cell-sized liposomes against a concentration gradient. Commun Chem 2020; 3:32. [PMID: 36703378 PMCID: PMC9814613 DOI: 10.1038/s42004-020-0277-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 02/17/2020] [Indexed: 01/29/2023] Open
Abstract
In investigations of the emergence of protocells at the origin of life, repeatable and continuous supply of molecules and ions into the closed lipid bilayer membrane (liposome) is one of the fundamental challenges. Demonstrating an abiotic process to accumulate substances into preformed liposomes against the concentration gradient can provide a clue. Here we show that, without proteins, cell-sized liposomes under hydrodynamic environment repeatedly permeate small molecules and ions, including an analogue of adenosine triphosphate, even against the concentration gradient. The mechanism underlying this accumulation of the molecules and ions is shown to involve their unique partitioning at the liposomal membrane under forced external flow in a constrained space. This abiotic mechanism to accumulate substances inside of the liposomal compartment without light could provide an energetically up-hill process for protocells as a critical step toward the contemporary cells.
Collapse
Affiliation(s)
- Hironori Sugiyama
- grid.26999.3d0000 0001 2151 536XDepartment of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo 153-8902 Japan
| | - Toshihisa Osaki
- grid.26999.3d0000 0001 2151 536XInstitute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro, Tokyo 153-8505 Japan ,Kanagawa Institute of Industrial Science and Technology, 3-2-1 Sakado, Takatsu, Kawasaki, Kanagawa 213-0012 Japan
| | - Shoji Takeuchi
- grid.26999.3d0000 0001 2151 536XInstitute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro, Tokyo 153-8505 Japan ,grid.26999.3d0000 0001 2151 536XDepartment of Mechano-Informatics, Graduate School of Information Science and Technology, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8656 Japan
| | - Taro Toyota
- grid.26999.3d0000 0001 2151 536XDepartment of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo 153-8902 Japan ,grid.26999.3d0000 0001 2151 536XUniversal Biology Institute, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo 153-8902 Japan
| |
Collapse
|
5
|
Tear LR, Maguire ML, Tropiano M, Yao K, Farrer NJ, Faulkner S, Schneider JE. Enhancing 31P NMR relaxation rates with a kinetically inert gadolinium complex. Dalton Trans 2020; 49:2989-2993. [PMID: 32080690 PMCID: PMC7610995 DOI: 10.1039/c9dt03761f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The kinetically stable heptadentate gadolinium complex Gd.pDO3A (1.Gd) demonstrates significant 31P nuclear magnetic resonance (NMR) relaxation enhancement of biologically relevant phosphate species; adenosine triphosphate (ATP), phosphocreatine (PCr) and inorganic phosphate. Gd.pDO3A (1.Gd) binds these species in fast exchange, enabling the relaxation of the bulk phosphate species in solution. This gives rise to 31P relaxation enhancements up to 250-fold higher than those observed for 31P relaxation enhancements with the commercial MRI contrast agent Gd.DOTA (DOTAREM), 2. Gd.pDO3A-like complexes may have potential applications as 31P magnetic resonance contrast agents, since shortening the T1 relaxation time of phosphate species would reduce the time needed to acquire 31P-MR spectra.
Collapse
Affiliation(s)
- Louise R Tear
- Chemistry Research Laboratory, University of Oxford, Mansfield Road, OX1 3TA, UK. and British Heart Foundation Experimental MR Unit (BMRU), University of Oxford, Roosevelt Drive, Oxford, OX3 7BN, UK
| | - Mahon L Maguire
- British Heart Foundation Experimental MR Unit (BMRU), University of Oxford, Roosevelt Drive, Oxford, OX3 7BN, UK and Centre for Preclinical Imaging, University of Liverpool, Nuffield Wing, Sherrington Building, Crown Street, Liverpool, L69 3BX, UK
| | - Manuel Tropiano
- Chemistry Research Laboratory, University of Oxford, Mansfield Road, OX1 3TA, UK.
| | - Kezi Yao
- Chemistry Research Laboratory, University of Oxford, Mansfield Road, OX1 3TA, UK.
| | - Nicola J Farrer
- Chemistry Research Laboratory, University of Oxford, Mansfield Road, OX1 3TA, UK.
| | - Stephen Faulkner
- Chemistry Research Laboratory, University of Oxford, Mansfield Road, OX1 3TA, UK.
| | - Jurgen E Schneider
- British Heart Foundation Experimental MR Unit (BMRU), University of Oxford, Roosevelt Drive, Oxford, OX3 7BN, UK and Leeds Institute of Cardiovascular and Metabolic Medicine, Biomedical Imaging Science Department, University of Leeds, Clarendon Way, Leeds, LS2 9JT, UK
| |
Collapse
|
6
|
Ratajczak K, Lukasiak A, Grel H, Dworakowska B, Jakiela S, Stobiecka M. Monitoring of dynamic ATP level changes by oligomycin-modulated ATP synthase inhibition in SW480 cancer cells using fluorescent "On-Off" switching DNA aptamer. Anal Bioanal Chem 2019; 411:6899-6911. [PMID: 31407049 PMCID: PMC6834760 DOI: 10.1007/s00216-019-02061-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 07/22/2019] [Accepted: 07/31/2019] [Indexed: 12/18/2022]
Abstract
Adenosine triphosphate (ATP) is the main energy source in cells and an important biomolecule participating in cellular reactions in living organisms. Since the ATP level changes dynamically reflecting the development of a debilitating disease or carcinogenesis, we have focused in this work on monitoring of the oligomycin (OMC)-modulated ATP synthase inhibition using a fluorescent-switching DNA aptamer designed for the detection of ATP (Apt(ATP)), as the model for studies of dynamic ATP level variation. The behavior of the ATP aptamer has been characterized using fluorescence spectroscopy. The Intramolecular fluorescence resonance energy transfer (iFRET) operates in the proposed aptamer from the FAM dye moiety to guanines of the aptamer G-quadruplex when the target ATP is present and binds to the aptamer changing its conformation. The iFRET process enables the detection of ATP down to the limit of detection, LOD = 17 μM, without resorting to any extra chemi-amplification schemes. The selectivity coefficients for relevant interferent triphosphates (UTP, GTP, and CTP) are low for the same concentration as that of ATP. We have demonstrated an efficient transfection of intact cells and OMC-treated SW480 colon cancer cells with Apt(ATP), using microscopic imaging, iFRET measurements, and cell viability testing with MTT method. The applicability of the switching DNA aptamer for the analysis of real samples, obtained by lysis of SW480 cells, was also tested. The proposed Apt(ATP) may be considered as a viable candidate for utilization in measurements of dynamic ATP level modulation in cells in different stages of cancer development and testing of new drugs in pharmacological studies. Graphical abstract ![]()
Collapse
Affiliation(s)
- Katarzyna Ratajczak
- Department of Biophysics, Warsaw University of Life Sciences (SGGW), 159 Nowoursynowska Street, 02776, Warsaw, Poland
| | - Agnieszka Lukasiak
- Department of Biophysics, Warsaw University of Life Sciences (SGGW), 159 Nowoursynowska Street, 02776, Warsaw, Poland
| | - Hubert Grel
- Department of Biophysics, Warsaw University of Life Sciences (SGGW), 159 Nowoursynowska Street, 02776, Warsaw, Poland
| | - Beata Dworakowska
- Department of Biophysics, Warsaw University of Life Sciences (SGGW), 159 Nowoursynowska Street, 02776, Warsaw, Poland
| | - Slawomir Jakiela
- Department of Biophysics, Warsaw University of Life Sciences (SGGW), 159 Nowoursynowska Street, 02776, Warsaw, Poland.
| | - Magdalena Stobiecka
- Department of Biophysics, Warsaw University of Life Sciences (SGGW), 159 Nowoursynowska Street, 02776, Warsaw, Poland.
| |
Collapse
|
7
|
Foster AW, Pernil R, Patterson CJ, Scott AJP, Pålsson LO, Pal R, Cummins I, Chivers PT, Pohl E, Robinson NJ. A tight tunable range for Ni(II) sensing and buffering in cells. Nat Chem Biol 2017; 13:409-414. [PMID: 28166209 PMCID: PMC5365139 DOI: 10.1038/nchembio.2310] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 12/01/2016] [Indexed: 11/08/2022]
Abstract
The metal affinities of metal-sensing transcriptional regulators co-vary with cellular metal concentrations over more than 12 orders of magnitude. To understand the cause of this relationship, we determined the structure of the Ni(II) sensor InrS and then created cyanobacteria (Synechocystis PCC 6803) in which transcription of genes encoding a Ni(II) exporter and a Ni(II) importer were controlled by InrS variants with weaker Ni(II) affinities. Variant strains were sensitive to elevated nickel and contained more nickel, but the increase was small compared with the change in Ni(II) affinity. All of the variant sensors retained the allosteric mechanism that inhibits DNA binding following metal binding, but a response to nickel in vivo was observed only when the sensitivity was set to respond in a relatively narrow (less than two orders of magnitude) range of nickel concentrations. Thus, the Ni(II) affinity of InrS is attuned to cellular metal concentrations rather than the converse.
Collapse
Affiliation(s)
- Andrew W. Foster
- Department of Biosciences, Durham University, DH1 3LE, UK
- Department of Chemistry, Durham University, DH1 3LE, UK
| | - Rafael Pernil
- Department of Biosciences, Durham University, DH1 3LE, UK
- Department of Chemistry, Durham University, DH1 3LE, UK
| | - Carl J. Patterson
- Department of Biosciences, Durham University, DH1 3LE, UK
- Department of Chemistry, Durham University, DH1 3LE, UK
| | | | | | - Robert Pal
- Department of Chemistry, Durham University, DH1 3LE, UK
| | - Ian Cummins
- Department of Biosciences, Durham University, DH1 3LE, UK
| | - Peter T. Chivers
- Department of Biosciences, Durham University, DH1 3LE, UK
- Department of Chemistry, Durham University, DH1 3LE, UK
| | - Ehmke Pohl
- Department of Biosciences, Durham University, DH1 3LE, UK
- Department of Chemistry, Durham University, DH1 3LE, UK
| | - Nigel J. Robinson
- Department of Biosciences, Durham University, DH1 3LE, UK
- Department of Chemistry, Durham University, DH1 3LE, UK
| |
Collapse
|
8
|
Willis-Fox N, Gutacker A, Browne MP, Khan AR, Lyons MEG, Scherf U, Evans RC. Selective recognition of biologically important anions using a diblock polyfluorene–polythiophene conjugated polyelectrolyte. Polym Chem 2017. [DOI: 10.1039/c7py01478c] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Fluorescence detection of nucleotide phosphates with a polyfluorene–polythiophene diblock copolymer is demonstrated, accompanied by determination of the sensor mechanism.
Collapse
Affiliation(s)
- Niamh Willis-Fox
- School of Chemistry and CRANN
- Trinity College Dublin
- The University of Dublin
- Ireland
| | - Andrea Gutacker
- Macromolecular Chemistry Group (buwmakro) and Institute for Polymer Technology
- Bergische Universität Wuppertal
- 42119 Wuppertal
- Germany
| | - Michelle P. Browne
- School of Chemistry and CRANN
- Trinity College Dublin
- The University of Dublin
- Ireland
| | - Amir R. Khan
- School of Biochemistry and Immunology
- University of Dublin
- Trinity College Dublin
- The University of Dublin
- Dublin 2
| | - Michael E. G. Lyons
- School of Chemistry and CRANN
- Trinity College Dublin
- The University of Dublin
- Ireland
| | - Ullrich Scherf
- Macromolecular Chemistry Group (buwmakro) and Institute for Polymer Technology
- Bergische Universität Wuppertal
- 42119 Wuppertal
- Germany
| | - Rachel C. Evans
- School of Chemistry and CRANN
- Trinity College Dublin
- The University of Dublin
- Ireland
- Department of Materials Science and Metallurgy
| |
Collapse
|
9
|
Stokowa-Sołtys K, Kasprowicz A, Wrzesiński J, Ciesiołka J, Gaggelli N, Gaggelli E, Valensin G, Jeżowska-Bojczuk M. Impact of Cu(2+) ions on the structure of colistin and cell-free system nucleic acid degradation. J Inorg Biochem 2015; 151:67-74. [PMID: 26028475 DOI: 10.1016/j.jinorgbio.2015.05.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Revised: 05/19/2015] [Accepted: 05/21/2015] [Indexed: 01/06/2023]
Abstract
Colistin and transition metal ions are commonly used as feed additives for livestock animals. This work presents the results of an analysis of combined potentiometric and spectroscopic (UV-vis, EPR, CD, NMR) data which lead to conclude that colistin is able to effectively chelate copper(II) ions. In cell-free system the oxidative activity of the complex manifests itself in the plasmid DNA destruction with simultaneous generation of reactive OH species, when accompanied by hydrogen peroxide or ascorbic acid. The degradation of RNA occurs most likely via a hydrolytic mechanism not only for complexed compound but also colistin alone. Therefore, huge amounts of the used antibiotic for nontherapeutic purposes might have a potential influence on livestock health.
Collapse
Affiliation(s)
- Kamila Stokowa-Sołtys
- Faculty of Chemistry, University of Wrocław, Joliot-Curie 14, 50-383 Wrocław, Poland.
| | - Aleksandra Kasprowicz
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznań, Poland
| | - Jan Wrzesiński
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznań, Poland
| | - Jerzy Ciesiołka
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznań, Poland
| | - Nicola Gaggelli
- Department of Biotechnology, Chemistry and Pharmacy Via Aldo Moro, 2-53100 Siena, Italy
| | - Elena Gaggelli
- Department of Biotechnology, Chemistry and Pharmacy Via Aldo Moro, 2-53100 Siena, Italy
| | - Gianni Valensin
- Department of Biotechnology, Chemistry and Pharmacy Via Aldo Moro, 2-53100 Siena, Italy
| | | |
Collapse
|
10
|
Gupta A, Krishna KV, Verma S. Microstructure manipulation and guest release from cation responsive peptide microspheres. RSC Adv 2015. [DOI: 10.1039/c5ra15827c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A thiolated C3-symmetric dihistidine conjugate and its self-assembly to yield nanospheres. Doughnut shaped, porous microspheres formed upon co-incubation with ATP that can be triggered to release cargo in response to cationic stimulus.
Collapse
Affiliation(s)
- Astha Gupta
- Department of Chemical Engineering
- Indian Institute of Technology Kanpur
- Kanpur-208016
- India
| | - K. Vijaya Krishna
- Department of Chemistry
- Indian Institute of Technology Kanpur
- Kanpur-208016
- India
| | - Sandeep Verma
- Department of Chemistry
- Indian Institute of Technology Kanpur
- Kanpur-208016
- India
- DST Unit of Excellence on Soft Nanofabrication
| |
Collapse
|
11
|
Angelé-Martínez C, Goodman C, Brumaghim J. Metal-mediated DNA damage and cell death: mechanisms, detection methods, and cellular consequences. Metallomics 2014; 6:1358-81. [DOI: 10.1039/c4mt00057a] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Metal ions cause various types of DNA damage by multiple mechanisms, and this damage is a primary cause of cell death and disease.
Collapse
Affiliation(s)
| | - Craig Goodman
- Department of Chemistry
- Clemson University
- Clemson, USA
| | | |
Collapse
|
12
|
Martín-García F, Mendieta-Moreno JI, Marcos-Alcalde I, Gómez-Puertas P, Mendieta J. Simulation of catalytic water activation in mitochondrial F1-ATPase using a hybrid quantum mechanics/molecular mechanics approach: an alternative role for β-Glu 188. Biochemistry 2013; 52:959-66. [PMID: 23320924 DOI: 10.1021/bi301109x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The use of quantum mechanics/molecular mechanics simulations to study the free energy landscape of the water activation at the catalytic site of mitochondrial F(1)-ATPase affords us insight into the generation of the nucleophile OH(-) prior to ATP hydrolysis. As a result, the ATP molecule was found to be the final proton acceptor. In the simulated pathway, the transfer of a proton to the nucleotide was not direct but occurred via a second water molecule in a manner similar to the Grotthuss mechanism proposed for proton diffusion. Residue β-Glu 188, previously described as the putative catalytic base, was found to be involved in the stabilization of a transient hydronium ion during water activation. Simulations in the absence of the carboxylate moiety of β-Glu 188 support this role.
Collapse
Affiliation(s)
- Fernando Martín-García
- Molecular Modelling Group, Centro de Biología Molecular Severo Ochoa (CSIC-UAM), C/Nicolás Cabrera 1, Cantoblanco, Madrid, Spain
| | | | | | | | | |
Collapse
|
13
|
Abstract
Nickel has long been known to be an important human toxicant, including having the ability to form carcinomas, but until recently nickel was believed to be an issue only to microorganisms living in nickel-rich serpentine soils or areas contaminated by industrial pollution. This assumption was overturned by the discovery of a nickel defense system (RcnR/RcnA) found in microorganisms that live in a wide range of environmental niches, suggesting that nickel homeostasis is a general biological concern. To date, the mechanisms of nickel toxicity in microorganisms and higher eukaryotes are poorly understood. In this review, we summarize nickel homeostasis processes used by microorganisms and highlight in vivo and in vitro effects of exposure to elevated concentrations of nickel. On the basis of this evidence we propose four mechanisms of nickel toxicity: (1) nickel replaces the essential metal of metalloproteins, (2) nickel binds to catalytic residues of non-metalloenzymes; (3) nickel binds outside the catalytic site of an enzyme to inhibit allosterically and (4) nickel indirectly causes oxidative stress.
Collapse
Affiliation(s)
- Lee Macomber
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan 48824-4320, USA
| | - Robert P. Hausinger
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan 48824-4320, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824-1319, USA
| |
Collapse
|
14
|
Zhou JY, Lu GX. Recognition and catalytic hydrolysis of adenosine 5′-triphosphate by cadmium(II) and L-glutamic acid. J COORD CHEM 2011. [DOI: 10.1080/00958972.2011.608162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Jin-Ying Zhou
- a State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences , Lanzhou , Gansu 730000 , China
- b Graduate University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Gong-Xuan Lu
- a State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences , Lanzhou , Gansu 730000 , China
| |
Collapse
|
15
|
Knobloch B, Mucha A, Operschall BP, Sigel H, Jeżowska-Bojczuk M, Kozłowski H, Sigel RKO. Stability and structure of mixed-ligand metal ion complexes that contain Ni2+, Cu2+, or Zn2+, and Histamine, as well as adenosine 5'-triphosphate (ATP4-) or uridine 5'-triphosphate (UTP(4-): an intricate network of equilibria. Chemistry 2011; 17:5393-403. [PMID: 21465580 DOI: 10.1002/chem.201001931] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2010] [Indexed: 01/22/2023]
Abstract
With a view on protein-nucleic acid interactions in the presence of metal ions we studied the "simple" mixed-ligand model systems containing histamine (Ha), the metal ions Ni(2+), Cu(2+), or Zn(2+) (M(2+)), and the nucleotides adenosine 5'-triphosphate (ATP(4-)) or uridine 5'-triphosphate (UTP(4-)), which will both be referred to as nucleoside 5'-triphosphate (NTP(4-)). The stability constants of the ternary M(NTP)(Ha)(2-) complexes were determined in aqueous solution by potentiometric pH titrations. We show for both ternary-complex types, M(ATP)(Ha)(2-) and M(UTP)(Ha)(2-), that intramolecular stacking between the nucleobase and the imidazole residue occurs and that the stacking intensity is approximately the same for a given M(2+) in both types of complexes: The formation degree of the intramolecular stacks is estimated to be 20 to 50%. Consequently, in protein-nucleic acid interactions imidazole-nucleobase stacks may well be of relevance. Furthermore, the well-known formation of macrochelates in binary M(2+) complexes of purine nucleotides, that is, the phosphate-coordinated M(2+) interacts with N7, is confirmed for the M(ATP)(2-) complexes. It is concluded that upon formation of the mixed-ligand complexes the M(2+)-N7 bond is broken and the energy needed for this process corresponds to the stability differences determined for the M(UTP)(Ha)(2-) and M(ATP)(Ha)(2-) complexes. It is, therefore, possible to calculate from these stability differences of the ternary complexes the formation degrees of the binary macrochelates: The closed forms amount to (65±10)%, (75±8)%, and (31±14) % for Ni(ATP)(2-), Cu(ATP)(2-), and Zn(ATP)(2-), respectively, and these percentages agree excellently with previous results obtained by different methods, confirming thus the internal validity of the data and the arguments used in the evaluation processes. Based on the overall results it is suggested that M(ATP)(2-) species, when bound to an enzyme, may exist in a closed macrochelated form only, if no enzyme groups coordinate directly to the metal ion.
Collapse
Affiliation(s)
- Bernd Knobloch
- Institute of Inorganic Chemistry, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | | | | | | | | | | | | |
Collapse
|
16
|
|
17
|
Mendieta J, Rico AI, López-Viñas E, Vicente M, Mingorance J, Gómez-Puertas P. Structural and functional model for ionic (K(+)/Na(+)) and pH dependence of GTPase activity and polymerization of FtsZ, the prokaryotic ortholog of tubulin. J Mol Biol 2009; 390:17-25. [PMID: 19447111 DOI: 10.1016/j.jmb.2009.05.018] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2009] [Revised: 04/28/2009] [Accepted: 05/12/2009] [Indexed: 11/26/2022]
Abstract
Bacterial cell division occurs through the formation of a protein ring (division ring) at the site of division, with FtsZ being its main component in most bacteria. FtsZ is the prokaryotic ortholog of eukaryotic tubulin; it shares GTPase activity properties and the ability to polymerize in vitro. To study the mechanism of action of FtsZ, we used molecular dynamics simulations of the behavior of the FtsZ dimer in the presence of GTP-Mg(2+) and monovalent cations. The presence of a K(+) ion at the GTP binding site allows the positioning of one water molecule that interacts with catalytic residues Asp235 and Asp238, which are also involved in the coordination sphere of K(+). This arrangement might favor dimer stability and GTP hydrolysis. Contrary to this, Na(+) destabilizes the dimer and does not allow the positioning of the catalytic water molecule. Protonation of the GTP gamma-phosphate, simulating low pH, excludes both monovalent cations and the catalytic water molecule from the GTP binding site and stabilizes the dimer. These molecular dynamics predictions were contrasted experimentally by analyzing the GTPase and polymerization activities of purified Methanococcus jannaschii and Escherichia coli FtsZ proteins in vitro.
Collapse
Affiliation(s)
- Jesús Mendieta
- Centro de Biología Molecular "Severo Ochoa", Madrid, Spain
| | | | | | | | | | | |
Collapse
|
18
|
Synthesis, crystal structure and DNA cleavage activity of a novel Ni(II)–Cd(II) coordination polymer. Inorganica Chim Acta 2009. [DOI: 10.1016/j.ica.2008.05.020] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
19
|
Ma Y, Lu G. A Calcium(II)-Based l-Arginine for ATP Binding and Hydrolysis. J Inorg Organomet Polym Mater 2008. [DOI: 10.1007/s10904-008-9225-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
20
|
Ma Y, Lu G. Differential effects of Mg(ii) and N(alpha)-4-tosyl-l-arginine methyl ester hydrochloride on the recognition and catalysis in ATP hydrolysis. Dalton Trans 2007:1081-6. [PMID: 18274689 DOI: 10.1039/b714667a] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The supramolecular interactions of Mg(ii) and N(alpha)-4-tosyl-l-arginine methyl ester hydrochloride (TAME) with ATP have been investigated using (1)H and (31)P NMR spectra. Furthermore, the hydrolysis of ATP catalyzed by Mg(ii) and TAME has been studied at 60 degrees C and pH 7 using (31)P NMR spectra. In the Mg(ii)-ATP-TAME ternary system, the binding interaction of Mg(2+) with ATP involves not only N1 and N7 in the adenine ring but also beta- and gamma-phosphate of ATP. The binding forces are mainly electrostatic interaction and cation (Mg(2+))-pi interaction. The guanidinium group and the aromatic ring of TAME interacts with ATP by beta and gamma phosphate and the adenine ring of ATP. The binding forces are mainly electrostatic interactions and pi-pi stacking. A significant difference between the binary and the ternary system indicates that TAME is essential to the stablization of the intermediate. Kinetic studies show that the hydrolysis rate constant of ATP is 2.16 x 10(-2) h(-1) at pH 7 in the Mg(ii)-TAME-ATP ternary system. The Mg(ii) ion and TAME can accelerate the ATP hydrolysis process. A possible mechanism has been proposed that the hydrolysis occurs through an addition-elimination, in which the phosphoramidate intermediate was observed at 3.21 ppm in the (31)P NMR of the ternary system. These results provide further information concerning the effect of the key amino acid residue and metal ions as cofactors of ATPase on ATP synthesis/hydrolysis at the molecular level.
Collapse
Affiliation(s)
- Yanqing Ma
- Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
| | | |
Collapse
|
21
|
|