1
|
Ghosh S, Das D, Mandal RD, Das AR. Pragmatic Access to Hybrid Quinoxaline Scaffold Mediated by Elemental Sulfur Enabling Actualization to π-Extended and Aza-Annulated Heterocyclic Units. J Org Chem 2024; 89:15358-15363. [PMID: 39333838 DOI: 10.1021/acs.joc.4c01972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2024]
Abstract
A metal-free approach for synthesizing hybrid quinoxaline derivatives from sulfoxonium ylide and a 1,5-bis-nucleophilic N-heterocycle mediated by elemental sulfur is presented to illuminate the [5+1] cascade cyclization sequence. Large-scale synthesis and postsynthetic functionalizations for the annulative π-extension and intramolecular aza-annulation reactions reveal the potential utility and actualize the fabricated approach.
Collapse
Affiliation(s)
- Swarnali Ghosh
- Department of Chemistry, University of Calcutta, 92, A. P. C. Road, Kolkata 700009, India
| | - Dwaipayan Das
- Department of Chemistry, University of Calcutta, 92, A. P. C. Road, Kolkata 700009, India
| | - Rahul Dev Mandal
- Department of Chemistry, University of Calcutta, 92, A. P. C. Road, Kolkata 700009, India
| | - Asish R Das
- Department of Chemistry, University of Calcutta, 92, A. P. C. Road, Kolkata 700009, India
| |
Collapse
|
2
|
Jones BT, Maulide N. Lewis Acid-Driven Inverse Hydride Shuttle Catalysis. Angew Chem Int Ed Engl 2024; 63:e202320001. [PMID: 38551113 DOI: 10.1002/anie.202320001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Indexed: 05/30/2024]
Abstract
Inverse hydride shuttle catalysis provides a multicomponent platform for the highly efficient synthesis of alkaloid frameworks with exquisite diastereoselectivity. However, a number of limitations hinder this method, primarily the strict requirement for highly electron-deficient acceptors. Herein, we present a general Lewis acid-driven approach to address this constraint, and have developed two broad strategies enabling the modular synthesis of complex azabicycles that were entirely unattainable using the previous method. The enhanced synthetic flexibility facilitates a streamlined asymmetric cyclization, leading to a concise total synthesis of the alkaloid (-)-tashiromine.
Collapse
Affiliation(s)
- Benjamin T Jones
- Faculty of Chemistry, Institute of Organic Chemistry, University of Vienna, Währinger Straße 38, 1090, Vienna, Austria
| | - Nuno Maulide
- Faculty of Chemistry, Institute of Organic Chemistry, University of Vienna, Währinger Straße 38, 1090, Vienna, Austria
| |
Collapse
|
3
|
Sheibani S, Jafarzadeh S, Qazanfarzadeh Z, Osadee Wijekoon MMJ, Mohd Rozalli NH, Mohammadi Nafchi A. Sustainable strategies for using natural extracts in smart food packaging. Int J Biol Macromol 2024; 267:131537. [PMID: 38608975 DOI: 10.1016/j.ijbiomac.2024.131537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/24/2024] [Accepted: 04/09/2024] [Indexed: 04/14/2024]
Abstract
The growing demand for sustainable and eco-friendly food packaging has prompted research on innovative solutions to environmental and consumer health issues. To enhance the properties of smart packaging, the incorporation of bioactive compounds derived from various natural sources has attracted considerable interest because of their functional properties, including antioxidant and antimicrobial effects. However, extracting these compounds from natural sources poses challenges because of their complex chemical structures and low concentrations. Traditional extraction methods are often environmentally harmful, expensive and time-consuming. Thus, green extraction techniques have emerged as promising alternatives, offering sustainable and eco-friendly approaches that minimise the use of hazardous solvents and reduce environmental impact. This review explores cutting-edge research on the green extraction of bioactive compounds and their incorporation into smart packaging systems in the last 10 years. Then, an overview of bioactive compounds, green extraction techniques, integrated techniques, green extraction solvents and their application in smart packaging was provided, and the impact of bioactive compounds incorporated in smart packaging on the shelf lives of food products was explored. Furthermore, it highlights the challenges and opportunities within this field and presents recommendations for future research, aiming to contribute to the advancement of sustainable and efficient smart packaging solutions.
Collapse
Affiliation(s)
- Samira Sheibani
- Food Technology Division, School of Industrial Technology, Universiti Sains Malaysia, 11800 Penang, Malaysia
| | - Shima Jafarzadeh
- Centre for Sustainable Bioproducts, Deakin University, Waurn Ponds, VIC 3216, Australia.
| | - Zeinab Qazanfarzadeh
- International Centre for Research on Innovative Biobased Materials (ICRI-BioM)-International Research Agenda, Lodz University of Technology, Żeromskiego 116, 90-924 Lodz, Poland
| | - M M Jeevani Osadee Wijekoon
- Food Technology Division, School of Industrial Technology, Universiti Sains Malaysia, 11800 Penang, Malaysia
| | | | - Abdorreza Mohammadi Nafchi
- Food Technology Division, School of Industrial Technology, Universiti Sains Malaysia, 11800 Penang, Malaysia; Department of Food Science and Technology, Damghan Branch, Islamic Azad University, Damghan, Iran; Green Biopolymer, Coatings & Packaging Cluster, School of Industrial Technology, Universiti Sains Malaysia, 11800 Penang, Malaysia.
| |
Collapse
|
4
|
Luo SH, Hua J, Liu Y, Li SH. The Chemical Ecology of Plant Natural Products. PROGRESS IN THE CHEMISTRY OF ORGANIC NATURAL PRODUCTS 2024; 124:57-183. [PMID: 39101984 DOI: 10.1007/978-3-031-59567-7_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/06/2024]
Abstract
Plants are excellent chemists with an impressive capability of biosynthesizing a large variety of natural products (also known as secondary or specialized metabolites) to resist various biotic and abiotic stresses. In this chapter, 989 plant natural products and their ecological functions in plant-herbivore, plant-microorganism, and plant-plant interactions are reviewed. These compounds include terpenoids, phenols, alkaloids, and other structural types. Terpenoids usually provide direct or indirect defense functions for plants, while phenolic compounds play important roles in regulating the interactions between plants and other organisms. Alkaloids are frequently toxic to herbivores and microorganisms, and can therefore also provide defense functions. The information presented should provide the basis for in-depth research of these plant natural products and their natural functions, and also for their further development and utilization.
Collapse
Affiliation(s)
- Shi-Hong Luo
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Lanhei Road 132, Panlong District, Kunming, 650201, Yunnan Province, P. R. China
| | - Juan Hua
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Dongling Road 120, Shenhe District, Shenyang, 110866, Liaoning Province, P. R. China
| | - Yan Liu
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, LiuTai Avenue 1166, Wenjiang District, Chengdu, 611137, Sichuan Province, P. R. China.
| | - Sheng-Hong Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Lanhei Road 132, Panlong District, Kunming, 650201, Yunnan Province, P. R. China.
| |
Collapse
|
5
|
Cely-Veloza W, Kato MJ, Coy-Barrera E. Quinolizidine-Type Alkaloids: Chemodiversity, Occurrence, and Bioactivity. ACS OMEGA 2023; 8:27862-27893. [PMID: 37576649 PMCID: PMC10413377 DOI: 10.1021/acsomega.3c02179] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 07/19/2023] [Indexed: 08/15/2023]
Abstract
Quinolizidine alkaloids (QAs) are nitrogen-containing compounds produced naturally as specialized metabolites distributed in plants and animals (e.g., frogs, sponges). The present review compiles the available information on the chemical diversity and biological activity of QAs reported during the last three decades. So far, 397 QAs have been isolated, gathering 20 different representative classes, including the most common such as matrine (13.6%), lupanine (9.8%), anagyrine (4.0%), sparteine (5.3%), cytisine (6.5%), tetrahydrocytisine (4.3%), lupinine (12.1%), macrocyclic bisquinolizidine (9.3%), biphenylquinolizidine lactone (7.1%), dimeric (7.1%), and other less known QAs (20.9%), which include several structural patterns of QAs. A detailed survey of the reported information about the bioactivities of these compounds indicated their potential as cytotoxic, antiviral, antimicrobial, insecticidal, anti-inflammatory, antimalarial, and antiacetylcholinesterase compounds, involving favorable putative drug-likeness scores. In this regard, research progress on the structural and biological/pharmacological diversity of QAs requires further studies oriented on expanding the chemical space to find bioactive scaffolds based on QAs for pharmacological and agrochemical applications.
Collapse
Affiliation(s)
- Willy Cely-Veloza
- Bioorganic
Chemistry Laboratory, Facultad de Ciencias Básicas y Aplicadas, Universidad Militar Nueva Granada, Campus Nueva Granada, Cajicá 250247, Colombia
| | - Massuo J. Kato
- Institute
of Chemistry, University of São Paulo, São Paulo 05508-000, SP, Brazil
| | - Ericsson Coy-Barrera
- Bioorganic
Chemistry Laboratory, Facultad de Ciencias Básicas y Aplicadas, Universidad Militar Nueva Granada, Campus Nueva Granada, Cajicá 250247, Colombia
| |
Collapse
|
6
|
Stereoselective Synthesis of 1-Substituted Homotropanones, including Natural Alkaloid (-)-Adaline. Molecules 2023; 28:molecules28052414. [PMID: 36903657 PMCID: PMC10005508 DOI: 10.3390/molecules28052414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/01/2023] [Accepted: 03/03/2023] [Indexed: 03/09/2023] Open
Abstract
The stereocontrolled synthesis of 1-substituted homotropanones, using chiral N-tert-butanesulfinyl imines as reaction intermediates, is described. The reaction of organolithium and Grignard reagents with hydroxy Weinreb amides, chemoselective N-tert-butanesulfinyl aldimine formation from keto aldehydes, decarboxylative Mannich reaction with β-keto acids of these aldimines, and organocatalyzed L-proline intramolecular Mannich cyclization are key steps of this methodology. The utility of the method was demonstrated with a synthesis of the natural product (-)-adaline, and its enantiomer, (+)-adaline.
Collapse
|
7
|
Zhang J, Liu YQ, Fang J. The biological activities of quinolizidine alkaloids. THE ALKALOIDS. CHEMISTRY AND BIOLOGY 2023; 89:1-37. [PMID: 36731966 DOI: 10.1016/bs.alkal.2022.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Quinolizidine alkaloids isolated from various marine and terrestrial animals and plants are primarily composed of lupinine-, matrine-, and sparteine-type alkaloids. Matrine, phenanthroquinolizidines, bis-quinolizidines, and small molecules from amphibian skins are representative compounds of such alkaloids. Quinolizidine alkaloids harbor anticancer, antibacterial, antiinflammatory, antifibrosis, antiviral, and anti-arrhythmia. In this chapter, we comprehensively outline the biological activity and pharmacological action of quinolizidine alkaloids and discuss new avenues toward the discovery of novel and more efficient drugs based on these naturally occurring compounds. It is urgent for basic research and clinical practice to conduct more targeted comprehensive research based on the lead drugs of quinolizidine alkaloids with significant pharmacological activity.
Collapse
Affiliation(s)
- Junmin Zhang
- School of Pharmacy, State Key Laboratory of Applied Organic Chemistry, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, China; State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau (SAR), China
| | - Ying-Qian Liu
- School of Pharmacy, State Key Laboratory of Applied Organic Chemistry, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, China; State Key Laboratory of Grassland Agroecosystems, Lanzhou University, Lanzhou, China.
| | - Jianguo Fang
- School of Pharmacy, State Key Laboratory of Applied Organic Chemistry, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, China.
| |
Collapse
|
8
|
Shen M, Li L, Zhou Q, Wang J, Wang L. Visible-Light-Induced Regio-selective Oxidative Coupling of Quinoxalinones with Pyrrole Derivatives. CHINESE J ORG CHEM 2023. [DOI: 10.6023/cjoc202207031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
|
9
|
Fraňová P, Marchalín Š. Recent developments in the synthesis of polyhydroxylated indolizidines. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Paula Fraňová
- Slovak University of Technology in Bratislava: Slovenska technicka univerzita v Bratislave Organic Chemistry Radlinského 2101/9 81237 Bratislava SLOVAKIA
| | - Štefan Marchalín
- Slovak University of Technology Faculty of Chemical and Food Technology: Slovenska Technicka Univerzita v Bratislave Fakulta chemickej a potravinarskej technologie Organic Chemistry Radlinského 2101/9 81237 Bratislava SLOVAKIA
| |
Collapse
|
10
|
Ni Q, Xu F, Song X. Diastereoselective and E/Z-Selective Synthesis of Functionalized Quinolizine Scaffolds via the Dearomative Annulation of 2-Pyridylacetates with Nitroenynes. J Org Chem 2022; 87:9507-9517. [PMID: 35801688 DOI: 10.1021/acs.joc.2c00448] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
An organocatalytic Michael/aza-Michael cascade reaction was developed to build the functionalized quinolizine scaffolds in 60-82% yields, excellent diastereoselectivities, and E/Z selectivities. This protocol involves the [3 + 3] annulations of 2-pyridylacetates with nitroenynes through the dearomative strategy in the presence of an organic base under mild conditions. The versatile late-stage derivatizations further demonstrated the synthetic utility of this methodology.
Collapse
Affiliation(s)
- Qijian Ni
- Key Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241002, P. R. China
| | - Fangfang Xu
- Key Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241002, P. R. China
| | - Xiaoxiao Song
- Key Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241002, P. R. China
| |
Collapse
|
11
|
Abstract
Indolizidine alkaloids have been the target of chemical and biological studies for decades, most recently highlighted by the isolation of the curvulamine and bipolamine polypyrrole-containing subclass. Herein we report a stereoselective 15-step synthesis of bipolamine I, a distinct member of the broader family, and through this work develop an intermediate that will serve to access other polypyrrole natural products and key analogues going forward.
Collapse
Affiliation(s)
- Xiang Qiu
- Department of Chemistry and Comparative Medicine Institute, NC State University, Raleigh, North Carolina 27695, United States
| | - Joshua G Pierce
- Department of Chemistry and Comparative Medicine Institute, NC State University, Raleigh, North Carolina 27695, United States
| |
Collapse
|
12
|
Mishra DR, Panda BS, Nayak S, Panda J, Mohapatra S. Recent Advances in the Synthesis of 5‐Membered
N
‐Heterocycles via Rhodium Catalysed Cascade Reactions. ChemistrySelect 2022. [DOI: 10.1002/slct.202200531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Deepak R. Mishra
- Organic Synthesis Laboratory Department of Chemistry Ravenshaw University Cuttack 753003 Odisha India
| | - Bhabani S. Panda
- Organic Synthesis Laboratory Department of Chemistry Ravenshaw University Cuttack 753003 Odisha India
| | - Sabita Nayak
- Organic Synthesis Laboratory Department of Chemistry Ravenshaw University Cuttack 753003 Odisha India
| | - Jasmine Panda
- Organic Synthesis Laboratory Department of Chemistry Ravenshaw University Cuttack 753003 Odisha India
| | - Seetaram Mohapatra
- Organic Synthesis Laboratory Department of Chemistry Ravenshaw University Cuttack 753003 Odisha India
| |
Collapse
|
13
|
Kuntiyong P, Inprung N, Attanonchai S, Kheakwanwong W, Bunrod P, Akkarasamiyo S. Diastereoselective Synthesis of Tetrahydrofurano[2,3-g]indolizidine and 8-Aminoindolizidines from L-Asparagine. Synlett 2022. [DOI: 10.1055/a-1806-6089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
8-Aminoindolizidines were synthesized from L-asparagine as the chiral starting material. The key dibenzylamino succinimide intermediate was synthesized in two steps. Three homologs of chiral hydroxylactams tethered with hydroxyalkene were synthesized from the succinimide via a sequence involving N-alkylation, cross olefin metathesis and hydride reduction. The dibenzylamino group gave the stereocontrol of the key N-acyliminium ion cyclization of these hydroxylactams. 5-Substituted-aminoindolizidines were synthesized with high diastereoselectivity at C6. A tandem cyclization of N-(6-hydroxyhex-3-en-1-yl)-g-hydroxylactam resulted in formation of tetrahydrofurano[2,3-g]indolizidine system.
Collapse
Affiliation(s)
- Punlop Kuntiyong
- Chemistry, Silpakorn University Faculty of Science, Muang Nakhon Pathom, Thailand
| | - Nantachai Inprung
- Chemistry, Silpakorn University Faculty of Science, Muang Nakhon Pathom, Thailand
| | | | - Wichita Kheakwanwong
- Chemistry, Silpakorn University Faculty of Science, Muang Nakhon Pathom, Thailand
| | - Pijitra Bunrod
- Chemistry, Silpakorn University Faculty of Science, Muang Nakhon Pathom, Thailand
| | - Sunisa Akkarasamiyo
- Department of Chemistry, Faculty of Science, Kasetsart University, Bangkok, Thailand
| |
Collapse
|
14
|
Yang Z, Chen L, Sun Q, Guo M, Wang G, Zhao W, Tang X. Tetrahydroxydiboron and Nickel Chloride Cocatalyzed Rapid Radical Cyclization toward Pyrrolizidine and Indolizidine Alkaloids. J Org Chem 2022; 87:3788-3793. [PMID: 35188782 DOI: 10.1021/acs.joc.1c02874] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A novel tetrahydroxydiboron and nickel chloride cocatalyzed radical cyclization cascade with a broad substrate scope and an ultrashort reaction time was developed. The mechanistic investigation indicated that the reaction might involve a homocleavage of tetrahydroxydiboron and nickel hydride intermediates. This approach enables the simple and efficient synthesis of a series of heteropolycycles.
Collapse
Affiliation(s)
- Zequn Yang
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, P. R. China
| | - Longhui Chen
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, P. R. China
| | - Qi Sun
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, P. R. China
| | - Minjie Guo
- Institute for Molecular Design and Synthesis, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Guangwei Wang
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, P. R. China
| | - Wentao Zhao
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, P. R. China
| | - Xiangyang Tang
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, P. R. China
| |
Collapse
|
15
|
Patrykei S, Korobko Y, Ogorodniichuk O, Garazd M, Polishchuk P, Džubák P, Gurská S, Hajdúch M, Lesyk R. Synthesis and evaluation of the anticancer activity of some semisynthetic derivatives of rutaecarpine and evodiamine. SYNTHETIC COMMUN 2021. [DOI: 10.1080/00397911.2021.1919712] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
| | | | | | | | - Pavel Polishchuk
- Institute of Molecular and Translational Medicine (IMTM), Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Petr Džubák
- Institute of Molecular and Translational Medicine (IMTM), Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Soňa Gurská
- Institute of Molecular and Translational Medicine (IMTM), Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Marián Hajdúch
- Institute of Molecular and Translational Medicine (IMTM), Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Roman Lesyk
- Department of Pharmaceutical, Organic and Bioorganic Chemistry, Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
- Department of Public Health, Dietetics and Lifestyle Disorders, Faculty of Medicine, University of Information Technology and Management in Rzeszow, Rzeszow, Poland
| |
Collapse
|
16
|
Torres J, Escolano M, Alzuet-Piña G, Sánchez-Roselló M, Del Pozo C. Double asymmetric intramolecular aza-Michael reaction: a convenient strategy for the synthesis of quinolizidine alkaloids. Org Biomol Chem 2021; 19:8740-8745. [PMID: 34581390 DOI: 10.1039/d1ob01488a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new methodology to access the quinolizidine skeleton in an asymmetric fashion was devised. It involves two consecutive intramolecular aza-Michael reactions of sulfinyl amines bearing a bis-enone moiety, in turn generated by a monodirectional cross metathesis reaction. The sequence, which takes place with excellent yields and diastereocontrol, was applied to the total synthesis of alkaloids lasubine I and myrtine.
Collapse
Affiliation(s)
- Javier Torres
- Department of Organic Chemistry, University of Valencia, Vicente Andrés Estellés s/n, 46100-Burjassot-Valencia, Spain.
| | - Marcos Escolano
- Department of Organic Chemistry, University of Valencia, Vicente Andrés Estellés s/n, 46100-Burjassot-Valencia, Spain.
| | - Gloria Alzuet-Piña
- Department of Inorganic Chemistry, University of Valencia, Vicente Andrés Estellés s/n, 46100-Burjassot-Valencia, Spain
| | - María Sánchez-Roselló
- Department of Organic Chemistry, University of Valencia, Vicente Andrés Estellés s/n, 46100-Burjassot-Valencia, Spain.
| | - Carlos Del Pozo
- Department of Organic Chemistry, University of Valencia, Vicente Andrés Estellés s/n, 46100-Burjassot-Valencia, Spain.
| |
Collapse
|
17
|
Synthesis and analgesic activity of 1-[(1,2,3-triazol-1-yl)methyl]quinolizines based on the alkaloid lupinine. Chem Heterocycl Compd (N Y) 2021. [DOI: 10.1007/s10593-021-03000-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
18
|
Aksenov AV, Arutiunov NA, Kirilov NK, Aksenov DA, Grishin IY, Aksenov NA, Wang H, Du L, Betancourt T, Pelly SC, Kornienko A, Rubin M. [3 + 2]-Annulation of pyridinium ylides with 1-chloro-2-nitrostyrenes unveils a tubulin polymerization inhibitor. Org Biomol Chem 2021; 19:7234-7245. [PMID: 34387294 PMCID: PMC8439629 DOI: 10.1039/d1ob01141c] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Indolizines and pyrazolo[1,5-a]pyridines were prepared via [3 + 2]-cycloaddition of pyridinium ylides to 1-chloro-2-nitrostyrenes. The synthesized molecules were evaluated for antiproliferative activities against a BE(2)-C neuroblastoma cell line with several compounds decreasing the viability of cancer cells. Indolizine 9db showed higher potency than that of all-trans-retinoic acid, an approved cancer drug. Mechanistically, it was found to inhibit tubulin polymerization and it is thus proposed that the discovered chemistry can be exploited for the development of novel microtubule-targeting anticancer agents.
Collapse
Affiliation(s)
- Alexander V Aksenov
- Department of Chemistry, North Caucasus Federal University, 1a Pushkin St., Stavropol 355009, Russia.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Sar S, Guha S, Prabakar T, Maiti D, Sen S. Blue Light-Emitting Diode-Mediated In Situ Generation of Pyridinium and Isoquinolinium Ylides from Aryl Diazoesters: Their Application in the Synthesis of Diverse Dihydroindolizine. J Org Chem 2021; 86:11736-11747. [PMID: 34369766 DOI: 10.1021/acs.joc.1c01209] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Blue light-emitting diode-mediated environmentally sustainable three component reactions among pyridine/isoquinoline 1/2, aryl diazoesters 3, and acrylic ester/3-alkenyl oxindoles 5/6 provide various dihydroindolizines 7 to 9 in excellent yield. The principle of the strategy is photolytic generation of nitrogen ylides from N-heteroarenes and aryl diazoesters and their subsequent [3 + 2] cycloaddition reaction with dipolarophiles. Detailed mechanistic analysis of the transformation through control experiments establishes this strategy as the foundation for the photolytic multicomponent reaction.
Collapse
Affiliation(s)
- Saibal Sar
- Department of Chemistry, School of Natural Sciences, Shiv Nadar University Dadri, Chithera, Gautam Buddha Nagar, Uttar Pradesh 201314, India
| | - Souvik Guha
- Department of Chemistry, School of Natural Sciences, Shiv Nadar University Dadri, Chithera, Gautam Buddha Nagar, Uttar Pradesh 201314, India
| | - Tejas Prabakar
- Department of Chemistry, School of Natural Sciences, Shiv Nadar University Dadri, Chithera, Gautam Buddha Nagar, Uttar Pradesh 201314, India
| | - Debajit Maiti
- Department of Chemistry, School of Natural Sciences, Shiv Nadar University Dadri, Chithera, Gautam Buddha Nagar, Uttar Pradesh 201314, India
| | - Subhabrata Sen
- Department of Chemistry, School of Natural Sciences, Shiv Nadar University Dadri, Chithera, Gautam Buddha Nagar, Uttar Pradesh 201314, India
| |
Collapse
|
20
|
Yadagiri D, Anbarasan P. Catalytic Functionalization of Metallocarbenes Derived from α-Diazocarbonyl Compounds and Their Precursors. CHEM REC 2021; 21:3872-3883. [PMID: 34448345 DOI: 10.1002/tcr.202100167] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 08/14/2021] [Indexed: 11/12/2022]
Abstract
Short and efficient synthesis of heterocyclic compounds are highly desirable in synthetic organic chemistry. It is a dream approach to accomplish these syntheses from readily available starting materials in a single step. In this personal account, we discuss our contribution in the synthesis of heterocyclic compounds and beyond from N-sulfonyl-1,2,3-triazoles and α-diazocarbonyl compounds, which are the precursors for α-imino (carbonyl) metal carbenes in the presence of transition metal catalysts. Functionalization of α-imino(carbonyl) metal carbenes has been achieved through in-situ generated metal-stabilized ylides followed by either intramolecular trapping by non-polar bonds, rearrangement, cycloaddition, or 1,3-insertion fashion, which led to the efficient synthesis of various synthetically important intermediates and heterocyclic compounds.
Collapse
Affiliation(s)
- Dongari Yadagiri
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee, 247667, India
| | - Pazhamalai Anbarasan
- Department of Chemistry, Indian Institute of Technology Madras, Chennai, 600036, India
| |
Collapse
|
21
|
Stereodivergent Total Syntheses of (+)‐Monomorine I and (+)‐Indolizidine 195B. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
22
|
Kong M, Zhou X, Chen Q, Zhang F, Zhao Y. Efficient synthesis of novel indolizine C-nucleoside analogues via coupling of sugar alkynes, pyridines and α-bromo carbonyl compounds in one pot. Carbohydr Res 2021; 505:108337. [PMID: 34058545 DOI: 10.1016/j.carres.2021.108337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/25/2021] [Accepted: 05/04/2021] [Indexed: 11/28/2022]
Abstract
The synthesis of novel indolizine C-nucleoside analogues has been achieved by the three-component coupling reaction of sugar alkynes, pyridines and α-bromo carbonyl compounds in one pot. The corresponding products are obtained in good to excellent yields. 49 examples have been given. The synthetic method is convenient, practical and efficient. It is suitable for various substrates including structurally diversified sugar alkynes with sensitive groups. The sugar alkynes include pyranosides, furanosides, and acyclic sugars. A plausible mechanism for the formation of indolizine C-nucleoside analogues has been elucidated.
Collapse
Affiliation(s)
- Man Kong
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Xiang Zhou
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Qianxia Chen
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Fuyi Zhang
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, Henan, 450001, China.
| | - Yufen Zhao
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, Henan, 450001, China; Institute of Drug Discovery Technology, Ningbo University, Ningbo, 315211, China
| |
Collapse
|
23
|
Lu J, Wang M, Xu R, Sun H, Zheng X, Zhong G, Zeng X. Iridium Catalysed Asymmetric Allylic Substitution Reaction of Indolizine Derivatives. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100171] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Jiamin Lu
- College of Materials Chemistry and Chemical Engineering Hangzhou Normal University No. 2318 Yuhangtang Road Hangzhou 311121 P. R. China
| | - Meifang Wang
- College of Materials Chemistry and Chemical Engineering Hangzhou Normal University No. 2318 Yuhangtang Road Hangzhou 311121 P. R. China
| | - Ruigang Xu
- College of Materials Chemistry and Chemical Engineering Hangzhou Normal University No. 2318 Yuhangtang Road Hangzhou 311121 P. R. China
| | - Haizhou Sun
- College of Materials Chemistry and Chemical Engineering Hangzhou Normal University No. 2318 Yuhangtang Road Hangzhou 311121 P. R. China
| | - Xuan Zheng
- College of Materials Chemistry and Chemical Engineering Hangzhou Normal University No. 2318 Yuhangtang Road Hangzhou 311121 P. R. China
| | - Guofu Zhong
- College of Materials Chemistry and Chemical Engineering Hangzhou Normal University No. 2318 Yuhangtang Road Hangzhou 311121 P. R. China
| | - Xiaofei Zeng
- College of Materials Chemistry and Chemical Engineering Hangzhou Normal University No. 2318 Yuhangtang Road Hangzhou 311121 P. R. China
| |
Collapse
|
24
|
Shen X, Huang C, Yuan X, Yu S. Diastereoselective and Stereodivergent Synthesis of 2‐Cinnamylpyrrolines Enabled by Photoredox‐Catalyzed Iminoalkenylation of Alkenes. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202016941] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Xu Shen
- State Key Laboratory of Analytical Chemistry for Life Science Jiangsu Key Laboratory of Advanced Organic Materials Chemistry and Biomedicine Innovation Center (ChemBIC) School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - Congcong Huang
- School of chemistry and chemical engineering Qufu Normal University Qufu 273165 China
| | - Xiang‐Ai Yuan
- School of chemistry and chemical engineering Qufu Normal University Qufu 273165 China
| | - Shouyun Yu
- State Key Laboratory of Analytical Chemistry for Life Science Jiangsu Key Laboratory of Advanced Organic Materials Chemistry and Biomedicine Innovation Center (ChemBIC) School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| |
Collapse
|
25
|
Shen X, Huang C, Yuan X, Yu S. Diastereoselective and Stereodivergent Synthesis of 2‐Cinnamylpyrrolines Enabled by Photoredox‐Catalyzed Iminoalkenylation of Alkenes. Angew Chem Int Ed Engl 2021; 60:9672-9679. [DOI: 10.1002/anie.202016941] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/24/2021] [Indexed: 12/13/2022]
Affiliation(s)
- Xu Shen
- State Key Laboratory of Analytical Chemistry for Life Science Jiangsu Key Laboratory of Advanced Organic Materials Chemistry and Biomedicine Innovation Center (ChemBIC) School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - Congcong Huang
- School of chemistry and chemical engineering Qufu Normal University Qufu 273165 China
| | - Xiang‐Ai Yuan
- School of chemistry and chemical engineering Qufu Normal University Qufu 273165 China
| | - Shouyun Yu
- State Key Laboratory of Analytical Chemistry for Life Science Jiangsu Key Laboratory of Advanced Organic Materials Chemistry and Biomedicine Innovation Center (ChemBIC) School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| |
Collapse
|
26
|
Mou ZD, Zhang X, Niu D. Catalytic asymmetric umpolung reaction of imines to synthesize isoindolinones and tetrahydroisoquinolines. GREEN SYNTHESIS AND CATALYSIS 2021. [DOI: 10.1016/j.gresc.2021.01.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
|
27
|
Zhang X, Qi D, Jiao C, Zhang Z, Liu X, Zhang G. Ni-Catalyzed direct iminoalkynylation of unactivated olefins with terminal alkynes: facile access to alkyne-labelled pyrrolines. Org Chem Front 2021. [DOI: 10.1039/d1qo01217g] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The first example of iminoalkynylation of unactivated olefins with terminal alkynes was achieved by a nickel-catalyzed iminyl-radical cyclization/Sonogashira-type coupling sequence.
Collapse
Affiliation(s)
- Xingjie Zhang
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University, 46 East of Construction Road, Xinxiang, Henan 453007, China
| | - Di Qi
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University, 46 East of Construction Road, Xinxiang, Henan 453007, China
| | - Chenchen Jiao
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University, 46 East of Construction Road, Xinxiang, Henan 453007, China
| | - Zhiguo Zhang
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University, 46 East of Construction Road, Xinxiang, Henan 453007, China
| | - Xiaopan Liu
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University, 46 East of Construction Road, Xinxiang, Henan 453007, China
| | - Guisheng Zhang
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University, 46 East of Construction Road, Xinxiang, Henan 453007, China
| |
Collapse
|
28
|
Su K, Guo X, Zhu L, Liu Y, Lu Y, Chen B. Indolizine synthesis via radical cyclization and demethylation of sulfoxonium ylides and 2-(pyridin-2-yl)acetate derivatives. Org Chem Front 2021. [DOI: 10.1039/d1qo00550b] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A novel radical cross-coupling/cyclization of 2-(pyridin-2-yl)acetate derivatives and sulfoxonium ylides is developed, which provides a straightforward access to structurally diverse methylthio-substituted indolizine.
Collapse
Affiliation(s)
- Kexin Su
- State Key Laboratory of Applied Organic Chemistry
- Department of Chemistry
- Lanzhou University
- Lanzhou
- China
| | - Xin Guo
- School of Chemistry and Chemical Engineering
- North Minzu University
- Yinchuan
- China
| | - Liangwei Zhu
- State Key Laboratory of Applied Organic Chemistry
- Department of Chemistry
- Lanzhou University
- Lanzhou
- China
| | - Yafeng Liu
- School of Chemistry and Chemical Engineering
- North Minzu University
- Yinchuan
- China
| | - Yixuan Lu
- State Key Laboratory of Applied Organic Chemistry
- Department of Chemistry
- Lanzhou University
- Lanzhou
- China
| | - Baohua Chen
- State Key Laboratory of Applied Organic Chemistry
- Department of Chemistry
- Lanzhou University
- Lanzhou
- China
| |
Collapse
|
29
|
Sun JT, Chen LY, Wei BG. Samarium Diiodide Promoted the Addition-Ring-Opening Reaction of 2-Piperidinone with α, β-Unsaturated Esters. CHINESE J ORG CHEM 2021. [DOI: 10.6023/cjoc202106040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
30
|
Liu S, Wang H, Wang B. Catalyst-free construction of spiro [benzoquinolizidine-chromanones] via a tandem condensation/1,5-hydride transfer/cyclization process. Org Biomol Chem 2020; 18:8839-8843. [PMID: 33104768 DOI: 10.1039/d0ob01887b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
A catalyst-free tandem 1,5-hydride shift/cyclization process to form spiro [benzoquinolizidine-chromanones] is developed, which features high atom- and step-economy, high levels of stereocontrol, mild conditions, and a simple workup process. A series of new polycyclic spiro [benzoquinolizidine-chromanones] were obtained in high yields with excellent diastereoselectivities (up to 91% yield, >20 : 1 dr).
Collapse
Affiliation(s)
- Siyuan Liu
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, P. R. China.
| | | | | |
Collapse
|
31
|
Talukdar R. Tracking down the brominated single electron oxidants in recent organic red-ox transformations: photolysis and photocatalysis. Org Biomol Chem 2020; 18:8294-8345. [PMID: 33020775 DOI: 10.1039/d0ob01652g] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A wide range of organic and inorganic brominated compounds including molecular bromine have been extensively used as oxidants in many organic photo-redox transformations in recent years, an area of ever growing interest because of greener and milder approaches. The oxidation power of these compounds is utilized through both mechanistic pathways (by hydrogen atom transfer or HAT in the absence of a photocatalyst and a combination of single electron transfer or SET and/or HAT in the presence of a photocatalyst). Not only as terminal oxidants for regeneration of photocatalysts, but brominated reactants have also contributed to the oxidation of the reaction intermediate(s) to carry on the radical chain process in several reactions. Here in this review mainly the non-brominative oxidative product formations are discussed, carried out since the last two decades, skipping the instances where they acted as terminal oxidants only to regenerate photocatalysts. The reactions are used to generate natural products, pharmaceuticals and beyond.
Collapse
Affiliation(s)
- Ranadeep Talukdar
- Molecular Synthesis and Drug Discovery Laboratory, Centre of Biomedical Research, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow-226014, India.
| |
Collapse
|
32
|
Jadala C, Ganga Reddy V, Hari Krishna N, Shankaraiah N, Kamal A. Base-mediated 1,3-dipolar cycloaddition of pyridinium bromides with bromoallyl sulfones: a facile access to indolizine scaffolds. Org Biomol Chem 2020; 18:8694-8701. [PMID: 33084715 DOI: 10.1039/d0ob01696a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
An expedient and transition-metal-free synthetic strategy has been developed for the construction of substituted indolizines from a unique combination of pyridinium salts and 2-bromoallyl sulfones. This approach does not compromise with the diverse substitutions on both the pyridinium salts and 2-bromoallyl sulfones. Wide substrate scope, operational simplicity, milder reaction conditions and good to moderate yields are the merits associated with the current approach. Moreover, this method provides two products which are amenable for the generation of a library of key indolizine building blocks.
Collapse
Affiliation(s)
- Chetna Jadala
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500 037, India.
| | - Velma Ganga Reddy
- Medicinal Chemistry & Pharmacology, CSIR-Indian Institute of Chemical Technology, Hyderabad 500 007, India and Centre for Advanced Materials & Industrial Chemistry (CAMIC), School of Science, RMIT University, GPO Box 2476, Melbourne 3001, Australia
| | - Namballa Hari Krishna
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500 037, India. and Medicinal Chemistry & Pharmacology, CSIR-Indian Institute of Chemical Technology, Hyderabad 500 007, India and Department of Chemistry, Hunter College, City University of New York, 695 Park Avenue, NY 10065, USA
| | - Nagula Shankaraiah
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500 037, India.
| | - Ahmed Kamal
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500 037, India. and Medicinal Chemistry & Pharmacology, CSIR-Indian Institute of Chemical Technology, Hyderabad 500 007, India and School of Pharmaceutical Education and Research (SPER), Jamia Hamdard, New Delhi, 110062, India
| |
Collapse
|
33
|
Zhang J, Morris-Natschke SL, Ma D, Shang XF, Yang CJ, Liu YQ, Lee KH. Biologically active indolizidine alkaloids. Med Res Rev 2020; 41:928-960. [PMID: 33128409 DOI: 10.1002/med.21747] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 10/09/2020] [Accepted: 10/19/2020] [Indexed: 12/23/2022]
Abstract
Indolizidine alkaloids are chemical constituents isolated from various marine and terrestrial plants and animals, including but not limited to trees, fungi, ants, and frogs, with a myriad of important biological activities. In this review, we discuss the biological activity and pharmacological effects of indolizidine alkaloids and offer new avenues toward the discovery of new and better drugs based on these naturally occurring compounds.
Collapse
Affiliation(s)
- Junmin Zhang
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Susan L Morris-Natschke
- Natural Products Research Laboratories, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Di Ma
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | | | - Chen-Jie Yang
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Ying-Qian Liu
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Kuo-Hsiung Lee
- Natural Products Research Laboratories, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina, USA
| |
Collapse
|
34
|
Synthesis of 2′,3′,4′-triaryl-5,6-dihydro-8H-spiro[indolizine-7,5′-isoxazolidin]-8-ones via 1,3-dipolar cycloaddition reaction involving (Z)-C-aryl-N-phenylnitrones. Chem Heterocycl Compd (N Y) 2020. [DOI: 10.1007/s10593-020-02774-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
35
|
Yadagiri D, Rivas M, Gevorgyan V. Denitrogenative Transformations of Pyridotriazoles and Related Compounds: Synthesis of N-Containing Heterocyclic Compounds and Beyond. J Org Chem 2020; 85:11030-11046. [PMID: 32786635 DOI: 10.1021/acs.joc.0c01652] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The high demand for new and efficient routes toward synthesis of nitrogen-containing heterocyclic scaffolds has inspired organic chemists to discover several methodologies over recent years. This Perspective highlights one standout approach, which involves the use of pyridotriazoles and related compounds in denitrogenative transformations. Readily available pyridotriazoles undergo ring-chain isomerization to produce uniquely reactive α-diazoimines. Such reactivity, enabled by metal catalysts, additives, or visible-light irradiation, can be applied in transannulation, insertion, cyclopropanation, and many other transformations.
Collapse
Affiliation(s)
- Dongari Yadagiri
- Department of Chemistry and Biochemistry, University of Texas at Dallas, 800 West Campbell Road, Richardson, Texas 75080-3021, United States
| | - Mónica Rivas
- Department of Chemistry and Biochemistry, University of Texas at Dallas, 800 West Campbell Road, Richardson, Texas 75080-3021, United States
| | - Vladimir Gevorgyan
- Department of Chemistry and Biochemistry, University of Texas at Dallas, 800 West Campbell Road, Richardson, Texas 75080-3021, United States
| |
Collapse
|
36
|
Šafář P, Marchalín Š, Cvečko M, Moncol J, Dujnič V, Šoral M, Daïch A. Synthesis and sequential diastereoselective incorporation of hydroxyl groups into hexahydrofuro[3,2-f]indolizin-7(2H)-one to give mono-, di- and tetra-hydroxyfuroindolizidines. Org Biomol Chem 2020; 18:6384-6393. [PMID: 32756691 DOI: 10.1039/d0ob00896f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Dihydrofuro[2,3-f]indolizidinone obtained from biosourced reagents even at multigram-scale was used as an advanced building-block with up to five points of chemical diversification. This resulted in the sequential synthesis of a series of mono-, di- and tetra-hydroxyfuranoindolizidines belonging to a very scarce and elaborate tetrahydrofuran-fused indolizidine family with up to six controlled stereogenic centers. These sequences include, among others, diastereoselective olefin epoxidation, stereoselective epoxide ring opening into tetrahydrofuran trans-diols, their protection as an ester or acetonide, and lactam carbonyl reduction ultimately followed by acetate or acetonide deprotection.
Collapse
Affiliation(s)
- Peter Šafář
- Department of Organic Chemistry, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, SK-81237 Bratislava, Slovakia.
| | - Štefan Marchalín
- Department of Organic Chemistry, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, SK-81237 Bratislava, Slovakia. and Normandie Univ, UNILEHAVRE, CNRS, URCOM, 76600 Le Havre, France.
| | - Matej Cvečko
- Department of Organic Chemistry, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, SK-81237 Bratislava, Slovakia.
| | - Ján Moncol
- Department of Inorganic Chemistry, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, SK-81237 Bratislava, Slovakia
| | - Viera Dujnič
- Institute of Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, SK-845 38, Bratislava, Slovakia
| | - Michal Šoral
- Central Laboratories, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, SK-81237 Bratislava, Slovakia
| | - Adam Daïch
- Normandie Univ, UNILEHAVRE, CNRS, URCOM, 76600 Le Havre, France.
| |
Collapse
|
37
|
Song L, Tian G, Van Meervelt L, Van der Eycken EV. Synthesis of Pyrrolo[1,2-b]isoquinolines via Gold(I)-Catalyzed Cyclization/Enyne Cycloisomerization/1,2-Migration Cascade. Org Lett 2020; 22:6537-6542. [DOI: 10.1021/acs.orglett.0c02310] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Liangliang Song
- Laboratory for Organic & Microwave-Assisted Chemistry (LOMAC), Department of Chemistry, KU Leuven, Celestijnenlaan 200F, B-3001, Leuven, Belgium
| | - Guilong Tian
- Laboratory for Organic & Microwave-Assisted Chemistry (LOMAC), Department of Chemistry, KU Leuven, Celestijnenlaan 200F, B-3001, Leuven, Belgium
| | - Luc Van Meervelt
- Biomolecular Architecture, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, B-3001, Leuven, Belgium
| | - Erik V. Van der Eycken
- Laboratory for Organic & Microwave-Assisted Chemistry (LOMAC), Department of Chemistry, KU Leuven, Celestijnenlaan 200F, B-3001, Leuven, Belgium
- Peoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Street, Moscow, 117198, Russia
| |
Collapse
|
38
|
Pal T, Lahiri GK, Maiti D. Copper in Efficient Synthesis of Aromatic Heterocycles with Single Heteroatom. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000688] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Tapas Pal
- Department of Chemistry Indian Institute of Technology Bombay 400076 Powai Mumbai Maharashtra India
| | - Goutam Kumar Lahiri
- Department of Chemistry Indian Institute of Technology Bombay 400076 Powai Mumbai Maharashtra India
| | - Debabrata Maiti
- Department of Chemistry Indian Institute of Technology Bombay 400076 Powai Mumbai Maharashtra India
- Tokyo Tech World Research Hub Initiative (WRHI) Laboratory for Chemistry and Life Science Tokyo Institute of Technology Japan
| |
Collapse
|
39
|
Copper-catalyzed formation of indolizine derivatives via one-pot reactions of chalcones, benzyl bromides and pyridines. Tetrahedron 2020. [DOI: 10.1016/j.tet.2020.131347] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
40
|
Garbacz M, Stecko S. The Synthesis of Chiral Allyl Carbamates via Merger of Photoredox and Nickel Catalysis. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000404] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Mateusz Garbacz
- Institute of Organic ChemistryPolish Academy of Sciences Kasprzaka 44/52, 01-224 Warsaw Poland
| | - Sebastian Stecko
- Institute of Organic ChemistryPolish Academy of Sciences Kasprzaka 44/52, 01-224 Warsaw Poland
| |
Collapse
|
41
|
Heravi MM, Janati F, Zadsirjan V. Applications of Knoevenagel condensation reaction in the total synthesis of natural products. MONATSHEFTE FUR CHEMIE 2020. [DOI: 10.1007/s00706-020-02586-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
42
|
|
43
|
Heravi MM, Zadsirjan V, Hamidi H, Daraie M, Momeni T. Recent applications of the Wittig reaction in alkaloid synthesis. THE ALKALOIDS. CHEMISTRY AND BIOLOGY 2020; 84:201-334. [PMID: 32416953 DOI: 10.1016/bs.alkal.2020.02.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The Wittig reaction is the chemical reaction of an aldehyde or ketone with a triphenyl phosphonium ylide (the Wittig reagent) to afford an alkene and triphenylphosphine oxide. Noteworthy, this reaction results in the synthesis of alkenes in a selective and predictable fashion. Thus, it became as one of the keystone of synthetic organic chemistry, especially in the total synthesis of natural products, where the selectivity of a reaction is paramount of importance. A literature survey disclosed the existence of vast numbers of related reports and comprehensive reviews on the applications of this important name reaction in the total synthesis of natural products. However, the aim of this chapter is to underscore, the applications of the Wittig reaction in the total synthesis of one the most important and prevalent classes of natural products, the alkaloids, especially those showing important and diverse biological activities.
Collapse
Affiliation(s)
- Majid M Heravi
- Department of Chemistry, School of Science, Alzahra University, Tehran, Iran.
| | - Vahideh Zadsirjan
- Department of Chemistry, School of Science, Alzahra University, Tehran, Iran
| | - Hoda Hamidi
- Department of Chemistry, School of Science, Alzahra University, Tehran, Iran
| | - Mansoureh Daraie
- Department of Chemistry, School of Science, Alzahra University, Tehran, Iran
| | - Tayebeh Momeni
- Department of Chemistry, School of Science, Alzahra University, Tehran, Iran
| |
Collapse
|
44
|
Fang Y, Li F, Yang Y, Liu X, Pan W. Iodine Mediated Base‐Controlled Regio‐Selective Annulation of 2‐(Pyridin‐2‐yl)acetate Derivatives with Acrylic Esters for the Synthesis of Indolizines. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000103] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Youlai Fang
- State Key Laboratory of Functions and Applications of Medicinal PlantsGuizhou Medical University 3491 Baijin Road Guiyang 550014 People's Republic of China
- The Key Laboratory of Chemistry for Natural Products of Guizhou ProvinceChinese Academy of Sciences 3491 Baijin Road Guiyang 550014 People's Republic of China
| | - Fei Li
- State Key Laboratory of Functions and Applications of Medicinal PlantsGuizhou Medical University 3491 Baijin Road Guiyang 550014 People's Republic of China
- The Key Laboratory of Chemistry for Natural Products of Guizhou ProvinceChinese Academy of Sciences 3491 Baijin Road Guiyang 550014 People's Republic of China
| | - Yuzhu Yang
- State Key Laboratory of Functions and Applications of Medicinal PlantsGuizhou Medical University 3491 Baijin Road Guiyang 550014 People's Republic of China
- The Key Laboratory of Chemistry for Natural Products of Guizhou ProvinceChinese Academy of Sciences 3491 Baijin Road Guiyang 550014 People's Republic of China
| | - Xiaolan Liu
- State Key Laboratory of Functions and Applications of Medicinal PlantsGuizhou Medical University 3491 Baijin Road Guiyang 550014 People's Republic of China
- The Key Laboratory of Chemistry for Natural Products of Guizhou ProvinceChinese Academy of Sciences 3491 Baijin Road Guiyang 550014 People's Republic of China
| | - Weidong Pan
- State Key Laboratory of Functions and Applications of Medicinal PlantsGuizhou Medical University 3491 Baijin Road Guiyang 550014 People's Republic of China
- The Key Laboratory of Chemistry for Natural Products of Guizhou ProvinceChinese Academy of Sciences 3491 Baijin Road Guiyang 550014 People's Republic of China
| |
Collapse
|
45
|
Choi H, Hong J, Lee K. A Stereoselective Formal Synthesis of Quinolizidine (-)-217A. European J Org Chem 2020. [DOI: 10.1002/ejoc.201901680] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Hosam Choi
- Department of Chemistry; The Catholic University of Korea; 14662 Bucheon Republic of Korea
| | - Jiyong Hong
- Department of Chemistry; Duke University; 27708 Durham North Carolina United States
| | - Kiyoun Lee
- Department of Chemistry; The Catholic University of Korea; 14662 Bucheon Republic of Korea
| |
Collapse
|
46
|
Zhang Y, Wang W, Sun J, Liu Y. TEMPO‐catalyzed decarboxylation reactions for the synthesis of 1,2‐unsubstituted indolizines. J Heterocycl Chem 2020. [DOI: 10.1002/jhet.3766] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Yuxuan Zhang
- School of Chemistry and Material ScienceJiangsu Normal University Xuzhou China
| | - Wenhui Wang
- School of Chemistry and Material ScienceJiangsu Normal University Xuzhou China
| | - Jinwei Sun
- School of Chemistry and Material ScienceJiangsu Normal University Xuzhou China
- Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution ControlNanjing University of Information Science & Technology Nanjing China
| | - Yun Liu
- School of Chemistry and Material ScienceJiangsu Normal University Xuzhou China
- Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution ControlNanjing University of Information Science & Technology Nanjing China
| |
Collapse
|
47
|
Huang Y, Tang G, Ren D, Zeng JL, Li X. Synthesis of novel 2'-aryl-4'-hydroxy-4',5,5',6-tetrahydro- 2'H,8H-spiro[indolizine-7,3'-thiophen]-8-one derivatives via sulfa-Michael/aldol cascade reactions. Chem Heterocycl Compd (N Y) 2020. [DOI: 10.1007/s10593-020-02620-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
48
|
Jadhav PP, Kahar NM, Dawande SG. Ruthenium(II) Catalysed Highly Regioselective C-3 Alkenylation of Indolizines and Pyrrolo[1,2-a
]quinolines. European J Org Chem 2019. [DOI: 10.1002/ejoc.201901471] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Pankaj Pandit Jadhav
- Department of Chemistry; Institute of Chemical Technology; Nathalal Parekh Marg 400019 Matunga (East) Mumbai Maharashtra India
| | - Nilesh Machhindra Kahar
- Department of Chemistry; Institute of Chemical Technology; Nathalal Parekh Marg 400019 Matunga (East) Mumbai Maharashtra India
| | - Sudam Ganpat Dawande
- Department of Chemistry; Institute of Chemical Technology; Nathalal Parekh Marg 400019 Matunga (East) Mumbai Maharashtra India
| |
Collapse
|
49
|
Xie HP, Sun L, Wu B, Zhou YG. Copper-Catalyzed Alkynylation/Cyclization/Isomerization Cascade for Synthesis of 1,2-Dihydrobenzofuro[3,2-b]pyridines and Benzofuro[3,2-b]pyridines. J Org Chem 2019; 84:15498-15507. [DOI: 10.1021/acs.joc.9b02512] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Huan-Ping Xie
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Lei Sun
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
| | - Bo Wu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
| | - Yong-Gui Zhou
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, P. R. China
| |
Collapse
|
50
|
Krishna Y, Shilpa K, Tanaka F. Intramolecular Mannich and Michael Annulation Reactions of Lactam Derivatives Bearing Enals To Afford Bicyclic N-Heterocycles. Org Lett 2019; 21:8444-8448. [DOI: 10.1021/acs.orglett.9b03210] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Yarkali Krishna
- Chemistry and Chemical Bioengineering Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna, Okinawa 904-0495, Japan
| | - Kola Shilpa
- Chemistry and Chemical Bioengineering Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna, Okinawa 904-0495, Japan
| | - Fujie Tanaka
- Chemistry and Chemical Bioengineering Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna, Okinawa 904-0495, Japan
| |
Collapse
|