1
|
Majeed N, ul Amin N, Masood Siddiqi H. Non‐Enzymatic Liquid Crystal‐Based Detection of Copper Ions in Water. ChemistrySelect 2023. [DOI: 10.1002/slct.202204433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Nasir Majeed
- Department of Chemistry Quaid-i-Azam University Islamabad Pakistan
| | - Noor ul Amin
- Department of Chemistry Quaid-i-Azam University Islamabad Pakistan
| | | |
Collapse
|
2
|
Rajesh R, Gangwar LK, Mishra SK, Choudhary A, Biradar AM, Sumana G. Technological Advancements in Bio‐recognition using Liquid Crystals: Techniques, Applications, and Performance. LUMINESCENCE 2022. [PMID: 35347826 DOI: 10.1002/bio.4242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/20/2022] [Accepted: 03/23/2022] [Indexed: 11/10/2022]
Abstract
The application of liquid crystal (LC) materials has undergone a modern-day renaissance from its classical use in electronics industry as display devices to new-fangled techniques for optically detecting biological and chemical analytes. This review article deals with the emergence of LC materials as invaluable material for their use as label-free sensing elements in the development of optical, electro-optical and electrochemical biosensors. The property of LC molecules to change their orientation on perturbation by any external stimuli or on interaction with bioanalytes or chemical species has been utilized by many researches for the fabrication of high sensitive LC-biosensors. In this review article we categorized LC-biosensor based on biomolecular reaction mechanism viz. enzymatic, nucleotides and immunoreaction in conjunction with operating principle at different LC interface namely LC-solid, LC-aqueous and LC-droplets. Based on bimolecular reaction mechanism, the application of LC has been delineated with recent progress made in designing of LC-interface for the detection of bio and chemical analytes of proteins, virus, bacteria, clinically relevant compounds, heavy metal ions and environmental pollutants. The review briefly describes the experimental set-ups, sensitivity, specificity, limit of detection and linear range of various viable and conspicuous LC-based biosensor platforms with associated advantages and disadvantages therein.
Collapse
Affiliation(s)
- Rajesh Rajesh
- CSIR‐National Physical Laboratory, Dr. K. S. Krishnan Marg New Delhi India
- Academy of Scientific and Innovative Research (AcSIR) Gaziabad India
| | - Lokesh K. Gangwar
- CSIR‐National Physical Laboratory, Dr. K. S. Krishnan Marg New Delhi India
- Academy of Scientific and Innovative Research (AcSIR) Gaziabad India
| | | | - Amit Choudhary
- Physics Department Deshbandhu College (University of Delhi) Kalkaji New Delhi India
| | - Ashok M. Biradar
- CSIR‐National Physical Laboratory, Dr. K. S. Krishnan Marg New Delhi India
- Academy of Scientific and Innovative Research (AcSIR) Gaziabad India
| | - Gajjala Sumana
- CSIR‐National Physical Laboratory, Dr. K. S. Krishnan Marg New Delhi India
- Academy of Scientific and Innovative Research (AcSIR) Gaziabad India
| |
Collapse
|
3
|
|
4
|
Vallamkondu J, Corgiat EB, Buchaiah G, Kandimalla R, Reddy PH. Liquid Crystals: A Novel Approach for Cancer Detection and Treatment. Cancers (Basel) 2018; 10:E462. [PMID: 30469457 PMCID: PMC6267481 DOI: 10.3390/cancers10110462] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 11/02/2018] [Accepted: 11/05/2018] [Indexed: 11/23/2022] Open
Abstract
Liquid crystals are defined as the fourth state of matter forming between solid and liquid states. Earlier the applications of liquid crystals were confined to electronic instruments, but recent research findings suggest multiple applications of liquid crystals in biology and medicine. Here, the purpose of this review article is to discuss the potential biological impacts of liquid crystals in the diagnosis and prognosis of cancer along with the risk assessment. In this review, we also discussed the recent advances of liquid crystals in cancer biomarker detection and treatment in multiple cell line models. Cases reviewed here will demonstrate that cancer diagnostics based on the multidisciplinary technology and intriguingly utilization of liquid crystals may become an alternative to regular cancer detection methodologies. Additionally, we discussed the formidable challenges and problems in applying liquid crystal technologies. Solving these problems will require great effort and the way forward is through the multidisciplinary collaboration of physicists, biologists, chemists, material-scientists, clinicians, and engineers. The triumphant outcome of these liquid crystals and their applications in cancer research would be convenient testing for the detection of cancer and may result in treating the cancer patients non-invasively.
Collapse
Affiliation(s)
- Jayalakshmi Vallamkondu
- Department of Physics, NIT Warangal, Telangana 506004, India.
- Centre for Advanced Materials, NIT Warangal, Telangana 506004, India.
| | - Edwin Bernard Corgiat
- Department of Cellular Biology, Emory University School of Medicine, Atlanta, GA 30322, USA.
| | | | - Ramesh Kandimalla
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, 3601 4th Street, MS 9424, Lubbock, TX 79430, USA.
- Neurology Department, Texas Tech University Health Sciences Center, 3601 4th Street, MS 9424, Lubbock, TX 79430, USA.
| | - P Hemachandra Reddy
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, 3601 4th Street, MS 9424, Lubbock, TX 79430, USA.
- Neurology Department, Texas Tech University Health Sciences Center, 3601 4th Street, MS 9424, Lubbock, TX 79430, USA.
- Pharmacology and Neuroscience Department, Texas Tech University Health Sciences Center, 3601 4th Street, MS 9424, Lubbock, TX 79430, USA.
- Garrison Institute on Aging, South West Campus, Texas Tech University Health Sciences Center, 6630 S. Quaker Suite E, MS 7495, Lubbock, TX 79413, USA.
- Cell Biology and Biochemistry Department, Texas Tech University Health Sciences Center, 3601 4th Street, MS 9424, Lubbock, TX 79430, USA.
- Speech, Language and Hearing Sciences Department, Texas Tech University Health Sciences Center, 3601 4th Street, MS 9424, Lubbock, TX 79430, USA.
- Department of Public Health, Graduate School of Biomedical Sciences, 3601 4th Street, MS 9424, Lubbock, TX 79430, USA.
| |
Collapse
|
5
|
Gandhi SS, Chien LC. Unraveling the Mystery of the Blue Fog: Structure, Properties, and Applications of Amorphous Blue Phase III. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2017; 29:1704296. [PMID: 28994150 DOI: 10.1002/adma.201704296] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 08/21/2017] [Indexed: 06/07/2023]
Abstract
The amorphous blue phase III of cholesteric liquid crystals, also known as the "blue fog," are among the rising stars in materials science that can potentially be used to develop next-generation displays with the ability to compete toe-to-toe with disruptive technologies like organic light-emitting diodes. The structure and properties of the practically unobservable blue phase III have eluded scientists for more than a century since it was discovered. This progress report reviews the developments in this field from both fundamental and applied research perspectives. The first part of this progress report gives an overview of the 130-years-long scientific tour-de-force that very recently resulted in the revelation of the mysterious structure of blue phase III. The second part reviews progress made in the past decade in developing electrooptical, optical, and photonic devices based on blue phase III. The strong and weak aspects of the development of these devices are underlined and criticized, respectively. The third- and-final part proposes ideas for further improvement in blue phase III technology to make it feasible for commercialization and widespread use.
Collapse
Affiliation(s)
- Sahil Sandesh Gandhi
- Chemical Physics Interdisciplinary Program and Liquid Crystal Institute, Kent State University, 1425 Lefton Esplanade, Kent, OH, 44242, USA
| | - Liang-Chy Chien
- Chemical Physics Interdisciplinary Program and Liquid Crystal Institute, Kent State University, 1425 Lefton Esplanade, Kent, OH, 44242, USA
| |
Collapse
|
6
|
Fong WK, Negrini R, Vallooran JJ, Mezzenga R, Boyd BJ. Responsive self-assembled nanostructured lipid systems for drug delivery and diagnostics. J Colloid Interface Sci 2016; 484:320-339. [PMID: 27623190 DOI: 10.1016/j.jcis.2016.08.077] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 08/27/2016] [Accepted: 08/30/2016] [Indexed: 01/19/2023]
Abstract
While stimuli-responsive polymers have received a huge amount of attention in the literature, responsive lipid-based mesophase systems offer unique opportunities in biomedical applications such as drug delivery and biosensing. The different mesophase equilibrium structures enables dynamic switching between nanostructures to facilitate drug release or as a transducer for recognition events. In drug delivery, this behavior offers researchers the means to deliver a therapeutic payload at a specific rate and time i.e. 'on-demand'. This review summarizes the distinctive features of these multifaceted materials and aggregates the current state of the art research from our groups and others into the use of these materials as bulk gels and nanostructured dispersions for drug delivery, biosensing and diagnostics.
Collapse
Affiliation(s)
- Wye-Khay Fong
- Food and Soft Materials Science, Department of Health Science and Technology, ETH Zurich, Schmelzbergstrasse 9, CH-8092 Zurich, Switzerland; Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Renata Negrini
- Food and Soft Materials Science, Department of Health Science and Technology, ETH Zurich, Schmelzbergstrasse 9, CH-8092 Zurich, Switzerland
| | - Jijo J Vallooran
- Food and Soft Materials Science, Department of Health Science and Technology, ETH Zurich, Schmelzbergstrasse 9, CH-8092 Zurich, Switzerland
| | - Raffaele Mezzenga
- Food and Soft Materials Science, Department of Health Science and Technology, ETH Zurich, Schmelzbergstrasse 9, CH-8092 Zurich, Switzerland.
| | - Ben J Boyd
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia.
| |
Collapse
|
7
|
Su HW, Lee MJ, Lee W. Surface modification of alignment layer by ultraviolet irradiation to dramatically improve the detection limit of liquid-crystal-based immunoassay for the cancer biomarker CA125. JOURNAL OF BIOMEDICAL OPTICS 2015; 20:57004. [PMID: 26000796 DOI: 10.1117/1.jbo.20.5.057004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 05/04/2015] [Indexed: 05/05/2023]
Abstract
Liquid crystal (LC)-based biosensing has attracted much attention in recent years. We focus on improving the detection limit of LC-based immunoassay techniques by surface modification of the surfactant alignment layer consisting of dimethyloctadecyl[3-(trimethoxysilyl)propyl]ammonium chloride (DMOAP). The cancer biomarker CA125 was detected with an array of anti-CA125 antibodies immobilized on the ultraviolet (UV)-modified DMOAP monolayer. Compared with a pristine counterpart, UV irradiation enhanced the binding affinity of the CA125 antibody and reproducibility of immunodetection in which a detection limit of 0.01 ng∕ml for the cancer biomarker CA125 was achieved. Additionally, the optical texture observed under a crossed polarized microscope was correlated with the analyte concentration. In a proof-of-concept experiment using CA125-spiked human serum as the analyte, specific binding between the CA125 antigen and the anti-CA125 antibody resulted in a distinct and concentration-dependent optical response despite the high background caused by nonspecific binding of other biomolecules in the human serum. Results from this study indicate that UVmodification of the alignment layer, as well as detection with LCs of large birefringence, contributes to the enhanced performance of the label-free LC-based immunodetection, which may be considered a promising alternative to conventional label-based methods.
Collapse
Affiliation(s)
- Hui-Wen Su
- National Chiao Tung University, Institute of Imaging and Biomedical Photonics, College of Photonics, Guiren District, Tainan 71150, Taiwan
| | - Mon-Juan Lee
- Chang Jung Christian University, Department of Bioscience Technology, Guiren District, Tainan 71101, Taiwan
| | - Wei Lee
- National Chiao Tung University, Institute of Imaging and Biomedical Photonics, College of Photonics, Guiren District, Tainan 71150, Taiwan
| |
Collapse
|
8
|
Sun SH, Lee MJ, Lee YH, Lee W, Song X, Chen CY. Immunoassays for the cancer biomarker CA125 based on a large-birefringence nematic liquid-crystal mixture. BIOMEDICAL OPTICS EXPRESS 2015; 6:245-56. [PMID: 25657889 PMCID: PMC4317129 DOI: 10.1364/boe.6.000245] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Revised: 12/07/2014] [Accepted: 12/18/2014] [Indexed: 05/05/2023]
Abstract
The use of fluorescence is ubiquitously found in the detection of immunoreaction; though with good sensitivity, this technique requires labeling as well as other time-consuming steps to perform the measurement. An alternative approach involving liquid crystals (LCs) was proposed, based on the fact that an immunocomplex can disturb the orientation of LCs, leading to an optical texture different from the case when only antigen or antibody exists. This method is label-free, easy to manipulate and low-cost. However, its sensitivity was low for practical usage. In this study, we adopted a high-birefringence liquid crystal (LC) to enhance the sensitivity for the immunodetection. Experiments were performed, targeting at the cancer biomarker CA125. We showed that the larger birefringence (Δn = 0.33 at 20 °C) amplifies the detected signal and, in turn, dramatically improves the detection limit. To avoid signal loss from conventional rinsing steps in immunodetection, CA125 antigen and antibody were reacted before immobilized on substrates. We studied the specific binding events and obtained a detection limit as low as 1 ng/ml. The valid temperature ranges were compared by using the typical single-compound LC 5CB and the high-birefringence LC mixture. We further investigated time dependency of the optical textures and affirmed the capability of LC-based immunodetection in distinguishing between specific and nonspecific antibodies.
Collapse
Affiliation(s)
- Shih-Hung Sun
- Institute of Imaging and Biomedical Photonics, College of Photonics, National Chiao Tung University, Guiren Dist., Tainan 71150,
Taiwan
| | - Mon-Juan Lee
- Department of Bioscience Technology, Chang Jung Christian University, Guiren Dist., Tainan 71101,
Taiwan
- (M.-J. Lee)
| | - Yun-Han Lee
- Institute of Imaging and Biomedical Photonics, College of Photonics, National Chiao Tung University, Guiren Dist., Tainan 71150,
Taiwan
| | - Wei Lee
- Institute of Imaging and Biomedical Photonics, College of Photonics, National Chiao Tung University, Guiren Dist., Tainan 71150,
Taiwan
- (W. Lee)
| | - Xiaolong Song
- Jiangsu Hecheng Display Technology Co., Ltd., Nanjing 210014,
China
| | - Chao-Yuan Chen
- Jiangsu Hecheng Display Technology Co., Ltd., Nanjing 210014,
China
| |
Collapse
|
9
|
Yoon SH, Gupta KC, Borah JS, Park SY, Kim YK, Lee JH, Kang IK. Folate ligand anchored liquid crystal microdroplets emulsion for in vitro detection of KB cancer cells. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:10668-10677. [PMID: 25121826 DOI: 10.1021/la502032k] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
A KB cancer cell-selective, liquid crystal microdroplets emulsion is prepared using folic acid-conjugated block copolymers (PS-b-PAA-FA) and sodium dodecyl sulfate (SDS) as a mediator to induce configurational transitions in 4-cyano-4'-pentylbiphenyl (5CB) liquid crystal microdroplets emulsion. The prepared liquid crystal microdroplets emulsion has shown a configurational transition from radial to bipolar on interacting with KB cancer cells, but no transition from radial to bipolar configuration is observed when liquid crystal microdroplets emulsion was allowed to interact with other normal cells such as fibroblast and osteoblast. The KB cancer cell selectivity of liquid crystal microdroplets emulsion has been considered due to the presence of KB cancer cell folate receptor-specific ligand (FA) at the surface of liquid crystal microdroplets, which allowed liquid crystal microdroplets to interact specifically with KB cancer cells. The ligand-receptor interactions have been considered responsible for triggering the configurational transitions from radial to bipolar in liquid crystal microdroplets emulsion. Thus, folate ligand anchored liquid crystal microdroplets emulsion has shown a potential to be used for in vitro detection of KB cancer cells in the early stage of tumor development.
Collapse
Affiliation(s)
- Seong H Yoon
- Department of Polymer Science and Engineering, ‡Chemical Engineering Organic Nanoelectronics Laboratory, and §Materials Science & Engineering, Kyungpook National University , Daegu 702-701, South Korea
| | | | | | | | | | | | | |
Collapse
|
10
|
Zhang M, Jang CH. Sensitive detection of trypsin using liquid-crystal droplet patterns modulated by interactions between poly-L-lysine and a phospholipid monolayer. Chemphyschem 2014; 15:2569-74. [PMID: 24850496 DOI: 10.1002/cphc.201402120] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Indexed: 01/08/2023]
Abstract
Liquid-crystal (LC) droplet patterns are formed on a glass slide by evaporating a solution of nematic LC dissolved in heptane. In the presence of an anionic phospholipid, 1,2-dioleoyl-sn-glycero-3-phospho-rac-(1-glycerol) (DOPG), the LCs display a dark cross pattern, indicating a homeotropic orientation. When LC patterns are incubated with an aqueous mixture of DOPG and poly-L-lysine (PLL), there is a transition in the LC pattern from a dark cross to a bright fan shape due to the electrostatic interaction between DOPG and PLL. Known to catalyze the hydrolysis of PLL into oligopeptide fragments, trypsin is preincubated with PLL, significantly decreasing the interactions between PLL and DOPG. LCs adopt a perpendicular orientation at the water-LC droplet interface, which gives rise to a dark cross pattern. This optical response of LC droplets is the basis for a quick and sensitive biosensor for trypsin.
Collapse
Affiliation(s)
- Minmin Zhang
- Department of Chemistry, Gachon University, Seongnam-Si, Gyeonggi-Do 461-701 (Korea)
| | | |
Collapse
|
11
|
Aliño VJ, Pang J, Yang KL. Liquid crystal droplets as a hosting and sensing platform for developing immunoassays. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2011; 27:11784-11789. [PMID: 21863867 DOI: 10.1021/la2022215] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
In this paper, we report an immunoassay in which probe proteins are immobilized on the surface of liquid crystal (LC) droplets rather than on solid surfaces. The advantage of this immunoassay is that the binding of antibodies to the probe proteins can be transduced by the LC droplets directly without the need for additional steps. For example, when we incubate the LC droplets decorated with immunoglobulin G (IgG) in a solution containing anti-IgG (AIgG), these droplets change their orientations from radial to bipolar configuration. In contrast, when we incubate the IgG-LC droplets in a solution containing anti-human serum albumin (AHSA), no changes are observed. The change of orientational configuration indicates the formation of the antigen-antibody immunocomplex on the surface of the LC droplets. Using LC droplet immunoassays, we successfully detect antibody concentrations as low as 0.01 μg/mL for AIgG and 0.02 μg/mL for AHSA. Because the immunoassay using LC droplets is label-free and gives a unique optical response, it has the potential to be further developed as a portable and low-cost immunoassay.
Collapse
Affiliation(s)
- Vera Joanne Aliño
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117576, Singapore
| | | | | |
Collapse
|
12
|
Kinsinger MI, Buck ME, Abbott NL, Lynn DM. Immobilization of polymer-decorated liquid crystal droplets on chemically tailored surfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2010; 26:10234-42. [PMID: 20405867 PMCID: PMC2883006 DOI: 10.1021/la100376u] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
We demonstrate that the assembly of an amphiphilic polyamine on the interfaces of micrometer-sized droplets of a thermotropic liquid crystal (LC) dispersed in aqueous solutions can be used to facilitate the immobilization of LC droplets on chemically functionalized surfaces. Polymer 1 was designed to contain both hydrophobic (alkyl-functionalized) and hydrophilic (primary and tertiary amine-functionalized) side chain functionality. The assembly of this polymer at the interfaces of aqueous dispersions of LC droplets was achieved by the spontaneous adsorption of polymer from aqueous solution. Polymer adsorption triggered transitions in the orientational ordering of the LCs, as observed by polarized light and bright-field microscopy. We demonstrate that the presence of polymer 1 on the interfaces of these droplets can be exploited to immobilize LC droplets on planar solid surfaces through covalent bond formation (e.g., for surfaces coated with polymer multilayers containing reactive azlactone functionality) or through electrostatic interactions (e.g., for surfaces coated with multilayers containing hydrolyzed azlactone functionality). The characterization of immobilized LC droplets by polarized, fluorescence, and laser scanning confocal microscopy revealed the general spherical shape of the polymer-coated LC droplets to be maintained after immobilization, and that immobilization led to additional ordering transitions within the droplets that were dependent on the nature of the surfaces with which they were in contact. Polymer 1-functionalized LC droplets were not immobilized on polymer multilayers treated with poly(ethylene imine) (PEI). We demonstrate that the ability to design surfaces that promote or prevent the immobilization of polymer-functionalized LC droplets can be exploited to pattern the immobilization of LC droplets on surfaces. The results of this investigation provide the basis of an approach that could be used to tailor the properties of dispersed LC emulsions and to immobilize these droplets on functional surfaces of interest in a broad range of fundamental and applied contexts.
Collapse
Affiliation(s)
- Michael I Kinsinger
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, 1415 Engineering Drive, Madison, Wisconsin 53706, USA
| | | | | | | |
Collapse
|
13
|
Fletcher PDI, Kang NG, Paunov VN. UV Polymerisation of Surfactants Adsorbed at the Nematic Liquid CrystalâWater Interface Produces an Optical Response. Chemphyschem 2009; 10:3046-53. [DOI: 10.1002/cphc.200900405] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
14
|
Bi X, Lai SL, Yang KL. Liquid Crystal Multiplexed Protease Assays Reporting Enzymatic Activities as Optical Bar Charts. Anal Chem 2009; 81:5503-9. [DOI: 10.1021/ac900793w] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Xinyan Bi
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117576
| | - Siok Lian Lai
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117576
| | - Kun-Lin Yang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117576
| |
Collapse
|
15
|
Abstract
Enzyme assays are analytical tools to visualize enzyme activities. In recent years a large variety of enzyme assays have been developed to assist the discovery and optimization of industrial enzymes, in particular for "white biotechnology" where selective enzymes are used with great success for economically viable, mild and environmentally benign production processes. The present article highlights the aspects of fluorogenic and chromogenic substrates, sensors, and enzyme fingerprinting, which are our particular areas of interest.
Collapse
Affiliation(s)
- Jean-Louis Reymond
- Department of Chemistry and Biochemistry, University of Berne, Freiestrasse 3, Berne, 3012, Switzerland.
| | | | | |
Collapse
|
16
|
Birchall LS, Ulijn RV, Webb SJ. A combined SPS–LCD sensor for screening protease specificity. Chem Commun (Camb) 2008:2861-3. [DOI: 10.1039/b805321a] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
17
|
Woltman SJ, Jay GD, Crawford GP. Liquid-crystal materials find a new order in biomedical applications. NATURE MATERIALS 2007; 6:929-38. [PMID: 18026108 DOI: 10.1038/nmat2010] [Citation(s) in RCA: 369] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
With the maturation of the information display field, liquid-crystal materials research is undergoing a modern-day renaissance. Devices and configurations based on liquid-crystal materials are being developed for spectroscopy, imaging and microscopy, leading to new techniques for optically probing biological systems. Biosensors fabricated with liquid-crystal materials can allow label-free observations of biological phenomena. Liquid-crystal polymers are starting to be used in biomimicking colour-producing structures, lenses and muscle-like actuators. New areas of application in the realms of biology and medicine are stimulating innovation in basic and applied research into these materials.
Collapse
Affiliation(s)
- Scott J Woltman
- Department of Physics, Brown University, Providence, RI 02912, USA
| | | | | |
Collapse
|
18
|
Hoogboom J, Elemans JAAW, Rowan AE, Rasing THM, Nolte RJM. The development of self-assembled liquid crystal display alignment layers. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2007; 365:1553-76. [PMID: 17428764 DOI: 10.1098/rsta.2007.2031] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
From simple pocket calculators to mobile telephones and liquid crystal display (LCD)-TV, over the past few decades, devices based on LCD technology have proliferated and can now be found in all conceivable aspects of everyday life. Although used in cutting-edge technology, it is surprising that a vital part in the construction of such displays, namely the alignment layer, relies essentially on a mechanical rubbing process, invented almost 100 years ago. In this paper efforts to develop alignment layers (also called command layers) by processes other than rubbing, namely self-assembly of molecular and macromolecular components will be discussed. Two topics will be presented: (i) tuneable command layers formed by stepwise assembling of siloxane oligomers and phthalocyanine dyes on indium tin oxide surfaces and (ii) command layers formed by self-assembly of porphyrin trimers. The potential use of these layers in sensor devices will also be mentioned.
Collapse
Affiliation(s)
- Johan Hoogboom
- Institute for Molecules and Materials, Radboud University Nijmegen, Toernooiveld 1, 6525ED, The Netherlands.
| | | | | | | | | |
Collapse
|