1
|
Gaikwad HK, Jaswandkar SV, Katti KS, Haage A, Katti DR. Molecular basis of conformational changes and mechanics of integrins. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2023; 381:20220243. [PMID: 37211038 DOI: 10.1098/rsta.2022.0243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 01/13/2023] [Indexed: 05/23/2023]
Abstract
Integrin, as a mechanotransducer, establishes the mechanical reciprocity between the extracellular matrix (ECM) and cells at integrin-mediated adhesion sites. This study used steered molecular dynamics (SMD) simulations to investigate the mechanical responses of integrin αvβ3 with and without 10th type III fibronectin (FnIII10) binding for tensile, bending and torsional loading conditions. The ligand-binding integrin confirmed the integrin activation during equilibration and altered the integrin dynamics by changing the interface interaction between β-tail, hybrid and epidermal growth factor domains during initial tensile loading. The tensile deformation in integrin molecules indicated that fibronectin ligand binding modulates its mechanical responses in the folded and unfolded conformation states. The bending deformation responses of extended integrin models reveal the change in behaviour of integrin molecules in the presence of Mn2+ ion and ligand based on the application of force in the folding and unfolding directions of integrin. Furthermore, these SMD simulation results were used to predict the mechanical properties of integrin underlying the mechanism of integrin-based adhesion. The evaluation of integrin mechanics provides new insights into understanding the mechanotransmission (force transmission) between cells and ECM and contributes to developing an accurate model for integrin-mediated adhesion. This article is part of a discussion meeting issue 'Supercomputing simulations of advanced materials'.
Collapse
Affiliation(s)
- Hanmant K Gaikwad
- Department of Civil, Construction and Environmental Engineering, North Dakota State University, Fargo, ND 58105, USA
| | - Sharad V Jaswandkar
- Department of Civil, Construction and Environmental Engineering, North Dakota State University, Fargo, ND 58105, USA
| | - Kalpana S Katti
- Department of Civil, Construction and Environmental Engineering, North Dakota State University, Fargo, ND 58105, USA
| | - Amanda Haage
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, ND 58202, USA
| | - Dinesh R Katti
- Department of Civil, Construction and Environmental Engineering, North Dakota State University, Fargo, ND 58105, USA
| |
Collapse
|
2
|
Kapetanaki S, Kumawat AK, Persson K, Demirel I. The Fibrotic Effects of TMAO on Human Renal Fibroblasts Is Mediated by NLRP3, Caspase-1 and the PERK/Akt/mTOR Pathway. Int J Mol Sci 2021; 22:ijms222111864. [PMID: 34769294 PMCID: PMC8584593 DOI: 10.3390/ijms222111864] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 10/24/2021] [Accepted: 10/30/2021] [Indexed: 02/06/2023] Open
Abstract
Trimethylamine N-oxide (TMAO), a product of gut microbiota metabolism, has previously been shown to be implicated in chronic kidney disease. A high TMAO-containing diet has been found to cause tubulointerstitial renal fibrosis in mice. However, today there are no data linking specific molecular pathways with the effect of TMAO on human renal fibrosis. The aim of this study was to investigate the fibrotic effects of TMAO on renal fibroblasts and to elucidate the molecular pathways involved. We found that TMAO promoted renal fibroblast activation and fibroblast proliferation via the PERK/Akt/mTOR pathway, NLRP3, and caspase-1 signaling. We also found that TMAO increased the total collagen production from renal fibroblasts via the PERK/Akt/mTOR pathway. However, TMAO did not induce fibronectin or TGF-β1 release from renal fibroblasts. We have unraveled that the PERK/Akt/mTOR pathway, NLRP3, and caspase-1 mediates TMAO’s fibrotic effect on human renal fibroblasts. Our results can pave the way for future research to further clarify the molecular mechanism behind TMAO’s effects and to identify novel therapeutic targets in the context of chronic kidney disease.
Collapse
Affiliation(s)
- Stefania Kapetanaki
- School of Medical Sciences, Campus USÖ, Örebro University, 701 82 Örebro, Sweden; (A.K.K.); (K.P.); (I.D.)
- Nephrology Department, Karolinska University Hospital, 171 76 Solna, Sweden
- Nephrology Department, Karolinska University Hospital, 141 86 Huddinge, Sweden
- Correspondence: ; Tel.: +46-1930-3000
| | - Ashok Kumar Kumawat
- School of Medical Sciences, Campus USÖ, Örebro University, 701 82 Örebro, Sweden; (A.K.K.); (K.P.); (I.D.)
- Cardiovascular Research Center, School of Medical Sciences, Örebro University, 701 82 Örebro, Sweden
| | - Katarina Persson
- School of Medical Sciences, Campus USÖ, Örebro University, 701 82 Örebro, Sweden; (A.K.K.); (K.P.); (I.D.)
- iRiSC—Inflammatory Response and Infection Susceptibility Center, Faculty of Medicine and Health, Örebro University, 701 82 Örebro, Sweden
| | - Isak Demirel
- School of Medical Sciences, Campus USÖ, Örebro University, 701 82 Örebro, Sweden; (A.K.K.); (K.P.); (I.D.)
- iRiSC—Inflammatory Response and Infection Susceptibility Center, Faculty of Medicine and Health, Örebro University, 701 82 Örebro, Sweden
| |
Collapse
|
3
|
Parisi L, Toffoli A, Ghezzi B, Mozzoni B, Lumetti S, Macaluso GM. A glance on the role of fibronectin in controlling cell response at biomaterial interface. JAPANESE DENTAL SCIENCE REVIEW 2019; 56:50-55. [PMID: 31890058 PMCID: PMC6928270 DOI: 10.1016/j.jdsr.2019.11.002] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 10/26/2019] [Accepted: 11/21/2019] [Indexed: 12/22/2022] Open
Abstract
The bioactivity of biomaterials is closely related to cell response in contact with them. However, shortly after their insertion, materials are soon covered with proteins that constitute the biological fluids, and which render the direct surface recognition by cells almost impossible. The control of protein adsorption at the interface is therefore desirable. Extracellular matrix proteins are of particular interest in this sense, due to their well-known ability to modulate cell behavior. Particularly, fibronectin plays a leading role, being present in both healthy and injured tissues undergoing healing and regeneration. The aim of the present work is to give an overview on fibronectin and on its involvement in the control of cell behavior providing evidence of its pivotal role in the control of cell adhesion, spreading, migration, proliferation and differentiation. A deep insight into methods to enrich biomaterials surface with fibronectin will be then discussed, as well as new cues on the possibility to design tailored platforms able to specifically retain fibronectin from the surrounding extracellular milieu.
Collapse
Affiliation(s)
- Ludovica Parisi
- Centro Universitario di Odontoiatria, Dipartimento di Medicina e Chirurgia, Università di Parma, Via Gramsci 14, 43126 Parma, Italy
- Labor für Orale Molekularbiologie, Klinik für Kieferorthopädie, Zahnmedizinische Klinik, Universität Bern, Freiburgstrasse 7, 3008 Bern, Switzerland
- Corresponding author. Present address: Labor für Orale Molekularbiologie, Klinik für Kieferorthopädie, Zahnmedizinische Kliniken, Universität Bern, Freiburgstrasse 7, CH-3010 Bern, Switzerland.
| | - Andrea Toffoli
- Centro Universitario di Odontoiatria, Dipartimento di Medicina e Chirurgia, Università di Parma, Via Gramsci 14, 43126 Parma, Italy
| | - Benedetta Ghezzi
- Centro Universitario di Odontoiatria, Dipartimento di Medicina e Chirurgia, Università di Parma, Via Gramsci 14, 43126 Parma, Italy
| | - Beatrice Mozzoni
- Centro Universitario di Odontoiatria, Dipartimento di Medicina e Chirurgia, Università di Parma, Via Gramsci 14, 43126 Parma, Italy
| | - Simone Lumetti
- Centro Universitario di Odontoiatria, Dipartimento di Medicina e Chirurgia, Università di Parma, Via Gramsci 14, 43126 Parma, Italy
| | - Guido M. Macaluso
- Centro Universitario di Odontoiatria, Dipartimento di Medicina e Chirurgia, Università di Parma, Via Gramsci 14, 43126 Parma, Italy
- Istituto dei Materiali per l’Elettronica e l’Elettromagnetismo, Consiglio Nazionale delle Ricerche, Parco Area delle Scienze 17/A, 43124 Parma, Italy
| |
Collapse
|
4
|
Sumbul F, Rico F. Single-Molecule Force Spectroscopy: Experiments, Analysis, and Simulations. Methods Mol Biol 2019; 1886:163-189. [PMID: 30374867 DOI: 10.1007/978-1-4939-8894-5_9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The mechanical properties of cells and of subcellular components are important to obtain a mechanistic molecular understanding of biological processes. The quantification of mechanical resistance of cells and biomolecules using biophysical methods matured thanks to the development of nanotechnologies such as optical and magnetic tweezers, the biomembrane force probe, and atomic force microscopy (AFM). The quantitative nature of force spectroscopy measurements has converted AFM into a valuable tool in biophysics. Force spectroscopy allows the determination of the forces required to unfold protein domains and to disrupt individual receptor/ligand bonds. Molecular simulations as a computational microscope allow investigation of similar biological processes with an atomistic detail. In this chapter, we first provide a step-by-step protocol of force spectroscopy experiments using AFM, including sample preparation, measurements, and analysis and interpretation of the resulting dynamic force spectrum in terms of available theories. Next, we present the background for molecular dynamics (MD) simulations focusing on steered molecular dynamics (SMD) and the importance of bridging computational tools with experimental techniques.
Collapse
Affiliation(s)
- Fidan Sumbul
- LAI, Aix-Marseille Université, INSERM UMR_S 1067, CNRS UMR 7333, 163 Avenue de Luminy, Marseille, 13009, France
| | - Felix Rico
- LAI, Aix-Marseille Université, INSERM UMR_S 1067, CNRS UMR 7333, 163 Avenue de Luminy, Marseille, 13009, France.
| |
Collapse
|
5
|
Conzatti G, Cavalie S, Gayet F, Torrisani J, Carrère N, Tourrette A. Elaboration of a thermosensitive smart biomaterial: From synthesis to the ex vivo bioadhesion evaluation. Colloids Surf B Biointerfaces 2018; 175:91-97. [PMID: 30522012 DOI: 10.1016/j.colsurfb.2018.11.084] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 11/08/2018] [Accepted: 11/29/2018] [Indexed: 01/08/2023]
Abstract
Alginate and chitosan are polysaccharides that are widely used in the biomedical field, especially as wound dressings. Controlled bioadhesion is an advanced functionality that offers the potential to reduce injuries due to the stripping-off of the biomaterial. Herein, we report the efficient grafting of poly-N(isopropylacryamide) (PNIPAM), a thermosensitive polymer that exhibits a lower critical solution temperature (LCST) at 32 °C on the alginate/chitosan polyelectrolyte complex (PEC) surface. In vitro studies did not exhibit a cytotoxic effect, and cells adhered preferentially on the LCST on PNIPAM grafted surfaces, as reported in the literature. Ex vivo investigations revealed that the adhesive behavior of the biomaterials was not the same on the liver and pancreas. The effect of the temperature on the bioadhesion to organs was unexpected, as PNIPAM surfaces exhibited higher adhesion at low temperature. The PNIPAM was therefore able to confer PEC matrix thermosensitivity, but due to the application force, interactions between PNIPAM chains and their substrate could influence bioadhesion on tissues.
Collapse
Affiliation(s)
- G Conzatti
- CIRIMAT, Université de Toulouse 3 - Paul Sabatier, CNRS, Toulouse, France
| | - S Cavalie
- CIRIMAT, Université de Toulouse 3 - Paul Sabatier, CNRS, Toulouse, France
| | - F Gayet
- LCC, Université de Toulouse 3 - Paul Sabatier, CNRS, Toulouse, France
| | - J Torrisani
- INSERM, Université Toulouse 3 - Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France
| | - N Carrère
- INSERM, Université Toulouse 3 - Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France; Gastrointestinal Surgery department, Purpan Hospital - CHU de Toulouse, Toulouse, France
| | - A Tourrette
- CIRIMAT, Université de Toulouse 3 - Paul Sabatier, CNRS, Toulouse, France.
| |
Collapse
|
6
|
Asghari Sana F, Çapkın Yurtsever M, Kaynak Bayrak G, Tunçay EÖ, Kiremitçi AS, Gümüşderelioğlu M. Spreading, proliferation and differentiation of human dental pulp stem cells on chitosan scaffolds immobilized with RGD or fibronectin. Cytotechnology 2017; 69:617-630. [PMID: 28653139 PMCID: PMC5507842 DOI: 10.1007/s10616-017-0072-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2016] [Accepted: 01/31/2017] [Indexed: 01/09/2023] Open
Abstract
Nowadays, human dental pulp stem cells (hDPSCs) became more attractive for therapeutic purposes because of their high proliferation and differentiation potential. Thus, coupling the desired cellular characteristics of hDPSCs with good biomaterial properties of the chitosan scaffolds provide an interesting approach for tissue engineering applications. On the other hand, scaffold surface modification is also needed to promote stem cell adhesion since chitosan lacks adhesion motifs to support direct cell anchorage. In this study, hDPSCs were isolated from third molars of healthy female individuals (aged 16-25) with enzymatic digestion. For cell culture studies, the chitosan scaffolds which have approximately 9 mm diameter and 2 mm thickness with interconnected structure were prepared by freeze-drying. To support cellular attachment the scaffolds were covalently immobilized with either RGD (arginine-glycine-aspartic acid) or fibronectin (Fn) molecules. Cells were seeded on chitosan scaffolds with or without immobilized RGD and fibronectin. Cell attachment, spreading, adhesion behaviors and proliferation capacity were examined by scanning electron microscopy, immunofluorescence staining and PrestoBlue® assays, respectively. In addition, differentiation potential of hDPSCs on Fn immobilized chitosan scaffolds was determined with real time reverse transcriptase polymerase chain reaction analysis. The results showed that chitosan scaffolds were not able to support stem cell attachment. hDPSCs on chitosan scaffolds formed spheroids more quickly and the size of spheroids were smaller than on chitosan-RGD while Fn-immobilized chitosan scaffolds strongly supported cellular attachment but not odontogenic differentiation. The results suggest that the Fn-immobilized chitosan scaffolds may serve as good three-dimensional substrates for dental pulp stem cell attachment and proliferation. In the case of dental regeneration, they must be supported by appropriate biosignals to induce odontogenic differentiation.
Collapse
Affiliation(s)
- Farzin Asghari Sana
- Department of Nanotechnology and Nanomedicine, Hacettepe University, Ankara, Turkey
| | | | | | - Ekin Özge Tunçay
- Department of Bioengineering, Hacettepe University, Ankara, Turkey
| | - Arlin S Kiremitçi
- Department of Nanotechnology and Nanomedicine, Hacettepe University, Ankara, Turkey
- Department of Bioengineering, Hacettepe University, Ankara, Turkey
- Department of Restorative Dentistry, Hacettepe University, Ankara, Turkey
| | - Menemşe Gümüşderelioğlu
- Department of Nanotechnology and Nanomedicine, Hacettepe University, Ankara, Turkey.
- Department of Bioengineering, Hacettepe University, Ankara, Turkey.
- Chemical Engineering Department, Hacettepe University, Ankara, Turkey.
| |
Collapse
|
7
|
Conzatti G, Cavalie S, Combes C, Torrisani J, Carrere N, Tourrette A. PNIPAM grafted surfaces through ATRP and RAFT polymerization: Chemistry and bioadhesion. Colloids Surf B Biointerfaces 2017; 151:143-155. [DOI: 10.1016/j.colsurfb.2016.12.007] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 11/25/2016] [Accepted: 12/07/2016] [Indexed: 12/23/2022]
|
8
|
Guo H, Torzilli PA. Shape of chondrocytes within articular cartilage affects the solid but not the fluid microenvironment under unconfined compression. Acta Biomater 2016; 29:170-179. [PMID: 26525115 DOI: 10.1016/j.actbio.2015.10.035] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 10/14/2015] [Accepted: 10/20/2015] [Indexed: 10/22/2022]
Abstract
Metabolic activity of the chondrocytes in articular cartilage is strongly related to their zone-specific shape and the composition and mechanical properties of their surrounding extracellular matrix (ECM). However the mechanisms by which cell shape influences the response of the ECM microenvironment to mechanical loading is yet to be elucidated. This relationship was studied using a biphasic multiscale finite element model of different shaped chondrocytes in the superficial and deep zones of the ECM during unconfined stress relaxation. For chondrocytes in the superficial zone, increasing the cell's initial aspect ratio (length/height) increased the deformation and solid stresses of the chondrocyte and pericellular matrix (PCM) during the loading phase; for chondrocytes in the deep zone the effect of the cell shape on the solid microenvironment was time and variable dependent. However, for superficial and deep zone chondrocytes the cell shape did not affect the fluid pressure and fluid shear stress. These results suggest that mechanotransduction of chondrocytes in articular cartilage may be regulated through the solid phase rather than the fluid phase, and that high stresses and deformations in the solid microenvironment in the superficial zone may be essential for the zone-specific biosynthetic activity of the chondrocyte. The biphasic multiscale computational analysis suggests that maintaining the cell shape is critical for regulating the microenvironment and metabolic activity of the chondrocyte in tissue engineering constructs. STATEMENT OF SIGNIFICANCE We investigated the effect of chondrocyte shape on the cellular microenvironment using a biphasic multiscale finite element analysis. Our study showed that cell shapes affects the solid but not the fluid microenvironment of the chondrocyte, and that maintaining the cell shape is critical for regulating the microenvironment and metabolic activity of the chondrocyte in native cartilage and tissue engineering constructs. As far as we know, this is the first study on the mechanotransduction mechanisms by which cell shape influences the response of the microenvironment to mechanical loading. This study is important for understanding cell mechanobiology, not only for regulation of cell phenotype in tissue engineered constructs but, as important, for understanding changes in normal chondrocyte function after post-traumatic injury and in the initiation and progression of osteoarthritis.
Collapse
|
9
|
Study of protein structural deformations under external mechanical perturbations by a coarse-grained simulation method. Biomech Model Mechanobiol 2015; 15:317-29. [DOI: 10.1007/s10237-015-0690-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 05/30/2015] [Indexed: 01/14/2023]
|
10
|
Girdhar A, Sathe C, Schulten K, Leburton JP. Tunable graphene quantum point contact transistor for DNA detection and characterization. NANOTECHNOLOGY 2015; 26:134005. [PMID: 25765702 PMCID: PMC4400256 DOI: 10.1088/0957-4484/26/13/134005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
A graphene membrane conductor containing a nanopore in a quantum point contact geometry is a promising candidate to sense, and potentially sequence, DNA molecules translocating through the nanopore. Within this geometry, the shape, size, and position of the nanopore as well as the edge configuration influences the membrane conductance caused by the electrostatic interaction between the DNA nucleotides and the nanopore edge. It is shown that the graphene conductance variations resulting from DNA translocation can be enhanced by choosing a particular geometry as well as by modulating the graphene Fermi energy, which demonstrates the ability to detect conformational transformations of a double-stranded DNA, as well as the passage of individual base pairs of a single-stranded DNA molecule through the nanopore.
Collapse
Affiliation(s)
- Anuj Girdhar
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Chaitanya Sathe
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Klaus Schulten
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL 61801
- To whom correspondence should be addressed. ,
| | - Jean-Pierre Leburton
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL 61801
- To whom correspondence should be addressed. ,
| |
Collapse
|
11
|
Sathe C, Girdhar A, Leburton JP, Schulten K. Electronic detection of dsDNA transition from helical to zipper conformation using graphene nanopores. NANOTECHNOLOGY 2014; 25:445105. [PMID: 25325530 PMCID: PMC4244269 DOI: 10.1088/0957-4484/25/44/445105] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Mechanical manipulation of DNA by forced extension can lead double-stranded DNA (dsDNA) to structurally transform from a helical form to a linear zipper-like form. By employing classical molecular dynamics and quantum mechanical nonequilibrium Green's function-based transport simulations, we show the ability of graphene nanopores to discern different dsDNA conformations, in a helical to zipper transition, using transverse electronic conductance. In particular, conductance oscillations due to helical dsDNA vanish as dsDNA extends from a helical form to a zipper form while it is transported through the nanopore. The predicted ability to detect conformational changes in dsDNA via transverse electronic conductance can widen the potential use of graphene-based nanosensors for DNA detection.
Collapse
Affiliation(s)
- Chaitanya Sathe
- Beckman Institute for advanced science and technology, University of Illinois, Urbana, Illinois, USA
- Department of Electrical and computer engineering, University of Illinois, Urbana, Illinois, USA
| | - Anuj Girdhar
- Beckman Institute for advanced science and technology, University of Illinois, Urbana, Illinois, USA
- Department of Physics, University of Illinois, Urbana, Illinois, USA
| | - Jean-Pierre Leburton
- Beckman Institute for advanced science and technology, University of Illinois, Urbana, Illinois, USA
- Department of Electrical and computer engineering, University of Illinois, Urbana, Illinois, USA
- Department of Physics, University of Illinois, Urbana, Illinois, USA
| | - Klaus Schulten
- Beckman Institute for advanced science and technology, University of Illinois, Urbana, Illinois, USA
- Department of Physics, University of Illinois, Urbana, Illinois, USA
| |
Collapse
|
12
|
Enhanced cell growth on nanotextured GaN surface treated by UV illumination and fibronectin adsorption. Colloids Surf B Biointerfaces 2014; 123:293-301. [DOI: 10.1016/j.colsurfb.2014.09.030] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Revised: 08/24/2014] [Accepted: 09/12/2014] [Indexed: 11/18/2022]
|
13
|
|
14
|
Geletu M, Guy S, Arulanandam R, Feracci H, Raptis L. Engaged for survival: From cadherin ligation to STAT3 activation. JAKSTAT 2013; 2:e27363. [PMID: 24470979 DOI: 10.4161/jkst.27363] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Revised: 11/26/2013] [Accepted: 11/27/2013] [Indexed: 12/15/2022] Open
Abstract
In normal tissues or tumors, cells have extensive opportunities for adhesion to their neighbors. This state is mimicked by dense cell cultures. In this review, we integrate some recent findings on a key signal transducer, STAT3 (signal transducer and activator of transcription-3), whose activity is dramatically increased following cadherin-mediated cell to cell adhesion. Cadherin engagement, favored in dense cell cultures, causes a dramatic increase in total Rac/Cdc42 protein levels through inhibition of proteasomal degradation, which is followed by activation of IL-6 and STAT3. The cadherin/Rac/IL-6/STAT3 axis offers a potent survival signal that is a prerequisite for neoplastic transformation, as well as normal tissue function.
Collapse
Affiliation(s)
- Mulu Geletu
- Department of Pathology; Queen's University; Kingston, ON Canada
| | - Stephanie Guy
- Department of Pathology; Queen's University; Kingston, ON Canada
| | | | - Hélène Feracci
- Université Bordeaux 1; Centre de Recherche Paul Pascal; CNRS UPR 8641; Pessac, France
| | - Leda Raptis
- Department of Pathology; Queen's University; Kingston, ON Canada ; Department of Biomedical and Molecular Sciences; Queen's University; Kingston, ON Canada
| |
Collapse
|
15
|
Kedrov A, Kusters I, Driessen AJM. Single-Molecule Studies of Bacterial Protein Translocation. Biochemistry 2013; 52:6740-54. [DOI: 10.1021/bi400913x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Alexej Kedrov
- Department of Molecular Microbiology, Groningen
Biomolecular Sciences and Biotechnology Institute, and Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 7, 9747
AG Groningen, The Netherlands
| | - Ilja Kusters
- Department of Molecular Microbiology, Groningen
Biomolecular Sciences and Biotechnology Institute, and Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 7, 9747
AG Groningen, The Netherlands
| | - Arnold J. M. Driessen
- Department of Molecular Microbiology, Groningen
Biomolecular Sciences and Biotechnology Institute, and Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 7, 9747
AG Groningen, The Netherlands
| |
Collapse
|
16
|
Bujalowski PJ, Oberhauser AF. Tracking unfolding and refolding reactions of single proteins using atomic force microscopy methods. Methods 2013; 60:151-60. [PMID: 23523554 DOI: 10.1016/j.ymeth.2013.03.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Revised: 03/07/2013] [Accepted: 03/11/2013] [Indexed: 11/26/2022] Open
Abstract
During the last two decades single-molecule manipulation techniques such as atomic force microscopy (AFM) has risen to prominence through their unique capacity to provide fundamental information on the structure and function of biomolecules. Here we describe the use of single-molecule AFM to track protein unfolding and refolding pathways, enzymatic catalysis and the effects of osmolytes and chaperones on protein stability and folding. We will outline the principles of operation for two different AFM pulling techniques: length clamp and force-clamp and discuss prominent applications. We provide protocols for the construction of polyproteins which are amenable for AFM experiments, the preparation of different coverslips, choice and calibration of AFM cantilevers. We also discuss the selection criteria for AFM recordings, the calibration of AFM cantilevers, protein sample preparations and analysis of the obtained data.
Collapse
Affiliation(s)
- Paul J Bujalowski
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch at Galveston, TX 77555, USA
| | | |
Collapse
|
17
|
Liu R, Wu F, Thiery JP. Remarkable disparity in mechanical response among the extracellular domains of type I and II cadherins. J Biomol Struct Dyn 2012; 31:1137-49. [PMID: 23034078 DOI: 10.1080/07391102.2012.726530] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Cadherins, a large family of calcium-dependent adhesion molecules, are critical for intercellular adhesion. While crystallographic structures for several cadherins show clear structural similarities, their relevant adhesive strengths vary and their mechanisms of adhesion between types I and II cadherin subfamilies are still unclear. Here, stretching of cadherins was explored experimentally by atomic force microscopy and computationally by steered molecular dynamics (SMD) simulations, where partial unfolding of the E-cadherin ectodomains was observed. The SMD simulations on strand-swapping cadherin dimers displayed similarity in binding strength, suggesting contributions of other mechanisms to explain the strength differences of cell adhesion in vivo. Systematic simulations on the unfolding of the extracellular domains of type I and II cadherins revealed diverse pathways. However, at the earliest stage, a remarkable similarity in unfolding was observed for the various type I cadherins that was distinct from that for type II cadherins. This likely correlates positively with their distinct adhesive properties, suggesting that the initial forced deformation in type I cadherins may be involved in cadherin-mediated adhesion. An animated Interactive 3D Complement (I3DC) is available in Proteopedia at http://proteopedia.org/w/Journal:JBSD:25.
Collapse
Affiliation(s)
- Ruchuan Liu
- a MechanoBiology Institute, National University of Singapore , 5A Engineering Drive 1 , 117411 , Singapore
| | | | | |
Collapse
|
18
|
Titze IR, Klemuk SA, Lu X. Adhesion of a Monolayer of Fibroblast Cells to Fibronectin under Sonic Vibrations in a Bioreactor. Ann Otol Rhinol Laryngol 2012; 121:364-74. [DOI: 10.1177/000348941212100602] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Objectives: We examined cell adhesion to a surface under vibrational forces approximating those of phonation. Methods: A monolayer of human fibroblast cells was seeded on a fibronectin-coated glass coverslip, which was attached to either the rotating part or the stationary part of a rheometer-bioreactor. The temperature, humidity, carbon dioxide level, nutrients, and cell seeding density were controlled. The cell density was on the order of 1,000 to 5,000 cells per square millimeter. Target stresses above 1 kPa at an oscillatory frequency of 100 Hz were chosen to reflect conditions of vocal fold tissue vibration. Results: Fibronectin coating provided enough adhesion to support at least 2 kPa of oscillating stress, but only about 0.1 kPa of steady rotational shear. For stresses exceeding those limits, the cells were not able to adhere to the thin film of fibronectin. Conclusions: Cells will adhere to a planar surface under stresses typical of phonation, which provide a more stringent test than adherence in a 3-dimensional matrix. The density of cell seeding on the coverslip played a role in cell–extracellular matrix adhesion, in that the cells adhered to each other more than to the fibronectin coating when the cells were nearly confluent.
Collapse
|
19
|
Liu Y, Hsin J, Kim H, Selvin PR, Schulten K. Extension of a three-helix bundle domain of myosin VI and key role of calmodulins. Biophys J 2011; 100:2964-73. [PMID: 21689530 DOI: 10.1016/j.bpj.2011.05.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2011] [Revised: 04/26/2011] [Accepted: 05/03/2011] [Indexed: 10/18/2022] Open
Abstract
The molecular motor protein myosin VI moves toward the minus-end of actin filaments with a step size of 30-36 nm. Such large step size either drastically limits the degree of complex formation between dimer subunits to leave enough length for the lever arms, or requires an extension of the lever arms' crystallographically observed structure. Recent experimental work proposed that myosin VI dimerization triggers the unfolding of the protein's proximal tail domain which could drive the needed lever-arm extension. Here, we demonstrate through steered molecular dynamics simulation the feasibility of sufficient extension arising from turning a three-helix bundle into a long α-helix. A key role is played by the known calmodulin binding that facilitates the extension by altering the strain path in myosin VI. Sequence analysis of the proximal tail domain suggests that further calmodulin binding sites open up when the domain's three-helix bundle is unfolded and that subsequent calmodulin binding stabilizes the extended lever arms.
Collapse
Affiliation(s)
- Yanxin Liu
- Department of Physics and Center for the Physics of Living Cells, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | | | | | | | | |
Collapse
|
20
|
Severin PMD, Zou X, Gaub HE, Schulten K. Cytosine methylation alters DNA mechanical properties. Nucleic Acids Res 2011; 39:8740-51. [PMID: 21775342 PMCID: PMC3203585 DOI: 10.1093/nar/gkr578] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2011] [Revised: 06/14/2011] [Accepted: 06/28/2011] [Indexed: 12/22/2022] Open
Abstract
DNA methylation plays an essential role in transcriptional control of organismal development in epigenetics, from turning off a specific gene to inactivation of entire chromosomes. While the biological function of DNA methylation is becoming increasingly clear, the mechanism of methylation-induced gene regulation is still poorly understood. Through single-molecule force experiments and simulation we investigated the effects of methylation on strand separation of DNA, a crucial step in gene expression. Molecular force assay and single-molecule force spectroscopy revealed a strong methylation dependence of strand separation. Methylation is observed to either inhibit or facilitate strand separation, depending on methylation level and sequence context. Molecular dynamics simulations provided a detailed view of methylation effects on strand separation, suggesting the underlying physical mechanism. According to our study, methylation in epigenetics may regulate gene expression not only through mechanisms already known but also through changing mechanical properties of DNA.
Collapse
Affiliation(s)
- Philip M. D. Severin
- Lehrstuhl für Angewandte Physik and Center for Nanoscience (CeNS), Ludwig-Maximilians-Universität, Amalienstrasse 54, 80799 Munich, Munich Center For Integrated Protein Science (CIPSM), Ludwig-Maximilians-Universität, Butenandtstrasse 5-13, 81377 Munich, Germany, Beckman Institute, University of Illinois, Urbana, Illinois, USA, School of Physics, Peking University, Beijing, China and Department of Physics, University of Illinois, Urbana, Illinois, USA
| | - Xueqing Zou
- Lehrstuhl für Angewandte Physik and Center for Nanoscience (CeNS), Ludwig-Maximilians-Universität, Amalienstrasse 54, 80799 Munich, Munich Center For Integrated Protein Science (CIPSM), Ludwig-Maximilians-Universität, Butenandtstrasse 5-13, 81377 Munich, Germany, Beckman Institute, University of Illinois, Urbana, Illinois, USA, School of Physics, Peking University, Beijing, China and Department of Physics, University of Illinois, Urbana, Illinois, USA
| | - Hermann E. Gaub
- Lehrstuhl für Angewandte Physik and Center for Nanoscience (CeNS), Ludwig-Maximilians-Universität, Amalienstrasse 54, 80799 Munich, Munich Center For Integrated Protein Science (CIPSM), Ludwig-Maximilians-Universität, Butenandtstrasse 5-13, 81377 Munich, Germany, Beckman Institute, University of Illinois, Urbana, Illinois, USA, School of Physics, Peking University, Beijing, China and Department of Physics, University of Illinois, Urbana, Illinois, USA
| | - Klaus Schulten
- Lehrstuhl für Angewandte Physik and Center for Nanoscience (CeNS), Ludwig-Maximilians-Universität, Amalienstrasse 54, 80799 Munich, Munich Center For Integrated Protein Science (CIPSM), Ludwig-Maximilians-Universität, Butenandtstrasse 5-13, 81377 Munich, Germany, Beckman Institute, University of Illinois, Urbana, Illinois, USA, School of Physics, Peking University, Beijing, China and Department of Physics, University of Illinois, Urbana, Illinois, USA
| |
Collapse
|
21
|
Lehnert M, Gorbahn M, Rosin C, Klein M, Köper I, Al-Nawas B, Knoll W, Veith M. Adsorption and conformation behavior of biotinylated fibronectin on streptavidin-modified TiO(X) surfaces studied by SPR and AFM. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2011; 27:7743-7751. [PMID: 21598954 DOI: 10.1021/la200908h] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
It is well-known that protein-modified implant surfaces such as TiO(2) show a higher bioconductivity. Fibronectin is a glycoprotein from the extracellular matrix (ECM) with a major role in cell adhesion. It can be applied on titanium oxide surfaces to accelerate implant integration. Not only the surface concentration but also the presentation of the protein plays an important role for the cellular response. We were able to show that TiO(X) surfaces modified with biotinylated fibronectin adsorbed on a streptavidin-silane self-assembly multilayer system are more effective regarding osteoblast adhesion than surfaces modified with nonspecifically bound fibronectin. The adsorption and conformation behavior of biotinylated and nonbiotinylated (native) fibronectin was studied by surface plasmon resonance (SPR) spectroscopy and atomic force microscopy (AFM). Imaging of the protein modification revealed that fibronectin adopts different conformations on nonmodified compared to streptavidin-modified TiO(X) surfaces. This conformational change of biotinylated fibronectin on the streptavidin monolayer delivers a fibronectin structure similar to the conformation inside the ECM and therefore explains the higher cell affinity for these surfaces.
Collapse
Affiliation(s)
- Michael Lehnert
- Laboratory of Biophysics, Physical Engineering Department, University of Applied Sciences of Gelsenkirchen, August-Schmidt-Ring 10, D-45665 Recklinghausen, Germany
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Hsin J, Strümpfer J, Lee EH, Schulten K. Molecular Origin of the Hierarchical Elasticity of Titin: Simulation, Experiment, and Theory. Annu Rev Biophys 2011; 40:187-203. [DOI: 10.1146/annurev-biophys-072110-125325] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Jen Hsin
- Department of Physics, Urbana, Illinois 61801
- Beckman Institute for Advanced Science and Technology, Urbana, Illinois 61801
| | - Johan Strümpfer
- Department of Physics, Urbana, Illinois 61801
- Center for Biophysics and Computational Biology, Urbana, Illinois 61801
| | - Eric H. Lee
- Beckman Institute for Advanced Science and Technology, Urbana, Illinois 61801
- Center for Biophysics and Computational Biology, Urbana, Illinois 61801
- College of Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801;
| | - Klaus Schulten
- Department of Physics, Urbana, Illinois 61801
- Beckman Institute for Advanced Science and Technology, Urbana, Illinois 61801
- Center for Biophysics and Computational Biology, Urbana, Illinois 61801
| |
Collapse
|
23
|
Yu H, Mouw JK, Weaver VM. Forcing form and function: biomechanical regulation of tumor evolution. Trends Cell Biol 2010; 21:47-56. [PMID: 20870407 DOI: 10.1016/j.tcb.2010.08.015] [Citation(s) in RCA: 234] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Revised: 08/21/2010] [Accepted: 08/31/2010] [Indexed: 02/04/2023]
Abstract
Cancer cells exist in a constantly evolving tissue microenvironment of diverse cell types within a proteinaceous extracellular matrix. As tumors evolve, the physical forces within this complex microenvironment change, with pleiotropic effects on both cell- and tissue-level behaviors. Recent work suggests that these biomechanical factors direct tissue development and modulate tissue homeostasis, and, when altered, crucially influence tumor evolution. In this review, we discuss the biomechanical regulation of cell and tissue homeostasis from the molecular, cellular and tissue levels, including how modifications of this physical dialogue could contribute to cancer etiology. Because of the broad impact of biomechanical factors on cell and tissue functions, an understanding of tumor evolution from the biomechanical perspective should improve risk assessment, clinical diagnosis and the efficacy of cancer treatment.
Collapse
Affiliation(s)
- Hongmei Yu
- Department of Surgery, University of California at San Francisco, San Francisco, CA 94143, USA
| | | | | |
Collapse
|
24
|
Le L, Lee EH, Hardy DJ, Truong TN, Schulten K. Molecular dynamics simulations suggest that electrostatic funnel directs binding of Tamiflu to influenza N1 neuraminidases. PLoS Comput Biol 2010; 6. [PMID: 20885781 PMCID: PMC2944783 DOI: 10.1371/journal.pcbi.1000939] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2010] [Accepted: 08/23/2010] [Indexed: 11/19/2022] Open
Abstract
Oseltamivir (Tamiflu) is currently the frontline antiviral drug employed to fight the flu virus in infected individuals by inhibiting neuraminidase, a flu protein responsible for the release of newly synthesized virions. However, oseltamivir resistance has become a critical problem due to rapid mutation of the flu virus. Unfortunately, how mutations actually confer drug resistance is not well understood. In this study, we employ molecular dynamics (MD) and steered molecular dynamics (SMD) simulations, as well as graphics processing unit (GPU)-accelerated electrostatic mapping, to uncover the mechanism behind point mutation induced oseltamivir-resistance in both H5N1 “avian” and H1N1pdm “swine” flu N1-subtype neuraminidases. The simulations reveal an electrostatic binding funnel that plays a key role in directing oseltamivir into and out of its binding site on N1 neuraminidase. The binding pathway for oseltamivir suggests how mutations disrupt drug binding and how new drugs may circumvent the resistance mechanisms. Oseltamivir (Tamiflu) is the main antiviral drug used to fight viral influenza outbreaks such as the recent swine flu (H1N1pdm) global pandemic and avian (H5N1) outbreak in Asia. Oseltamivir inhibits a protein on the surface of flu viruses called neuraminidase, which is responsible for releasing newly formed viruses. The rapid emergence of drug resistance in H5N1 avian flu (and recently the H1N1pdm strain) has already motivated numerous studies to understand how mutations render oseltamivir ineffective, but no focused investigation has yet elucidated the specific mechanism behind mutation-induced drug resistance. Here, large scale computer simulations are employed to study both H5N1 and H1N1pdm neuraminidase to answer the questions: how does N1-subtype neuraminidase bind oseltamivir, and how would mutations alter this process? The key finding revealed in our simulations is the discovery of oseltamivir binding to neuraminidase by a charged pathway on the protein surface. We suggest that point mutations may disrupt drug binding by interfering with this pathway. Our results explain the fundamental mechanism behind oseltamivir resistance and pave the way for the design of drugs that circumvent viral drug resistance.
Collapse
Affiliation(s)
- Ly Le
- Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
- Department of Chemistry, University of Utah, Salt Lake City, Utah, United States of America
- School of Biotechnology, Ho Chi Minh International University and Saigon Institute for Computational Science and Technology, Ho Chi Minh City, Vietnam
| | - Eric H. Lee
- Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
- Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
- College of Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - David J. Hardy
- Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Thanh N. Truong
- Department of Chemistry, University of Utah, Salt Lake City, Utah, United States of America
| | - Klaus Schulten
- Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
- Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
- * E-mail:
| |
Collapse
|
25
|
Arad-Haase G, Chuartzman SG, Dagan S, Nevo R, Kouza M, Mai BK, Nguyen HT, Li MS, Reich Z. Mechanical unfolding of acylphosphatase studied by single-molecule force spectroscopy and MD simulations. Biophys J 2010; 99:238-47. [PMID: 20655852 PMCID: PMC2895382 DOI: 10.1016/j.bpj.2010.04.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2010] [Revised: 03/28/2010] [Accepted: 04/01/2010] [Indexed: 11/30/2022] Open
Abstract
Single-molecule manipulation methods provide a powerful means to study protein transitions. Here we combined single-molecule force spectroscopy and steered molecular-dynamics simulations to study the mechanical properties and unfolding behavior of the small enzyme acylphosphatase (AcP). We find that mechanical unfolding of AcP occurs at relatively low forces in an all-or-none fashion and is decelerated in the presence of a ligand, as observed in solution measurements. The prominent energy barrier for the transition is separated from the native state by a distance that is unusually long for alpha/beta proteins. Unfolding is initiated at the C-terminal strand (beta(T)) that lies at one edge of the beta-sheet of AcP, followed by unraveling of the strand located at the other. The central strand of the sheet and the two helices in the protein unfold last. Ligand binding counteracts unfolding by stabilizing contacts between an arginine residue (Arg-23) and the catalytic loop, as well as with beta(T) of AcP, which renders the force-bearing units of the protein resistant to force. This stabilizing effect may also account for the decelerated unfolding of ligand-bound AcP in the absence of force.
Collapse
Affiliation(s)
- Gali Arad-Haase
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot, Israel
| | - Silvia G. Chuartzman
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot, Israel
| | - Shlomi Dagan
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot, Israel
| | - Reinat Nevo
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot, Israel
| | - Maksim Kouza
- Department of Physics, Michigan Technological University, Houghton, Michigan
| | - Binh Khanh Mai
- Saigon Institute for Computational Science and Technology, Ho Chi Minh City, Vietnam
| | - Hung Tien Nguyen
- Saigon Institute for Computational Science and Technology, Ho Chi Minh City, Vietnam
| | - Mai Suan Li
- Institute of Physics, Polish Academy of Sciences, Warsaw, Poland
| | - Ziv Reich
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
26
|
Tertiary and secondary structure elasticity of a six-Ig titin chain. Biophys J 2010; 98:1085-95. [PMID: 20303866 DOI: 10.1016/j.bpj.2009.12.4192] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2009] [Revised: 11/25/2009] [Accepted: 12/02/2009] [Indexed: 12/11/2022] Open
Abstract
The protein titin functions as a mechanical spring conferring passive elasticity to muscle. Force spectroscopy studies have shown that titin exhibits several regimes of elasticity. Disordered segments bring about a soft, entropic spring-type elasticity; secondary structures of titin's immunoglobulin-like (Ig-) and fibronectin type III-like (FN-III) domains provide a stiff elasticity. In this study, we demonstrate a third type of elasticity due to tertiary structure and involving domain-domain interaction and reorganization along the titin chain. Through 870 ns of molecular dynamics simulations involving 29,000-635,000 atom systems, the mechanical properties of a six-Ig domain segment of titin (I65-I70), for which a crystallographic structure is available, are probed. The results reveal a soft tertiary structure elasticity. A remarkably accurate statistical mechanical description for this elasticity is derived and applied. Simulations also studied the stiff, secondary structure elasticity of the I65-I70 chain due to the unraveling of its domains and revealed how force propagates along the chain during the secondary structure elasticity response.
Collapse
|
27
|
Diao J, Maniotis AJ, Folberg R, Tajkhorshid E. Interplay of mechanical and binding properties of Fibronectin type I. Theor Chem Acc 2010; 125:397-405. [PMID: 20824113 PMCID: PMC2932639 DOI: 10.1007/s00214-009-0677-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Fibronectins (FNs) are a major component of the extracellular matrix (ECM), and provide important binding sites for a variety of ligands outside and on the surface of the cell. Similar to other ECM proteins, FNs are consistently subject to mechanical stress in the ECM. Therefore, it is important to study their structure and binding properties under mechanical stress and understand how their binding and mechanical properties might affect each other. Although certain FN modules have been extensively investigated, no simulation studies have been reported for the FN type I (Fn1) domains, despite their prominent role in binding of various protein modules to FN polymers in the ECM. Using equilibrium and steered molecular dynamics simulations, we have studied mechanical properties of Fn1 modules in the presence or the absence of a specific FN-binding peptide (FnBP). We have also investigated how the binding of the FnBP peptide to Fn1 might be affected by tensile force. Despite the presence of disulfide bonds within individual Fn1 modules that are presumed to prevent their extension, it is found that significant internal structural changes within individual modules are induced by the forces applied in our simulations. These internal structural changes result in significant variations in the accessibility of different residues of the Fn1 modules, which affect their exposure, and, thus, the binding properties of the Fn1 modules. Binding of the FnBP appears to reduce the flexibility of the linker region connecting individual Fn1 modules (exhibited in the form of reduced fluctuation and motion of the linker region), both with regard to bending and stretching motions, and hence stabilizes the inter-domain configuration under force. Under large tensile forces, the FnBP peptide unbinds from Fn1. The results suggest that Fn1 modules in FN polymers do contribute to the overall extension caused by force-induced stretching of the polymer in the ECM, and that binding properties of Fn1 modules can be affected by mechanically induced internal protein conformational changes in spite of the presence of disulfide bonds which were presumed to completely abolish the capacity of Fn1 modules to undergo extension in response to external forces.
Collapse
Affiliation(s)
- Jiankuai Diao
- Department of Biochemistry, Beckman Institute, Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Andrew J. Maniotis
- Department of Pathology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Robert Folberg
- Department of Pathology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | | |
Collapse
|
28
|
Lee EH, Hsin J, Sotomayor M, Comellas G, Schulten K. Discovery through the computational microscope. Structure 2010; 17:1295-306. [PMID: 19836330 DOI: 10.1016/j.str.2009.09.001] [Citation(s) in RCA: 228] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2009] [Revised: 09/01/2009] [Accepted: 09/03/2009] [Indexed: 11/17/2022]
Abstract
All-atom molecular dynamics simulations have become increasingly popular as a tool to investigate protein function and dynamics. However, researchers are concerned about the short time scales covered by simulations, the apparent impossibility to model large and integral biomolecular systems, and the actual predictive power of the molecular dynamics methodology. Here we review simulations that were in the past both hotly disputed and considered key successes, namely of proteins with mainly mechanical functions (titin, fibrinogen, ankyrin, and cadherin). The simulation work covered shows how state-of-the-art modeling alleviates some of the prior concerns and how unrefuted discoveries are made through the "computational microscope."
Collapse
Affiliation(s)
- Eric H Lee
- Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | | | | | | | | |
Collapse
|
29
|
PR65, the HEAT-repeat scaffold of phosphatase PP2A, is an elastic connector that links force and catalysis. Proc Natl Acad Sci U S A 2010; 107:2467-72. [PMID: 20133745 DOI: 10.1073/pnas.0914073107] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
PR65 is the two-layered (alpha-alpha solenoid) HEAT-repeat (Huntingtin, elongation factor 3, a subunit of protein phosphatase 2A, PI3 kinase target of rapamycin 1) scaffold of protein phosphatase PP2A. Molecular dynamics simulations predict that, at forces expected in living systems, PR65 undergoes (visco-)elastic deformations in response to pulling/pushing on its ends. At lower forces, smooth global flexural and torsional changes occur via even redistribution of stress along the hydrophobic core of the molecule. At intermediate forces, helix-helix separation along one layer ("fracturing") leads to global relaxation plus loss of contact in the other layer to unstack the affected units. Fracture sites are determined by unusual sequences in contiguous interhelix turns. Normal mode analysis of the heterotrimeric PP2A enzyme reveals that its ambient conformational fluctuations are dominated by elastic deformations of PR65, which introduce a mechanical linkage between the separately bound regulatory and catalytic subunits. PR65-dominated fluctuations of PP2A have the effect of opening and closing the enzyme's substrate binding/catalysis interface, as well as altering the positions of certain catalytic residues. These results suggest that substrate binding/catalysis are sensitive to mechanical force. Force could be imposed from the outside (e.g., in PP2A's response to spindle tension) or arise spontaneously (e.g., in PP2A's interaction with unstructured proteins such as Tau, a microtubule-associated Alzheimer's-implicated protein). The presented example supports the view that conformation and function of protein complexes can be modulated by mechanical energy inputs, as well as by chemical energy inputs from ligand binding. Given that helical-repeat proteins are involved in many cellular processes, the findings also encourage the view that mechanical forces may be of widespread importance.
Collapse
|
30
|
Coordinated Regulation of Vascular Ca2+ and K+ Channels by Integrin Signaling. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 674:69-79. [DOI: 10.1007/978-1-4419-6066-5_7] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
31
|
Chng CP, Kitao A. Mechanical unfolding of bacterial flagellar filament protein by molecular dynamics simulation. J Mol Graph Model 2009; 28:548-54. [PMID: 20044289 DOI: 10.1016/j.jmgm.2009.11.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2009] [Accepted: 11/30/2009] [Indexed: 01/03/2023]
Abstract
Bacterial flagellum is a nano-scale motility device constructed by self-assembly. During construction of the cell-exterior filament (the 'propeller'), subunit proteins (called flagellin) are thought to be exported through the hollow flagellum to the growing filament tip in an unfolded state. To gain insight into the unfolded state preceding any force-spectroscopy experiments on flagellin, we employed force-probe molecular dynamics simulations. Two schemes to attain an unfolded state suitable for efficient transport were examined: (i) stretching flagellin along its length; (ii) unzipping flagellin from its adjacently placed termini. Atomic-level unfolding pathways and the mechanical efforts involved under each scheme were obtained for the four-domain flagellin from S. typhimurium. Flagellin appeared stiffer and required larger unfolding forces when stretched as the relative sliding of beta-strands require the breaking of multiple hydrogen bonds at once. In contrast, unzipping requires lower unfolding forces as it mainly involves unraveling beta-sheets by breaking hydrogen bonds one by one.
Collapse
Affiliation(s)
- Choon-Peng Chng
- Department of Computational Biology, Graduate School of Frontier Sciences, University of Tokyo, Japan
| | | |
Collapse
|
32
|
Neumann J, Gottschalk KE. The effect of different force applications on the protein-protein complex Barnase-Barstar. Biophys J 2009; 97:1687-99. [PMID: 19751674 DOI: 10.1016/j.bpj.2009.01.052] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2008] [Revised: 01/09/2009] [Accepted: 01/13/2009] [Indexed: 12/16/2022] Open
Abstract
Steered molecular dynamics simulations are a tool to examine the energy landscape of protein-protein complexes by applying external forces. Here, we analyze the influence of the velocity and geometry of the probing forces on a protein complex using this tool. With steered molecular dynamics, we probe the stability of the protein-protein complex Barnase-Barstar. The individual proteins are mechanically labile. The Barnase-Barstar binding site is more stable than the folds of the individual proteins. By using different force protocols, we observe a variety of responses of the system to the applied tension.
Collapse
Affiliation(s)
- Jan Neumann
- Angewandte Physik und Biophysik, Ludwig-Maximilians Universität, Munich, Germany
| | | |
Collapse
|
33
|
Stenberg KAE, Vihinen M. Crystal structure of a 1.6-hexanediol bound tetrameric form of Escherichia coli lac-repressor refined to 2.1 A resolution. Proteins 2009; 75:748-59. [PMID: 19004002 DOI: 10.1002/prot.22284] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
We report the structure of a novel tetrameric form of the lactose repressor (LacI) protein from Escherichia coli refined to 2.1 A resolution. The tetramer is bound to 1.6-hexanediol present in the crystallization solution and the final R(free) for the structure is 0.201. The structure confirms previously reported structures on the monomer level. However, the tetramer is much more densely packed. This adds a new level of complexity to the interpretation of mutational effects and challenges details in the current model for LacI function. Several amino acids, previously associated with changes in function but unexplained at the structural level, appear in a new structural context in this tetramer which provides new implications for their function.
Collapse
Affiliation(s)
- Kaj A E Stenberg
- Faculty of Biosciences, Division of Biochemistry, University of Helsinki, Helsinki, Finland.
| | | |
Collapse
|
34
|
Shi Y, Huang L, Brenner DW. Computational study of nanometer-scale self-propulsion enabled by asymmetric chemical catalysis. J Chem Phys 2009; 131:014705. [DOI: 10.1063/1.3153919] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
35
|
Prestress and adhesion site dynamics control cell sensitivity to extracellular stiffness. Biophys J 2009; 96:2009-22. [PMID: 19254561 DOI: 10.1016/j.bpj.2008.10.072] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2008] [Accepted: 10/27/2008] [Indexed: 01/13/2023] Open
Abstract
This study aims at improving the understanding of mechanisms responsible for cell sensitivity to extracellular environment. We explain how substrate mechanical properties can modulate the force regulation of cell sensitive elements primarily adhesion sites. We present a theoretical and experimental comparison between two radically different approaches of the force regulation of adhesion sites that depends on their either stationary or dynamic behavior. The most classical stationary model fails to predict cell sensitivity to substrate stiffness whereas the dynamic model predicts extracellular stiffness dependence. This is due to a time dependent reaction force in response to actomyosin traction force exerted on cell sensitive elements. We purposely used two cellular models, i.e., alveolar epithelial cells and alveolar macrophages exhibiting respectively stationary and dynamic adhesion sites, and compared their sensitivity to theoretical predictions. Mechanical and structural results show that alveolar epithelial cells exhibit significant prestress supported by evident stress fibers and lacks sensitivity to substrate stiffness. On the other hand, alveolar macrophages exhibit low prestress and exhibit sensitivity to substrate stiffness. Altogether, theory and experiments consistently show that adhesion site dynamics and cytoskeleton prestress control cell sensitivity to extracellular environment with an optimal sensitivity expected in the intermediate range.
Collapse
|
36
|
Maruthamuthu V, Schulten K, Leckband D. Elasticity and rupture of a multi-domain neural cell adhesion molecule complex. Biophys J 2009; 96:3005-14. [PMID: 19383447 PMCID: PMC2718298 DOI: 10.1016/j.bpj.2008.12.3936] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2008] [Revised: 12/20/2008] [Accepted: 12/24/2008] [Indexed: 12/21/2022] Open
Abstract
The neural cell adhesion molecule (NCAM) plays an important role in nervous system development. NCAM forms a complex between its terminal domains Ig1 and Ig2. When NCAM of cell A and of cell B connect to each other through complexes Ig12(A)/Ig12(B), the relative mobility of cells A and B and membrane tension exerts a force on the Ig12(A)/Ig12(B) complex. In this study, we investigated the response of the complex to force, using steered molecular dynamics. Starting from the structure of the complex from the Ig1-Ig2-Ig3 fragment, we first demonstrated that the complex, which differs in dimensions from a previous structure from the Ig1-Ig2 fragment in the crystal environment, assumes the same extension when equilibrated in solvent. We then showed that, when the Ig12(A)/Ig12(B) complex is pulled apart with forces 30-70 pN, it exhibits elastic behavior (with a spring constant of approximately 0.03 N/m) because of the relative reorientation of domains Ig1 and Ig2. At higher forces, the complex ruptures; i.e., Ig12(A) and Ig12(B) separate. The interfacial interactions between Ig12(A) and Ig12(B), monitored throughout elastic extension and rupture, identify E16, F19, K98, and L175 as key side chains stabilizing the complex.
Collapse
Affiliation(s)
- Venkat Maruthamuthu
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Klaus Schulten
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Deborah Leckband
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois
| |
Collapse
|
37
|
Lupieri P, Nguyen CHH, Bafghi ZG, Giorgetti A, Carloni P. Computational molecular biology approaches to ligand-target interactions. HFSP JOURNAL 2009; 3:228-39. [PMID: 20119480 DOI: 10.2976/1.3092784] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2008] [Accepted: 02/11/2009] [Indexed: 11/19/2022]
Abstract
Binding of small molecules to their targets triggers complex pathways. Computational approaches are keys for predictions of the molecular events involved in such cascades. Here we review current efforts at characterizing the molecular determinants in the largest membrane-bound receptor family, the G-protein-coupled receptors (GPCRs). We focus on odorant receptors, which constitute more than half GPCRs. The work presented in this review uncovers structural and energetic aspects of components of the cellular cascade. Finally, a computational approach in the context of radioactive boron-based antitumoral therapies is briefly described.
Collapse
|
38
|
Yuan JM, Chyan CL, Zhou HX, Chung TY, Peng H, Ping G, Yang G. The effects of macromolecular crowding on the mechanical stability of protein molecules. Protein Sci 2008; 17:2156-66. [PMID: 18780817 DOI: 10.1110/ps.037325.108] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Macromolecular crowding, a common phenomenon in the cellular environments, can significantly affect the thermodynamic and kinetic properties of proteins. A single-molecule method based on atomic force microscopy (AFM) was used to investigate the effects of macromolecular crowding on the forces required to unfold individual protein molecules. It was found that the mechanical stability of ubiquitin molecules was enhanced by macromolecular crowding from added dextran molecules. The average unfolding force increased from 210 pN in the absence of dextran to 234 pN in the presence of 300 g/L dextran at a pulling speed of 0.25 microm/sec. A theoretical model, accounting for the effects of macromolecular crowding on the native and transition states of the protein molecule by applying the scaled-particle theory, was used to quantitatively explain the crowding-induced increase in the unfolding force. The experimental results and interpretation presented could have wide implications for the many proteins that experience mechanical stresses and perform mechanical functions in the crowded environment of the cell.
Collapse
Affiliation(s)
- Jian-Min Yuan
- Department of Physics, Drexel University, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | | | | | |
Collapse
|
39
|
Abstract
Modular proteins such as titin, fibronectin, and cadherin are ubiquitous components of living cells. Often involved in signaling and mechanical processes, their architecture is characterized by domains containing a variable number of heterogeneous "repeats" arranged in series, with either flexible or rigid linker regions that determine their elasticity. Cadherin repeats arranged in series are unique in that linker regions also feature calcium-binding motifs. While it is well known that the extracellular repeats of cadherin proteins mediate cell-cell adhesion in a calcium-dependent manner, the molecular mechanisms behind the influence of calcium in adhesion dynamics and cadherin's mechanical response are not well understood. Here we show, using molecular dynamics simulations, how calcium ions control the structural integrity of cadherin's linker regions, thereby affecting cadherin's equilibrium dynamics, the availability of key residues involved in cell-cell adhesion, and cadherin's mechanical response. The all-atom, multi-nanosecond molecular dynamics simulations involved the entire C-cadherin extracellular domain solvated in water (a 345,000 atom system). Equilibrium simulations show that the extracellular domain maintains its crystal conformation (elongated and slightly curved) when calcium ions are present. In the absence of calcium ions, however, it assumes a disordered conformation. The conserved residue Trp(2), which is thought to insert itself into a hydrophobic pocket of another cadherin molecule (thereby providing the basis for cell-cell adhesion), switches conformation from exposed to intermittently buried upon removal of calcium ions. Furthermore, the overall mechanical response of C-cadherin's extracellular domain is characterized at low force by changes in shape (tertiary structure elasticity), and at high force by unraveling of secondary structure elements (secondary structure elasticity). This mechanical response is modulated by calcium ions at both low and high force, switching from a stiff, rod-like to a soft, spring-like behavior upon removal of ions. The simulations provide an unprecedented molecular view of calcium-mediated allostery in cadherins, also illustrating the general principles of linker-mediated elasticity of modular proteins relevant not only for cell-cell adhesion and sound transduction, but also muscle elasticity.
Collapse
|
40
|
Oberhauser AF, Carrión-Vázquez M. Mechanical biochemistry of proteins one molecule at a time. J Biol Chem 2008; 283:6617-21. [PMID: 18195002 DOI: 10.1074/jbc.r700050200] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The activity of proteins and their complexes often involves the conversion of chemical energy (stored or supplied) into mechanical work through conformational changes. Mechanical forces are also crucial for the regulation of the structure and function of cells and tissues. Thus, the shape of eukaryotic cells (and by extension, that of the multicellular organisms they form) is the result of cycles of mechanosensing, mechanotransduction, and mechanoresponse. Recently developed single-molecule atomic force microscopy techniques can be used to manipulate single molecules, both in real time and under physiological conditions, and are ideally suited to directly quantify the forces involved in both intra- and intermolecular protein interactions. In combination with molecular biology and computer simulations, these techniques have been applied to characterize the unfolding and refolding reactions in a variety of proteins. Single-molecule mechanical techniques are providing fundamental information on the structure and function of proteins and are becoming an indispensable tool to understand how these molecules fold and work.
Collapse
Affiliation(s)
- Andres F Oberhauser
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, Texas 77555, USA.
| | | |
Collapse
|
41
|
Abstract
Translocation through the extracellular vestibule and binding of leucine in the leucine transporter (LeuT) have been studied with molecular dynamics simulations. More than 0.1 mus of all-atom molecular dynamics simulations have been performed on different combinations of LeuT, bound substrate, and bound structural Na(+) ions to describe molecular events involved in substrate binding and in the formation of the occluded state and to investigate the dynamics of this state. Three structural features are found to be directly involved in the initial steps of leucine transport: a Na(+) ion directly coordinated to leucine (Na-1), two aromatic residues closing the binding site toward the extracellular vestibule (Tyr-108 and Phe-253), and a salt bridge in the extracellular vestibule (Arg-30 and Asp-404). These features account for observed differences between simulations of LeuT with and without bound substrate and for a possible pathway for leucine binding and thereby formation of the occluded LeuT binding site.
Collapse
|
42
|
Lee EH, Hsin J, Mayans O, Schulten K. Secondary and tertiary structure elasticity of titin Z1Z2 and a titin chain model. Biophys J 2007; 93:1719-35. [PMID: 17496052 PMCID: PMC1948054 DOI: 10.1529/biophysj.107.105528] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2007] [Accepted: 04/10/2007] [Indexed: 11/18/2022] Open
Abstract
The giant protein titin, which is responsible for passive elasticity in muscle fibers, is built from approximately 300 regular immunoglobulin-like (Ig) domains and FN-III repeats. While the soft elasticity derived from its entropic regions, as well as the stiff mechanical resistance derived from the unfolding of the secondary structure elements of Ig- and FN-III domains have been studied extensively, less is known about the mechanical elasticity stemming from the orientation of neighboring domains relative to each other. Here we address the dynamics and energetics of interdomain arrangement of two adjacent Ig-domains of titin, Z1, and Z2, using molecular dynamics (MD) simulations. The simulations reveal conformational flexibility, due to the domain-domain geometry, that lends an intermediate force elasticity to titin. We employ adaptive biasing force MD simulations to calculate the energy required to bend the Z1Z2 tandem open to identify energetically feasible interdomain arrangements of the Z1 and Z2 domains. The finding is cast into a stochastic model for Z1Z2 interdomain elasticity that is generalized to a multiple domain chain replicating many Z1Z2-like units and representing a long titin segment. The elastic properties of this chain suggest that titin derives so-called tertiary structure elasticity from bending and twisting of its domains. Finally, we employ steered molecular dynamics simulations to stretch individual Z1 and Z2 domains and characterize the so-called secondary structure elasticity of the two domains. Our study suggests that titin's overall elastic response at weak force stems from a soft entropic spring behavior (not described here), from tertiary structure elasticity with an elastic spring constant of approximately 0.001-1 pN/A and, at strong forces, from secondary structure elasticity.
Collapse
Affiliation(s)
- Eric H Lee
- Center for Biophysics and Computational Biology and Beckman Institute, College of Medicine, Department of Physics and Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | | | | | | |
Collapse
|
43
|
Nummela J, Andricioaei I. Exact low-force kinetics from high-force single-molecule unfolding events. Biophys J 2007; 93:3373-81. [PMID: 17704183 PMCID: PMC2072064 DOI: 10.1529/biophysj.107.111658] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Mechanical forces play a key role in crucial cellular processes involving force-bearing biomolecules, as well as in novel single-molecule pulling experiments. We present an exact method that enables one to extrapolate, to low (or zero) forces, entire time-correlation functions and kinetic rate constants from the conformational dynamics either simulated numerically or measured experimentally at a single, relatively higher, external force. The method has twofold relevance: 1), to extrapolate the kinetics at physiological force conditions from molecular dynamics trajectories generated at higher forces that accelerate conformational transitions; and 2), to extrapolate unfolding rates from experimental force-extension single-molecule curves. The theoretical formalism, based on stochastic path integral weights of Langevin trajectories, is presented for the constant-force, constant loading rate, and constant-velocity modes of the pulling experiments. For the first relevance, applications are described for simulating the conformational isomerization of alanine dipeptide; and for the second relevance, the single-molecule pulling of RNA is considered. The ability to assign a weight to each trace in the single-molecule data also suggests a means to quantitatively compare unfolding pathways under different conditions.
Collapse
Affiliation(s)
- Jeremiah Nummela
- Department of Chemistry, Center for Computational Medicine and Biology, University of Michigan, Ann Arbor, Michigan, USA
| | | |
Collapse
|
44
|
Abstract
It is well known that the unfolding times of proteins, tauu, scales with the external mechanical force f as tauu=tauu0exp(-fxu/kBT), where xu is the location of the average transition state along the reaction coordinate given by the end-to-end distance. Using the off-lattice Go-like models, we have shown that in terms of xu, proteins may be divided into two classes. The first class, which includes beta- and beta/alpha-proteins, has xu approximately 2-5 A whereas the second class of alpha-proteins has xu about three times larger than that of the first class, xu approximately 7-15 A. These results are in good agreement with the experimental data. The secondary structure is found to play the key role in determining the shape of the free energy landscape. Namely, the distance between the native state and the transition state depends on the helix content linearly. It is shown that xu has a strong correlation with mechanical stability of proteins. Defining the unfolding force, fu, from the constant velocity pulling measurements as a measure of the mechanical stability, we predict that xu decays with fu by a power law, xu approximately fu(-mu), where the exponent mu is approximately 0.4. We have demonstrated that the unfolding force correlates with the helix content of a protein. The contact order, which is a measure of fraction of local contacts, was found to strongly correlate with the mechanical stability and the distance between the transition state and native state. Our study reveals that xu and fu might be estimated using either the helicity or the contact order.
Collapse
Affiliation(s)
- Mai Suan Li
- Institute of Physics, Polish Academy of Sciences, Warsaw, Poland.
| |
Collapse
|
45
|
Abstract
Single-molecule force experiments in vitro enable the characterization of the mechanical response of biological matter at the nanometer scale. However, they do not reveal the molecular mechanisms underlying mechanical function. These can only be readily studied through molecular dynamics simulations of atomic structural models: "in silico" (by computer analysis) single-molecule experiments. Steered molecular dynamics simulations, in which external forces are used to explore the response and function of macromolecules, have become a powerful tool complementing and guiding in vitro single-molecule experiments. The insights provided by in silico experiments are illustrated here through a review of recent research in three areas of protein mechanics: elasticity of the muscle protein titin and the extracellular matrix protein fibronectin; linker-mediated elasticity of the cytoskeleton protein spectrin; and elasticity of ankyrin repeats, a protein module found ubiquitously in cells but with an as-yet unclear function.
Collapse
Affiliation(s)
- Marcos Sotomayor
- Department of Physics, University of Illinois at Urbana-Champaign, and Beckman Institute for Advanced Science and Technology, 405 North Mathews Avenue, Urbana, IL 61801, USA
| | | |
Collapse
|
46
|
Gumbart J, Wiener MC, Tajkhorshid E. Mechanics of force propagation in TonB-dependent outer membrane transport. Biophys J 2007; 93:496-504. [PMID: 17449669 PMCID: PMC1896255 DOI: 10.1529/biophysj.107.104158] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
For the uptake of scarce yet essential organometallic compounds, outer membrane transporters of Gram-negative bacteria work in concert with an energy-generating inner membrane complex, thus spanning the periplasmic space to drive active transport. Here, we examine the interaction of TonB, an inner membrane protein, with an outer membrane transporter based upon a recent crystal structure of a TonB-transporter complex to characterize two largely unknown steps of the transport cycle: how energy is transmitted from TonB to the transporter and how energy transduction initiates transport. Simulations of TonB in complex with BtuB reveal that force applied to TonB is transmitted to BtuB without disruption of the very small connection between the two, supporting a mechanical mode of coupling. Based on the results of different pulling simulations, we propose that the force transduction instigates a partial unfolding of the pore-occluding luminal domain of the transporter, a potential step in the transport cycle. Furthermore, analysis of the electrostatic potentials and salt bridge interactions between the two proteins during the simulations hints at involvement of electrostatic forces in long-range interaction and binding of TonB and BtuB.
Collapse
Affiliation(s)
- James Gumbart
- Department of Physics and Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | | | | |
Collapse
|
47
|
Jensen MØ, Yin Y, Tajkhorshid E, Schulten K. Sugar transport across lactose permease probed by steered molecular dynamics. Biophys J 2007; 93:92-102. [PMID: 17434947 PMCID: PMC1914442 DOI: 10.1529/biophysj.107.103994] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Escherichia coli lactose permease (LacY) transports sugar across the inner membrane of the bacterium using the proton motive force to accumulate sugar in the cytosol. We have probed lactose conduction across LacY using steered molecular dynamics, permitting us to follow molecular and energetic details of lactose interaction with the lumen of LacY during its permeation. Lactose induces a widening of the narrowest parts of the channel during permeation, the widening being largest within the periplasmic half-channel. During permeation, the water-filled lumen of LacY only partially hydrates lactose, forcing it to interact with channel lining residues. Lactose forms a multitude of direct sugar-channel hydrogen bonds, predominantly with residues of the flexible N-domain, which is known to contribute a major part of LacY's affinity for lactose. In the periplasmic half-channel lactose predominantly interacts with hydrophobic channel lining residues, whereas in the cytoplasmic half-channel key protein-substrate interactions are mediated by ionic residues. A major energy barrier against transport is found within a tight segment of the periplasmic half-channel where sugar hydration is minimal and protein-sugar interaction maximal. Upon unbinding from the binding pocket, lactose undergoes a rotation to permeate either half-channel with its long axis aligned parallel to the channel axis. The results hint at the possibility of a transport mechanism, in which lactose permeates LacY through a narrow periplasmic half-channel and a wide cytoplasmic half-channel, the opening of which is controlled by changes in protonation states of key protein side groups.
Collapse
Affiliation(s)
- Morten Ø Jensen
- Theoretical and Computational Biophysics Group, Beckman Institute, Department of Life Sciences and Chemistry, Roskilde University, Roskilde, Denmark
| | | | | | | |
Collapse
|
48
|
Stein M, Gabdoulline RR, Wade RC. Bridging from molecular simulation to biochemical networks. Curr Opin Struct Biol 2007; 17:166-72. [PMID: 17395455 DOI: 10.1016/j.sbi.2007.03.014] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2006] [Revised: 01/11/2007] [Accepted: 03/16/2007] [Indexed: 11/15/2022]
Abstract
How can we make the connection between the three-dimensional structures of individual proteins and understanding how complex biological systems involving many proteins work? The modelling and simulation of protein structures can help to answer this question for systems ranging from multimacromolecular complexes to organelles and cells. On one hand, multiscale modelling and simulation techniques are advancing to permit the spatial and temporal properties of large systems to be simulated using atomic-detail structures. On the other hand, the estimation of kinetic parameters for the mathematical modelling of biochemical pathways using protein structure information provides a basis for iterative manipulation of biochemical pathways guided by protein structure. Recent advances include the structural modelling of protein complexes on the genomic level, novel coarse-graining strategies to increase the size of the system and the time span that can be simulated, and comparative molecular field analyses to estimate enzyme kinetic parameters.
Collapse
Affiliation(s)
- Matthias Stein
- Molecular and Cellular Modeling Group, EML Research, Schloss-Wolfsbrunnenweg 33, Heidelberg, Germany
| | | | | |
Collapse
|