1
|
Karachaliou CE, Livaniou E. Immunosensors for Autoimmune-Disease-Related Biomarkers: A Literature Review. SENSORS (BASEL, SWITZERLAND) 2023; 23:6770. [PMID: 37571553 PMCID: PMC10422610 DOI: 10.3390/s23156770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/20/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023]
Abstract
Immunosensors are a special class of biosensors that employ specific antibodies for biorecognition of the target analyte. Immunosensors that target disease biomarkers may be exploited as tools for disease diagnosis and/or follow-up, offering several advantages over conventional analytical techniques, such as rapid and easy analysis of patients' samples at the point-of-care. Autoimmune diseases have been increasingly prevalent worldwide in recent years, while the COVID-19 pandemic has also been associated with autoimmunity. Consequently, demand for tools enabling the early and reliable diagnosis of autoimmune diseases is expected to increase in the near future. To this end, interest in immunosensors targeting autoimmune disease biomarkers, mainly, various autoantibodies and specific pro-inflammatory proteins (e.g., specific cytokines), has been rekindled. This review article presents most of the immunosensors proposed to date as potential tools for the diagnosis of various autoimmune diseases, such as type 1 diabetes, rheumatoid arthritis, and multiple sclerosis. The signal transduction and the immunoassay principles of each immunosensor have been suitably classified and are briefly presented along with certain sensor elements, e.g., special nano-sized materials used in the construction of the immunosensing surface. The main concluding remarks are presented and future perspectives of the field are also briefly discussed.
Collapse
Affiliation(s)
| | - Evangelia Livaniou
- Immunopeptide Chemistry Lab, Institute of Nuclear & Radiological Sciences & Technology, Energy & Safety, National Centre for Scientific Research ‘‘Demokritos”, P.O. Box 60037, 153 10 Agia Paraskevi, Greece;
| |
Collapse
|
2
|
Lazanas A, Prodromidis MI. Electrochemical
Impedance Spectroscopy—A Tutorial. ACS MEASUREMENT SCIENCE AU 2023; 3:162-193. [PMCID: PMC10288619 DOI: 10.1021/acsmeasuresciau.2c00070] [Citation(s) in RCA: 73] [Impact Index Per Article: 73.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/20/2023] [Accepted: 02/22/2023] [Indexed: 06/25/2023]
Abstract
![]()
This tutorial provides the theoretical background, the
principles,
and applications of Electrochemical Impedance Spectroscopy (EIS) in
various research and technological sectors. The text has been organized
in 17 sections starting with basic knowledge on sinusoidal signals,
complex numbers, phasor notation, and transfer functions, continuing
with the definition of impedance in electrical circuits, the principles
of EIS, the validation of the experimental data, their simulation
to equivalent electrical circuits, and ending with practical considerations
and selected examples on the utility of EIS to corrosion, energy related
applications, and biosensing. A user interactive excel file showing
the Nyquist and Bode plots of some model circuits is provided in the
Supporting Information. This tutorial aspires to provide the essential
background to graduate students working on EIS, as well as to endow
the knowledge of senior researchers on various fields where EIS is
involved. We also believe that the content of this tutorial will be
a useful educational tool for EIS instructors.
Collapse
Affiliation(s)
| | - Mamas I. Prodromidis
- Department
of Chemistry, University of Ioannina, 45 110 Ioannina, Greece
- Institute
of Materials Science and Computing, University
Research Center of Ioannina (URCI), 45 110 Ioannina, Greece
| |
Collapse
|
3
|
Gupta S, Kaushal A, Kumar A, Kumar D. Recent advances in biosensors for diagnosis of celiac disease: A review. Biotechnol Bioeng 2018; 116:444-451. [PMID: 30516838 DOI: 10.1002/bit.26856] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 09/13/2018] [Accepted: 10/18/2018] [Indexed: 12/16/2022]
Abstract
Celiac disease (CD) is an intestinal issue activated by the inappropriate immune reaction towards gluten protein of wheat, rye, barley, oats, and autoantigen, tissue transglutaminase. Regardless of the accessibility of immunochemical conventions for research facility analysis of CD, there is as yet a need of speedier, less expensive, and simpler devices for diagnosing CD. This review concentrates on progresses in biosensors for diagnosing CD in perspective of the scaled down hardware, multianalyte discovery and low sample volume necessity. Various recently developed biosensors in this field are presented.
Collapse
Affiliation(s)
- Shagun Gupta
- Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan, India
| | - Ankur Kaushal
- Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan, India.,Department of Molecular Biosensor lab, CSIR-Institute of Genomics and Integrative Biology, Delhi, India
| | - Ashok Kumar
- Department of Molecular Biosensor lab, CSIR-Institute of Genomics and Integrative Biology, Delhi, India
| | - Dinesh Kumar
- Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan, India
| |
Collapse
|
4
|
Liu X, Jiang H. Construction and Potential Applications of Biosensors for Proteins in Clinical Laboratory Diagnosis. SENSORS (BASEL, SWITZERLAND) 2017; 17:E2805. [PMID: 29207528 PMCID: PMC5750678 DOI: 10.3390/s17122805] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 11/20/2017] [Accepted: 11/30/2017] [Indexed: 12/11/2022]
Abstract
Biosensors for proteins have shown attractive advantages compared to traditional techniques in clinical laboratory diagnosis. In virtue of modern fabrication modes and detection techniques, various immunosensing platforms have been reported on basis of the specific recognition between antigen-antibody pairs. In addition to profit from the development of nanotechnology and molecular biology, diverse fabrication and signal amplification strategies have been designed for detection of protein antigens, which has led to great achievements in fast quantitative and simultaneous testing with extremely high sensitivity and specificity. Besides antigens, determination of antibodies also possesses great significance for clinical laboratory diagnosis. In this review, we will categorize recent immunosensors for proteins by different detection techniques. The basic conception of detection techniques, sensing mechanisms, and the relevant signal amplification strategies are introduced. Since antibodies and antigens have an equal position to each other in immunosensing, all biosensing strategies for antigens can be extended to antibodies under appropriate optimizations. Biosensors for antibodies are summarized, focusing on potential applications in clinical laboratory diagnosis, such as a series of biomarkers for infectious diseases and autoimmune diseases, and an evaluation of vaccine immunity. The excellent performances of these biosensors provide a prospective space for future antibody-detection-based disease serodiagnosis.
Collapse
Affiliation(s)
- Xuan Liu
- Department of Clinical Laboratory, The Second Affiliated Hospital of Southeast University, Nanjing 210003, China.
| | - Hui Jiang
- School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China.
| |
Collapse
|
5
|
Scherf KA, Ciccocioppo R, Pohanka M, Rimarova K, Opatrilova R, Rodrigo L, Kruzliak P. Biosensors for the Diagnosis of Celiac Disease: Current Status and Future Perspectives. Mol Biotechnol 2017; 58:381-92. [PMID: 27130174 DOI: 10.1007/s12033-016-9940-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Celiac disease (CD) is an autoimmune enteropathy initiated and sustained by the ingestion of gluten in genetically susceptible individuals. It is caused by a dysregulated immune response toward both dietary antigens, the gluten proteins of wheat, rye, and barley, and autoantigens, the enzyme tissue transglutaminase (TG2). The small intestine is the target organ. Although routine immunochemical protocols for a laboratory diagnosis of CD are available, faster, easier-to-use, and cheaper analytical devices for CD diagnosis are currently unavailable. This review focuses on biosensors, consisting of a physicochemical transducer and a bioreceptor, as promising analytical tools for diagnosis of CD and other diseases. Examples of recently developed biosensors as well as expectations for future lines of research and development in this field are presented.
Collapse
Affiliation(s)
| | - Rachele Ciccocioppo
- Clinica Medica I, Fondazione IRCCS Policlinico San Matteo, University of Pavia, Pavia, Italy
| | - Miroslav Pohanka
- Faculty of Military Health Sciences, University of Defence, Hradec Kralove, Czech Republic
| | - Kvetoslava Rimarova
- Department of Public Health and Hygiene, Faculty of Medicine, Pavol Jozef Safarik University, Kosice, Slovakia
| | - Radka Opatrilova
- Department of Chemical Drugs, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences, Brno, Czech Republic
| | - Luis Rodrigo
- Department of Gastroenterology, Central University Hospital of Asturias (HUCA), Oviedo, Spain
| | - Peter Kruzliak
- Laboratory of Structural Biology and Proteomics, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences, Palackeho tr 1946/1, 612 42, Brno, Czech Republic.
| |
Collapse
|
6
|
Martín-Yerga D, Fanjul-Bolado P, Hernández-Santos D, Costa-García A. Enhanced detection of quantum dots by the magnetohydrodynamic effect for electrochemical biosensing. Analyst 2017; 142:1591-1600. [DOI: 10.1039/c7an00086c] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Magnetoelectrochemistry support for screen-printed electrodes.
Collapse
Affiliation(s)
- Daniel Martín-Yerga
- Departamento de Química Física y Analítica
- Universidad de Oviedo
- 33006 Oviedo
- Spain
| | | | | | - Agustín Costa-García
- Departamento de Química Física y Analítica
- Universidad de Oviedo
- 33006 Oviedo
- Spain
| |
Collapse
|
7
|
|
8
|
Scherf KA, Koehler P, Wieser H. Electrochemical Immunosensors for the Diagnosis of Celiac Disease. ACTA ACUST UNITED AC 2015. [DOI: 10.4236/aces.2015.51009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
9
|
|
10
|
An optimised electrochemical biosensor for the label-free detection of C-reactive protein in blood. Biosens Bioelectron 2012; 39:94-8. [PMID: 22809521 DOI: 10.1016/j.bios.2012.06.051] [Citation(s) in RCA: 151] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Revised: 06/08/2012] [Accepted: 06/25/2012] [Indexed: 12/11/2022]
Abstract
C-reactive protein (CRP) is an acute phase protein whose levels are increased in many disorders. There exists, in particular, a great deal of interest in the correlation between blood serum levels and the severity of risk for cardiovascular disease. A sensitive, label-free, non-amplified and reusable electrochemical impedimetric biosensor for the detection of CRP in blood serum was developed herein based on controlled and coverage optimised antibody immobilization on standard polycrystalline gold electrodes. Charge transfer resistance changes were highly target specific, linear with log CRP concentration across a 0.5-50nM range and associated with a limit of detection of 176pM. Significantly, the detection limits are better than those of current CRP clinical methods and the assays are potentially cheap, relatively automated, reusable, multiplexed and highly portable. The generated interfaces were capable not only of comfortably quantifying CRP across a clinically relevant range of concentrations but also of doing this in whole blood serum with interfaces that were, subsequently, reusable. The importance of optimising receptor layer resistance in maximising assay sensitivity is also detailed.
Collapse
|
11
|
Kleo K, Schäfer D, Klar S, Jacob D, Grunow R, Lisdat F. Immunodetection of inactivated Francisella tularensis bacteria by using a quartz crystal microbalance with dissipation monitoring. Anal Bioanal Chem 2012; 404:843-51. [DOI: 10.1007/s00216-012-6172-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2012] [Revised: 05/10/2012] [Accepted: 05/30/2012] [Indexed: 11/29/2022]
|
12
|
Kaatz M, Schulze H, Ciani I, Lisdat F, Mount AR, Bachmann TT. Alkaline phosphatase enzymatic signal amplification for fast, sensitive impedimetric DNA detection. Analyst 2012; 137:59-63. [DOI: 10.1039/c1an15767a] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
13
|
Ciani I, Schulze H, Corrigan DK, Henihan G, Giraud G, Terry JG, Walton AJ, Pethig R, Ghazal P, Crain J, Campbell CJ, Bachmann TT, Mount AR. Development of immunosensors for direct detection of three wound infection biomarkers at point of care using electrochemical impedance spectroscopy. Biosens Bioelectron 2011; 31:413-8. [PMID: 22137369 DOI: 10.1016/j.bios.2011.11.004] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2011] [Revised: 10/19/2011] [Accepted: 11/04/2011] [Indexed: 01/13/2023]
Abstract
A method for label-free, electrochemical impedance immunosensing for the detection and quantification of three infection biomarkers in both buffer and directly in the defined model matrix of mock wound fluid is demonstrated. Triggering Receptor-1 Expressed on Myeloid cells (TREM-1) and Matrix MetalloPeptidase 9 (MMP-9) are detected via direct assay and N-3-oxo-dodecanoyl-l-HomoSerineLactone (HSL), relevant in bacterial quorum sensing, is detected using a competition assay. Detection is performed with gold screen-printed electrodes modified with a specific thiolated antibody. Detection is achieved in less than 1h straight from mock wound fluid without any extensive sample preparation steps. The limits of detection of 3.3 pM for TREM-1, 1.1 nM for MMP-9 and 1.4 nM for HSL are either near or below the threshold required to indicate infection. A relatively large dynamic range for sensor response is also found, consistent with interaction between neighbouring antibody-antigen complexes in the close-packed surface layer. Together, these three novel electrochemical immunosensors demonstrate viable multi-parameter sensing with the required sensitivity for rapid wound infection detection directly from a clinically relevant specimen.
Collapse
Affiliation(s)
- Ilenia Ciani
- School of Chemistry & EaStCHEM, The University of Edinburgh, Joseph Black Building, King's Buildings, West Mains Road, Edinburgh EH9 3JJ, UK
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Kleo K, Kapp A, Ascher L, Lisdat F. Detection of vaccinia virus DNA by quartz crystal microbalance. Anal Biochem 2011; 418:260-6. [DOI: 10.1016/j.ab.2011.07.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2011] [Revised: 07/08/2011] [Accepted: 07/15/2011] [Indexed: 12/31/2022]
|
15
|
Impedance spectra analysis to characterize interdigitated electrodes as electrochemical sensors. Electrochim Acta 2011. [DOI: 10.1016/j.electacta.2011.07.055] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
16
|
Steude A, Schmidt S, Robitzki AA, Pänke O. An electrode array for electrochemical immuno-sensing using the example of impedimetric tenascin C detection. LAB ON A CHIP 2011; 11:2884-2892. [PMID: 21750833 DOI: 10.1039/c1lc20267g] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Electrochemical biosensors allow simple, fast and sensitive analyte detection for various analytical problems. Especially immunosensors are favourable due to specificity and affinity of antigen recognition by the associated antibody. We present a novel electrode array qualified for parallel analysis and increased sample throughput. The chip has nine independent sample chambers. Each chamber contains a circular gold working electrode with a diameter of 1.9 mm that is surrounded by a ring-shaped auxiliary electrode with a platinum surface. The corresponding silver/silver chloride reference electrodes are embedded in a sealing lid. The chip is open to the full range of electrochemical real-time detection methods. Among these techniques, impedance spectroscopy is an attractive tool to detect fast and label-free interfacial changes originating from the biorecognition event at the electrode surface. The capabilities of the novel electrode array are demonstrated using the example of tumour marker tenascin C detection. This glycoprotein of the extracellular matrix is expressed in cancerous tissues, especially in solid tumours such as glioma or breast carcinoma. Electrodes covered with specific antibodies were exposed to tenascin C containing samples. Non-occupied binding sites were identified using a secondary peroxidase-conjugated antibody that generated an insoluble precipitate on the electrode in a subsequent amplification procedure. The charge transfer resistance obtained from impedimetric analysis of ferri-/ferrocyanide conversion at the electrode served as analytic parameter. This assay detected 14 ng (48 fmol) tenascin C that is sufficient for clinical diagnostics. The electrode surface could be regenerated at least 20-fold without loss of its analytical performance.
Collapse
Affiliation(s)
- Anja Steude
- Centre for Biotechnology and Biomedicine (BBZ), University of Leipzig, Division of Molecular Biological-Biochemical Processing Technology, Deutscher Platz 5, D-04103 Leipzig, Germany
| | | | | | | |
Collapse
|
17
|
Electrochemical immunosensor detection of antigliadin antibodies from real human serum. Biosens Bioelectron 2011; 26:4471-6. [DOI: 10.1016/j.bios.2011.05.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2011] [Revised: 05/03/2011] [Accepted: 05/04/2011] [Indexed: 11/24/2022]
|
18
|
Becker B, Cooper MA. A survey of the 2006-2009 quartz crystal microbalance biosensor literature. J Mol Recognit 2011; 24:754-87. [DOI: 10.1002/jmr.1117] [Citation(s) in RCA: 138] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
19
|
Dulay S, Lozano-Sánchez P, Iwuoha E, Katakis I, O'Sullivan CK. Electrochemical detection of celiac disease-related anti-tissue transglutaminase antibodies using thiol based surface chemistry. Biosens Bioelectron 2011; 26:3852-6. [DOI: 10.1016/j.bios.2011.02.045] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2011] [Revised: 02/23/2011] [Accepted: 02/24/2011] [Indexed: 11/28/2022]
|
20
|
Ortiz M, Fragoso A, O'Sullivan CK. Detection of Antigliadin Autoantibodies in Celiac Patient Samples Using a Cyclodextrin-Based Supramolecular Biosensor. Anal Chem 2011; 83:2931-8. [DOI: 10.1021/ac102956p] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Mayreli Ortiz
- Nanobiotechnology and Bioanalysis Group, Departament d’Enginyeria Química, Universitat Rovira i Virgili, Avinguda Països Catalans 26, 43007 Tarragona, Spain
| | - Alex Fragoso
- Nanobiotechnology and Bioanalysis Group, Departament d’Enginyeria Química, Universitat Rovira i Virgili, Avinguda Països Catalans 26, 43007 Tarragona, Spain
| | - Ciara K. O'Sullivan
- Nanobiotechnology and Bioanalysis Group, Departament d’Enginyeria Química, Universitat Rovira i Virgili, Avinguda Països Catalans 26, 43007 Tarragona, Spain
- Institució Catalana de Recerca i Estudis Avançats, Passeig Lluís Companys, 23, 08010 Barcelona, Spain
| |
Collapse
|
21
|
Abstract
In this review, the current status of research in electrochemical immunosensors is considered. We primarily focus on label-free and enzyme-labeled immunosensors, and the analytical capabilities of these devices are discussed. Moreover, the use of magnetic beads as new materials for immunosensors coupled with electrochemical sensing is also described, together with the application of new molecules such as aptamers as specific biorecognition elements. Examples of the applicability of these devices in solving various analytical problems in clinical, environmental and food fields are reported. Finally, the prospects for the further development of immunosensor technologies are shown.
Collapse
|
22
|
Witte C, Lisdat F. Direct Detection of DNA and DNA-Ligand Interaction by Impedance Spectroscopy. ELECTROANAL 2010. [DOI: 10.1002/elan.201000410] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
23
|
Celiac disease diagnosis and gluten-free food analytical control. Anal Bioanal Chem 2010; 397:1743-53. [DOI: 10.1007/s00216-010-3753-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2010] [Revised: 04/09/2010] [Accepted: 04/13/2010] [Indexed: 01/14/2023]
|
24
|
|
25
|
Patris S, De Vriese C, Prohoroff F, Calvo E, Martínez J, Kauffmann JM. Anti-Clostridium tetani Antibody Determination in Serum Samples by Amperometric Immunosensing. ELECTROANAL 2009. [DOI: 10.1002/elan.200900396] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
26
|
Lisdat F, Schäfer D. The use of electrochemical impedance spectroscopy for biosensing. Anal Bioanal Chem 2008; 391:1555-67. [PMID: 18414837 DOI: 10.1007/s00216-008-1970-7] [Citation(s) in RCA: 439] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2007] [Revised: 02/08/2008] [Accepted: 02/09/2008] [Indexed: 11/30/2022]
Abstract
This review introduces the basic concepts and terms associated with impedance and techniques of measuring impedance. The focus of this review is on the application of this transduction method for sensing purposes. Examples of its use in combination with enzymes, antibodies, DNA and with cells will be described. Important fields of application include immune and nucleic acid analysis. Special attention is devoted to the various electrode design and amplification schemes developed for sensitivity enhancement. Electrolyte insulator semiconductor (EIS) structures will be treated separately.
Collapse
Affiliation(s)
- F Lisdat
- Biosystems Technology, Wildau University of Applied Sciences, 15745, Wildau, Germany.
| | | |
Collapse
|
27
|
Wang Y, Xu H, Zhang J, Li G. Electrochemical Sensors for Clinic Analysis. SENSORS 2008; 8:2043-2081. [PMID: 27879810 PMCID: PMC3673406 DOI: 10.3390/s8042043] [Citation(s) in RCA: 170] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2008] [Accepted: 03/04/2008] [Indexed: 11/19/2022]
Abstract
Demanded by modern medical diagnosis, advances in microfabrication technology have led to the development of fast, sensitive and selective electrochemical sensors for clinic analysis. This review addresses the principles behind electrochemical sensor design and fabrication, and introduces recent progress in the application of electrochemical sensors to analysis of clinical chemicals such as blood gases, electrolytes, metabolites, DNA and antibodies, including basic and applied research. Miniaturized commercial electrochemical biosensors will form the basis of inexpensive and easy to use devices for acquiring chemical information to bring sophisticated analytical capabilities to the non-specialist and general public alike in the future.
Collapse
Affiliation(s)
- You Wang
- State Key Laboratory of Industrial Control Technology, Institute of Advanced Process Control, Zhejiang University, Hangzhou 310027, P.R. China.
| | - Hui Xu
- State Key Laboratory of Industrial Control Technology, Institute of Advanced Process Control, Zhejiang University, Hangzhou 310027, P.R. China.
| | - Jianming Zhang
- State Key Laboratory of Industrial Control Technology, Institute of Advanced Process Control, Zhejiang University, Hangzhou 310027, P.R. China.
| | - Guang Li
- State Key Laboratory of Industrial Control Technology, Institute of Advanced Process Control, Zhejiang University, Hangzhou 310027, P.R. China.
| |
Collapse
|
28
|
Mantzila AG, Maipa V, Prodromidis MI. Development of a faradic impedimetric immunosensor for the detection of Salmonella typhimurium in milk. Anal Chem 2008; 80:1169-75. [PMID: 18217725 DOI: 10.1021/ac071570l] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The development of a faradic impedimetric immunosensor for the detection of S. typhimurium in milk is described for first time. Polyclonal anti-Salmonella was cross-linked, in the presence of glutaraldehyde, on gold electrodes modified with a single 11-amino-1-undecanethiol (MUAM) self-assembled monolayer (SAM) or a mixed SAM of MUAM and 6-mercapto-1-hexanol at a constant 1 + 3 proportion, respectively. The mixed SAM was also deposited in the presence of triethylamine, which was used to prevent the formation of interplane hydrogen bonds among amine-terminated thiols. The effect of the different surface modifications on both the sensitivity and the selectivity of the immunosensors was investigated. The alteration of the interfacial features of the electrodes due to different modification or recognition steps, was measured by faradic electrochemical impedance spectroscopy in the presence of a hexacyanoferrate(II)/(III) redox couple. A substantial amplification of the measuring signal was achieved by performing the immunoreaction directly in culture samples. This resulted in immunosensors with great analytical features, as follows: (i) high sensitivity; the response of the immunosensors increases with respect to the detection time as a consequence of the simultaneous proliferation of the viable bacteria cells in the tested samples; (ii) validity; the response of the immunosensors is practically insensitive to the presence of dead cells; (iii) working simplicity; elimination of various centrifugation and washing steps, which are used for the isolation of bacteria cells from the culture. The proposed immunosensors were successfully used for the detection of S. typhimurium in experimentally inoculated milk samples. The effect of different postblocking agents on the performance of the immunosensors in real samples was also examined.
Collapse
Affiliation(s)
- Aikaterini G Mantzila
- Laboratory of Analytical Chemistry, Department of Chemistry, and Department of Hygiene, Medical School, University of Ioannina, 45 110 Ioannina, Greece
| | | | | |
Collapse
|
29
|
Pänke O, Balkenhohl T, Kafka J, Schäfer D, Lisdat F. Impedance spectroscopy and biosensing. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2008; 109:195-237. [PMID: 17992488 DOI: 10.1007/10_2007_081] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
This chapter introduces the basic terms of impedance and the technique of impedance measurements. Furthermore, an overview of the application of this transduction method for analytical purposes will be given. Examples for combination with enzymes, antibodies, DNA but also for the analysis of living cells will be described. Special attention is devoted to the different electrode design and amplification schemes developed for sensitivity enhancement. Finally, the last two sections will show examples from the label-free determination of DNA and the sensorial detection of autoantibodies involved in celiac disease.
Collapse
Affiliation(s)
- O Pänke
- Biosystems Technology, Wildau University of Applied Sciences, Bahnhofstrasse 1, 15745 Wildau, Germany
| | | | | | | | | |
Collapse
|