1
|
Mussini A, Delcanale P, Berni M, Pongolini S, Jordà-Redondo M, Agut M, Steinbach PJ, Nonell S, Abbruzzetti S, Viappiani C. Concanavalin A Delivers a Photoactive Protein to the Bacterial Wall. Int J Mol Sci 2024; 25:5751. [PMID: 38891937 PMCID: PMC11172101 DOI: 10.3390/ijms25115751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/13/2024] [Accepted: 05/22/2024] [Indexed: 06/21/2024] Open
Abstract
Modular supramolecular complexes, where different proteins are assembled to gather targeting capability and photofunctional properties within the same structures, are of special interest for bacterial photodynamic inactivation, given their inherent biocompatibility and flexibility. We have recently proposed one such structure, exploiting the tetrameric bacterial protein streptavidin as the main building block, to target S. aureus protein A. To expand the palette of targets, we have linked biotinylated Concanavalin A, a sugar-binding protein, to a methylene blue-labelled streptavidin. By applying a combination of spectroscopy and microscopy, we demonstrate the binding of Concanavalin A to the walls of Gram-positive S. aureus and Gram-negative E. coli. Photoinactivation is observed for both bacterial strains in the low micromolar range, although the moderate affinity for the molecular targets and the low singlet oxygen yields limit the overall efficiency. Finally, we apply a maximum entropy method to the analysis of autocorrelation traces, which proves particularly useful when interpreting signals measured for diffusing systems heterogeneous in size, such as fluorescent species bound to bacteria.
Collapse
Affiliation(s)
- Andrea Mussini
- Dipartimento di Scienze Matematiche, Fisiche e Informatiche, Università di Parma, Parco Area delle Scienze 7A, 43124 Parma, Italy
- Institut Químic de Sarrià, Universitat Ramon Llull, Via Augusta 390, 08017 Barcelona, Spain
| | - Pietro Delcanale
- Dipartimento di Scienze Matematiche, Fisiche e Informatiche, Università di Parma, Parco Area delle Scienze 7A, 43124 Parma, Italy
| | - Melissa Berni
- Risk Analysis and Genomic Epidemiology Unit, Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia-Romagna, Strada dei Mercati, 13/A, 43126 Parma, Italy
| | - Stefano Pongolini
- Risk Analysis and Genomic Epidemiology Unit, Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia-Romagna, Strada dei Mercati, 13/A, 43126 Parma, Italy
| | - Mireia Jordà-Redondo
- Institut Químic de Sarrià, Universitat Ramon Llull, Via Augusta 390, 08017 Barcelona, Spain
| | - Montserrat Agut
- Institut Químic de Sarrià, Universitat Ramon Llull, Via Augusta 390, 08017 Barcelona, Spain
| | - Peter J. Steinbach
- Bioinformatics and Computational Biosciences Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Santi Nonell
- Institut Químic de Sarrià, Universitat Ramon Llull, Via Augusta 390, 08017 Barcelona, Spain
| | - Stefania Abbruzzetti
- Dipartimento di Scienze Matematiche, Fisiche e Informatiche, Università di Parma, Parco Area delle Scienze 7A, 43124 Parma, Italy
| | - Cristiano Viappiani
- Dipartimento di Scienze Matematiche, Fisiche e Informatiche, Università di Parma, Parco Area delle Scienze 7A, 43124 Parma, Italy
| |
Collapse
|
2
|
Mussini A, Uriati E, Hally C, Nonell S, Bianchini P, Diaspro A, Pongolini S, Delcanale P, Abbruzzetti S, Viappiani C. Versatile Supramolecular Complex for Targeted Antimicrobial Photodynamic Inactivation. Bioconjug Chem 2022; 33:666-676. [PMID: 35266706 PMCID: PMC9026257 DOI: 10.1021/acs.bioconjchem.2c00067] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We report the development of a supramolecular structure endowed with photosensitizing properties and targeting capability for antimicrobial photodynamic inactivation. Our synthetic strategy uses the tetrameric bacterial protein streptavidin, labeled with the photosensitizer eosin, as the main building block. Biotinylated immunoglobulin G (IgG) from human serum, known to associate with Staphylococcus aureus protein A, was bound to the complex streptavidin-eosin. Fluorescence correlation spectroscopy and fluorescence microscopy demonstrate binding of the complex to S. aureus. Efficient photoinactivation is observed for S. aureus suspensions treated with IgG-streptavidin-eosin at concentrations higher than 0.5 μM and exposed to green light. The proposed strategy offers a flexible platform for targeting a variety of molecules and microbial species.
Collapse
Affiliation(s)
- Andrea Mussini
- Dipartimento di Scienze Matematiche, Fisiche e Informatiche, Università di Parma, Parco Area delle Scienze 7A, Parma 43124, Italy
| | - Eleonora Uriati
- Dipartimento di Scienze Matematiche, Fisiche e Informatiche, Università di Parma, Parco Area delle Scienze 7A, Parma 43124, Italy.,Nanoscopy@Istituto Italiano di Tecnologia, Via Enrico Melen 83B, Genova 16152, Italy
| | - Cormac Hally
- Dipartimento di Scienze Matematiche, Fisiche e Informatiche, Università di Parma, Parco Area delle Scienze 7A, Parma 43124, Italy.,Institut Químic de Sarrià, Universitat Ramon Llull, Via Augusta 390, Barcelona 08017, Spain
| | - Santi Nonell
- Institut Químic de Sarrià, Universitat Ramon Llull, Via Augusta 390, Barcelona 08017, Spain
| | - Paolo Bianchini
- Nanoscopy@Istituto Italiano di Tecnologia, Via Enrico Melen 83B, Genova 16152, Italy
| | - Alberto Diaspro
- Nanoscopy@Istituto Italiano di Tecnologia, Via Enrico Melen 83B, Genova 16152, Italy.,DIFILAB, Dipartimento di Fisica, Università di Genova, Via Dodecaneso 33, Genova 16146, Italy
| | - Stefano Pongolini
- Risk Analysis and Genomic Epidemiology, Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia-Romagna, Strada dei Mercati, 13/A, Parma 43126, Italy
| | - Pietro Delcanale
- Dipartimento di Scienze Matematiche, Fisiche e Informatiche, Università di Parma, Parco Area delle Scienze 7A, Parma 43124, Italy
| | - Stefania Abbruzzetti
- Dipartimento di Scienze Matematiche, Fisiche e Informatiche, Università di Parma, Parco Area delle Scienze 7A, Parma 43124, Italy
| | - Cristiano Viappiani
- Dipartimento di Scienze Matematiche, Fisiche e Informatiche, Università di Parma, Parco Area delle Scienze 7A, Parma 43124, Italy
| |
Collapse
|
3
|
Unusually Fast bis-Histidyl Coordination in a Plant Hemoglobin. Int J Mol Sci 2021; 22:ijms22052740. [PMID: 33800498 PMCID: PMC7962945 DOI: 10.3390/ijms22052740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/16/2021] [Accepted: 03/02/2021] [Indexed: 11/17/2022] Open
Abstract
The recently identified nonsymbiotic hemoglobin gene MtGlb1-2 of the legume Medicago truncatula possesses unique properties as it generates four alternative splice forms encoding proteins with one or two heme domains. Here we investigate the ligand binding kinetics of MtGlb1-2.1 and MtGlb1-2.4, bearing two hemes and one heme, respectively. Unexpectedly, the overall time-course of ligand rebinding was unusually fast. Thus, we complemented nanosecond laser flash photolysis kinetics with data collected with a hybrid femtosecond–nanosecond pump–probe setup. Most photodissociated ligands are rebound geminately within a few nanoseconds, which leads to rates of the bimolecular rebinding to pentacoordinate species in the 108 M−1s−1 range. Binding of the distal histidine to the heme competes with CO rebinding with extremely high rates (kh ~ 105 s−1). Histidine dissociation from the heme occurs with comparable rates, thus resulting in moderate equilibrium binding constants (KH ~ 1). The rate constants for ligation and deligation of distal histidine to the heme are the highest reported for any plant or vertebrate globin. The combination of microscopic rates results in unusually high overall ligand binding rate constants, a fact that contributes to explaining at the mechanistic level the extremely high reactivity of these proteins toward the physiological ligands oxygen, nitric oxide and nitrite.
Collapse
|
4
|
Mycobacterial and Human Ferrous Nitrobindins: Spectroscopic and Reactivity Properties. Int J Mol Sci 2021; 22:ijms22041674. [PMID: 33562340 PMCID: PMC7915275 DOI: 10.3390/ijms22041674] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/26/2021] [Accepted: 02/01/2021] [Indexed: 12/24/2022] Open
Abstract
Structural and functional properties of ferrous Mycobacterium tuberculosis (Mt-Nb) and human (Hs-Nb) nitrobindins (Nbs) were investigated. At pH 7.0 and 25.0 °C, the unliganded Fe(II) species is penta-coordinated and unlike most other hemoproteins no pH-dependence of its coordination was detected over the pH range between 2.2 and 7.0. Further, despite a very open distal side of the heme pocket (as also indicated by the vanishingly small geminate recombination of CO for both Nbs), which exposes the heme pocket to the bulk solvent, their reactivity toward ligands, such as CO and NO, is significantly slower than in most hemoproteins, envisaging either a proximal barrier for ligand binding and/or crowding of H2O molecules in the distal side of the heme pocket which impairs ligand binding to the heme Fe-atom. On the other hand, liganded species display already at pH 7.0 and 25 °C a severe weakening (in the case of CO) and a cleavage (in the case of NO) of the proximal Fe-His bond, suggesting that the ligand-linked movement of the Fe(II) atom onto the heme plane brings about a marked lengthening of the proximal Fe-imidazole bond, eventually leading to its rupture. This structural evidence is accompanied by a marked enhancement of both ligands dissociation rate constants. As a whole, these data clearly indicate that structural–functional relationships in Nbs strongly differ from what observed in mammalian and truncated hemoproteins, suggesting that Nbs play a functional role clearly distinct from other eukaryotic and prokaryotic hemoproteins.
Collapse
|
5
|
Giordano D, Pesce A, Vermeylen S, Abbruzzetti S, Nardini M, Marchesani F, Berghmans H, Seira C, Bruno S, Javier Luque F, di Prisco G, Ascenzi P, Dewilde S, Bolognesi M, Viappiani C, Verde C. Structural and functional properties of Antarctic fish cytoglobins-1: Cold-reactivity in multi-ligand reactions. Comput Struct Biotechnol J 2020; 18:2132-2144. [PMID: 32913582 PMCID: PMC7451756 DOI: 10.1016/j.csbj.2020.08.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 07/10/2020] [Accepted: 08/05/2020] [Indexed: 12/11/2022] Open
Abstract
While the functions of the recently discovered cytoglobin, ubiquitously expressed in vertebrate tissues, remain uncertain, Antarctic fish provide unparalleled models to study novel protein traits that may arise from cold adaptation. We report here the spectral, ligand-binding and enzymatic properties (peroxynitrite isomerization, nitrite-reductase activity) of cytoglobin-1 from two Antarctic fish, Chaenocephalus aceratus and Dissostichus mawsoni, and present the crystal structure of D. mawsoni cytoglobin-1. The Antarctic cytoglobins-1 display high O2 affinity, scarcely compatible with an O2-supply role, a slow rate constant for nitrite-reductase activity, and do not catalyze peroxynitrite isomerization. Compared with mesophilic orthologues, the cold-adapted cytoglobins favor binding of exogenous ligands to the hexa-coordinated bis-histidyl species, a trait related to their higher rate constant for distal-His/heme-Fe dissociation relative to human cytoglobin. At the light of a remarkable 3D-structure conservation, the observed differences in ligand-binding kinetics may reflect Antarctic fish cytoglobin-1 specific features in the dynamics of the heme distal region and of protein matrix cavities, suggesting adaptation to functional requirements posed by the cold environment. Taken together, the biochemical and biophysical data presented suggest that in Antarctic fish, as in humans, cytoglobin-1 unlikely plays a role in O2 transport, rather it may be involved in processes such as NO detoxification.
Collapse
Key Words
- C.aceCygb-1*, Mutant of C.aceCygb-1
- C.aceCygb-1, Cytoglobin-1 of C. aceratus
- CO, Carbon monoxide
- CYGB, Human Cygb
- Cold-adaptation
- Cygb, Cytoglobin
- Cygb-1, Cytoglobin 1
- Cygb-2, Cytoglobin 2
- Cygbh, Hexa-coordinated bis-histidyl species
- Cygbp, Penta-coordinated Cygb
- Cytoglobin
- D.mawCygb-1*, Mutant of D.mawCygb-1
- D.mawCygb-1, Cytoglobin-1 of D. mawsoni
- DTT, Dithiothreitol
- Hb, Hemoglobin
- Ligand properties
- MD, Molecular Dynamics
- Mb, Myoglobin
- NGB, Human neuroglobin
- NO dioxygenase
- NO, Nitric oxide
- RNS, Reactive Nitrogen Species
- ROS, Reactive Oxygen Species
- X-ray structure
- p50, O2 partial pressure required to achieve half saturation
- rms, Root-mean square
Collapse
Affiliation(s)
- Daniela Giordano
- Institute of Biosciences and BioResources (IBBR), CNR, Via Pietro Castellino 111 80131 Napoli, Italy.,Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy
| | - Alessandra Pesce
- Department of Physics, University of Genova, Via Dodecaneso 33, I-16121 Genova, Italy
| | - Stijn Vermeylen
- Department of Biomedical Sciences, University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk, Belgium
| | - Stefania Abbruzzetti
- Department of Mathematical, Physical and Computer Sciences, University of Parma, Parco Area delle Scienze 7A, 43124 Parma, Italy
| | - Marco Nardini
- Department of Biosciences, University of Milano, Via Celoria 26, I-20133 Milano, Italy
| | - Francesco Marchesani
- Department of Food and Drug, University of Parma, Parco Area delle Scienze 23A, 43124, Parma, Italy
| | - Herald Berghmans
- Department of Biomedical Sciences, University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk, Belgium
| | - Constantí Seira
- Department of Nutrition, Food Science and Gastronomy, Faculty of Pharmacy and Food Science, Institute of Biomedicine (IBUB) and Institute of Theoretical and Computational Chemistry (IQTCUB), University of Barcelona, Av. Prat de la Riba 171, Santa Coloma de Gramenet E-08921, Spain
| | - Stefano Bruno
- Department of Food and Drug, University of Parma, Parco Area delle Scienze 23A, 43124, Parma, Italy
| | - F Javier Luque
- Department of Nutrition, Food Science and Gastronomy, Faculty of Pharmacy and Food Science, Institute of Biomedicine (IBUB) and Institute of Theoretical and Computational Chemistry (IQTCUB), University of Barcelona, Av. Prat de la Riba 171, Santa Coloma de Gramenet E-08921, Spain
| | - Guido di Prisco
- Institute of Biosciences and BioResources (IBBR), CNR, Via Pietro Castellino 111 80131 Napoli, Italy
| | - Paolo Ascenzi
- Interdepartmental Laboratory for Electron Microscopy, Roma Tre University, Via della Vasca Navale 79, I-00146 Roma, Italy
| | - Sylvia Dewilde
- Department of Biomedical Sciences, University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk, Belgium
| | - Martino Bolognesi
- Department of Biosciences, University of Milano, Via Celoria 26, I-20133 Milano, Italy
| | - Cristiano Viappiani
- Department of Mathematical, Physical and Computer Sciences, University of Parma, Parco Area delle Scienze 7A, 43124 Parma, Italy
| | - Cinzia Verde
- Institute of Biosciences and BioResources (IBBR), CNR, Via Pietro Castellino 111 80131 Napoli, Italy.,Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy
| |
Collapse
|
6
|
Abstract
Infrared difference spectroscopy probes vibrational changes of proteins upon their perturbation. Compared with other spectroscopic methods, it stands out by its sensitivity to the protonation state, H-bonding, and the conformation of different groups in proteins, including the peptide backbone, amino acid side chains, internal water molecules, or cofactors. In particular, the detection of protonation and H-bonding changes in a time-resolved manner, not easily obtained by other techniques, is one of the most successful applications of IR difference spectroscopy. The present review deals with the use of perturbations designed to specifically change the protein between two (or more) functionally relevant states, a strategy often referred to as reaction-induced IR difference spectroscopy. In the first half of this contribution, I review the technique of reaction-induced IR difference spectroscopy of proteins, with special emphasis given to the preparation of suitable samples and their characterization, strategies for the perturbation of proteins, and methodologies for time-resolved measurements (from nanoseconds to minutes). The second half of this contribution focuses on the spectral interpretation. It starts by reviewing how changes in H-bonding, medium polarity, and vibrational coupling affect vibrational frequencies, intensities, and bandwidths. It is followed by band assignments, a crucial aspect mostly performed with the help of isotopic labeling and site-directed mutagenesis, and complemented by integration and interpretation of the results in the context of the studied protein, an aspect increasingly supported by spectral calculations. Selected examples from the literature, predominately but not exclusively from retinal proteins, are used to illustrate the topics covered in this review.
Collapse
|
7
|
Nys K, Cuypers B, Berghmans H, Hammerschmid D, Moens L, Dewilde S, Van Doorslaer S. Surprising differences in the respiratory protein of insects: A spectroscopic study of haemoglobin from the European honeybee and the malaria mosquito. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2020; 1868:140413. [PMID: 32179182 DOI: 10.1016/j.bbapap.2020.140413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 03/05/2020] [Accepted: 03/11/2020] [Indexed: 10/24/2022]
Abstract
Only recently it was discovered that haemoglobin (Hb) belongs to the standard gene repertoire of insects, although their tracheal system is used for respiration. A classical oxygen-carrying function of Hb is only obvious for hexapods living in hypoxic environments. In other insect species, including the common fruit fly Drosophila melanogaster, the physiological role of Hb is yet unclear. Here, we study recombinant haemoglobin from the European honeybee Apis mellifera (Ame) and the malaria mosquito Anopheles gambiae (Aga). Spectroscopic evidence shows that both proteins can be classified as hexacoordinate Hbs with a strong affinity for the distal histidine. AgaHb1 is proposed to play a role in oxygen transport or sensing based on its multimeric state, slow autoxidation, and small but significant amount of five-coordinated haem in the deoxy ferrous form. AmeHb appears to behave more like vertebrate neuroglobin with a complex function given its diversified distribution in the genome.
Collapse
Affiliation(s)
- Kevin Nys
- BIMEF Laboratory, Department of Chemistry, University of Antwerp, Belgium.
| | - Bert Cuypers
- BIMEF Laboratory, Department of Chemistry, University of Antwerp, Belgium
| | - Herald Berghmans
- PPES Laboratory, Department of Biomedical Sciences, University of Antwerp, Belgium.
| | - Dietmar Hammerschmid
- PPES Laboratory, Department of Biomedical Sciences, University of Antwerp, Belgium.
| | - Luc Moens
- PPES Laboratory, Department of Biomedical Sciences, University of Antwerp, Belgium.
| | - Sylvia Dewilde
- PPES Laboratory, Department of Biomedical Sciences, University of Antwerp, Belgium.
| | | |
Collapse
|
8
|
Delcanale P, Hally C, Nonell S, Bonardi S, Viappiani C, Abbruzzetti S. Photodynamic action of Hypericum perforatum hydrophilic extract against Staphylococcus aureus. Photochem Photobiol Sci 2020; 19:324-331. [DOI: 10.1039/c9pp00428a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hypericin (Hyp) is one of the most effective, naturally occurring photodynamic agents, which proved effective against a wide array of microorganisms.
Collapse
Affiliation(s)
- Pietro Delcanale
- Institute for Bioengineering of Catalonia (IBEC)
- the Barcelona Institute of Science and Technology (BIST)
- Barcelona
- Spain
| | - Cormac Hally
- Institut Quimic de Sarrià
- Universitat Ramon Llull
- 08017 Barcelona
- Spain
- Dipartimento di Scienze Matematiche
| | - Santi Nonell
- Institut Quimic de Sarrià
- Universitat Ramon Llull
- 08017 Barcelona
- Spain
| | - Silvia Bonardi
- Dipartimento di Scienze Medico-Veterinarie
- Università degli Studi di Parma
- 43126 Parma
- Italy
| | - Cristiano Viappiani
- Dipartimento di Scienze Matematiche
- Fisiche e Informatiche
- Università di Parma
- 43124 Parma
- Italy
| | - Stefania Abbruzzetti
- Dipartimento di Scienze Matematiche
- Fisiche e Informatiche
- Università di Parma
- 43124 Parma
- Italy
| |
Collapse
|
9
|
Apomyoglobin is an efficient carrier for zinc phthalocyanine in photodynamic therapy of tumors. Biophys Chem 2019; 253:106228. [PMID: 31349136 DOI: 10.1016/j.bpc.2019.106228] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 07/16/2019] [Accepted: 07/17/2019] [Indexed: 01/10/2023]
Abstract
The spectral and the photophysical properties of phthalocyanines have made these dyes attractive for applications in photodynamic therapy of cancer. One important known issue of these compounds is their tendency to aggregate in aqueous media, which decreases their fluorescence, triplet, and singlet oxygen quantum yields. We report on the use of apomyoglobin as a carrier for zinc phthalocyanine (ZnPc) to overcome solubility limitations of the dye. We show that the protein is able to bind ZnPc in monomeric form, preserving its photophysics. Confocal fluorescence imaging of PC3 and HeLa cells, treated with the complex between ZnPc and apomyoglobin, demonstrates that the photosensitizer is uptaken quickly by cells. Illumination of treated cells strongly decreases viability, as demonstrated by live/dead fluorescence assay.
Collapse
|
10
|
Serum albumins are efficient delivery systems for the photosensitizer hypericin in photosensitization-based treatments against Staphylococcus aureus. Food Control 2018. [DOI: 10.1016/j.foodcont.2018.07.027] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
11
|
Boubeta FM, Boechi L, Estrin D, Patrizi B, Di Donato M, Iagatti A, Giordano D, Verde C, Bruno S, Abbruzzetti S, Viappiani C. Cold-Adaptation Signatures in the Ligand Rebinding Kinetics to the Truncated Hemoglobin of the Antarctic Bacterium Pseudoalteromonas haloplanktis TAC125. J Phys Chem B 2018; 122:11649-11661. [PMID: 30230844 DOI: 10.1021/acs.jpcb.8b07682] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cold-adapted organisms have evolved proteins endowed with higher flexibility and lower stability in comparison to their thermophilic homologues, resulting in enhanced reaction rates at low temperatures. In this context, protein-bound water molecules were suggested to play a major role, and their weaker interactions at protein active sites have been associated with cold adaptation. In this work, we tested this hypothesis on truncated hemoglobins (a family of microbial heme-proteins of yet-unclear function) applying molecular dynamics simulations and ligand-rebinding kinetics on a protein from the Antarctic bacterium Pseudoalteromonas haloplanktis TAC125 in comparison with its thermophilic Thermobifida fusca homologue. The CO rebinding kinetics of the former highlight several geminate phases, with an unusually long-lived geminate intermediate. An articulated tunnel with at least two distinct docking sites was identified by analysis of molecular dynamics simulations and was suggested to be at the origin of the unusual geminate rebinding phase. Water molecules are present in the distal pocket, but their stabilization by TrpG8, TyrB10, and HisCD1 is much weaker than in thermophilic Thermobifida fusca truncated hemoglobin, resulting in a faster geminate rebinding. Our results support the hypothesis that weaker water-molecule interactions at the reaction site are associated with cold adaptation.
Collapse
Affiliation(s)
- Fernando M Boubeta
- Instituto de Quimica Fisica de los Materiales, Medio Ambiente y Energia (INQUIMAE), CONICET, and Universidad de Buenos Aires , C1428EHA Buenos Aires , Argentina
| | - Leonardo Boechi
- Instituto de Calculo, Facultad de Ciencias Exactas y Naturales , Universidad de Buenos Aires , C1428EGA Buenos Aires , Argentina
| | - Dario Estrin
- Instituto de Quimica Fisica de los Materiales, Medio Ambiente y Energia (INQUIMAE), CONICET, and Universidad de Buenos Aires , C1428EHA Buenos Aires , Argentina
| | - Barbara Patrizi
- European Laboratory for Non Linear Spectroscopy (LENS), Università di Firenze , Via Nello Carrara 1 , 50019 Sesto Fiorentino, Florence , Italy.,INO-CNR, Istituto Nazionale di Ottica, Consiglio Nazionale delle Ricerche , Largo Fermi 6 , 50125 Florence , Italy
| | - Mariangela Di Donato
- European Laboratory for Non Linear Spectroscopy (LENS), Università di Firenze , Via Nello Carrara 1 , 50019 Sesto Fiorentino, Florence , Italy.,INO-CNR, Istituto Nazionale di Ottica, Consiglio Nazionale delle Ricerche , Largo Fermi 6 , 50125 Florence , Italy
| | - Alessandro Iagatti
- European Laboratory for Non Linear Spectroscopy (LENS), Università di Firenze , Via Nello Carrara 1 , 50019 Sesto Fiorentino, Florence , Italy
| | - Daniela Giordano
- Institute of Biosciences and BioResources (IBBR), CNR , Via Pietro Castellino 111 , I-80131 Naples , Italy.,Stazione Zoologica Anton Dohrn , Villa Comunale , 80121 Naples , Italy
| | - Cinzia Verde
- Institute of Biosciences and BioResources (IBBR), CNR , Via Pietro Castellino 111 , I-80131 Naples , Italy.,Stazione Zoologica Anton Dohrn , Villa Comunale , 80121 Naples , Italy
| | - Stefano Bruno
- Dipartimento di Scienze degli Alimenti e del Farmaco , Università di Parma , Parco Area delle Scienze 23A , 43124 , Parma , Italy
| | - Stefania Abbruzzetti
- Dipartimento di Scienze Matematiche, Fisiche e Informatiche , Università di Parma , Parco Area delle Scienze 7A , 43124 , Parma , Italy
| | - Cristiano Viappiani
- Dipartimento di Scienze Matematiche, Fisiche e Informatiche , Università di Parma , Parco Area delle Scienze 7A , 43124 , Parma , Italy
| |
Collapse
|
12
|
Abbruzzetti S, Allegri A, Bidon-Chanal A, Ogata H, Soavi G, Cerullo G, Bruno S, Montali C, Luque FJ, Viappiani C. Electrostatic Tuning of the Ligand Binding Mechanism by Glu27 in Nitrophorin 7. Sci Rep 2018; 8:10855. [PMID: 30022039 PMCID: PMC6052033 DOI: 10.1038/s41598-018-29182-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 07/02/2018] [Indexed: 12/29/2022] Open
Abstract
Nitrophorins (NP) 1-7 are NO-carrying heme proteins found in the saliva of the blood-sucking insect Rhodnius prolixus. The isoform NP7 displays peculiar properties, such as an abnormally high isoelectric point, the ability to bind negatively charged membranes, and a strong pH sensitivity of NO affinity. A unique trait of NP7 is the presence of Glu in position 27, which is occupied by Val in other NPs. Glu27 appears to be important for tuning the heme properties, but its influence on the pH-dependent NO release mechanism, which is assisted by a conformational change in the AB loop, remains unexplored. Here, in order to gain insight into the functional role of Glu27, we examine the effect of Glu27 → Val and Glu27 → Gln mutations on the ligand binding kinetics using CO as a model. The results reveal that annihilation of the negative charge of Glu27 upon mutation reduces the pH sensitivity of the ligand binding rate, a process that in turn depends on the ionization of Asp32. We propose that Glu27 exerts a through-space electrostatic action on Asp32, which shifts the pKa of the latter amino acid towards more acidic values thus reducing the pH sensitivity of the transition between open and closed states.
Collapse
Affiliation(s)
- Stefania Abbruzzetti
- Dipartimento di Scienze Matematiche, Fisiche e Informatiche, Università degli Studi di Parma, Parco Area delle Scienze 7/A, 43124, Parma, Italy.
| | - Alessandro Allegri
- Dipartimento di Scienze Matematiche, Fisiche e Informatiche, Università degli Studi di Parma, Parco Area delle Scienze 7/A, 43124, Parma, Italy
| | - Axel Bidon-Chanal
- Department of Nutrition, Food Sciences and Gastronomy, Faculty of Pharmacy and Food Sciences and Institute of Biomedicine (IBUB), University of Barcelona, Avda. Prat de la Riba 171, Santa Coloma de Gramenet, Spain
| | - Hideaki Ogata
- Max-Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, D-45470, Mülheim an der Ruhr, Germany.,Institute of Low Temperature Science, Hokkaido University Kita19-Nishi8, Kita-ku, 060-0819, Sapporo, Japan
| | - Giancarlo Soavi
- Cambridge Graphene Centre, University of Cambridge, 9 JJ Thomson Avenue, Cambridge, CB3 OFA, UK
| | - Giulio Cerullo
- IFN-CNR, Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133, Milano, Italy
| | - Stefano Bruno
- Dipartimento di Scienze degli Alimenti e del Farmaco, Università degli Studi di Parma, Parco Area delle Scienze 27/A, 43124, Parma, Italy
| | - Chiara Montali
- Dipartimento di Scienze Matematiche, Fisiche e Informatiche, Università degli Studi di Parma, Parco Area delle Scienze 7/A, 43124, Parma, Italy
| | - F Javier Luque
- Department of Nutrition, Food Sciences and Gastronomy, Faculty of Pharmacy and Food Sciences and Institute of Biomedicine (IBUB), University of Barcelona, Avda. Prat de la Riba 171, Santa Coloma de Gramenet, Spain.
| | - Cristiano Viappiani
- Dipartimento di Scienze Matematiche, Fisiche e Informatiche, Università degli Studi di Parma, Parco Area delle Scienze 7/A, 43124, Parma, Italy.
| |
Collapse
|
13
|
Russo R, Giordano D, Paredi G, Marchesani F, Milazzo L, Altomonte G, Del Canale P, Abbruzzetti S, Ascenzi P, di Prisco G, Viappiani C, Fago A, Bruno S, Smulevich G, Verde C. The Greenland shark Somniosus microcephalus-Hemoglobins and ligand-binding properties. PLoS One 2017; 12:e0186181. [PMID: 29023598 PMCID: PMC5638460 DOI: 10.1371/journal.pone.0186181] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 09/26/2017] [Indexed: 11/18/2022] Open
Abstract
A large amount of data is currently available on the adaptive mechanisms of polar bony fish hemoglobins, but structural information on those of cartilaginous species is scarce. This study presents the first characterisation of the hemoglobin system of one of the longest-living vertebrate species (392 ± 120 years), the Arctic shark Somniosus microcephalus. Three major hemoglobins are found in its red blood cells and are made of two copies of the same α globin combined with two copies of three very similar β subunits. The three hemoglobins show very similar oxygenation and carbonylation properties, which are unaffected by urea, a very important compound in marine elasmobranch physiology. They display identical electronic absorption and resonance Raman spectra, indicating that their heme-pocket structures are identical or highly similar. The quaternary transition equilibrium between the relaxed (R) and the tense (T) states is more dependent on physiological allosteric effectors than in human hemoglobin, as also demonstrated in polar teleost hemoglobins. Similar to other cartilaginous fishes, we found no evidence for functional differentiation among the three isoforms. The very similar ligand-binding properties suggest that regulatory control of O2 transport may be at the cellular level and that it may involve changes in the cellular concentrations of allosteric effectors and/or variations of other systemic factors. The hemoglobins of this polar shark have evolved adaptive decreases in O2 affinity in comparison to temperate sharks.
Collapse
Affiliation(s)
- Roberta Russo
- Institute of Biosciences and BioResources, CNR, Via Pietro Castellino 111, Naples, Italy
| | - Daniela Giordano
- Institute of Biosciences and BioResources, CNR, Via Pietro Castellino 111, Naples, Italy
- Stazione Zoologica Anton Dohrn, Villa Comunale, Naples, Italy
| | - Gianluca Paredi
- Dipartimento di Scienze degli Alimenti e del Farmaco, Università di Parma, Parco Area delle Scienze 23/A, Parma, Italy
| | - Francesco Marchesani
- Dipartimento di Scienze degli Alimenti e del Farmaco, Università di Parma, Parco Area delle Scienze 23/A, Parma, Italy
| | - Lisa Milazzo
- Dipartimento di Chimica “Ugo Schiff”, Università di Firenze, Via della Lastruccia 3–13, Sesto Fiorentino (FI), Italy
| | - Giovanna Altomonte
- Institute of Biosciences and BioResources, CNR, Via Pietro Castellino 111, Naples, Italy
- Dipartimento di Biologia, Università Roma 3, Viale Marconi 448, Roma, Italy
| | - Pietro Del Canale
- Dipartimento di Scienze Matematiche, Fisiche e Informatiche, Università degli Studi di Parma, Parco Area delle Scienze 7A, Parma, Italy
| | - Stefania Abbruzzetti
- Dipartimento di Scienze Matematiche, Fisiche e Informatiche, Università degli Studi di Parma, Parco Area delle Scienze 7A, Parma, Italy
- NEST Istituto Nanoscienze, CNR, Piazza San Silvestro 12, Pisa, Italy
| | - Paolo Ascenzi
- Laboratorio Interdipartimentale di Microscopia Elettronica, Università RomaTre, Via della Vasca Navale 79, Roma, Italy
| | - Guido di Prisco
- Institute of Biosciences and BioResources, CNR, Via Pietro Castellino 111, Naples, Italy
| | - Cristiano Viappiani
- Dipartimento di Scienze Matematiche, Fisiche e Informatiche, Università degli Studi di Parma, Parco Area delle Scienze 7A, Parma, Italy
- NEST Istituto Nanoscienze, CNR, Piazza San Silvestro 12, Pisa, Italy
| | - Angela Fago
- Zoophysiology, Department of Bioscience, Aarhus University, Aarhus, Denmark
| | - Stefano Bruno
- Dipartimento di Scienze degli Alimenti e del Farmaco, Università di Parma, Parco Area delle Scienze 23/A, Parma, Italy
| | - Giulietta Smulevich
- Dipartimento di Chimica “Ugo Schiff”, Università di Firenze, Via della Lastruccia 3–13, Sesto Fiorentino (FI), Italy
| | - Cinzia Verde
- Institute of Biosciences and BioResources, CNR, Via Pietro Castellino 111, Naples, Italy
- Stazione Zoologica Anton Dohrn, Villa Comunale, Naples, Italy
- Dipartimento di Biologia, Università Roma 3, Viale Marconi 448, Roma, Italy
- * E-mail: ,
| |
Collapse
|
14
|
Calvo-Begueria L, Cuypers B, Van Doorslaer S, Abbruzzetti S, Bruno S, Berghmans H, Dewilde S, Ramos J, Viappiani C, Becana M. Characterization of the Heme Pocket Structure and Ligand Binding Kinetics of Non-symbiotic Hemoglobins from the Model Legume Lotus japonicus. FRONTIERS IN PLANT SCIENCE 2017; 8:407. [PMID: 28421084 PMCID: PMC5378813 DOI: 10.3389/fpls.2017.00407] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 03/09/2017] [Indexed: 05/04/2023]
Abstract
Plant hemoglobins (Hbs) are found in nodules of legumes and actinorhizal plants but also in non-symbiotic organs of monocots and dicots. Non-symbiotic Hbs (nsHbs) have been classified into two phylogenetic groups. Class 1 nsHbs show an extremely high O2 affinity and are induced by hypoxia and nitric oxide (NO), whereas class 2 nsHbs have moderate O2 affinity and are induced by cold and cytokinins. The functions of nsHbs are still unclear, but some of them rely on the capacity of hemes to bind diatomic ligands and catalyze the NO dioxygenase (NOD) reaction (oxyferrous Hb + NO → ferric Hb + nitrate). Moreover, NO may nitrosylate Cys residues of proteins. It is therefore important to determine the ligand binding properties of the hemes and the role of Cys residues. Here, we have addressed these issues with the two class 1 nsHbs (LjGlb1-1 and LjGlb1-2) and the single class 2 nsHb (LjGlb2) of Lotus japonicus, which is a model legume used to facilitate the transfer of genetic and biochemical information into crops. We have employed carbon monoxide (CO) as a model ligand and resonance Raman, laser flash photolysis, and stopped-flow spectroscopies to unveil major differences in the heme environments and ligand binding kinetics of the three proteins, which suggest non-redundant functions. In the deoxyferrous state, LjGlb1-1 is partially hexacoordinate, whereas LjGlb1-2 shows complete hexacoordination (behaving like class 2 nsHbs) and LjGlb2 is mostly pentacoordinate (unlike other class 2 nsHbs). LjGlb1-1 binds CO very strongly by stabilizing it through hydrogen bonding, but LjGlb1-2 and LjGlb2 show lower CO stabilization. The changes in CO stabilization would explain the different affinities of the three proteins for gaseous ligands. These affinities are determined by the dissociation rates and follow the order LjGlb1-1 > LjGlb1-2 > LjGlb2. Mutations LjGlb1-1 C78S and LjGlb1-2 C79S caused important alterations in protein dynamics and stability, indicating a structural role of those Cys residues, whereas mutation LjGlb1-1 C8S had a smaller effect. The three proteins and their mutant derivatives exhibited similarly high rates of NO consumption, which were due to NOD activity of the hemes and not to nitrosylation of Cys residues.
Collapse
Affiliation(s)
- Laura Calvo-Begueria
- Departamento de Nutrición Vegetal, Estación Experimental de Aula Dei, Consejo Superior de Investigaciones CientíficasZaragoza, Spain
| | - Bert Cuypers
- Department of Physics, University of AntwerpAntwerp, Belgium
| | | | - Stefania Abbruzzetti
- Dipartimento di Bioscienze, Università degli Studi di ParmaParma, Italy
- NEST, Istituto Nanoscienze, Consiglio Nazionale delle RicerchePisa, Italy
| | - Stefano Bruno
- Dipartimento di Farmacia, Università degli Studi di ParmaParma, Italy
| | - Herald Berghmans
- Department of Biomedical Sciences, University of AntwerpAntwerp, Belgium
| | - Sylvia Dewilde
- Department of Biomedical Sciences, University of AntwerpAntwerp, Belgium
| | - Javier Ramos
- Departamento de Nutrición Vegetal, Estación Experimental de Aula Dei, Consejo Superior de Investigaciones CientíficasZaragoza, Spain
| | - Cristiano Viappiani
- NEST, Istituto Nanoscienze, Consiglio Nazionale delle RicerchePisa, Italy
- Dipartimento di Fisica e Scienze della Terra, Università degli Studi di ParmaParma, Italy
| | - Manuel Becana
- Departamento de Nutrición Vegetal, Estación Experimental de Aula Dei, Consejo Superior de Investigaciones CientíficasZaragoza, Spain
| |
Collapse
|
15
|
Delcanale P, Rodríguez-Amigo B, Juárez-Jiménez J, Luque FJ, Abbruzzetti S, Agut M, Nonell S, Viappiani C. Tuning the local solvent composition at a drug carrier surface: the effect of dimethyl sulfoxide/water mixture on the photofunctional properties of hypericin-β-lactoglobulin complexes. J Mater Chem B 2017; 5:1633-1641. [PMID: 32263935 DOI: 10.1039/c7tb00081b] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Aggregation is a major problem for the anti-microbial photodynamic applications of hydrophobic photosensitizers since it strongly reduces the amount of singlet oxygen generated in aqueous solutions. Binding of hypericin (Hyp) to the milk whey protein β-lactoglobulin (βLG), occurring at the two hydrophobic cavities located at the interface of the protein homodimer, can be exploited to confer water-solubility and biocompatibility to the photosensitizer. The introduction of a small amount of the organic cosolvent dimethyl sulfoxide (DMSO) leads to a remarkable improvement of the photophysical properties of the complex Hyp-βLG by increasing its fluorescence emission and singlet oxygen photosensitization quantum yields. Surprisingly, the ability of the complex to photo-inactivate bacteria of the strain Staphylococcus aureus is strongly reduced in the presence of DMSO, despite the higher yield of photosensitization. The reasons for this apparently contradictory behavior are investigated, providing new insights into the use of carrier systems for hydrophobic photosensitizers.
Collapse
Affiliation(s)
- P Delcanale
- Dipartimento di Scienze Matematiche, Fisiche e Informatiche, Università di Parma, Parco Area delle Scienze 7A, 43124 Parma, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Delcanale P, Montali C, Rodríguez-Amigo B, Abbruzzetti S, Bruno S, Bianchini P, Diaspro A, Agut M, Nonell S, Viappiani C. Zinc-Substituted Myoglobin Is a Naturally Occurring Photo-antimicrobial Agent with Potential Applications in Food Decontamination. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:8633-8639. [PMID: 27785913 DOI: 10.1021/acs.jafc.6b03368] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Zinc-substituted myoglobin (ZnMb) is a naturally occurring photosensitizer that generates singlet oxygen with a high quantum yield. Using a combination of photophysical and fluorescence imaging techniques, we demonstrate the interaction of ZnMb with Gram-positive Staphylococcus aureus and Gram-negative Escherichia coli. An efficient antibacterial action against S. aureus was observed, with a reduction up to 99.9999% in the number of colony-forming units, whereas no sizable effect was detected against E. coli. Because ZnMb is known to form during the maturation of additive-free not-cooked cured ham, the use of this protein as a built-in photodynamic agent may constitute a viable method for the decontamination of these food products from Gram-positive bacteria.
Collapse
Affiliation(s)
- Pietro Delcanale
- Dipartimento di Fisica e Scienze della Terra, Universita degli Studi di Parma , viale delle Scienze 7A, 43124 Parma, Italy
| | - Chiara Montali
- Dipartimento di Fisica e Scienze della Terra, Universita degli Studi di Parma , viale delle Scienze 7A, 43124 Parma, Italy
| | - Beatriz Rodríguez-Amigo
- Institut Quimic de Sarrià, Universitat Ramon Llull , Via Augusta 390, 08017 Barcelona, Spain
| | - Stefania Abbruzzetti
- Dipartimento di Bioscienze, Universita degli Studi di Parma , viale delle Scienze 11A, 43124 Parma, Italy
- NEST, Istituto Nanoscienze, Consiglio Nazionale delle Ricerche , Piazza San Silvestro 12, 56127 Pisa, Italy
| | - Stefano Bruno
- Dipartimento di Farmacia, Universita degli Studi di Parma , viale delle Scienze 23A, 43124 Parma, Italy
| | - Paolo Bianchini
- Fondazione Istituto Italiano di Tecnologia , Via Morego 30, 16163 Genova, Italy
| | - Alberto Diaspro
- Fondazione Istituto Italiano di Tecnologia , Via Morego 30, 16163 Genova, Italy
| | - Montserrat Agut
- Institut Quimic de Sarrià, Universitat Ramon Llull , Via Augusta 390, 08017 Barcelona, Spain
| | - Santi Nonell
- Institut Quimic de Sarrià, Universitat Ramon Llull , Via Augusta 390, 08017 Barcelona, Spain
| | - Cristiano Viappiani
- Dipartimento di Fisica e Scienze della Terra, Universita degli Studi di Parma , viale delle Scienze 7A, 43124 Parma, Italy
- NEST, Istituto Nanoscienze, Consiglio Nazionale delle Ricerche , Piazza San Silvestro 12, 56127 Pisa, Italy
| |
Collapse
|
17
|
Galstyan A, Block D, Niemann S, Grüner MC, Abbruzzetti S, Oneto M, Daniliuc CG, Hermann S, Viappiani C, Schäfers M, Löffler B, Strassert CA, Faust A. Labeling and Selective Inactivation of Gram-Positive Bacteria Employing Bimodal Photoprobes with Dual Readouts. Chemistry 2016; 22:5243-52. [PMID: 26929124 DOI: 10.1002/chem.201504935] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Indexed: 01/17/2023]
Abstract
Carbohydrate-conjugated silicon(IV) phthalocyanines with bimodal photoactivity were developed as probes with both fluorescent labeling and photosensitizing capabilities, and the concomitant fluorescent labeling and photoinduced inactivation of Gram-positive and Gram-negative models was explored. The maltohexaose-conjugated photoprobe provides a dual readout to distinguish between both groups of pathogens, as only the Gram-positive species was inactivated, even though both appeared labeled with near-infrared luminescence. Antibiotic resistance did not hinder the phototoxic effect, as even the methicillin-resistant pathogen Staphylococcus aureus (MRSA) was completely photoinactivated. Time-resolved confocal fluorescence microscopy analysis suggests that the photoprobe sticks onto the outer rim of the microorganisms, explaining the resistance of Gram-negative species on the basis of their membrane constitution. The mannose-conjugated photoprobe yields a different readout because it is able to label and to inactivate only the Gram-positive strain.
Collapse
Affiliation(s)
- Anzhela Galstyan
- European Institute for Molecular Imaging, Waldeyerstr. 15, 48149, Münster, Germany. .,Physikalisches Institut and Center for Nanotechnology (CeNTech), Westfälische Wilhelms-Universität Münster, Heisenbergstr. 11, 48149, Münster, Germany.
| | - Desiree Block
- Institut für Medizinische Mikrobiologie, Universitätsklinikum Münster, Domagkstr. 10, 48149, Münster, Germany
| | - Silke Niemann
- Institut für Medizinische Mikrobiologie, Universitätsklinikum Münster, Domagkstr. 10, 48149, Münster, Germany
| | - Malte C Grüner
- Physikalisches Institut and Center for Nanotechnology (CeNTech), Westfälische Wilhelms-Universität Münster, Heisenbergstr. 11, 48149, Münster, Germany
| | - Stefania Abbruzzetti
- Dip. di Bioscienze Università degli Studi di Parma, NEST, Istituto Nanoscienze CNR, viale delle Scienze 11A, 43124, Parma, Italia
| | - Michele Oneto
- Fondazione Istituto Italiano di Tecnologia, Via Morego, 30, 16163, Genova, Italy
| | - Constantin G Daniliuc
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstr. 40, 48149, Münster, Germany
| | - Sven Hermann
- European Institute for Molecular Imaging, Waldeyerstr. 15, 48149, Münster, Germany
| | - Cristiano Viappiani
- Dip. di Fisica e Scienze della Terra, Università degli Studi di Parma, NEST, Istituto Nanoscienze CNR, viale delle Scienze 7A, 43124, Parma, Italia
| | - Michael Schäfers
- European Institute for Molecular Imaging, Waldeyerstr. 15, 48149, Münster, Germany.,Klinik für Nuklearmedizin, Universitätsklinikum Münster, Albert Schweitzer-Campus 1, 48149, Münster, Germany
| | - Bettina Löffler
- Institut für Medizinische Mikrobiologie, Universitätsklinikum Jena, Erlanger Allee 101, 07747, Jena, Germany
| | - Cristian A Strassert
- Physikalisches Institut and Center for Nanotechnology (CeNTech), Westfälische Wilhelms-Universität Münster, Heisenbergstr. 11, 48149, Münster, Germany.
| | - Andreas Faust
- European Institute for Molecular Imaging, Waldeyerstr. 15, 48149, Münster, Germany.
| |
Collapse
|
18
|
Bustamante JP, Radusky L, Boechi L, Estrin DA, ten Have A, Martí MA. Evolutionary and Functional Relationships in the Truncated Hemoglobin Family. PLoS Comput Biol 2016; 12:e1004701. [PMID: 26788940 PMCID: PMC4720485 DOI: 10.1371/journal.pcbi.1004701] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 12/10/2015] [Indexed: 12/21/2022] Open
Abstract
Predicting function from sequence is an important goal in current biological research, and although, broad functional assignment is possible when a protein is assigned to a family, predicting functional specificity with accuracy is not straightforward. If function is provided by key structural properties and the relevant properties can be computed using the sequence as the starting point, it should in principle be possible to predict function in detail. The truncated hemoglobin family presents an interesting benchmark study due to their ubiquity, sequence diversity in the context of a conserved fold and the number of characterized members. Their functions are tightly related to O2 affinity and reactivity, as determined by the association and dissociation rate constants, both of which can be predicted and analyzed using in-silico based tools. In the present work we have applied a strategy, which combines homology modeling with molecular based energy calculations, to predict and analyze function of all known truncated hemoglobins in an evolutionary context. Our results show that truncated hemoglobins present conserved family features, but that its structure is flexible enough to allow the switch from high to low affinity in a few evolutionary steps. Most proteins display moderate to high oxygen affinities and multiple ligand migration paths, which, besides some minor trends, show heterogeneous distributions throughout the phylogenetic tree, again suggesting fast functional adaptation. Our data not only deepens our comprehension of the structural basis governing ligand affinity, but they also highlight some interesting functional evolutionary trends.
Collapse
Affiliation(s)
- Juan P. Bustamante
- Departamento de Química Inorgánica, Analítica y Química Física, INQUIMAE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Leandro Radusky
- Departamento de Química Biológica e Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Leonardo Boechi
- Instituto de Cálculo, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Darío A. Estrin
- Departamento de Química Inorgánica, Analítica y Química Física, INQUIMAE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Arjen ten Have
- Instituto de Investigación Biológica, CONICET, Universidad Nacional de Mar del Plata. Buenos Aires, Argentina
| | - Marcelo A. Martí
- Instituto de Cálculo, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
19
|
Tilleman L, Abbruzzetti S, Ciaccio C, De Sanctis G, Nardini M, Pesce A, Desmet F, Moens L, Van Doorslaer S, Bruno S, Bolognesi M, Ascenzi P, Coletta M, Viappiani C, Dewilde S. Structural Bases for the Regulation of CO Binding in the Archaeal Protoglobin from Methanosarcina acetivorans. PLoS One 2015; 10:e0125959. [PMID: 26047471 PMCID: PMC4457829 DOI: 10.1371/journal.pone.0125959] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Accepted: 03/28/2015] [Indexed: 12/02/2022] Open
Abstract
Studies of CO ligand binding revealed that two protein states with different ligand affinities exist in the protoglobin from Methanosarcina acetivorans (in MaPgb*, residue Cys(E20)101 was mutated to Ser). The switch between the two states occurs upon the ligation of MaPgb*. In this work, site-directed mutagenesis was used to explore the role of selected amino acids in ligand sensing and stabilization and in affecting the equilibrium between the “more reactive” and “less reactive” conformational states of MaPgb*. A combination of experimental data obtained from electronic and resonance Raman absorption spectra, CO ligand-binding kinetics, and X-ray crystallography was employed. Three amino acids were assigned a critical role: Trp(60)B9, Tyr(61)B10, and Phe(93)E11. Trp(60)B9 and Tyr(61)B10 are involved in ligand stabilization in the distal heme pocket; the strength of their interaction was reflected by the spectra of the CO-ligated MaPgb* and by the CO dissociation rate constants. In contrast, Phe(93)E11 is a key player in sensing the heme-bound ligand and promotes the rotation of the Trp(60)B9 side chain, thus favoring ligand stabilization. Although the structural bases of the fast CO binding rate constant of MaPgb* are still unclear, Trp(60)B9, Tyr(61)B10, and Phe(93)E11 play a role in regulating heme/ligand affinity.
Collapse
Affiliation(s)
- Lesley Tilleman
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | | | - Chiara Ciaccio
- Department of Clinical Sciences and Translational Medicine, University of Roma Tor Vergata, Roma, Italy
- Interuniversity Consortium for the Research on the Chemistry of Metals in Biological Systems, Bari, Italy
| | - Giampiero De Sanctis
- Department of Clinical Sciences and Translational Medicine, University of Roma Tor Vergata, Roma, Italy
| | - Marco Nardini
- Department of Biosciences, University of Milano, Milano, Italy
| | | | - Filip Desmet
- Department of Physics, University of Antwerp, Antwerp, Belgium
| | - Luc Moens
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | | | - Stefano Bruno
- Department of Pharmacy, University of Parma, Parma, Italy
| | | | - Paolo Ascenzi
- Interdepartmental Laboratory of Electron Microscopy, University Roma Tre, Roma, Italy
| | - Massimo Coletta
- Department of Clinical Sciences and Translational Medicine, University of Roma Tor Vergata, Roma, Italy
- Interuniversity Consortium for the Research on the Chemistry of Metals in Biological Systems, Bari, Italy
| | - Cristiano Viappiani
- Department of Physics and Earth Sciences, University of Parma, Parma, Italy
- * E-mail: (SD); (CV)
| | - Sylvia Dewilde
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
- * E-mail: (SD); (CV)
| |
Collapse
|
20
|
Knipp M, Ogata H, Soavi G, Cerullo G, Allegri A, Abbruzzetti S, Bruno S, Viappiani C, Bidon-Chanal A, Luque FJ. Structure and dynamics of the membrane attaching nitric oxide transporter nitrophorin 7. F1000Res 2015; 4:45. [PMID: 26167269 PMCID: PMC4482215 DOI: 10.12688/f1000research.6060.1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/28/2015] [Indexed: 11/20/2022] Open
Abstract
Nitrophorins represent a unique class of heme proteins that are able to perform the delicate transportation and release of the free-radical gaseous messenger nitric oxide (NO) in a pH-triggered manner. Besides its ability to bind to phospholipid membranes, the N-terminus contains an additional Leu-Pro-Gly stretch, which is a unique sequence trait, and the heme cavity is significantly altered with respect to other nitrophorins. These distinctive features encouraged us to solve the X-ray crystallographic structures of NP7 at low and high pH and bound with different heme ligands (nitric oxide, histamine, imidazole). The overall fold of the lipocalin motif is well preserved in the different X-ray structures and resembles the fold of other nitrophorins. However, a chain-like arrangement in the crystal lattice due to a number of head-to-tail electrostatic stabilizing interactions is found in NP7. Furthermore, the X-ray structures also reveal ligand-dependent changes in the orientation of the heme, as well as in specific interactions between the A-B and G-H loops, which are considered to be relevant for the biological function of nitrophorins. Fast and ultrafast laser triggered ligand rebinding experiments demonstrate the pH-dependent ligand migration within the cavities and the exit route. Finally, the topological distribution of pockets located around the heme as well as from inner cavities present at the rear of the protein provides a distinctive feature in NP7, so that while a loop gated exit mechanism to the solvent has been proposed for most nitrophorins, a more complex mechanism that involves several interconnected gas hosting cavities is proposed for NP7.
Collapse
Affiliation(s)
- Markus Knipp
- Max-Planck-Institut für Chemische Energiekonversion, Mülheim an der Ruhr, 45470, Germany
| | - Hideaki Ogata
- Max-Planck-Institut für Chemische Energiekonversion, Mülheim an der Ruhr, 45470, Germany
| | - Giancarlo Soavi
- Dipartimento di Fisica, Politecnico di Milano, Milano, 20133, Italy
| | - Giulio Cerullo
- Dipartimento di Fisica, Politecnico di Milano, Milano, 20133, Italy
| | - Alessandro Allegri
- Dipartimento di Fisica e Scienze della Terra, Università di Parma, Parma, 43124, Italy
| | - Stefania Abbruzzetti
- Dipartimento di Bioscienze, Università di Parma, Parma, 43124, Italy ; NEST, Istituto Nanoscienze, Consiglio Nazionale delle Ricerche, Pisa, 56127, Italy
| | - Stefano Bruno
- Dipartimento di Farmacia, Università di Parma, Parma, 43124, Italy
| | - Cristiano Viappiani
- Dipartimento di Fisica e Scienze della Terra, Università di Parma, Parma, 43124, Italy ; NEST, Istituto Nanoscienze, Consiglio Nazionale delle Ricerche, Pisa, 56127, Italy
| | - Axel Bidon-Chanal
- Departament de Fisicoquímica, Facultat de Farmàcia and Institute of Biomedicine, Universitat de Barcelona, Santa Coloma de Gramenet, E-08921, Spain
| | - F Javier Luque
- Departament de Fisicoquímica, Facultat de Farmàcia and Institute of Biomedicine, Universitat de Barcelona, Santa Coloma de Gramenet, E-08921, Spain
| |
Collapse
|
21
|
Engineered chimeras reveal the structural basis of hexacoordination in globins: A case study of neuroglobin and myoglobin. Biochim Biophys Acta Gen Subj 2015; 1850:169-77. [DOI: 10.1016/j.bbagen.2014.10.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 09/12/2014] [Accepted: 10/06/2014] [Indexed: 11/18/2022]
|
22
|
Bustamante JP, Abbruzzetti S, Marcelli A, Gauto D, Boechi L, Bonamore A, Boffi A, Bruno S, Feis A, Foggi P, Estrin DA, Viappiani C. Ligand uptake modulation by internal water molecules and hydrophobic cavities in hemoglobins. J Phys Chem B 2014; 118:1234-45. [PMID: 24410478 DOI: 10.1021/jp410724z] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Internal water molecules play an active role in ligand uptake regulation, since displacement of retained water molecules from protein surfaces or cavities by incoming ligands can promote favorable or disfavorable effects over the global binding process. Detection of these water molecules by X-ray crystallography is difficult given their positional disorder and low occupancy. In this work, we employ a combination of molecular dynamics simulations and ligand rebinding over a broad time range to shed light into the role of water molecules in ligand migration and binding. Computational studies on the unliganded structure of the thermostable truncated hemoglobin from Thermobifida fusca (Tf-trHbO) show that a water molecule is in the vicinity of the iron heme, stabilized by WG8 with the assistance of YCD1, exerting a steric hindrance for binding of an exogenous ligand. Mutation of WG8 to F results in a significantly lower stabilization of this water molecule and in subtle dynamical structural changes that favor ligand binding, as observed experimentally. Water is absent from the fully hydrophobic distal cavity of the triple mutant YB10F-YCD1F-WG8F (3F), due to the lack of residues capable of stabilizing it nearby the heme. In agreement with these effects on the barriers for ligand rebinding, over 97% of the photodissociated ligands are rebound within a few nanoseconds in the 3F mutant case. Our results demonstrate the specific involvement of water molecules in shaping the energetic barriers for ligand migration and binding.
Collapse
Affiliation(s)
- Juan P Bustamante
- Departamento de Química Inorgánica, Analítica y Química Física, INQUIMAE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires , Buenos Aires, Argentina
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Kohse S, Neubauer A, Pazidis A, Lochbrunner S, Kragl U. Photoswitching of Enzyme Activity by Laser-Induced pH-Jump. J Am Chem Soc 2013; 135:9407-11. [DOI: 10.1021/ja400700x] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Stefanie Kohse
- Department of Chemistry, University of Rostock, Albert-Einstein-Straße
3a, D-18059 Rostock, Germany
- Faculty
of Interdisciplinary Research, University of Rostock, Wismarsche Straße 8, D-18057
Rostock, Germany
| | - Antje Neubauer
- Institute of Physics, University of Rostock, Universitaetsplatz 3, D-18055
Rostock, Germany
| | - Alexandra Pazidis
- Institute of Physics, University of Rostock, Universitaetsplatz 3, D-18055
Rostock, Germany
| | - Stefan Lochbrunner
- Institute of Physics, University of Rostock, Universitaetsplatz 3, D-18055
Rostock, Germany
- Faculty
of Interdisciplinary Research, University of Rostock, Wismarsche Straße 8, D-18057
Rostock, Germany
| | - Udo Kragl
- Department of Chemistry, University of Rostock, Albert-Einstein-Straße
3a, D-18059 Rostock, Germany
- Faculty
of Interdisciplinary Research, University of Rostock, Wismarsche Straße 8, D-18057
Rostock, Germany
| |
Collapse
|
24
|
Abbruzzetti S, Spyrakis F, Bidon-Chanal A, Luque FJ, Viappiani C. Ligand migration through hemeprotein cavities: insights from laser flash photolysis and molecular dynamics simulations. Phys Chem Chem Phys 2013; 15:10686-701. [PMID: 23733145 DOI: 10.1039/c3cp51149a] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The presence of cavities and tunnels in the interior of proteins, in conjunction with the structural plasticity arising from the coupling to the thermal fluctuations of the protein scaffold, has profound consequences on the pathways followed by ligands moving through the protein matrix. In this perspective we discuss how quantitative analysis of experimental rebinding kinetics from laser flash photolysis, trapping of unstable conformational states by embedding proteins within the nanopores of silica gels, and molecular simulations can synergistically converge to gain insight into the migration mechanism of ligands. We show how the evaluation of the free energy landscape for ligand diffusion based on the outcome of computational techniques can assist the definition of sound reaction schemes, leading to a comprehensive understanding of the broad range of chemical events and time scales that encompass the transport of small ligands in hemeproteins.
Collapse
Affiliation(s)
- Stefania Abbruzzetti
- Dipartimento di Fisica e Scienze della Terra, Università degli Studi di Parma, viale delle Scienze 7A, 43124, Parma, Italy
| | | | | | | | | |
Collapse
|
25
|
Coppola D, Abbruzzetti S, Nicoletti F, Merlino A, Gambacurta A, Giordano D, Howes BD, De Sanctis G, Vitagliano L, Bruno S, di Prisco G, Mazzarella L, Smulevich G, Coletta M, Viappiani C, Vergara A, Verde C. ATP regulation of the ligand-binding properties in temperate and cold-adapted haemoglobins. X-ray structure and ligand-binding kinetics in the sub-Antarctic fish Eleginops maclovinus. MOLECULAR BIOSYSTEMS 2013; 8:3295-304. [PMID: 23086282 DOI: 10.1039/c2mb25210d] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The major haemoglobin of the sub-Antarctic fish Eleginops maclovinus was structurally and functionally characterised with the aim to compare molecular environmental adaptations in the O(2)-transport system of sub-Antarctic fishes of the suborder Notothenioidei with those of their high-latitude relatives. Ligand-binding kinetics of the major haemoglobin of E. maclovinus indicated strong stabilisation of the liganded quaternary T state, enhanced in the presence of the physiological allosteric effector ATP, compared to that of high-Antarctic Trematomus bernacchii. The activation enthalpy for O(2) dissociation was dramatically lower than that in T. bernacchii haemoglobin, suggesting remarkable differences in temperature sensitivity and structural changes associated with O(2) release and exit from the protein. The haemoglobin functional properties, together with the X-ray structure of the CO form at 1.49 Å resolution, the first of a temperate notothenioid, strongly support the hypothesis that in E. maclovinus, whose life-style varies according to changes in habitat, the mechanisms that regulate O(2) affinity and the ATP-induced Root effect differ from those of high-Antarctic Notothenioids.
Collapse
Affiliation(s)
- Daniela Coppola
- Institute of Protein Biochemistry, CNR, Via Pietro Castellino 111, I-80131 Naples, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Oliveira A, Allegri A, Bidon-Chanal A, Knipp M, Roitberg AE, Abbruzzetti S, Viappiani C, Luque FJ. Kinetics and computational studies of ligand migration in nitrophorin 7 and its Δ1-3 mutant. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2013; 1834:1711-21. [PMID: 23624263 DOI: 10.1016/j.bbapap.2013.04.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Revised: 03/25/2013] [Accepted: 04/11/2013] [Indexed: 11/18/2022]
Abstract
Nitrophorins (NPs) are nitric oxide (NO)-carrying heme proteins found in the saliva of the blood-sucking insect Rhodnius prolixus. Though NP7 exhibits a large sequence resemblance with other NPs, two major differential features are the ability to interact with negatively charged cell surfaces and the presence of a specific N-terminus composed of three extra residues (Leu1-Pro2-Gly3). The aim of this study is to examine the influence of the N-terminus on the ligand binding, and the topological features of inner cavities in closed and open states of NP7, which can be associated to the protein structure at low and high pH, respectively. Laser flash photolysis measurements of the CO rebinding kinetics to NP7 and its variant NP7(Δ1-3), which lacks the three extra residues at the N-terminus, exhibit a similar pattern and support the existence of a common kinetic mechanism for ligand migration and binding. This is supported by the existence of a common topology of inner cavities, which consists of two docking sites in the heme pocket and a secondary site at the back of the protein. The ligand exchange between these cavities is facilitated by an additional site, which can be transiently occupied by the ligand in NP7, although it is absent in NP4. These features provide a basis to explain the enhanced internal gas hosting capacity found experimentally in NP7 and the absence of ligand rebinding from secondary sites in NP4. The current data allow us to speculate that the processes of docking to cell surfaces and NO release may be interconnected in NP7, thereby efficiently releasing NO into a target cell. This article is part of a Special Issue entitled: Oxygen Binding and Sensing Proteins.
Collapse
Affiliation(s)
- Ana Oliveira
- Departament de Fisicoquímica and Institut de Biomedicina, Universitat de Barcelona, Spain
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Spyrakis F, Lucas F, Bidon-Chanal A, Viappiani C, Guallar V, Luque FJ. Comparative analysis of inner cavities and ligand migration in non-symbiotic AHb1 and AHb2. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2013; 1834:1957-67. [PMID: 23583621 DOI: 10.1016/j.bbapap.2013.04.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Revised: 03/30/2013] [Accepted: 04/03/2013] [Indexed: 10/27/2022]
Abstract
This study reports a comparative analysis of the topological properties of inner cavities and the intrinsic dynamics of non-symbiotic hemoglobins AHb1 and AHb2 from Arabidopsis thaliana. The two proteins belong to the 3/3 globin fold and have a sequence identity of about 60%. However, it is widely assumed that they have distinct physiological roles. In order to investigate the structure-function relationships in these proteins, we have examined the bis-histidyl and ligand-bound hexacoordinated states by atomistic simulations using in silico structural models. The results allow us to identify two main pathways to the distal cavity in the bis-histidyl hexacoordinated proteins. Nevertheless, a larger accessibility to small gaseous molecules is found in AHb2. This effect can be attributed to three factors: the mutation Leu35(AHb1)→Phe32(AHb2), the enhanced flexibility of helix B, and the more favorable energetic profile for ligand migration to the distal cavity. The net effect of these factors would be to facilitate the access of ligands, thus compensating the preference for the fully hexacoordination of AHb2, in contrast to the equilibrium between hexa- and pentacoordinated species in AHb1. On the other hand, binding of the exogenous ligand introduces distinct structural changes in the two proteins. A well-defined tunnel is formed in AHb1, which might be relevant to accomplish the proposed NO detoxification reaction. In contrast, no similar tunnel is found in AHb2, which can be ascribed to the reduced flexibility of helix E imposed by the larger number of salt bridges compared to AHb1. This feature would thus support the storage and transport functions proposed for AHb2. This article is part of a Special Issue entitled: Oxygen Binding and Sensing Proteins.
Collapse
Affiliation(s)
- Francesca Spyrakis
- Dipartimento di Scienze degli Alimenti, Università degli Studi di Parma, Parma, Italy.
| | | | | | | | | | | |
Collapse
|
28
|
Gabba M, Abbruzzetti S, Spyrakis F, Forti F, Bruno S, Mozzarelli A, Luque FJ, Viappiani C, Cozzini P, Nardini M, Germani F, Bolognesi M, Moens L, Dewilde S. CO rebinding kinetics and molecular dynamics simulations highlight dynamic regulation of internal cavities in human cytoglobin. PLoS One 2013; 8:e49770. [PMID: 23308092 PMCID: PMC3537629 DOI: 10.1371/journal.pone.0049770] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Accepted: 10/12/2012] [Indexed: 12/03/2022] Open
Abstract
Cytoglobin (Cygb) was recently discovered in the human genome and localized in different tissues. It was suggested to play tissue-specific protective roles, spanning from scavenging of reactive oxygen species in neurons to supplying oxygen to enzymes in fibroblasts. To shed light on the functioning of such versatile machinery, we have studied the processes supporting transport of gaseous heme ligands in Cygb. Carbon monoxide rebinding shows a complex kinetic pattern with several distinct reaction intermediates, reflecting rebinding from temporary docking sites, second order recombination, and formation (and dissociation) of a bis-histidyl heme hexacoordinated reaction intermediate. Ligand exit to the solvent occurs through distinct pathways, some of which exploit temporary docking sites. The remarkable change in energetic barriers, linked to heme bis-histidyl hexacoordination by HisE7, may be responsible for active regulation of the flux of reactants and products to and from the reaction site on the distal side of the heme. A substantial change in both protein dynamics and inner cavities is observed upon transition from the CO-liganded to the pentacoordinated and bis-histidyl hexacoordinated species, which could be exploited as a signalling state. These findings are consistent with the expected versatility of the molecular activity of this protein.
Collapse
Affiliation(s)
- Matteo Gabba
- Institute of Complex Systems - Molekulare Biophysik (ICS-5) Forschungszentrum Jülich, Jülich, Germany
| | - Stefania Abbruzzetti
- Dipartimento di Fisica e Scienze della Terra, Università degli Studi di Parma, Parma, Italy
| | - Francesca Spyrakis
- Dipartimento di Scienze degli Alimenti, Università degli Studi di Parma, Parma, Italy
- INBB, Biostructures and Biosystems National Institute, Rome, Italy
| | - Flavio Forti
- Departament de Fisicoquímica and Institut de Biomedicina (IBUB), Facultat de Farmàcia, Universitat de Barcelona, Barcelona, Spain
| | - Stefano Bruno
- Dipartimento di Farmacia, Università degli Studi di Parma, Parma, Italy
| | - Andrea Mozzarelli
- Dipartimento di Farmacia, Università degli Studi di Parma, Parma, Italy
| | - F. Javier Luque
- Departament de Fisicoquímica and Institut de Biomedicina (IBUB), Facultat de Farmàcia, Universitat de Barcelona, Barcelona, Spain
| | - Cristiano Viappiani
- Dipartimento di Fisica e Scienze della Terra, Università degli Studi di Parma, Parma, Italy
- NEST, Istituto Nanoscienze-CNR, Pisa, Italy
- * E-mail:
| | - Pietro Cozzini
- Dipartimento di Scienze degli Alimenti, Università degli Studi di Parma, Parma, Italy
- INBB, Biostructures and Biosystems National Institute, Rome, Italy
| | - Marco Nardini
- Dipartimento di BioScienze, CNR-IBF, and CIMAINA, Università degli Studi di Milano, Milano, Italy
| | - Francesca Germani
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Martino Bolognesi
- Dipartimento di BioScienze, CNR-IBF, and CIMAINA, Università degli Studi di Milano, Milano, Italy
| | - Luc Moens
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Sylvia Dewilde
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
29
|
Marcelli A, Abbruzzetti S, Bustamante JP, Feis A, Bonamore A, Boffi A, Gellini C, Salvi PR, Estrin DA, Bruno S, Viappiani C, Foggi P. Following ligand migration pathways from picoseconds to milliseconds in type II truncated hemoglobin from Thermobifida fusca. PLoS One 2012; 7:e39884. [PMID: 22792194 PMCID: PMC3391200 DOI: 10.1371/journal.pone.0039884] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2012] [Accepted: 05/28/2012] [Indexed: 11/18/2022] Open
Abstract
CO recombination kinetics has been investigated in the type II truncated hemoglobin from Thermobifida fusca (Tf-trHb) over more than 10 time decades (from 1 ps to ∼100 ms) by combining femtosecond transient absorption, nanosecond laser flash photolysis and optoacoustic spectroscopy. Photolysis is followed by a rapid geminate recombination with a time constant of ∼2 ns representing almost 60% of the overall reaction. An additional, small amplitude geminate recombination was identified at ∼100 ns. Finally, CO pressure dependent measurements brought out the presence of two transient species in the second order rebinding phase, with time constants ranging from ∼3 to ∼100 ms. The available experimental evidence suggests that the two transients are due to the presence of two conformations which do not interconvert within the time frame of the experiment. Computational studies revealed that the plasticity of protein structure is able to define a branched pathway connecting the ligand binding site and the solvent. This allowed to build a kinetic model capable of describing the complete time course of the CO rebinding kinetics to Tf-trHb.
Collapse
Affiliation(s)
- Agnese Marcelli
- LENS, European Laboratory for Non-linear Spectroscopy, Florence, Italy.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Abbruzzetti S, He C, Ogata H, Bruno S, Viappiani C, Knipp M. Heterogeneous kinetics of the carbon monoxide association and dissociation reaction to nitrophorin 4 and 7 coincide with structural heterogeneity of the gate-loop. J Am Chem Soc 2012; 134:9986-98. [PMID: 22594621 DOI: 10.1021/ja2121662] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
NO is an important signaling molecule in human tissue. However, the mechanisms by which this molecule is controlled and directed are currently little understood. Nitrophorins (NPs) comprise a group of ferriheme proteins originating from blood-sucking insects that are tailored to protect and deliver NO via coordination to and release from the heme iron. Therefore, the kinetics of the association and dissociation reactions were studied in this work using the ferroheme-CO complexes of NP4, NP4(D30N), and NP7 as isoelectronic models for the ferriheme-NO complexes. The kinetic measurements performed by nanosecond laser-flash-photolysis and stopped-flow are accompanied by resonance Raman and FT-IR spectroscopy to characterize the carbonyl species. Careful analysis of the CO rebinding kinetics reveals that in NP4 and, to a larger extent, NP7 internal gas binding cavities are located, which temporarily trap photodissociated ligands. Moreover, changes in the free energy barriers throughout the rebinding and release pathway upon increase of the pH are surprisingly small in case of NP4. Also in case of NP4, a heterogeneous kinetic trace is obtained at pH 7.5, which corresponds to the presence of two carbonyl species in the heme cavity that are seen in vibrational spectroscopy and that are due to the change of the distal heme pocket polarity. Quantification of the two species from FT-IR spectra allowed the fitting of the kinetic traces as two processes, corresponding to the previously reported open and closed conformation of the A-B and G-H loops. With the use of the A-B loop mutant NP4(D30N), it was confirmed that the kinetic heterogeneity is controlled by pH through the disruption of the H-bond between the Asp30 side chain and the Leu130 backbone carbonyl. Overall, this first study on the slow phase of the dynamics of diatomic gas molecule interaction with NPs comprises an important experimental contribution for the understanding of the dynamics involved in the binding/release processes of NO/CO in NPs.
Collapse
Affiliation(s)
- Stefania Abbruzzetti
- Dipartimento di Fisica, Università degli Studi di Parma, viale delle Scienze 7A, I-43124, Parma, Italy
| | | | | | | | | | | |
Collapse
|
31
|
Abbruzzetti S, Tilleman L, Bruno S, Viappiani C, Desmet F, Van Doorslaer S, Coletta M, Ciaccio C, Ascenzi P, Nardini M, Bolognesi M, Moens L, Dewilde S. Ligation tunes protein reactivity in an ancient haemoglobin: kinetic evidence for an allosteric mechanism in Methanosarcina acetivorans protoglobin. PLoS One 2012; 7:e33614. [PMID: 22479420 PMCID: PMC3313925 DOI: 10.1371/journal.pone.0033614] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Accepted: 02/13/2012] [Indexed: 11/19/2022] Open
Abstract
Protoglobin from Methanosarcina acetivorans (MaPgb) is a dimeric globin with peculiar structural properties such as a completely buried haem and two orthogonal tunnels connecting the distal cavity to the solvent. CO binding to and dissociation from MaPgb occur through a biphasic kinetics. We show that the heterogenous kinetics arises from binding to (and dissociation from) two tertiary conformations in ligation-dependent equilibrium. Ligation favours the species with high binding rate (and low dissociation rate). The equilibrium is shifted towards the species with low binding (and high dissociation) rates for the unliganded molecules. A quantitative model is proposed to describe the observed carbonylation kinetics.
Collapse
Affiliation(s)
- Stefania Abbruzzetti
- Dipartimento di Fisica, Università degli Studi di Parma, Parma, Italy
- NEST, Istituto Nanoscienze-CNR, Pisa, Italy
| | - Lesley Tilleman
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Stefano Bruno
- Dipartimento di Biochimica e Biologia Molecolare, Università degli Studi di Parma, Parma, Italy
| | - Cristiano Viappiani
- Dipartimento di Fisica, Università degli Studi di Parma, Parma, Italy
- NEST, Istituto Nanoscienze-CNR, Pisa, Italy
| | - Filip Desmet
- Department of Physics, University of Antwerp, Antwerp, Belgium
| | | | - Massimo Coletta
- Dipartimento di Scienze Cliniche e Medicina Traslazionale, Università di Roma Tor Vergata, Roma, Italy
- Consorzio Interuniversitario di Ricerca in Chimica dei Metalli nei Sistemi Biologici, Bari, Italy
| | - Chiara Ciaccio
- Dipartimento di Scienze Cliniche e Medicina Traslazionale, Università di Roma Tor Vergata, Roma, Italy
- Consorzio Interuniversitario di Ricerca in Chimica dei Metalli nei Sistemi Biologici, Bari, Italy
| | - Paolo Ascenzi
- Dipartimento di Biologia, Università Roma Tre, Roma, Italy
| | - Marco Nardini
- Dipartimento di Scienze Biomolecolari e Biotecnologie and CIMAINA, Università degli Studi di Milano, Italy
| | - Martino Bolognesi
- Dipartimento di Scienze Biomolecolari e Biotecnologie and CIMAINA, Università degli Studi di Milano, Italy
| | - Luc Moens
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Sylvia Dewilde
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
32
|
Knipp M, Taing JJ, He C, Viappiani C. A caged cyanide. Photochem Photobiol Sci 2012; 11:620-2. [PMID: 22406687 DOI: 10.1039/c2pp05359d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A photoactivatable caged cyanide, 1-(2-nitrophenyl)ethyl (NPE) cyanide, was synthesized, which upon irradiation in the near UV releases cyanide. It is demonstrated that the compound can be used to induce formation of the Fe(III)-CN(-) complex in the heme protein nitrophorin 4 from Rhodnius prolixus.
Collapse
Affiliation(s)
- Markus Knipp
- Max-Planck-Institut für Bioanorganische Chemie, Stifstrasse 34-36, D-45470 Mülheim an der Ruhr, Germany.
| | | | | | | |
Collapse
|
33
|
Coppola D, Bruno S, Ronda L, Viappiani C, Abbruzzetti S, di Prisco G, Verde C, Mozzarelli A. Low affinity PEGylated hemoglobin from Trematomus bernacchii, a model for hemoglobin-based blood substitutes. BMC BIOCHEMISTRY 2011; 12:66. [PMID: 22185675 PMCID: PMC3268738 DOI: 10.1186/1471-2091-12-66] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Accepted: 12/20/2011] [Indexed: 01/03/2023]
Abstract
Background Conjugation of human and animal hemoglobins with polyethylene glycol has been widely explored as a means to develop blood substitutes, a novel pharmaceutical class to be used in surgery or emergency medicine. However, PEGylation of human hemoglobin led to products with significantly different oxygen binding properties with respect to the unmodified tetramer and high NO dioxygenase reactivity, known causes of toxicity. These recent findings call for the biotechnological development of stable, low-affinity PEGylated hemoglobins with low NO dioxygenase reactivity. Results To investigate the effects of PEGylation on protein structure and function, we compared the PEGylation products of human hemoglobin and Trematomus bernacchii hemoglobin, a natural variant endowed with a remarkably low oxygen affinity and high tetramer stability. We show that extension arm facilitated PEGylation chemistry based on the reaction of T. bernacchii hemoglobin with 2-iminothiolane and maleimido-functionalyzed polyethylene glycol (MW 5000 Da) leads to a tetraPEGylated product, more homogeneous than the corresponding derivative of human hemoglobin. PEGylated T. bernacchii hemoglobin largely retains the low affinity of the unmodified tetramer, with a p50 50 times higher than PEGylated human hemoglobin. Moreover, it is still sensitive to protons and the allosteric effector ATP, indicating the retention of allosteric regulation. It is also 10-fold less reactive towards nitrogen monoxide than PEGylated human hemoglobin. Conclusions These results indicate that PEGylated hemoglobins, provided that a suitable starting hemoglobin variant is chosen, can cover a wide range of oxygen-binding properties, potentially meeting the functional requirements of blood substitutes in terms of oxygen affinity, tetramer stability and NO dioxygenase reactivity.
Collapse
Affiliation(s)
- Daniela Coppola
- Department of Biochemistry and Molecular Biology, University of Parma, Parma, Italy
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Abbruzzetti S, Faggiano S, Spyrakis F, Bruno S, Mozzarelli A, Astegno A, Dominici P, Viappiani C. Oxygen and nitric oxide rebinding kinetics in nonsymbiotic hemoglobin AHb1 from Arabidopsis thaliana. IUBMB Life 2011; 63:1094-100. [PMID: 22034287 DOI: 10.1002/iub.546] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2011] [Accepted: 07/02/2011] [Indexed: 01/26/2023]
Abstract
Type 1 nonsymbiotic hemoglobin from Arabidopsis thaliana (AHb1) shows a partial bis-histidyl hexacoordination but can reversibly bind diatomic ligands. The physiological function is still unclear, but the high oxygen affinity rules out a function related to O2 sensing, carrying, or storing. To gain insight into its possible functional roles, we have investigated its O2 and NO rebinding kinetics after laser flash photolysis. The rate constants of the rebinding from the primary docking site for both O2 and NO are higher than CO, with lower photolysis yields. Moreover, the amplitude of the geminate phase increases and, as for CO, the numerical analysis of the experimental curves suggests the existence of an internal pathway leading, with high rate, to an additional docking site. However, the accessibility to this site seems to be strongly ligand-dependent, being lower for O2 and higher for NO.
Collapse
|
35
|
Droghetti E, Nicoletti FP, Bonamore A, Sciamanna N, Boffi A, Feis A, Smulevich G. The optical spectra of fluoride complexes can effectively probe H-bonding interactions in the distal cavity of heme proteins. J Inorg Biochem 2011; 105:1338-43. [DOI: 10.1016/j.jinorgbio.2011.07.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2011] [Revised: 06/17/2011] [Accepted: 07/20/2011] [Indexed: 10/17/2022]
|
36
|
Spyrakis F, Luque FJ, Viappiani C. Structural analysis in nonsymbiotic hemoglobins: what can we learn from inner cavities? PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2011; 181:8-13. [PMID: 21600392 DOI: 10.1016/j.plantsci.2011.03.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Revised: 03/24/2011] [Accepted: 03/29/2011] [Indexed: 05/09/2023]
Abstract
Plants contain three classes of hemoglobins which are not associated with nitrogen fixing bacteria, and have been accordingly termed nonsymbiotic hemoglobins. The function of nonsymbiotic hemoglobins is as yet mostly unknown. A NO dioxygenase activity has been proposed and demonstrated for some of them in vitro. In this context, a sound molecular mechanism that relates the structure with the biological activity is crucial to suggest a given physiological role. Insight into such a mechanism is now facilitated by recent progress made in both experimental and computational techniques. These studies have highlighted a number of key structural features implicated in the function of nonsymbiotic hemoglobins. The bis-histidyl hexacoordination of the heme in both its ferric and ferrous states provides a powerful and general tool to modulate reactivity, protein dynamics, and shape of the cavities. In addition, the specific arrangement of distal cavity residues provides effective protection against autoxidation. Inspection of the static crystal structures available for both liganded and unliganded states seems unsufficient to explain the function of these proteins. Function appears to be intimately linked with protein flexibility, which influences the dynamical behavior of inner cavities, capable of delivering apolar reactants to the reaction site, and removing charged reaction products. In this mini review, we demonstrate how the integration of information derived from experimental assays and computational studies is valuable and can shed light into the linkage between structural plasticity of nonsymbiotic hemoglobins and their biological role.
Collapse
Affiliation(s)
- Francesca Spyrakis
- Dipartimento di Chimica Generale ed Inorganica, Chimica Analitica, Chimica Fisica, Università degli Studi di Parma, Italy
| | | | | |
Collapse
|
37
|
Spyrakis F, Faggiano S, Abbruzzetti S, Dominici P, Cacciatori E, Astegno A, Droghetti E, Feis A, Smulevich G, Bruno S, Mozzarelli A, Cozzini P, Viappiani C, Bidon-Chanal A, Luque FJ. Histidine E7 dynamics modulates ligand exchange between distal pocket and solvent in AHb1 from Arabidopsis thaliana. J Phys Chem B 2011; 115:4138-46. [PMID: 21428382 DOI: 10.1021/jp110816h] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The distal His residue in type 1 nonsymbiotic hemoglobin AHb1 from Arabidopsis thaliana plays a fundamental role in stabilizing the bound ligand. This residue might also be important in regulating the accessibility to the distal cavity. The feasibility of this functional role has been examined using a combination of experimental and computational methods. We show that the exchange of CO between the solvent and the reaction site is modulated by a swinging motion of the distal His, which opens a channel that connects directly the distal heme pocket with the solvent. The nearby PheB10 aids the distal His in the stabilization of the bound ligand by providing additional protection against solvation. Overall, these findings provide evidence supporting the functional implications of the conformational rearrangement found for the distal His in AHb1, which mimics the gating role proposed for the same residue in myoglobin.
Collapse
Affiliation(s)
- Francesca Spyrakis
- Dipartimento di Chimica Generale ed Inorganica, Chimica Analitica, Chimica Fisica, Università degli Studi di Parma, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Bisht NK, Abbruzzetti S, Uppal S, Bruno S, Spyrakis F, Mozzarelli A, Viappiani C, Kundu S. Ligand migration and hexacoordination in type 1 non-symbiotic rice hemoglobin. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2010; 1814:1042-53. [PMID: 20940062 DOI: 10.1016/j.bbapap.2010.09.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2010] [Revised: 09/26/2010] [Accepted: 09/28/2010] [Indexed: 10/19/2022]
Abstract
Type 1 non-symbiotic rice hemoglobin (rHb1) shows bis-histidyl heme hexacoordination and is capable of binding diatomic ligands reversibly. The biological function is as yet unclear, but the high oxygen affinity makes it unlikely to be involved in oxygen transport. In order to gain insight into possible physiological roles, we have studied CO rebinding kinetics after laser flash photolysis of rHb1 in solution and encapsulated in silica gel. CO rebinding to wt rHb1 in solution occurs through a fast geminate phase with no sign of rebinding from internal docking sites. Encapsulation in silica gel enhances migration to internal cavities. Site-directed mutagenesis of FB10, a residue known to have a key role in the regulation of hexacoordination and ligand affinity, resulted in substantial effects on the rebinding kinetics, partly inhibiting ligand exit to the solvent, enhancing geminate rebinding and enabling ligand migration within the internal cavities. The mutation of HE7, one of the histidyl residues involved in the hexacoordination, prevents hexacoordination, as expected, but also exposes ligand migration through a complex system of cavities. This article is part of a Special Issue entitled: Protein Dynamics: Experimental and Computational Approaches.
Collapse
Affiliation(s)
- Nitin Kumar Bisht
- Dipartimento di Fisica, Università degli Studi di Parma, Parma, Italy
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Nienhaus K, Dominici P, Astegno A, Abbruzzetti S, Viappiani C, Nienhaus GU. Ligand migration and binding in nonsymbiotic hemoglobins of Arabidopsis thaliana. Biochemistry 2010; 49:7448-58. [PMID: 20666470 DOI: 10.1021/bi100768g] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
We have studied carbon monoxide (CO) migration and binding in the nonsymbiotic hemoglobins AHb1 and AHb2 of Arabidopsis thaliana using Fourier transform infrared (FTIR) spectroscopy combined with temperature derivative spectroscopy (TDS) at cryogenic temperatures. Both proteins have similar amino acid sequences but display pronounced differences in ligand binding properties, at both physiological and cryogenic temperatures. Near neutral pH, the distal HisE7 side chain is close to the heme-bound ligand in the majority of AHb1-CO molecules, as indicated by a low CO stretching frequency at 1921 cm(-1). In this fraction, two CO docking sites can be populated, the primary site B and the secondary site C. When the pH is lowered, a high-frequency stretching band at approximately 1964 cm(-1) grows at the expense of the low-frequency band, indicating that HisE7 protonates and, concomitantly, moves away from the bound ligand. Geminate rebinding barriers are markedly different for the two conformations, and docking site C is not accessible in the low-pH conformation. Rebinding of NO ligands was observed only from site B of AHb1, regardless of conformation. In AHb2, the HisE7 side chain is removed from the bound ligand; rebinding barriers are low, and CO molecules can populate only primary docking site B. These results are interpreted in terms of differences in the active site structures and physiological functions.
Collapse
Affiliation(s)
- Karin Nienhaus
- Institute of Applied Physics and Center for Functional Nanostructures, Karlsruhe Institute of Technology, 76128 Karlsruhe, Germany
| | | | | | | | | | | |
Collapse
|
40
|
Abbruzzetti S, Bizzarri R, Luin S, Nifosì R, Storti B, Viappiani C, Beltram F. Photoswitching of E222Q GFP mutants: "concerted" mechanism of chromophore isomerization and protonation. Photochem Photobiol Sci 2010; 9:1307-19. [PMID: 20859582 DOI: 10.1039/c0pp00189a] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Photochromic (i.e. reversibly photoswitchable) fluorescent proteins increasingly find applications as biomarkers for advanced bioimaging applications. From a mechanistic point of view, photochromicity usually stems from the reversible cis-trans photoisomerization of the chromophore. We demonstrated experimentally that cis-trans photoisomerization constitutes a very efficient deactivation pathway of isolated chromophores upon visible light excitation. Nonetheless, this intrinsic property is seldom displayed by chromophores in the folded protein structure. We found that the E222Q amino acid replacement restores efficient photochromicity in otherwise poorly switchable green fluorescent protein variants of different optical properties. Glutamic acid 222 is known to play a pivotal role in the inner proton wires that involve the GFP chromophore and the surrounding residues. Hence its substitution with an isosteric but non-ionizable residue presumably leads to a extensive rewiring of proton pathways around the chromophore, which has a deep effect also on the photochromic properties. In this work, we review and discuss the main photophysical properties of photochromic E222Q GFP mutants. Additionally we show, by means of flash-photolysis experiments, that chromophore cis to trans photoswitching involves a molecular mechanism where stereochemical isomerization and chromophore protonation occur in a coordinated way. Such a "concerted" mechanism is, in our opinion, at the basis of efficient photochromic behavior and might be activated by the E222Q mutation.
Collapse
Affiliation(s)
- Stefania Abbruzzetti
- Dipartimento di Fisica, Università di Parma, viale G. P. Usberti 7A, 43100, Parma, Italy
| | | | | | | | | | | | | |
Collapse
|
41
|
Ligand migration through the internal hydrophobic cavities in human neuroglobin. Proc Natl Acad Sci U S A 2009; 106:18984-9. [PMID: 19850865 DOI: 10.1073/pnas.0905433106] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Neuroglobin (Ngb), a member of the globin superfamily, was found in the brain of vertebrates and is suggested to play a neuroprotective function under hypoxic conditions by scavenging nitrogen monoxide (NO) through a dioxygenase activity. In order for such a reaction to efficiently take place and to minimize the release of reactive intermediates in the cytosol, the cosubstrates O(2) and NO and other unstable reaction intermediates should bind sequentially to docking sites in the protein matrix. We have characterized the accessibility of these sites by analyzing the geminate CO rebinding kinetics to the heme moiety observed upon nanosecond flash photolysis of the Ngb-CO complex encapsulated in silica gels. The geminate rebinding phase showed a remarkable complexity, revealing the presence of a system of secondary docking sites where ligands are stored for hundreds of microseconds. Most kinetics steps display little temperature dependence, demonstrating that ligands can easily migrate through the cavities, except for the slowest reaction intermediate, possibly reflecting a structural conformational change reshaping the system of cavities. This conformational change is unrelated with distal His E7 binding to the heme, as it persists for the HE7L mutant. Overall, data are consistent with the presence of a discrete system of docking sites, possibly acting as reservoirs for the putative cosubstrates and for other reactive species involved in the physiologically relevant reaction.
Collapse
|
42
|
Caccia D, Ronda L, Frassi R, Perrella M, Del Favero E, Bruno S, Pioselli B, Abbruzzetti S, Viappiani C, Mozzarelli A. PEGylation Promotes Hemoglobin Tetramer Dissociation. Bioconjug Chem 2009; 20:1356-66. [DOI: 10.1021/bc900130f] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Dario Caccia
- Dipartimento di Scienze e Tecnologie Biomediche, Dipartimento di Chimica, Biochimica e Biotecnologie per la Medicina, Università degli Studi di Milano, and LITA (Laboratorio Interdisciplinare di Tecnologie Avanzate), 20090 Segrate, Milano, Italy, and Dipartimento di Biochimica e Biologia Molecolare, Dipartimento di Fisica, Università di Parma, and NEST CNR-INFM, Istituto Nazionale di Biostrutture e Biosistemi, 43100 Parma, Italy
| | - Luca Ronda
- Dipartimento di Scienze e Tecnologie Biomediche, Dipartimento di Chimica, Biochimica e Biotecnologie per la Medicina, Università degli Studi di Milano, and LITA (Laboratorio Interdisciplinare di Tecnologie Avanzate), 20090 Segrate, Milano, Italy, and Dipartimento di Biochimica e Biologia Molecolare, Dipartimento di Fisica, Università di Parma, and NEST CNR-INFM, Istituto Nazionale di Biostrutture e Biosistemi, 43100 Parma, Italy
| | - Raffaella Frassi
- Dipartimento di Scienze e Tecnologie Biomediche, Dipartimento di Chimica, Biochimica e Biotecnologie per la Medicina, Università degli Studi di Milano, and LITA (Laboratorio Interdisciplinare di Tecnologie Avanzate), 20090 Segrate, Milano, Italy, and Dipartimento di Biochimica e Biologia Molecolare, Dipartimento di Fisica, Università di Parma, and NEST CNR-INFM, Istituto Nazionale di Biostrutture e Biosistemi, 43100 Parma, Italy
| | - Michele Perrella
- Dipartimento di Scienze e Tecnologie Biomediche, Dipartimento di Chimica, Biochimica e Biotecnologie per la Medicina, Università degli Studi di Milano, and LITA (Laboratorio Interdisciplinare di Tecnologie Avanzate), 20090 Segrate, Milano, Italy, and Dipartimento di Biochimica e Biologia Molecolare, Dipartimento di Fisica, Università di Parma, and NEST CNR-INFM, Istituto Nazionale di Biostrutture e Biosistemi, 43100 Parma, Italy
| | - Elena Del Favero
- Dipartimento di Scienze e Tecnologie Biomediche, Dipartimento di Chimica, Biochimica e Biotecnologie per la Medicina, Università degli Studi di Milano, and LITA (Laboratorio Interdisciplinare di Tecnologie Avanzate), 20090 Segrate, Milano, Italy, and Dipartimento di Biochimica e Biologia Molecolare, Dipartimento di Fisica, Università di Parma, and NEST CNR-INFM, Istituto Nazionale di Biostrutture e Biosistemi, 43100 Parma, Italy
| | - Stefano Bruno
- Dipartimento di Scienze e Tecnologie Biomediche, Dipartimento di Chimica, Biochimica e Biotecnologie per la Medicina, Università degli Studi di Milano, and LITA (Laboratorio Interdisciplinare di Tecnologie Avanzate), 20090 Segrate, Milano, Italy, and Dipartimento di Biochimica e Biologia Molecolare, Dipartimento di Fisica, Università di Parma, and NEST CNR-INFM, Istituto Nazionale di Biostrutture e Biosistemi, 43100 Parma, Italy
| | - Barbara Pioselli
- Dipartimento di Scienze e Tecnologie Biomediche, Dipartimento di Chimica, Biochimica e Biotecnologie per la Medicina, Università degli Studi di Milano, and LITA (Laboratorio Interdisciplinare di Tecnologie Avanzate), 20090 Segrate, Milano, Italy, and Dipartimento di Biochimica e Biologia Molecolare, Dipartimento di Fisica, Università di Parma, and NEST CNR-INFM, Istituto Nazionale di Biostrutture e Biosistemi, 43100 Parma, Italy
| | - Stefania Abbruzzetti
- Dipartimento di Scienze e Tecnologie Biomediche, Dipartimento di Chimica, Biochimica e Biotecnologie per la Medicina, Università degli Studi di Milano, and LITA (Laboratorio Interdisciplinare di Tecnologie Avanzate), 20090 Segrate, Milano, Italy, and Dipartimento di Biochimica e Biologia Molecolare, Dipartimento di Fisica, Università di Parma, and NEST CNR-INFM, Istituto Nazionale di Biostrutture e Biosistemi, 43100 Parma, Italy
| | - Cristiano Viappiani
- Dipartimento di Scienze e Tecnologie Biomediche, Dipartimento di Chimica, Biochimica e Biotecnologie per la Medicina, Università degli Studi di Milano, and LITA (Laboratorio Interdisciplinare di Tecnologie Avanzate), 20090 Segrate, Milano, Italy, and Dipartimento di Biochimica e Biologia Molecolare, Dipartimento di Fisica, Università di Parma, and NEST CNR-INFM, Istituto Nazionale di Biostrutture e Biosistemi, 43100 Parma, Italy
| | - Andrea Mozzarelli
- Dipartimento di Scienze e Tecnologie Biomediche, Dipartimento di Chimica, Biochimica e Biotecnologie per la Medicina, Università degli Studi di Milano, and LITA (Laboratorio Interdisciplinare di Tecnologie Avanzate), 20090 Segrate, Milano, Italy, and Dipartimento di Biochimica e Biologia Molecolare, Dipartimento di Fisica, Università di Parma, and NEST CNR-INFM, Istituto Nazionale di Biostrutture e Biosistemi, 43100 Parma, Italy
| |
Collapse
|
43
|
Kubelka J. Time-resolved methods in biophysics. 9. Laser temperature-jump methods for investigating biomolecular dynamics. Photochem Photobiol Sci 2009; 8:499-512. [DOI: 10.1039/b819929a] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
44
|
Ronda L, Abbruzzetti S, Bruno S, Bettati S, Mozzarelli A, Viappiani C. Ligand-Induced Tertiary Relaxations During the T-to-R Quaternary Transition in Hemoglobin. J Phys Chem B 2008; 112:12790-4. [DOI: 10.1021/jp803040j] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Luca Ronda
- Dipartimento di Biochimica e Biologia Molecolare, Università degli Studi di Parma, CNISM, and Dipartimento di Fisica, Università degli Studi di Parma, CNISM, and NEST CNR-INFM
| | - Stefania Abbruzzetti
- Dipartimento di Biochimica e Biologia Molecolare, Università degli Studi di Parma, CNISM, and Dipartimento di Fisica, Università degli Studi di Parma, CNISM, and NEST CNR-INFM
| | - Stefano Bruno
- Dipartimento di Biochimica e Biologia Molecolare, Università degli Studi di Parma, CNISM, and Dipartimento di Fisica, Università degli Studi di Parma, CNISM, and NEST CNR-INFM
| | - Stefano Bettati
- Dipartimento di Biochimica e Biologia Molecolare, Università degli Studi di Parma, CNISM, and Dipartimento di Fisica, Università degli Studi di Parma, CNISM, and NEST CNR-INFM
| | - Andrea Mozzarelli
- Dipartimento di Biochimica e Biologia Molecolare, Università degli Studi di Parma, CNISM, and Dipartimento di Fisica, Università degli Studi di Parma, CNISM, and NEST CNR-INFM
| | - Cristiano Viappiani
- Dipartimento di Biochimica e Biologia Molecolare, Università degli Studi di Parma, CNISM, and Dipartimento di Fisica, Università degli Studi di Parma, CNISM, and NEST CNR-INFM
| |
Collapse
|
45
|
Abbruzzetti S, Bruno S, Faggiano S, Ronda L, Grandi E, Mozzarelli A, Viappiani C. Characterization of ligand migration mechanisms inside hemoglobins from the analysis of geminate rebinding kinetics. Methods Enzymol 2008; 437:329-45. [PMID: 18433636 DOI: 10.1016/s0076-6879(07)37017-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
Abstract
The presence of internal hydrophobic cavities and packing defects has been demonstrated for several small globular proteins, including hemoglobins. The reduced thermodynamic stability appears to be compensated for by the capability of controlling ligand diffusion through the protein matrix to the active site, possibly by stocking more than one reactant molecule in selected sites. Photolysis of carbon monoxide complexes of hemoglobins encapsulated in silica gels leads to multiphasic geminate rebinding kinetics at room temperature, reflecting rebinding also from different temporary docking sites inside the protein matrix. A careful analysis of the ligand rebinding kinetics allows the determination of the microscopic rates for the underlying reactions, including those governing the migration to and from the docking sites. This chapter describes the experimental approach used to characterize the ligand rebinding kinetics for heme proteins in silica gels after nanosecond laser flash photolysis and the computational methods necessary to retrieve the kinetic parameters.
Collapse
|
46
|
Bruno S, Faggiano S, Spyrakis F, Mozzarelli A, Cacciatori E, Dominici P, Grandi E, Abbruzzetti S, Viappiani C. Different roles of protein dynamics and ligand migration in non-symbiotic hemoglobins AHb1 and AHb2 from Arabidopsis thaliana. Gene 2007; 398:224-33. [PMID: 17555890 DOI: 10.1016/j.gene.2007.02.042] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2006] [Revised: 02/20/2007] [Accepted: 02/21/2007] [Indexed: 10/23/2022]
Abstract
The ligand rebinding kinetics after photolysis of the CO complexes of Arabidopsis thaliana hemoglobins AHb1 and AHb2 in solution show very different amplitudes in the geminate phase, reflecting different migration pathways of the photodissociated ligand in the system of internal cavities accessible from the heme. The dependence of the geminate phase on CO concentration, temperature, encapsulation in silica gels and presence of glycerol confirms a remarkable difference in the internal structure of the two proteins and a dramatically different role of protein dynamics in regulating the reactivity with CO. This finding strongly supports the idea that they have distinct physiological functions.
Collapse
Affiliation(s)
- Stefano Bruno
- Dipartimento di Biochimica e Biologia Molecolare, Università degli Studi di Parma, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Gensch T, Viappiani C. Introducing the Time-resolved methods in biophysics series. Photochem Photobiol Sci 2006; 5:1101-2. [PMID: 17136273 DOI: 10.1039/b615863n] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|