1
|
Toida K, Kushida W, Yamamoto H, Yamamoto K, Ishii K, Uesaka K, Kanaly RA, Kutsuna S, Ihara K, Fujita Y, Iwasaki H. The GGDEF protein Dgc2 suppresses both motility and biofilm formation in the filamentous cyanobacterium Leptolyngbya boryana. Microbiol Spectr 2023; 11:e0483722. [PMID: 37655901 PMCID: PMC10581220 DOI: 10.1128/spectrum.04837-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 06/30/2023] [Indexed: 09/02/2023] Open
Abstract
Colony pattern formations of bacteria with motility manifest complicated morphological self-organization phenomena. Leptolyngbya boryana is a filamentous cyanobacterium, which has been used as a genetic model organism for studying metabolism including photosynthesis and nitrogen fixation. A widely used type strain [wild type (WT) in this article] of this species has not been reported to show any motile activity. However, we isolated a spontaneous mutant strain that shows active motility (gliding activity) to give rise to complicated colony patterns, including comet-like wandering clusters and disk-like rotating vortices on solid media. Whole-genome resequencing identified multiple mutations in the genome of the mutant strain. We confirmed that inactivation of the candidate gene dgc2 (LBDG_02920) in the WT background was sufficient to give rise to motility and morphologically complex colony patterns. This gene encodes a protein containing the GGDEF motif which is conserved at the catalytic domain of diguanylate cyclase (DGC). Although DGC has been reported to be involved in biofilm formation, the dgc2 mutant significantly facilitated biofilm formation, suggesting a role for the dgc2 gene in suppressing both gliding motility and biofilm formation. Thus, Leptolyngbya is expected to be an excellent genetic model for studying dynamic colony pattern formation and to provide novel insights into the role of DGC family genes in biofilm formation. IMPORTANCE Self-propelled bacteria often exhibit complex collective behaviors, such as formation of dense-moving clusters, which are exemplified by wandering comet-like and rotating disk-like colonies; however, the molecular details of how these structures are formed are scant. We found that a strain of the filamentous cyanobacterium Leptolyngbya deficient in the GGDEF protein gene dgc2 elicits motility and complex and dynamic colony pattern formation, including comet-like and disk-like clusters. Although c-di-GMP has been reported to activate biofilm formation in some bacterial species, disruption of dgc2 unexpectedly enhanced it, suggesting a novel role for this GGDEF protein for inhibiting both colony pattern formation and biofilm formation.
Collapse
Affiliation(s)
- Kazuma Toida
- Department of Electrical Engineering and Bioscience, Graduate School of Sciences and Engineering, TWIns, Waseda University, Tokyo, Japan
| | - Wakana Kushida
- Department of Electrical Engineering and Bioscience, Graduate School of Sciences and Engineering, TWIns, Waseda University, Tokyo, Japan
| | - Hiroki Yamamoto
- Department of Electrical Engineering and Bioscience, Graduate School of Sciences and Engineering, TWIns, Waseda University, Tokyo, Japan
| | - Kyoka Yamamoto
- Department of Electrical Engineering and Bioscience, Graduate School of Sciences and Engineering, TWIns, Waseda University, Tokyo, Japan
| | - Kaichi Ishii
- Department of Electrical Engineering and Bioscience, Graduate School of Sciences and Engineering, TWIns, Waseda University, Tokyo, Japan
| | - Kazuma Uesaka
- Center for Gene Research, Nagoya University, Nagoya, Japan
| | - Robert A. Kanaly
- Graduate School of Nanobioscience, Yokohama City University, Yokohama, Japan
| | - Shinsuke Kutsuna
- Graduate School of Nanobioscience, Yokohama City University, Yokohama, Japan
| | - Kunio Ihara
- Center for Gene Research, Nagoya University, Nagoya, Japan
| | - Yuichi Fujita
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Hideo Iwasaki
- Department of Electrical Engineering and Bioscience, Graduate School of Sciences and Engineering, TWIns, Waseda University, Tokyo, Japan
- metaPhorest, Bioaesthetics Platform, Waseda University, Tokyo, Japan
| |
Collapse
|
2
|
Salimimarand M, Rizzacasa MA. Synthesis of isochromanone containing natural products from myxobacteria. Org Biomol Chem 2023; 21:1341-1355. [PMID: 36655696 DOI: 10.1039/d2ob01926d] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
This review details the biological activity, biosynthesis and synthesis of isochromanone metabolites isolated from myxobacteria. Strategies towards the synthesis of the isochomanone and oxazole fragments of these natural products are highlighted.
Collapse
Affiliation(s)
- Mina Salimimarand
- School of Chemistry, The Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, 3010, Australia.
| | - Mark A Rizzacasa
- School of Chemistry, The Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, 3010, Australia.
| |
Collapse
|
3
|
Otur Ç, Okay S, Kurt-Kızıldoğan A. Whole genome analysis of Flavobacterium aziz-sancarii sp. nov., isolated from Ardley Island (Antarctica), revealed a rich resistome and bioremediation potential. CHEMOSPHERE 2023; 313:137511. [PMID: 36509185 DOI: 10.1016/j.chemosphere.2022.137511] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 11/29/2022] [Accepted: 12/06/2022] [Indexed: 06/17/2023]
Abstract
Despite being one of the most isolated regions in the world, Antarctica is at risk of increased contamination with potentially toxic elements and other toxic chemicals through anthropogenic interventions. In this study, a psychrotolerant bacterium was isolated using the lake water collected from Ardley Island (Antarctica), which can grow at temperatures between 4 and 30 °C and pH values between 6.0 and 9.0. The isolate, named AC, had protease, amylase, and lipase activities with no NaCl tolerance and could degrade 1-5% diesel fuel. Multilocus sequence analysis (MLSA) using 16S rRNA, gyrB, tuf, and rpoD genes resulted in 92.91-98.6% sequence similarities between the isolate AC and other Flavobacterium spp. Whole genome analysis indicated that the genome length of Flavobacterium sp. AC is 5.8 Mbp with a GC content of 34.04% and 1274 genes predicted. The strain AC branched independently from other Flavobacterium spp. in the phylogenetic and phylogenomic trees and ranked a new species named Flavobacterium aziz-sancarii. Genome mining identified several cold-inducible genes, including stress-associated genes such as cold-shock proteins, chaperones, carotenoid biosynthetic genes, or oxidative-stress response genes. In addition, virulence, gliding motility, and biofilm-related genes were determined. Its genome contains 35 and 88 open-reading frames related to potentially toxic element and antibiotic resistance, respectively. F. aziz-sancarii showed a remarkable tolerance of Cr and Ni, with minimal inhibitory concentration values of 2.88 and 2.81 mM, respectively. Pb, Cu, and Zn exposure resulted in moderate toxicity (2.14-2.41 mM), while Cd showed the highest inhibitory effect in bacterial growth (0.74 mM). Antibiotic susceptibility testing indicated multidrug-resistant phenotype in correlation to in silico prediction of antibiotic resistance genes. Overall, our results contribute to biodiversity of Antarctica and provide new insights into resistome profile of Antarctic microorganisms. Additionally, the diesel degradation feature of F. aziz-sancarii offers potential use for the bioremediation of hydrocarbon-contaminated polar ecosystems.
Collapse
Affiliation(s)
- Çiğdem Otur
- Department of Agricultural Biotechnology, Faculty of Agriculture, Ondokuz Mayıs University, 55139, Samsun, Turkey
| | - Sezer Okay
- Department of Vaccine Technology, Vaccine Institute, Hacettepe University, 06230, Ankara, Turkey
| | - Aslıhan Kurt-Kızıldoğan
- Department of Agricultural Biotechnology, Faculty of Agriculture, Ondokuz Mayıs University, 55139, Samsun, Turkey.
| |
Collapse
|
4
|
Panjla A, Kaul G, Chopra S, Titz A, Verma S. Short Peptides and Their Mimetics as Potent Antibacterial Agents and Antibiotic Adjuvants. ACS Chem Biol 2021; 16:2731-2745. [PMID: 34779605 DOI: 10.1021/acschembio.1c00626] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Antimicrobial resistance (AMR) has been increasing unrelentingly worldwide, thus negatively impacting human health. The discovery and development of novel antibiotics is an urgent unmet need of the hour. However, it has become more challenging, requiring increasingly time-consuming efforts with increased commercial risks. Hence, alternative strategies are urgently needed to potentiate the existing antibiotics. In this context, short cationic peptides or peptide-based antimicrobials that mimic the activity of naturally occurring antimicrobial peptides (AMPs) could overcome the disadvantages of AMPs having evolved as potent antibacterial agents. Besides their potent antibacterial efficacy, short peptide conjugates have also gained attention as potent adjuvants to conventional antibiotics. Such peptide antibiotic combinations have become an increasingly cost-effective therapeutic option to tackle AMR. This Review summarizes the recent progress for peptide-based small molecules as promising antimicrobials and as adjuvants for conventional antibiotics to counter multidrug resistant (MDR) pathogens.
Collapse
Affiliation(s)
- Apurva Panjla
- Department of Chemistry, IIT Kanpur, Kanpur-208016, Uttar Pradesh, India
| | - Grace Kaul
- Department of Microbiology, CSIR-Central Drug Research Institute, Lucknow-226031, Uttar Pradesh, India
- AcSIR: Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sidharth Chopra
- Department of Microbiology, CSIR-Central Drug Research Institute, Lucknow-226031, Uttar Pradesh, India
- AcSIR: Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Alexander Titz
- Chemical Biology of Carbohydrates (CBCH), Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research, 66123 Saarbrücken, Germany
- Department of Chemistry, Saarland University, 66123 Saarbrücken, Germany
- Deutsches Zentrum für Infektionsforschung (DZIF), 38124, Standort Hannover-Braunschweig, Germany
| | - Sandeep Verma
- Department of Chemistry, IIT Kanpur, Kanpur-208016, Uttar Pradesh, India
- Center for Nanoscience, IIT Kanpur, Kanpur-208016, Uttar Pradesh, India
| |
Collapse
|
5
|
Králová S, Busse HJ, Bezdíček M, Sandoval-Powers M, Nykrýnová M, Staňková E, Krsek D, Sedláček I. Flavobacterium flabelliforme sp. nov. and Flavobacterium geliluteum sp. nov., Two Multidrug-Resistant Psychrotrophic Species Isolated From Antarctica. Front Microbiol 2021; 12:729977. [PMID: 34745033 PMCID: PMC8570120 DOI: 10.3389/fmicb.2021.729977] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 09/27/2021] [Indexed: 11/13/2022] Open
Abstract
Despite unfavorable Antarctic conditions, such as cold temperatures, freeze-thaw cycles, high ultraviolet radiation, dryness and lack of nutrients, microorganisms were able to adapt and surprisingly thrive in this environment. In this study, eight cold-adapted Flavobacterium strains isolated from a remote Antarctic island, James Ross Island, were studied using a polyphasic taxonomic approach to determine their taxonomic position. Phylogenetic analyses based on the 16S rRNA gene and 92 core genes clearly showed that these strains formed two distinct phylogenetic clusters comprising three and five strains, with average nucleotide identities significantly below 90% between both proposed species as well as between their closest phylogenetic relatives. Phenotyping revealed a unique pattern of biochemical and physiological characteristics enabling differentiation from the closest phylogenetically related Flavobacterium spp. Chemotaxonomic analyses showed that type strains P4023T and P7388T were characterized by the major polyamine sym-homospermidine and a quinone system containing predominantly menaquinone MK-6. In the polar lipid profile phosphatidylethanolamine, an ornithine lipid and two unidentified lipids lacking a functional group were detected as major lipids. These characteristics along with fatty acid profiles confirmed that these species belong to the genus Flavobacterium. Thorough genomic analysis revealed the presence of numerous cold-inducible or cold-adaptation associated genes, such as cold-shock proteins, proteorhodopsin, carotenoid biosynthetic genes or oxidative-stress response genes. Genomes of type strains surprisingly harbored multiple prophages, with many of them predicted to be active. Genome-mining identified biosynthetic gene clusters in type strain genomes with a majority not matching any known clusters which supports further exploratory research possibilities involving these psychrotrophic bacteria. Antibiotic susceptibility testing revealed a pattern of multidrug-resistant phenotypes that were correlated with in silico antibiotic resistance prediction. Interestingly, while typical resistance finder tools failed to detect genes responsible for antibiotic resistance, genomic prediction confirmed a multidrug-resistant profile and suggested even broader resistance than tested. Results of this study confirmed and thoroughly characterized two novel psychrotrophic Flavobacterium species, for which the names Flavobacterium flabelliforme sp. nov. and Flavobacterium geliluteum sp. nov. are proposed.
Collapse
Affiliation(s)
- Stanislava Králová
- Department of Experimental Biology, Czech Collection of Microorganisms, Faculty of Science, Masaryk University, Brno, Czechia
| | - Hans-Jürgen Busse
- Institut für Mikrobiologie, Veterinärmedizinische Universität Wien, Vienna, Austria
| | - Matěj Bezdíček
- Department of Internal Medicine - Hematology and Oncology, University Hospital Brno, Brno, Czechia.,Department of Internal Medicine - Hematology and Oncology, Masaryk University, Brno, Czechia
| | | | - Markéta Nykrýnová
- Department of Biomedical Engineering, Faculty of Electrical Engineering and Communication, Brno University of Technology, Brno, Czechia
| | - Eva Staňková
- Department of Experimental Biology, Czech Collection of Microorganisms, Faculty of Science, Masaryk University, Brno, Czechia
| | - Daniel Krsek
- NRL for Diagnostic Electron Microscopy of Infectious Agents, National Institute of Public Health, Prague, Czechia
| | - Ivo Sedláček
- Department of Experimental Biology, Czech Collection of Microorganisms, Faculty of Science, Masaryk University, Brno, Czechia
| |
Collapse
|
6
|
Mwangi HN, Muge EK, Wagacha PW, Ndakala A, Mulaa FJ. Methods for Identifying Microbial Natural Product Compounds that Target Kinetoplastid RNA Structural Motifs by Homology and De Novo Modeled 18S rRNA. Int J Mol Sci 2021; 22:4493. [PMID: 33925823 PMCID: PMC8123475 DOI: 10.3390/ijms22094493] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 02/22/2021] [Accepted: 02/24/2021] [Indexed: 01/16/2023] Open
Abstract
The development of novel anti-infectives against Kinetoplastids pathogens targeting proteins is a big problem occasioned by the antigenic variation in these parasites. This is also a global concern due to the zoonosis of these parasites, as they infect both humans and animals. Therefore, we need not only to create novel antibiotics, but also to speed up the development pipeline for these antibiotics. This may be achieved by using novel drug targets for Kinetoplastids drug discovery. In this study, we focused our attention on motifs of rRNA molecules that have been created using homology modeling. The RNA is the most ambiguous biopolymer in the kinetoplatid, which carries many different functions. For instance, tRNAs, rRNAs, and mRNAs are essential for gene expression both in the pro-and eukaryotes. However, all these types of RNAs have sequences with unique 3D structures that are specific for kinetoplastids only and can be used to shut down essential biochemical processes in kinetoplastids only. All these features make RNA very potent targets for antibacterial drug development. Here, we combine in silico methods combined with both computational biology and structure prediction tools to address our hypothesis. In this study, we outline a systematic approach for identifying kinetoplastid rRNA-ligand interactions and, more specifically, techniques that can be used to identify small molecules that target particular RNA. The high-resolution optimized model structures of these kineoplastids were generated using RNA 123, where all the stereochemical conflicts were solved and energies minimized to attain the best biological qualities. The high-resolution optimized model's structures of these kinetoplastids were generated using RNA 123 where all the stereochemical conflicts were solved and energies minimized to attain the best biological qualities. These models were further analyzed to give their docking assessment reliability. Docking strategies, virtual screening, and fishing approaches successfully recognized novel and myriad macromolecular targets for the myxobacterial natural products with high binding affinities to exploit the unmet therapeutic needs. We demonstrate a sensible exploitation of virtual screening strategies to 18S rRNA using natural products interfaced with classical maximization of their efficacy in phamacognosy strategies that are well established. Integration of these virtual screening strategies in natural products chemistry and biochemistry research will spur the development of potential interventions to these tropical neglected diseases.
Collapse
Affiliation(s)
- Harrison Ndung’u Mwangi
- Department of Biochemistry, University of Nairobi, Nairobi 00200-30197, Kenya; (E.K.M.); (F.J.M.)
| | - Edward Kirwa Muge
- Department of Biochemistry, University of Nairobi, Nairobi 00200-30197, Kenya; (E.K.M.); (F.J.M.)
| | - Peter Waiganjo Wagacha
- Department of Computing and Informatics, University of Nairobi, Nairobi 00200-30197, Kenya;
| | - Albert Ndakala
- Department of Chemistry, University of Nairobi, Nairobi 00200-30197, Kenya;
| | - Francis Jackim Mulaa
- Department of Biochemistry, University of Nairobi, Nairobi 00200-30197, Kenya; (E.K.M.); (F.J.M.)
| |
Collapse
|
7
|
Kappler S, Siebert A, Kazmaier U. Synthesis of New Cyclopeptide Analogues of the Miuraenamides. Curr Org Synth 2021; 18:418-424. [PMID: 33441075 DOI: 10.2174/1570179418666210113161550] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 11/05/2020] [Accepted: 11/21/2020] [Indexed: 11/22/2022]
Abstract
INTRODUCTION Miuraenamides belong to natural marine compounds with interesting biological properties. MATERIALS AND METHODS Miuraenamides initiate polymerization of monomeric actin and therefore show high cytotoxicity by influencing the cytoskeleton. New derivatives of the miuraenamides have been synthesized containing an N-methylated amide bond instead of the more easily hydrolysable ester in the natural products. RESULTS Incorporation of an aromatic side chain onto the C-terminal amino acid of the tripeptide fragment also led to highly active new miuraenamides. CONCLUSION In this study, we showed that the ester bond of the natural product miuraenamide can be replaced by an N-methyl amide. The yields in the cyclization step were high and generally much better than with the corresponding esters. On the other hand, the biological activity of the new amide analogs was lower compared to the natural products, but the activity could significantly be increased by incorporation of a p-nitrophenyl group at the C-terminus of the peptide fragment.
Collapse
Affiliation(s)
- Sarah Kappler
- Institute of Organic Chemistry, Saarland University, P.O. Box 151150, 66041 Saarbrücken, Germany
| | - Andreas Siebert
- Institute of Organic Chemistry, Saarland University, P.O. Box 151150, 66041 Saarbrücken, Germany
| | - Uli Kazmaier
- Institute of Organic Chemistry, Saarland University, P.O. Box 151150, 66041 Saarbrücken, Germany
| |
Collapse
|
8
|
Gavriilidou A, Gutleben J, Versluis D, Forgiarini F, van Passel MWJ, Ingham CJ, Smidt H, Sipkema D. Comparative genomic analysis of Flavobacteriaceae: insights into carbohydrate metabolism, gliding motility and secondary metabolite biosynthesis. BMC Genomics 2020; 21:569. [PMID: 32819293 PMCID: PMC7440613 DOI: 10.1186/s12864-020-06971-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 08/05/2020] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND Members of the bacterial family Flavobacteriaceae are widely distributed in the marine environment and often found associated with algae, fish, detritus or marine invertebrates. Yet, little is known about the characteristics that drive their ubiquity in diverse ecological niches. Here, we provide an overview of functional traits common to taxonomically diverse members of the family Flavobacteriaceae from different environmental sources, with a focus on the Marine clade. We include seven newly sequenced marine sponge-derived strains that were also tested for gliding motility and antimicrobial activity. RESULTS Comparative genomics revealed that genome similarities appeared to be correlated to 16S rRNA gene- and genome-based phylogeny, while differences were mostly associated with nutrient acquisition, such as carbohydrate metabolism and gliding motility. The high frequency and diversity of genes encoding polymer-degrading enzymes, often arranged in polysaccharide utilization loci (PULs), support the capacity of marine Flavobacteriaceae to utilize diverse carbon sources. Homologs of gliding proteins were widespread among all studied Flavobacteriaceae in contrast to members of other phyla, highlighting the particular presence of this feature within the Bacteroidetes. Notably, not all bacteria predicted to glide formed spreading colonies. Genome mining uncovered a diverse secondary metabolite biosynthesis arsenal of Flavobacteriaceae with high prevalence of gene clusters encoding pathways for the production of antimicrobial, antioxidant and cytotoxic compounds. Antimicrobial activity tests showed, however, that the phenotype differed from the genome-derived predictions for the seven tested strains. CONCLUSIONS Our study elucidates the functional repertoire of marine Flavobacteriaceae and highlights the need to combine genomic and experimental data while using the appropriate stimuli to unlock their uncharted metabolic potential.
Collapse
Affiliation(s)
- Asimenia Gavriilidou
- Laboratory of Microbiology, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Johanna Gutleben
- Laboratory of Microbiology, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Dennis Versluis
- Laboratory of Microbiology, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Francesca Forgiarini
- Laboratory of Microbiology, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Mark W. J. van Passel
- Laboratory of Microbiology, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
- Present address: Ministry of Health, Welfare and Sport, Parnassusplein 5, 2511 VX, The Hague, The Netherlands
| | | | - Hauke Smidt
- Laboratory of Microbiology, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Detmer Sipkema
- Laboratory of Microbiology, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| |
Collapse
|
9
|
Sheremet A, Jones GM, Jarett J, Bowers RM, Bedard I, Culham C, Eloe-Fadrosh EA, Ivanova N, Malmstrom RR, Grasby SE, Woyke T, Dunfield PF. Ecological and genomic analyses of candidate phylum WPS-2 bacteria in an unvegetated soil. Environ Microbiol 2020; 22:3143-3157. [PMID: 32372527 DOI: 10.1111/1462-2920.15054] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 04/28/2020] [Accepted: 04/29/2020] [Indexed: 12/01/2022]
Abstract
Members of the bacterial candidate phylum WPS-2 (or Eremiobacterota) are abundant in several dry, bare soil environments. In a bare soil deposited by an extinct iron-sulfur spring, we found that WPS-2 comprised up to 24% of the bacterial community and up to 108 cells per g of soil based on 16S rRNA gene sequencing and quantification. A single genus-level cluster (Ca. Rubrimentiphilum) predominated in bare soils but was less abundant in adjacent forest. Nearly complete genomes of Ca. Rubrimentiphilum were recovered as single amplified genomes (SAGs) and metagenome-assembled genomes (MAGs). Surprisingly, given the abundance of WPS-2 in bare soils, the genomes did not indicate any capacity for autotrophy, phototrophy, or trace gas metabolism. Instead, they suggest a predominantly aerobic organoheterotrophic lifestyle, perhaps based on scavenging amino acids, nucleotides, and complex oligopeptides, along with lithotrophic capacity on thiosulfate. Network analyses of the entire community showed that some species of Chloroflexi, Actinobacteria, and candidate phylum AD3 (or Dormibacterota) co-occurred with Ca. Rubrimentiphilum and may represent ecological or metabolic partners. We propose that Ca. Rubrimentiphilum act as efficient heterotrophic scavengers. Combined with previous studies, these data suggest that the phylum WPS-2 includes bacteria with diverse metabolic capabilities.
Collapse
Affiliation(s)
- Andriy Sheremet
- Department of Biological Sciences, University of Calgary, 2500 University Dr. NW Calgary, Alberta, T2N 1N4, Canada
| | - Gareth M Jones
- Department of Biological Sciences, University of Calgary, 2500 University Dr. NW Calgary, Alberta, T2N 1N4, Canada
| | - Jessica Jarett
- Department of Energy Joint Genome Institute, Walnut Creek CA, 94598, USA
| | - Robert M Bowers
- Department of Energy Joint Genome Institute, Walnut Creek CA, 94598, USA
| | - Isaac Bedard
- Department of Biological Sciences, University of Calgary, 2500 University Dr. NW Calgary, Alberta, T2N 1N4, Canada
| | - Cassandra Culham
- Department of Biological Sciences, University of Calgary, 2500 University Dr. NW Calgary, Alberta, T2N 1N4, Canada
| | | | - Natalia Ivanova
- Department of Energy Joint Genome Institute, Walnut Creek CA, 94598, USA
| | - Rex R Malmstrom
- Department of Energy Joint Genome Institute, Walnut Creek CA, 94598, USA
| | | | - Tanja Woyke
- Department of Energy Joint Genome Institute, Walnut Creek CA, 94598, USA
| | - Peter F Dunfield
- Department of Biological Sciences, University of Calgary, 2500 University Dr. NW Calgary, Alberta, T2N 1N4, Canada
| |
Collapse
|
10
|
Dehhaghi M, Tan V, Heng B, Mohammadipanah F, Guillemin GJ. Protective Effects of Myxobacterial Extracts on Hydrogen Peroxide-induced Toxicity on Human Primary Astrocytes. Neuroscience 2018; 399:1-11. [PMID: 30496822 DOI: 10.1016/j.neuroscience.2018.11.033] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 11/18/2018] [Accepted: 11/21/2018] [Indexed: 12/19/2022]
Abstract
Astrocytes, the main non-neuronal cells in the brain, have significant roles in the maintenance and survival of neurons. Oxidative stress has been implicated in various neurodegenerative disorders such as Alzheimer's disease (AD), amyotrophic lateral sclerosis (ALS), and Parkinson's disease (PD). Myxobacteria produce a wide range of bioactive metabolites with notable structures and modes of action, which introduce them as potent natural product producers. In the present study, we evaluated the effects of myxobacterial extracts on hydrogen peroxide (H2O2)-mediated toxicity on primary human astrocytes. We showed that myxobacterial extracts could decrease the formation of reactive oxygen species (ROS), nitric oxide (NO) production, and cell death assessed by the release of lactate dehydrogenase (LDH). Myxobacterial extracts were also able to reduce the nitric oxide synthase (NOS) activity. The extracts reduced the oxidative effect of H2O2 on over-activation of poly (ADP-ribose) polymerase (PARP1), therefore preventing the cell death by restoring the NAD+ levels. In addition, myxobacterial extracts ameliorated the oxidative stress by increasing the glutathione level in cells. The overall results showed myxobacterial extracts, especially from the strains Archangium sp. UTMC 4070 and Cystobacter sp. UTMC 4073, were able to protect human primary astrocytes from oxidative stress.
Collapse
Affiliation(s)
- Mona Dehhaghi
- Departmentof Microbial Biotechnology, School of Biology and Centre of Excellence in Phylogeny of Living Organisms, College of Science, University of Tehran, Tehran, Iran; NeuroinflammationGroup, Faculty of Medicine and Health Sciences, Macquarie University, NSW, Australia
| | - Vanessa Tan
- NeuroinflammationGroup, Faculty of Medicine and Health Sciences, Macquarie University, NSW, Australia
| | - Benjamin Heng
- NeuroinflammationGroup, Faculty of Medicine and Health Sciences, Macquarie University, NSW, Australia
| | - Fatemeh Mohammadipanah
- Departmentof Microbial Biotechnology, School of Biology and Centre of Excellence in Phylogeny of Living Organisms, College of Science, University of Tehran, Tehran, Iran.
| | - Gilles J Guillemin
- NeuroinflammationGroup, Faculty of Medicine and Health Sciences, Macquarie University, NSW, Australia.
| |
Collapse
|
11
|
Kappler S, Karmann L, Prudel C, Herrmann J, Caddeu G, Müller R, Vollmar AM, Zahler S, Kazmaier U. Synthesis and Biological Evaluation of Modified Miuraenamides. European J Org Chem 2018. [DOI: 10.1002/ejoc.201801391] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Sarah Kappler
- Organic Chemistry; Saarland University; Campus C4.2 66123 Saarbrücken Germany
| | - Lisa Karmann
- Organic Chemistry; Saarland University; Campus C4.2 66123 Saarbrücken Germany
| | - Cynthia Prudel
- Organic Chemistry; Saarland University; Campus C4.2 66123 Saarbrücken Germany
| | - Jennifer Herrmann
- Department Microbial Natural Products; Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS); Saarland University; Campus E8.1 66123 Saarbrücken Germany
| | - Giulia Caddeu
- Department of Pharmacy, Pharmaceutical Biology; Ludwig-Maximilians-University Munich); Butenandtstr. 5-13 81377 München Germany
| | - Rolf Müller
- Department Microbial Natural Products; Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS); Saarland University; Campus E8.1 66123 Saarbrücken Germany
| | - Angelika M. Vollmar
- Department of Pharmacy, Pharmaceutical Biology; Ludwig-Maximilians-University Munich); Butenandtstr. 5-13 81377 München Germany
| | - Stefan Zahler
- Department of Pharmacy, Pharmaceutical Biology; Ludwig-Maximilians-University Munich); Butenandtstr. 5-13 81377 München Germany
| | - Uli Kazmaier
- Organic Chemistry; Saarland University; Campus C4.2 66123 Saarbrücken Germany
| |
Collapse
|
12
|
Mohr KI. Diversity of Myxobacteria-We Only See the Tip of the Iceberg. Microorganisms 2018; 6:E84. [PMID: 30103481 PMCID: PMC6164225 DOI: 10.3390/microorganisms6030084] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 08/06/2018] [Accepted: 08/08/2018] [Indexed: 11/20/2022] Open
Abstract
The discovery of new antibiotics is mandatory with regard to the increasing number of resistant pathogens. One approach is the search for new antibiotic producers in nature. Among actinomycetes, Bacillus species, and fungi, myxobacteria have been a rich source for bioactive secondary metabolites for decades. To date, about 600 substances could be described, many of them with antibacterial, antifungal, or cytostatic activity. But, recent cultivation-independent studies on marine, terrestrial, or uncommon habitats unequivocally demonstrate that the number of uncultured myxobacteria is much higher than would be expected from the number of cultivated strains. Although several highly promising myxobacterial taxa have been identified recently, this so-called Great Plate Count Anomaly must be overcome to get broader access to new secondary metabolite producers. In the last years it turned out that especially new species, genera, and families of myxobacteria are promising sources for new bioactive metabolites. Therefore, the cultivation of the hitherto uncultivable ones is our biggest challenge.
Collapse
Affiliation(s)
- Kathrin I Mohr
- Microbial Drugs (MWIS), Helmholtz Centre for Infection Research (HZI), 38124 Braunschweig, Germany.
| |
Collapse
|
13
|
Dehhaghi M, Mohammadipanah F, Guillemin GJ. Myxobacterial natural products: An under-valued source of products for drug discovery for neurological disorders. Neurotoxicology 2018; 66:195-203. [PMID: 29499217 DOI: 10.1016/j.neuro.2018.02.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 02/26/2018] [Accepted: 02/27/2018] [Indexed: 12/18/2022]
Abstract
Age-related disorders impose noticeable financial and emotional burdens on society. This impact is becoming more prevalent with the increasing incidence of neurodegenerative diseases and is causing critical concerns for treatment of patients worldwide. Parkinson's disease, Alzheimer's disease, multiple sclerosis and motor neuron disease are the most prevalent and the most expensive to treat neurodegenerative diseases globally. Therefore, exploring effective therapies to overcome these disorders is a necessity. Natural products and their derivatives have increasingly attracted attention in drug discovery programs that have identified microorganisms which produce a large range of metabolites with bioactive properties. Myxobacteria, a group of Gram-negative bacteria with large genome size, produce a wide range of secondary metabolites with significant chemical structures and a variety of biological effects. They are potent natural product producers. In this review paper, we attempt to overview some secondary metabolites synthesized by myxobacteria with neuroprotective activity through known mechanisms including production of polyunsaturated fatty acids, reduction of apoptosis, immunomodulation, stress reduction of endoplasmic reticulum, stabilization of microtubules, enzyme inhibition and serotonin receptor modulation.
Collapse
Affiliation(s)
- Mona Dehhaghi
- Department of Microbial Biotechnology, School of Biology and Center of Excellence in Phylogeny of Living Organisms, College of Science, University of Tehran, Tehran, Iran; Neuropharmacology Group, Faculty of Medicine and Health Sciences, Macquarie University, NSW, Australia
| | - Fatemeh Mohammadipanah
- Department of Microbial Biotechnology, School of Biology and Center of Excellence in Phylogeny of Living Organisms, College of Science, University of Tehran, Tehran, Iran.
| | - Gilles J Guillemin
- Neuropharmacology Group, Faculty of Medicine and Health Sciences, Macquarie University, NSW, Australia.
| |
Collapse
|
14
|
Abstract
From colony formation in bacteria to wound healing and embryonic development in multicellular organisms, groups of living cells must often move collectively. Although considerable study has probed the biophysical mechanisms of how eukaryotic cells generate forces during migration, little such study has been devoted to bacteria, in particular with regard to the question of how bacteria generate and coordinate forces during collective motion. This question is addressed here using traction force microscopy. We study two distinct motility mechanisms of Myxococcus xanthus, namely, twitching and gliding. For twitching, powered by type-IV pilus retraction, we find that individual cells exert local traction in small hotspots with forces on the order of 50 pN. Twitching bacterial groups also produce traction hotspots, but with forces around 100 pN that fluctuate rapidly on timescales of <1.5 min. Gliding, the second motility mechanism, is driven by lateral transport of substrate adhesions. When cells are isolated, gliding produces low average traction on the order of 1 Pa. However, traction is amplified approximately fivefold in groups. Advancing protrusions of gliding cells push, on average, in the direction of motion. Together, these results show that the forces generated during twitching and gliding have complementary characters, and both forces have higher values when cells are in groups.
Collapse
|
15
|
Korp J, Vela Gurovic MS, Nett M. Antibiotics from predatory bacteria. Beilstein J Org Chem 2016; 12:594-607. [PMID: 27340451 PMCID: PMC4902038 DOI: 10.3762/bjoc.12.58] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 03/11/2016] [Indexed: 11/23/2022] Open
Abstract
Bacteria, which prey on other microorganisms, are commonly found in the environment. While some of these organisms act as solitary hunters, others band together in large consortia before they attack their prey. Anecdotal reports suggest that bacteria practicing such a wolfpack strategy utilize antibiotics as predatory weapons. Consistent with this hypothesis, genome sequencing revealed that these micropredators possess impressive capacities for natural product biosynthesis. Here, we will present the results from recent chemical investigations of this bacterial group, compare the biosynthetic potential with that of non-predatory bacteria and discuss the link between predation and secondary metabolism.
Collapse
Affiliation(s)
- Juliane Korp
- Leibniz Institute for Natural Product Research and Infection Biology – Hans-Knöll-Institute, Beutenbergstr. 11, 07745 Jena, Germany
| | - María S Vela Gurovic
- Centro de Recursos Naturales Renovables de la Zona Semiárida (CERZOS) -CONICET- Carrindanga Km 11, Bahía Blanca 8000, Argentina
| | - Markus Nett
- Leibniz Institute for Natural Product Research and Infection Biology – Hans-Knöll-Institute, Beutenbergstr. 11, 07745 Jena, Germany
- Department of Biochemical and Chemical Engineering, Technical Biology, Technical University Dortmund, Emil-Figge-Strasse 66, 44227 Dortmund, Germany
| |
Collapse
|
16
|
Korp J, König S, Schieferdecker S, Dahse HM, König GM, Werz O, Nett M. Harnessing Enzymatic Promiscuity in Myxochelin Biosynthesis for the Production of 5-Lipoxygenase Inhibitors. Chembiochem 2015; 16:2445-50. [PMID: 26416255 DOI: 10.1002/cbic.201500446] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Indexed: 11/10/2022]
Abstract
The siderophore myxochelin A is a potent inhibitor of human 5-lipoxygenase (5-LO). To clarify whether the iron-chelating properties of myxochelin A are responsible for this activity, several analogues of this compound were generated in the native producer Pyxidicoccus fallax by precursor-directed biosynthesis. Testing in a cell-free assay unveiled three derivatives with bioactivity comparable with that of myxochelin A. Furthermore, it became evident that inhibition of 5-LO by myxochelins does not correlate with their iron affinities.
Collapse
Affiliation(s)
- Juliane Korp
- Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, Adolf-Reichwein-Strasse 23, 07745, Jena, Germany
| | - Stefanie König
- Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-Universität Jena, Philosophenweg 14, 07743, Jena, Germany
| | - Sebastian Schieferdecker
- Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, Adolf-Reichwein-Strasse 23, 07745, Jena, Germany
| | - Hans-Martin Dahse
- Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, Adolf-Reichwein-Strasse 23, 07745, Jena, Germany
| | - Gabriele M König
- Institute for Pharmaceutical Biology, Rheinische Friedrich-Wilhelms-Universität Bonn, Nussallee 6, 53115, Bonn, Germany
| | - Oliver Werz
- Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-Universität Jena, Philosophenweg 14, 07743, Jena, Germany
| | - Markus Nett
- Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, Adolf-Reichwein-Strasse 23, 07745, Jena, Germany.
| |
Collapse
|
17
|
Seccareccia I, Kost C, Nett M. Quantitative Analysis of Lysobacter Predation. Appl Environ Microbiol 2015; 81:7098-105. [PMID: 26231654 PMCID: PMC4579460 DOI: 10.1128/aem.01781-15] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 07/28/2015] [Indexed: 02/01/2023] Open
Abstract
Bacteria of the genus Lysobacter are considered to be facultative predators that use a feeding strategy similar to that of myxobacteria. Experimental data supporting this assumption, however, are scarce. Therefore, the predatory activities of three Lysobacter species were tested in the prey spot plate assay and in the lawn predation assay, which are commonly used to analyze myxobacterial predation. Surprisingly, only one of the tested Lysobacter species showed predatory behavior in the two assays. This result suggested that not all Lysobacter strains are predatory or, alternatively, that the assays were not appropriate for determining the predatory potential of this bacterial group. To differentiate between the two scenarios, predation was tested in a CFU-based bioassay. For this purpose, defined numbers of Lysobacter cells were mixed together with potential prey bacteria featuring phenotypic markers, such as distinctive pigmentation or antibiotic resistance. After 24 h, cocultivated cells were streaked out on agar plates and sizes of bacterial populations were individually determined by counting the respective colonies. Using the CFU-based predation assay, we observed that Lysobacter spp. strongly antagonized other bacteria under nutrient-deficient conditions. Simultaneously, the Lysobacter population was increasing, which together with the killing of the cocultured bacteria indicated predation. Variation of the predator/prey ratio revealed that all three Lysobacter species tested needed to outnumber their prey for efficient predation, suggesting that they exclusively practiced group predation. In summary, the CFU-based predation assay not only enabled the quantification of prey killing and consumption by Lysobacter spp. but also provided insights into their mode of predation.
Collapse
Affiliation(s)
- Ivana Seccareccia
- Secondary Metabolism of Predatory Bacteria Junior Research Group, Leibniz Institute for Natural Product Research and Infection Biology, Hans-Knöll-Institute, Jena, Germany
| | - Christian Kost
- Experimental Ecology and Evolution Research Group, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Markus Nett
- Secondary Metabolism of Predatory Bacteria Junior Research Group, Leibniz Institute for Natural Product Research and Infection Biology, Hans-Knöll-Institute, Jena, Germany
| |
Collapse
|
18
|
Schieferdecker S, Domin N, Hoffmeier C, Bryant DA, Roth M, Nett M. Structure and Absolute Configuration of Auriculamide, a Natural Product from the Predatory BacteriumHerpetosiphon aurantiacus. European J Org Chem 2015. [DOI: 10.1002/ejoc.201500181] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
19
|
Schieferdecker S, König S, Koeberle A, Dahse HM, Werz O, Nett M. Myxochelins target human 5-lipoxygenase. JOURNAL OF NATURAL PRODUCTS 2015; 78:335-338. [PMID: 25686392 DOI: 10.1021/np500909b] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Extracts of the predatory myxobacterium Pyxidicoccus fallax HKI 727 showed antiproliferative effects on leukemic K-562 cells. Bioactivity-guided fractionation led to the isolation of the bis-catechol myxochelin A and two new congeners. The biosynthetic origin of myxochelins C and D was confirmed by feeding studies with isotopically labeled precursors. Pharmacological testing revealed human 5-lipoxygenase (5-LO) as a molecular target of the myxochelins. In particular, myxochelin A efficiently inhibited 5-LO activity with an IC50 of 1.9 μM and reduced the proliferation of K-562 cells at similar concentrations.
Collapse
Affiliation(s)
- Sebastian Schieferdecker
- Junior Research Group Secondary Metabolism of Predatory Bacteria and §Department of Infection Biology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute , Beutenbergstrasse 11a, 07745 Jena, Germany
| | | | | | | | | | | |
Collapse
|
20
|
Schieferdecker S, König S, Weigel C, Dahse HM, Werz O, Nett M. Structure and biosynthetic assembly of gulmirecins, macrolide antibiotics from the predatory bacterium Pyxidicoccus fallax. Chemistry 2014; 20:15933-40. [PMID: 25287056 DOI: 10.1002/chem.201404291] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Indexed: 01/28/2023]
Abstract
The gulmirecins constitute a new class of glycosylated macrolides that were isolated from the predatory bacterium Pyxidicoccus fallax HKI 727. Their structures were solved by a combination of NMR spectroscopic experiments and chemical derivatization. Analysis of the annotated gulmirecin gene cluster complemented the configurational assignment and provided insights into the stereochemical course of the biosynthetic assembly. The gulmirecins exhibit strong activity against staphylococci, including methicillin-resistant Staphylococcus aureus, but no cytotoxic effects on human cells.
Collapse
Affiliation(s)
- Sebastian Schieferdecker
- Junior Research Group, "Secondary Metabolism of Predatory Bacteria", Leibniz Institute for Natural Product Research and Infection Biology, Hans-Knöll-Institute, Adolf-Reichwein-Str. 23, 07745 Jena (Germany), Fax: (+49) 3641-5320811
| | | | | | | | | | | |
Collapse
|
21
|
Schieferdecker S, Exner TE, Gross H, Roth M, Nett M. New myxothiazols from the predatory bacterium Myxococcus fulvus. J Antibiot (Tokyo) 2014; 67:519-25. [DOI: 10.1038/ja.2014.31] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Revised: 02/14/2014] [Accepted: 03/05/2014] [Indexed: 11/09/2022]
|
22
|
Still PC, Johnson TA, Theodore CM, Loveridge ST, Crews P. Scrutinizing the scaffolds of marine biosynthetics from different source organisms: Gram-negative cultured bacterial products enter center stage. JOURNAL OF NATURAL PRODUCTS 2014; 77:690-702. [PMID: 24571234 PMCID: PMC4095796 DOI: 10.1021/np500041x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Compounds from macro marine organisms are presumed to owe their biosynthetic origins to associated microbial symbionts, although few definitive examples exist. An upsurge in the recent literature from 2012 to 2013 has shown that four compounds previously reported from macro marine organisms are in fact biosynthesized by non-photosynthetic Gram-negative bacteria (NPGNB). Structural parallels between compounds isolated from macro marine organisms and NPGNB producers form the basis of this review. Although less attention has been given to investigating the chemistry of NPGNB sources, there exists a significant list of structural parallels between NPGNB and macro marine organism-derived compounds. Alternatively, of the thousands of compounds isolated from Gram-positive actinomycetes, few structural parallels with macro marine organisms are known. A summary of small molecules isolated from marine NPGNB sources is presented, including compounds isolated from marine myxobacteria. From this assemblage of structural parallels and diverse chemical structures, it is hypothesized that the potential for the discovery of inspirational molecules from NPGNB sources is vast and that the recent spike in the literature of macro marine compounds owing their biosynthetic origin to NPGNB producers represents a turning point in the field.
Collapse
Affiliation(s)
- Patrick C. Still
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, California 95060, United States
| | - Tyler A. Johnson
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, California 95060, United States
| | - Christine M. Theodore
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, California 95060, United States
| | - Steven T. Loveridge
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, California 95060, United States
| | - Phillip Crews
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, California 95060, United States
| |
Collapse
|
23
|
Bouhired SM, Crüsemann M, Almeida C, Weber T, Piel J, Schäberle TF, König GM. Biosynthesis of Phenylnannolone A, a Multidrug Resistance Reversal Agent from the Halotolerant MyxobacteriumNannocystis pusillaB150. Chembiochem 2014; 15:757-65. [DOI: 10.1002/cbic.201300676] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Indexed: 01/28/2023]
|
24
|
Gulder TAM, Neff S, Schüz T, Winkler T, Gees R, Böhlendorf B. The myxocoumarins A and B from Stigmatella aurantiaca strain MYX-030. Beilstein J Org Chem 2013; 9:2579-85. [PMID: 24367422 PMCID: PMC3869339 DOI: 10.3762/bjoc.9.293] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Accepted: 11/01/2013] [Indexed: 11/23/2022] Open
Abstract
The myxobacterial strain Stigmatella aurantiaca MYX-030 was selected as promising source for the discovery of new biologically active natural products by our screening methodology. The isolation, structure elucidation and initial biological evaluation of the myxocoumarins derived from this strain are described in this work. These compounds comprise an unusual structural framework and exhibit remarkable antifungal properties.
Collapse
Affiliation(s)
- Tobias A M Gulder
- Kekulé Institute of Organic Chemistry and Biochemistry, University of Bonn, Gerhard-Domagk-Straβe 1, 53121 Bonn, Germany
| | - Snežana Neff
- Syngenta Crop Protection AG, CH-4002 Basel, Switzerland
| | | | - Tammo Winkler
- Syngenta Crop Protection AG, CH-4002 Basel, Switzerland
| | - René Gees
- Syngenta Crop Protection AG, CH-4002 Basel, Switzerland
| | | |
Collapse
|
25
|
Wang Y, Qian G, Liu F, Li YZ, Shen Y, Du L. Facile method for site-specific gene integration in Lysobacter enzymogenes for yield improvement of the anti-MRSA antibiotics WAP-8294A and the antifungal antibiotic HSAF. ACS Synth Biol 2013; 2:670-8. [PMID: 23937053 DOI: 10.1021/sb4000806] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Lysobacter is a genus of Gram-negative gliding bacteria that are emerged as novel biocontrol agents and new sources of bioactive natural products. The bacteria are naturally resistant to many antibiotics commonly used in transformant selection, which has hampered the genetic manipulations. Here, we described a facile method for quick-and-easy identification of the target transformants from a large population of the wild type and nontarget transformants. The method is based on a distinct yellow-to-black color change as a visual selection marker for site-specific integration of the gene of interest. Through transposon random mutagenesis, we identified a black-colored strain from the yellow-colored L. enzymogenes . The black strain was resulted from a disruption of hmgA, a gene required for tyrosine/phenylalanine metabolism. The disruption of hmgA led to accumulation of dark brown pigments. As proof of principle, we constructed a series of expression vectors for a regulator gene found within the WAP-8294A biosynthetic gene cluster. The yield of WAP-8294A in the black strains increased by 2 fold compared to the wild type. Interestingly, the yield of another antibiotic (HSAF) increased up to 7 fold in the black strains. WAP-8294A is a family of potent anti-MRSA antibiotics and is currently in clinical studies, and HSAF is an antifungal compound with distinct structural features and a novel mode of action. This work represents the first successful metabolic engineering in Lysobacter. The development of this facile method opens a way toward manipulating antibiotic production in the largely unexplored sources.
Collapse
Affiliation(s)
- Yan Wang
- Department
of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States
| | - Guoliang Qian
- Department
of Plant Pathology, Nanjing Agricultural University, Nanjing, China 210095
| | - Fengquan Liu
- Department
of Plant Pathology, Nanjing Agricultural University, Nanjing, China 210095
| | - Yue-Zhong Li
- State
Key Laboratory of Microbial Technology, College of Life Sciences, Shandong University, Jinan, China 250012
| | - Yuemao Shen
- State
Key Laboratory of Microbial Technology, College of Life Sciences, Shandong University, Jinan, China 250012
| | - Liangcheng Du
- Department
of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States
| |
Collapse
|
26
|
Wang Y, Qian G, Li Y, Wang Y, Wang Y, Wright S, Li Y, Shen Y, Liu F, Du L. Biosynthetic mechanism for sunscreens of the biocontrol agent Lysobacter enzymogenes. PLoS One 2013; 8:e66633. [PMID: 23826105 PMCID: PMC3691225 DOI: 10.1371/journal.pone.0066633] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Accepted: 05/08/2013] [Indexed: 01/06/2023] Open
Abstract
Lysobacter are ubiquitous environmental bacteria emerging as novel biocontrol agents and new sources of anti-infectives. So far, very little effort has been invested in the study of the biology of these Gram-negative gliding bacteria. Many Lysobacter species are characterized by their yellow-orange appearance. Using transposon mutagenesis, we identified a stand-alone polyketide synthase (PKS) gene cluster required for the pigment production in L. enzymogenes OH11. The yellow pigments were abolished in the "white" mutants generated by target-specific deletions of ketosynthase (KS), acyl carrier protein, or ketoreductase. Spectroscopic data suggested that the pigments belong to xanthomonadin-like aryl polyenes. Polyene-type polyketides are known to be biosynthesized by modular PKS (Type I), not by stand-alone PKS (Type II) which always contain the heterodimer KS-CLF (chain-length factor) as the key catalytic component. Remarkably, this aryl polyene PKS complex only contains the KS (ORF17), but not the CLF. Instead, a hypothetical protein (ORF16) is located immediately next to ORF17. ORF16-17 homologs are widespread in numerous uncharacterized microbial genomes, in which an ORF17 homolog is always accompanied by an ORF16 homolog. The deletion of ORF16 eliminated pigment production, and homology modeling suggested that ORF16 shares a structural similarity to the N-terminal half of CLF. A point-mutation of glutamine (Q166A) that is the conserved active site of known CLF abolished pigment production. The "white" mutants are significantly more sensitive to UV/visible light radiation or H2O2 treatment than the wild type. These results unveil the first example of Type II PKS-synthesized polyene pigments and show that the metabolites serve as Lysobacter "sunscreens" that are important for the survival of these ubiquitous environmental organisms.
Collapse
Affiliation(s)
- Yan Wang
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska, United States of America
- State Key Laboratory of Microbial Technology, College of Life Sciences, Shandong University, Jinan, China
| | - Guoliang Qian
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
| | - Yaoyao Li
- State Key Laboratory of Microbial Technology, College of Life Sciences, Shandong University, Jinan, China
| | - Yansheng Wang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
| | - Yulan Wang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
| | - Stephen Wright
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska, United States of America
| | - Yuezhong Li
- State Key Laboratory of Microbial Technology, College of Life Sciences, Shandong University, Jinan, China
| | - Yuemao Shen
- State Key Laboratory of Microbial Technology, College of Life Sciences, Shandong University, Jinan, China
| | - Fengquan Liu
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
| | - Liangcheng Du
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska, United States of America
| |
Collapse
|
27
|
Abstract
The gliding Gram-negative Lysobacter bacteria are emerging as a promising source of new bioactive natural products. These ubiquitous freshwater and soil microorganisms are fast growing, simple to use and maintain, and genetically amenable for biosynthetic engineering. This Highlight reviews a group of biologically active and structurally distinct natural products from the genus Lysobacter, with a focus on their biosyntheses. Although Lysobacter sp. are known as prolific producers of bioactive natural products, detailed molecular mechanistic studies of their enzymatic assembly have been surprisingly scarce. We hope to provide a snapshot of the important work done on the lysobacterial natural products and to provide useful information for future biosynthetic engineering of novel antibiotics in Lysobacter.
Collapse
Affiliation(s)
- Yunxuan Xie
- Department of Chemistry, University of Nebraska-Lincoln, NE 68588, USA
| | | | | | | |
Collapse
|
28
|
Höfle G, Gerth K, Reichenbach H, Kunze B, Sasse F, Forche E, Prusov EV. Isolation, biological activity evaluation, structure elucidation, and total synthesis of eliamid: a novel complex I inhibitor. Chemistry 2012; 18:11362-70. [PMID: 22890974 DOI: 10.1002/chem.201201879] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Indexed: 11/06/2022]
Abstract
Eliamid is a secondary metabolite isolated from two bacterial strains. This molecule features a linear polyketide backbone terminated by a tetramic acid amide moiety. Among other biological activities, eliamid shows a high and specific cytostatic action on human lymphoma and cervix carcinoma cell lines. The 2,4-anti relative configuration of the C-2,C-4-dimethyl substituted amide fragment was assigned by means of Breit's rule. The absolute configuration of all stereocenters was determined by a combination of degradation methods, structural similarity analysis and total synthesis. The stereogenic centers were introduced by vinylogous Mukaiyama aldol reaction and two consecutive Myers alkylations. The use of pentafluorophenyl ester as acylation agent allowed the efficient formation of tetramic acid amide. The longest linear sequence in the synthesis consist of 13 steps and proceeds with 12% overall yield. Differential spectroscopy experiments with beef heart submitochondrial particles established that eliamid is a potent inhibitor of the NADH-ubiquinone oxidoreductase complex. Additionally, biosynthesis of eliamid was investigated by feeding experiments with (13)C-labeled precursors.
Collapse
Affiliation(s)
- Gerhard Höfle
- Helmholtz-Zentrum für Infektionsforschung, Inhoffenstr. 7, Braunschweig, Germany
| | | | | | | | | | | | | |
Collapse
|
29
|
Kiss H, Nett M, Domin N, Martin K, Maresca JA, Copeland A, Lapidus A, Lucas S, Berry KW, Glavina Del Rio T, Dalin E, Tice H, Pitluck S, Richardson P, Bruce D, Goodwin L, Han C, Detter JC, Schmutz J, Brettin T, Land M, Hauser L, Kyrpides NC, Ivanova N, Göker M, Woyke T, Klenk HP, Bryant DA. Complete genome sequence of the filamentous gliding predatory bacterium Herpetosiphon aurantiacus type strain (114-95(T)). Stand Genomic Sci 2011; 5:356-70. [PMID: 22675585 PMCID: PMC3368417 DOI: 10.4056/sigs.2194987] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Herpetosiphon aurantiacus Holt and Lewin 1968 is the type species of the genus Herpetosiphon, which in turn is the type genus of the family Herpetosiphonaceae, type family of the order Herpetosiphonales in the phylum Chloroflexi. H. aurantiacus cells are organized in filaments which can rapidly glide. The species is of interest not only because of its rather isolated position in the tree of life, but also because Herpetosiphon ssp. were identified as predators capable of facultative predation by a wolf pack strategy and of degrading the prey organisms by excreted hydrolytic enzymes. The genome of H. aurantiacus strain 114-95(T) is the first completely sequenced genome of a member of the family Herpetosiphonaceae. The 6,346,587 bp long chromosome and the two 339,639 bp and 99,204 bp long plasmids with a total of 5,577 protein-coding and 77 RNA genes was sequenced as part of the DOE Joint Genome Institute Program DOEM 2005.
Collapse
|
30
|
|
31
|
Exploring the links between natural products and bacterial assemblages in the sponge Aplysina aerophoba. Appl Environ Microbiol 2010; 77:862-70. [PMID: 21115701 DOI: 10.1128/aem.00100-10] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The sponge Aplysina aerophoba produces a large diversity of brominated alkaloids (BAs) and hosts a complex microbial assemblage. Although BAs are located within sponge cells, the enzymes that bind halogen elements to organic compounds have been exclusively described in algae, fungi, and bacteria. Bacterial communities within A. aerophoba could therefore be involved in the biosynthesis of these compounds. This study investigates whether changes in both the concentration of BAs and the bacterial assemblages are correlated in A. aerophoba. To do so, we quantified major natural products using high-performance liquid chromatography and analyzed bacterial assemblages using denaturing gradient gel electrophoresis on the 16S rRNA gene. We identified multiple associations between bacteria and natural products, including a strong relationship between a Chloroflexi phylotype and aplysinamisin-1 and between an unidentified bacterium and aerophobin-2 and isofistularin-3. Our results suggest that these bacteria could either be involved in the production of BAs or be directly affected by them. To our knowledge, this is one of the first reports that find a significant correlation between natural products and bacterial populations in any benthic organism. Further investigating these associations will shed light on the organization and functioning of host-endobiont systems such as Aplysina aerophoba.
Collapse
|
32
|
Brötz-Oesterhelt H, Sass P. Postgenomic strategies in antibacterial drug discovery. Future Microbiol 2010; 5:1553-79. [DOI: 10.2217/fmb.10.119] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
During the last decade the field of antibacterial drug discovery has changed in many aspects including bacterial organisms of primary interest, discovery strategies applied and pharmaceutical companies involved. Target-based high-throughput screening had been disappointingly unsuccessful for antibiotic research. Understanding of this lack of success has increased substantially and the lessons learned refer to characteristics of targets, screening libraries and screening strategies. The ‘genomics’ approach was replaced by a diverse array of discovery strategies, for example, searching for new natural product leads among previously abandoned compounds or new microbial sources, screening for synthetic inhibitors by targeted approaches including structure-based design and analyses of focused libraries and designing resistance-breaking properties into antibiotics of established classes. Furthermore, alternative treatment options are being pursued including anti-virulence strategies and immunotherapeutic approaches. This article summarizes the lessons learned from the genomics era and describes discovery strategies resulting from that knowledge.
Collapse
Affiliation(s)
- Heike Brötz-Oesterhelt
- AiCuris, Wuppertal, Germany, Institute for Pharmaceutical Biology, University of Duesseldorf, Universitätsstrasse 1, Building 26.23.U1, Germany
| | - Peter Sass
- Institute of Medical Microbiology, Immunology & Parasitology, Pharmaceutical Microbiology Section, University of Bonn, Germany
| |
Collapse
|
33
|
Thornburg CC, Zabriskie TM, McPhail KL. Deep-sea hydrothermal vents: potential hot spots for natural products discovery? JOURNAL OF NATURAL PRODUCTS 2010; 73:489-499. [PMID: 20099811 DOI: 10.1021/np900662k] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Deep-sea hydrothermal vents are among the most extreme and dynamic environments on Earth. However, islands of highly dense and biologically diverse communities exist in the immediate vicinity of hydrothermal vent flows, in stark contrast to the surrounding bare seafloor. These communities comprise organisms with distinct metabolisms based on chemosynthesis and growth rates comparable to those from shallow water tropical environments, which have been rich sources of biologically active natural products. The geological setting and geochemical nature of deep-sea vents that impact the biogeography of vent organisms, chemosynthesis, and the known biological and metabolic diversity of Eukarya, Bacteria, and Archaea, including the handful of natural products isolated to date from deep-sea vent organisms, are considered here in an assessment of deep-sea hydrothermal vents as potential hot spots for natural products investigations. Of critical importance too are the logistics of collecting deep vent organisms, opportunities for re-collection considering the stability and longevity of vent sites, and the ability to culture natural product-producing deep vent organisms in the laboratory. New cost-effective technologies in deep-sea research and more advanced molecular techniques aimed at screening a more inclusive genetic assembly are poised to accelerate natural product discoveries from these microbial diversity hot spots.
Collapse
Affiliation(s)
- Christopher C Thornburg
- Department of Pharmaceutical Sciences, Oregon State University, Corvallis, Oregon 97331, USA
| | | | | |
Collapse
|
34
|
Weissman KJ, Müller R. Myxobacterial secondary metabolites: bioactivities and modes-of-action. Nat Prod Rep 2010; 27:1276-95. [DOI: 10.1039/c001260m] [Citation(s) in RCA: 225] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
35
|
Sipkema D, Holmes B, Nichols SA, Blanch HW. Biological characterisation of Haliclona (?gellius) sp.: sponge and associated microorganisms. MICROBIAL ECOLOGY 2009; 58:903-920. [PMID: 19471996 PMCID: PMC2772955 DOI: 10.1007/s00248-009-9534-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2009] [Accepted: 05/07/2009] [Indexed: 05/27/2023]
Abstract
We have characterised the northern Pacific undescribed sponge Haliclona (?gellius) sp. based on rDNA of the sponge and its associated microorganisms. The sponge is closely related to Amphimedon queenslandica from the Great Barrier Reef as the near-complete 18S rDNA sequences of both sponges were identical. The microbial fingerprint of three specimens harvested at different times and of a transplanted specimen was compared to identify stably associated microorganisms. Most bacterial phyla were detected in each sample, but only a few bacterial species were determined to be stably associated with the sponge. A sponge-specific beta- and gamma-Proteobacterium were abundant clones and both of them were present in three of the four specimens analysed. In addition, a Planctomycete and a Crenarchaea were detected in all sponge individuals. Both were closely related to operational taxonomic units that have been found in other sponges, but not exclusively in sponges. Interestingly, also a number of clones that are closely related to intracellular symbionts from insects and amoeba were detected.
Collapse
Affiliation(s)
- Detmer Sipkema
- Department of Chemical Engineering, University of California Berkeley, 201 Gilman Hall, Berkeley, CA 94720, USA.
| | | | | | | |
Collapse
|
36
|
Novel features of the polysaccharide-digesting gliding bacterium Flavobacterium johnsoniae as revealed by genome sequence analysis. Appl Environ Microbiol 2009; 75:6864-75. [PMID: 19717629 DOI: 10.1128/aem.01495-09] [Citation(s) in RCA: 178] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The 6.10-Mb genome sequence of the aerobic chitin-digesting gliding bacterium Flavobacterium johnsoniae (phylum Bacteroidetes) is presented. F. johnsoniae is a model organism for studies of bacteroidete gliding motility, gene regulation, and biochemistry. The mechanism of F. johnsoniae gliding is novel, and genome analysis confirms that it does not involve well-studied motility organelles, such as flagella or type IV pili. The motility machinery is composed of Gld proteins in the cell envelope that are thought to comprise the "motor" and SprB, which is thought to function as a cell surface adhesin that is propelled by the motor. Analysis of the genome identified genes related to sprB that may encode alternative adhesins used for movement over different surfaces. Comparative genome analysis revealed that some of the gld and spr genes are found in nongliding bacteroidetes and may encode components of a novel protein secretion system. F. johnsoniae digests proteins, and 125 predicted peptidases were identified. F. johnsoniae also digests numerous polysaccharides, and 138 glycoside hydrolases, 9 polysaccharide lyases, and 17 carbohydrate esterases were predicted. The unexpected ability of F. johnsoniae to digest hemicelluloses, such as xylans, mannans, and xyloglucans, was predicted based on the genome analysis and confirmed experimentally. Numerous predicted cell surface proteins related to Bacteroides thetaiotaomicron SusC and SusD, which are likely involved in binding of oligosaccharides and transport across the outer membrane, were also identified. Genes required for synthesis of the novel outer membrane flexirubin pigments were identified by a combination of genome analysis and genetic experiments. Genes predicted to encode components of a multienzyme nonribosomal peptide synthetase were identified, as were novel aspects of gene regulation. The availability of techniques for genetic manipulation allows rapid exploration of the features identified for the polysaccharide-digesting gliding bacteroidete F. johnsoniae.
Collapse
|
37
|
Altemöller M, Gehring T, Cudaj J, Podlech J, Goesmann H, Feldmann C, Rothenberger A. Total Synthesis of Graphislactones A, C, D, and H, of Ulocladol, and of the Originally Proposed and Revised Structures of Graphislactones E and F. European J Org Chem 2009. [DOI: 10.1002/ejoc.200801278] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
38
|
A brief tour of myxobacterial secondary metabolism. Bioorg Med Chem 2009; 17:2121-36. [DOI: 10.1016/j.bmc.2008.11.025] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2008] [Revised: 11/07/2008] [Accepted: 11/11/2008] [Indexed: 12/16/2022]
|
39
|
Höfle G, Irschik H. Isolation and biosynthesis of aurachin P and 5-nitroresorcinol from Stigmatella erecta. JOURNAL OF NATURAL PRODUCTS 2008; 71:1946-1948. [PMID: 18986196 DOI: 10.1021/np800325z] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The isolation of aurachin P (2) from Stigmatella erecta strain Pd e32 is described. Spectroscopic data, in particular NMR data, indicate it is 1'-hydroxyaurachin A with a 1'R,2'S,3'R relative configuration. In addition, a further compound, 5-nitroresorcinol (4a), was isolated and identified as a novel natural product. Feeding of (13)C- and (15)N-labeled precursors indicated this was synthesized solely from glucose and ammonia. To account for the labeling pattern, phloroglucinol (8) is postulated as an intermediate branching off from 3-dehydroquinate (7) in the shikimate pathway.
Collapse
Affiliation(s)
- Gerhard Höfle
- Helmholtz Centre for Infection Research (previously GBF, Gesellschaft für Biotechnologische Forschung), Inhoffenstrasse 7, 38124 Braunschweig, Germany.
| | | |
Collapse
|