Chen BC, Chou WC, Chen WY, Liao CM. Assessing the cancer risk associated with arsenic-contaminated seafood.
JOURNAL OF HAZARDOUS MATERIALS 2010;
181:161-169. [PMID:
20546995 DOI:
10.1016/j.jhazmat.2010.04.112]
[Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2010] [Revised: 04/27/2010] [Accepted: 04/28/2010] [Indexed: 05/29/2023]
Abstract
Tens of millions of people worldwide ingest excessive amounts of arsenic (As) through drinking water and food. The dietary intake of seafood is the major As exposure route in humans and can cause As-related adverse health effects including cancers. The aim of this study was to quantify potential cancer risks of As exposure for children and adults through seafood consumption. By coupling the age-specific physiologically based pharmacokinetic (PBPK) model and a Weibull-based dose-response function, a more accurate estimate of urinary arsenic metabolites could be achieved to better characterize potential cancer risks. The simulation results show that the proportion of inorganic As, monomethylarsonic acid (MMA), and dimethylarsinic acid (DMA) in human urine are estimated to total 6.7, 26.9, and 66.4% for children, and 6.2, 27.4, and 66.4% for adults, respectively. The estimated median cumulative cancer incidence ratios were respectively 2.67x10(-6) and 3.83x10(-6) for children and adults, indicating a low cancer risk for local residents exposed to As through the consumption of seafood. However, it is necessary to incorporate other exposure routes into the model to make it more realistic. The methodology proposed here can not only be applied to calculate the concentrations of As metabolites in urine, but also to provide a direct estimation of adverse health effects caused by the calculated internal concentrations.
Collapse