1
|
Li S, Liu ZY, Li H, Zhou S, Liu J, Sun N, Yang KF, Dougados V, Mangeat T, Belguise K, Feng XQ, Liu Y, Wang X. Basal actomyosin pulses expand epithelium coordinating cell flattening and tissue elongation. Nat Commun 2024; 15:3000. [PMID: 38589403 PMCID: PMC11001887 DOI: 10.1038/s41467-024-47236-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 03/22/2024] [Indexed: 04/10/2024] Open
Abstract
Actomyosin networks constrict cell area and junctions to alter cell and tissue shape. However, during cell expansion under mechanical stress, actomyosin networks are strengthened and polarized to relax stress. Thus, cells face a conflicting situation between the enhanced actomyosin contractile properties and the expansion behaviour of the cell or tissue. To address this paradoxical situation, we study late Drosophila oogenesis and reveal an unusual epithelial expansion wave behaviour. Mechanistically, Rac1 and Rho1 integrate basal pulsatile actomyosin networks with ruffles and focal adhesions to increase and then stabilize basal area of epithelial cells allowing their flattening and elongation. This epithelial expansion behaviour bridges cell changes to oocyte growth and extension, while oocyte growth in turn deforms the epithelium to drive cell spreading. Basal pulsatile actomyosin networks exhibit non-contractile mechanics, non-linear structures and F-actin/Myosin-II spatiotemporal signal separation, implicating unreported expanding properties. Biophysical modelling incorporating these expanding properties well simulates epithelial cell expansion waves. Our work thus highlights actomyosin expanding properties as a key mechanism driving tissue morphogenesis.
Collapse
Affiliation(s)
- Shun Li
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics, Sichuan Provincial People's Hospital, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, Sichuan, P. R. China
- Molecular, Cellular and Developmental Biology Department (MCD), Centre de Biologie Integrative (CBI), University of Toulouse, CNRS, UPS, Toulouse, France
| | - Zong-Yuan Liu
- Department of Engineering Mechanics, Institute of Biomechanics and Medical Engineering, Tsinghua University, Beijing, 100084, P.R. China
| | - Hao Li
- Molecular, Cellular and Developmental Biology Department (MCD), Centre de Biologie Integrative (CBI), University of Toulouse, CNRS, UPS, Toulouse, France
| | - Sijia Zhou
- Molecular, Cellular and Developmental Biology Department (MCD), Centre de Biologie Integrative (CBI), University of Toulouse, CNRS, UPS, Toulouse, France
| | - Jiaying Liu
- Molecular, Cellular and Developmental Biology Department (MCD), Centre de Biologie Integrative (CBI), University of Toulouse, CNRS, UPS, Toulouse, France
| | - Ningwei Sun
- Molecular, Cellular and Developmental Biology Department (MCD), Centre de Biologie Integrative (CBI), University of Toulouse, CNRS, UPS, Toulouse, France
| | - Kai-Fu Yang
- MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, Sichuan, P. R. China
| | - Vanessa Dougados
- Molecular, Cellular and Developmental Biology Department (MCD), Centre de Biologie Integrative (CBI), University of Toulouse, CNRS, UPS, Toulouse, France
| | - Thomas Mangeat
- Molecular, Cellular and Developmental Biology Department (MCD), Centre de Biologie Integrative (CBI), University of Toulouse, CNRS, UPS, Toulouse, France
| | - Karine Belguise
- Molecular, Cellular and Developmental Biology Department (MCD), Centre de Biologie Integrative (CBI), University of Toulouse, CNRS, UPS, Toulouse, France
| | - Xi-Qiao Feng
- Department of Engineering Mechanics, Institute of Biomechanics and Medical Engineering, Tsinghua University, Beijing, 100084, P.R. China.
| | - Yiyao Liu
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics, Sichuan Provincial People's Hospital, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, Sichuan, P. R. China.
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, 610072, Chengdu, Sichuan, P.R. China.
| | - Xiaobo Wang
- Molecular, Cellular and Developmental Biology Department (MCD), Centre de Biologie Integrative (CBI), University of Toulouse, CNRS, UPS, Toulouse, France.
| |
Collapse
|
2
|
Lin SZ, Merkel M, Rupprecht JF. Structure and Rheology in Vertex Models under Cell-Shape-Dependent Active Stresses. PHYSICAL REVIEW LETTERS 2023; 130:058202. [PMID: 36800465 DOI: 10.1103/physrevlett.130.058202] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 08/19/2022] [Accepted: 01/04/2023] [Indexed: 06/18/2023]
Abstract
Biological cells can actively tune their intracellular architecture according to their overall shape. Here we explore the rheological implication of such coupling in a minimal model of a dense cellular material where each cell exerts an active mechanical stress along its axis of elongation. Increasing the active stress amplitude leads to several transitions. An initially hexagonal crystal motif is first destabilized into a solid with anisotropic cells whose shear modulus eventually vanishes at a first critical activity. Increasing activity beyond this first critical value, we find a re-entrant transition to a regime with finite hexatic order and finite shear modulus, in which cells arrange according to a rhombile pattern with periodically arranged rosette structures. The shear modulus vanishes again at a third threshold beyond which spontaneous tissue flows and topological defects of the nematic cell shape field arise. Flow and stress fields around the defects agree with active nematic theory, with either contractile or extensile signs, as also observed in several epithelial tissue experiments.
Collapse
Affiliation(s)
- Shao-Zhen Lin
- Aix Marseille Université, Université de Toulon, CNRS, Centre de Physique Théorique, Turing Center for Living Systems, Marseille, France
| | - Matthias Merkel
- Aix Marseille Université, Université de Toulon, CNRS, Centre de Physique Théorique, Turing Center for Living Systems, Marseille, France
| | - Jean-François Rupprecht
- Aix Marseille Université, Université de Toulon, CNRS, Centre de Physique Théorique, Turing Center for Living Systems, Marseille, France
| |
Collapse
|
3
|
Wu LC, Tada S, Isoshima T, Serizawa T, Ito Y. Photo-reactive polymers for the immobilisation of epidermal growth factors. J Mater Chem B 2023. [PMID: 36655770 DOI: 10.1039/d2tb02040h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Photo-reactive polymers are important for biomaterials, including devices with a 3D-structure. Here, different types of photo-reactive polymers were prepared and utilised for immobilisation of growth factors. They were synthesised by conjugation of gelatin with the azidophenyl group or by copolymerisation of the azidophenyl group-coupled methacrylate with poly(ethylene glycol) methacrylate. The azidophenyl content and the zeta potential of the prepared polymers were measured. After spin coating of polymers, the thickness and the water contact angle of coated layers were measured. The amount of the immobilised epidermal growth factor (EGF) was determined using fluorescence labelling. Cell adhesion responded to the nature of photo-reactive polymers but did not depend on the immobilised EGF. However, cell growth was dependent on the amount of immobilised EGF and was significantly affected by the nature of photo-reactive polymers. The study shows that the properties of the photo-immobilisation matrix significantly influence the biological activity.
Collapse
Affiliation(s)
- Liang-Chun Wu
- Nano Medical Engineering Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan. .,Department of Chemical Science and Engineering, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Seiichi Tada
- Emergent Bioengineering Materials Research Team, RIKEN Center for Emergent Matter Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Takashi Isoshima
- Nano Medical Engineering Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.
| | - Takeshi Serizawa
- Nano Medical Engineering Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan. .,Department of Chemical Science and Engineering, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Yoshihiro Ito
- Nano Medical Engineering Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan. .,Department of Chemical Science and Engineering, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan.,Emergent Bioengineering Materials Research Team, RIKEN Center for Emergent Matter Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| |
Collapse
|
4
|
Huebner RJ, Malmi-Kakkada AN, Sarıkaya S, Weng S, Thirumalai D, Wallingford JB. Mechanical heterogeneity along single cell-cell junctions is driven by lateral clustering of cadherins during vertebrate axis elongation. eLife 2021; 10:e65390. [PMID: 34032216 PMCID: PMC8205493 DOI: 10.7554/elife.65390] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 05/01/2021] [Indexed: 02/06/2023] Open
Abstract
Morphogenesis is governed by the interplay of molecular signals and mechanical forces across multiple length scales. The last decade has seen tremendous advances in our understanding of the dynamics of protein localization and turnover at subcellular length scales, and at the other end of the spectrum, of mechanics at tissue-level length scales. Integrating the two remains a challenge, however, because we lack a detailed understanding of the subcellular patterns of mechanical properties of cells within tissues. Here, in the context of the elongating body axis of Xenopus embryos, we combine tools from cell biology and physics to demonstrate that individual cell-cell junctions display finely-patterned local mechanical heterogeneity along their length. We show that such local mechanical patterning is essential for the cell movements of convergent extension and is imparted by locally patterned clustering of a classical cadherin. Finally, the patterning of cadherins and thus local mechanics along cell-cell junctions are controlled by Planar Cell Polarity signaling, a key genetic module for CE that is mutated in diverse human birth defects.
Collapse
Affiliation(s)
- Robert J Huebner
- Department of Molecular Biosciences, University of TexasAustinUnited States
| | - Abdul Naseer Malmi-Kakkada
- Department of Chemistry, University of TexasAustinUnited States
- Department of Chemistry and Physics, Augusta UniversityAugustaGeorgia
| | - Sena Sarıkaya
- Department of Molecular Biosciences, University of TexasAustinUnited States
| | - Shinuo Weng
- Department of Molecular Biosciences, University of TexasAustinUnited States
| | - D Thirumalai
- Department of Chemistry, University of TexasAustinUnited States
| | - John B Wallingford
- Department of Molecular Biosciences, University of TexasAustinUnited States
| |
Collapse
|
5
|
Liu ZY, Li B, Zhao ZL, Xu GK, Feng XQ, Gao H. Mesoscopic dynamic model of epithelial cell division with cell-cell junction effects. Phys Rev E 2020; 102:012405. [PMID: 32794908 DOI: 10.1103/physreve.102.012405] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 05/10/2020] [Indexed: 06/11/2023]
Abstract
Cell division is central for embryonic development, tissue morphogenesis, and tumor growth. Experiments have evidenced that mitotic cell division is manipulated by the intercellular cues such as cell-cell junctions. However, it still remains unclear how these cortical-associated cues mechanically affect the mitotic spindle machinery, which determines the position and orientation of the cell division. In this paper, a mesoscopic dynamic cell division model is established to explore the integrated regulations of cortical polarity, microtubule pulling forces, cell deformability, and internal osmotic pressure. We show that the distributed pulling forces of astral microtubules play a key role in encoding the instructive cortical cues to orient and position the spindle of a dividing cell. The present model can not only predict the spindle orientation and position, but also capture the morphological evolution of cell rounding. The theoretical results agree well with relevant experiments both qualitatively and quantitatively. This work sheds light on the mechanical linkage between cell cortex and mitotic spindle, and holds potential in regulating cell division and sculpting tissue morphology.
Collapse
Affiliation(s)
- Zong-Yuan Liu
- Institute of Biomechanics and Medical Engineering, AML, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| | - Bo Li
- Institute of Biomechanics and Medical Engineering, AML, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| | - Zi-Long Zhao
- Institute of Biomechanics and Medical Engineering, AML, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| | - Guang-Kui Xu
- International Center for Applied Mechanics, State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi'an Jiaotong University, Xi'an 710049, China
| | - Xi-Qiao Feng
- Institute of Biomechanics and Medical Engineering, AML, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| | - Huajian Gao
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore 639798, Singapore
- Institute of High Performance Computing, A*STAR, Singapore 138632, Singapore
| |
Collapse
|
6
|
Lin SZ, Li Y, Ji J, Li B, Feng XQ. Collective dynamics of coherent motile cells on curved surfaces. SOFT MATTER 2020; 16:2941-2952. [PMID: 32108851 DOI: 10.1039/c9sm02375e] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Cellular dynamic behaviors in organ morphogenesis and embryogenesis are affected by geometrical constraints. In this paper, we investigate how the surface topology and curvature of the underlying substrate tailor collective cell migration. An active vertex model is developed to explore the collective dynamics of coherent cells crawling on curved surfaces. We show that cells can self-organize into rich dynamic patterns including local swirling, global rotation, spiral crawling, serpentine crawling, and directed migration, depending on the interplay between cell-cell interactions and geometric constraints. Increasing substrate curvature results in higher cell-cell bending energy and thus tends to suppress local swirling and enhance density fluctuations. Substrate topology is revealed to regulate both the collective migration modes and density fluctuations of cell populations. In addition, upon increasing noise intensity, a Kosterlitz-Thouless-like ordering transition can emerge on both undevelopable and developable surfaces. This study paves the way to investigate various in vivo morphomechanics that involve surface curvature and topology.
Collapse
Affiliation(s)
- Shao-Zhen Lin
- Institute of Biomechanics and Medical Engineering, Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China.
| | | | | | | | | |
Collapse
|
7
|
Necula MG, Mazare A, Ion RN, Ozkan S, Park J, Schmuki P, Cimpean A. Lateral Spacing of TiO 2 Nanotubes Modulates Osteoblast Behavior. MATERIALS (BASEL, SWITZERLAND) 2019; 12:E2956. [PMID: 31547276 PMCID: PMC6766216 DOI: 10.3390/ma12182956] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 09/05/2019] [Accepted: 09/10/2019] [Indexed: 01/06/2023]
Abstract
Titanium dioxide (TiO2) nanotube coated substrates have revolutionized the concept of implant in a number of ways, being endowed with superior osseointegration properties and local drug delivery capacity. While accumulating reports describe the influence of nanotube diameter on cell behavior, little is known about the effects of nanotube lateral spacing on cells involved in bone regeneration. In this context, in the present study the MC3T3-E1 murine pre-osteoblast cells behavior has been investigated by using TiO2 nanotubes of ~78 nm diameter and lateral spacing of 18 nm and 80 nm, respectively. Both nanostructured surfaces supported cell viability and proliferation in approximately equal extent. However, obvious differences in the cell spreading areas, morphologies, the organization of the actin cytoskeleton and the pattern of the focal adhesions were noticed. Furthermore, investigation of the pre-osteoblast differentiation potential indicated a higher capacity of larger spacing nanostructure to enhance the expression of the alkaline phosphatase, osteopontin and osteocalcin osteoblast specific markers inducing osteogenic differentiation. These findings provide the proof that lateral spacing of the TiO2 nanotube coated titanium (Ti) surfaces has to be considered in designing bone implants with improved biological performance.
Collapse
Affiliation(s)
- Madalina Georgiana Necula
- Department of Biochemistry and Molecular Biology, University of Bucharest, 050095 Bucharest, Romania.
| | - Anca Mazare
- Department of Materials Science WW4-LKO, Friedrich-Alexander University, 91058 Erlangen, Germany.
| | - Raluca Nicoleta Ion
- Department of Biochemistry and Molecular Biology, University of Bucharest, 050095 Bucharest, Romania.
| | - Selda Ozkan
- Department of Materials Science WW4-LKO, Friedrich-Alexander University, 91058 Erlangen, Germany.
| | - Jung Park
- Division of Molecular Pediatrics, Department of Pediatrics, University Hospital Erlangen, 91054 Erlangen, Germany.
| | - Patrik Schmuki
- Department of Materials Science WW4-LKO, Friedrich-Alexander University, 91058 Erlangen, Germany.
| | - Anisoara Cimpean
- Department of Biochemistry and Molecular Biology, University of Bucharest, 050095 Bucharest, Romania.
| |
Collapse
|
8
|
Motealleh A, Çelebi-Saltik B, Ermis N, Nowak S, Khademhosseini A, Kehr NS. 3D printing of step-gradient nanocomposite hydrogels for controlled cell migration. Biofabrication 2019; 11:045015. [PMID: 31344690 DOI: 10.1088/1758-5090/ab3582] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
9
|
Lin SZ, Bi D, Li B, Feng XQ. Dynamic instability and migration modes of collective cells in channels. J R Soc Interface 2019; 16:20190258. [PMID: 31362619 PMCID: PMC6685016 DOI: 10.1098/rsif.2019.0258] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 07/03/2019] [Indexed: 12/31/2022] Open
Abstract
Migrating cells constantly experience geometrical confinements in vivo, as exemplified by cancer invasion and embryo development. In this paper, we investigate how intrinsic cellular properties and extrinsic channel confinements jointly regulate the two-dimensional migratory dynamics of collective cells. We find that besides external confinement, active cell motility and cell crowdedness also shape the migration modes of collective cells. Furthermore, the effects of active cell motility, cell crowdedness and confinement size on collective cell migration can be integrated into a unified dimensionless parameter, defined as the cellular motility number (CMN), which mirrors the competition between active motile force and passive elastic restoring force of cells. A low CMN favours laminar-like cell flows, while a high CMN destabilizes cell motions, resulting in a series of mode transitions from a laminar phase to an ordered vortex chain, and further to a mesoscale turbulent phase. These findings not only explain recent experiments but also predict dynamic behaviours of cell collectives, such as the existence of an ordered vortex chain mode and the mode selection under non-straight confinements, which are experimentally testable across different epithelial cell lines.
Collapse
Affiliation(s)
- Shao-Zhen Lin
- Institute of Biomechanics and Medical Engineering, Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, People's Republic of China
| | - Dapeng Bi
- Department of Physics, Northeastern University, Boston, MA 02115, USA
| | - Bo Li
- Institute of Biomechanics and Medical Engineering, Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, People's Republic of China
| | - Xi-Qiao Feng
- Institute of Biomechanics and Medical Engineering, Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, People's Republic of China
| |
Collapse
|
10
|
Lin SZ, Ye S, Xu GK, Li B, Feng XQ. Dynamic Migration Modes of Collective Cells. Biophys J 2018; 115:1826-1835. [PMID: 30297134 PMCID: PMC6224637 DOI: 10.1016/j.bpj.2018.09.010] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 08/24/2018] [Accepted: 09/13/2018] [Indexed: 12/12/2022] Open
Abstract
Collective cell migration occurs in a diversity of physiological processes such as wound healing, cancer metastasis, and embryonic morphogenesis. In the collective context, cohesive cells may move as a translational solid, swirl as a fluid, or even rotate like a disk, with scales ranging from several to dozens of cells. In this work, an active vertex model is presented to explore the regulatory roles of social interactions of neighboring cells and environmental confinements in collective cell migration in a confluent monolayer. It is found that the competition between two kinds of intercellular social interactions-local alignment and contact inhibition of locomotion-drives the cells to self-organize into various dynamic coherent structures with a spatial correlation scale. The interplay between this intrinsic length scale and the external confinement dictates the migration modes of collective cells confined in a finite space. We also show that the local alignment-contact inhibition of locomotion coordination can induce giant density fluctuations in a confluent cell monolayer without gaps, which triggers the spontaneous breaking of orientational symmetry and leads to phase separation.
Collapse
Affiliation(s)
- Shao-Zhen Lin
- Institute of Biomechanics and Medical Engineering, Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing, China
| | - Sang Ye
- Institute of Biomechanics and Medical Engineering, Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing, China
| | - Guang-Kui Xu
- International Center for Applied Mechanics, State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi'an Jiaotong University, Xi'an, China
| | - Bo Li
- Institute of Biomechanics and Medical Engineering, Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing, China.
| | - Xi-Qiao Feng
- Institute of Biomechanics and Medical Engineering, Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing, China.
| |
Collapse
|
11
|
Zhou R, Han Y, Cao J, Li M, Jin G, Du Y, Luo H, Yang Y, Zhang L, Su B. Enhanced Osseointegration of Hierarchically Structured Ti Implant with Electrically Bioactive SnO 2-TiO 2 Bilayered Surface. ACS APPLIED MATERIALS & INTERFACES 2018; 10:30191-30200. [PMID: 30130089 DOI: 10.1021/acsami.8b10928] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The poor osseointegration of Ti implant significantly compromise its application in load-bearing bone repair and replacement. Electrically bioactive coating inspirited from heterojunction on Ti implant can benefit osseointegration but cannot avoid the stress shielding effect between bone and implant. To resolve this conflict, hierarchically structured Ti implant with electrically bioactive SnO2-TiO2 bilayered surface has been developed to enhance osseointegration. Benefiting from the electric cue offered by the built-in electrical field of SnO2-TiO2 heterojunction and the topographic cue provided by the hierarchical surface structure to bone regeneration, the osteoblastic function of basic multicellular units around the implant is significantly improved. Because the individual TiO2 or SnO2 coating with uniform surface exhibits no electrical bioactivity, the effects of electric and topographic cues to osseointegration have been decoupled via the analysis of in vivo performance for the placed Ti implant with different surfaces. The developed Ti implant shows significantly improved osseointegration with excellent bone-implant contact, improved mineralization of extracellular matrix, and increased push-out force. These results suggest that the synergistic strategy of combing electrical bioactivity with hierarchical surface structure provides a new platform for developing advanced endosseous implants.
Collapse
Affiliation(s)
- Rui Zhou
- Bristol Dental School , University of Bristol , Bristol BS1 2LY , U.K
| | | | - Jianyun Cao
- School of Materials , University of Manchester , Manchester M13 9PL , U.K
| | - Ming Li
- Honghui Hospital , Xi'an Jiaotong University College of Medicine , Xi'an 710054 , P. R. China
| | | | - Yuzhou Du
- School of Materials Science and Engineering , Xi'an University of Technology , Xi'an 710048 , P. R. China
| | | | | | | | - Bo Su
- Bristol Dental School , University of Bristol , Bristol BS1 2LY , U.K
| |
Collapse
|
12
|
Del Giudice F, Sathish S, D’Avino G, Shen AQ. “From the Edge to the Center”: Viscoelastic Migration of Particles and Cells in a Strongly Shear-Thinning Liquid Flowing in a Microchannel. Anal Chem 2017; 89:13146-13159. [DOI: 10.1021/acs.analchem.7b02450] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Francesco Del Giudice
- Micro/Bio/Nanofluidics
Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Kunigami-gun, Okinawa 904-0495, Japan
- Systems
and Process Engineering Centre, College of Engineering, Swansea University, Fabian Way, Swansea SA1
8EN, U.K
| | - Shivani Sathish
- Micro/Bio/Nanofluidics
Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Kunigami-gun, Okinawa 904-0495, Japan
| | - Gaetano D’Avino
- Dipartimento
di Ingegneria Chimica, dei Materiali e della Produzione Industriale, Universitá degli Studi di Napoli Federico II, Piazzale Tecchio 80, 80125 Naples, Italy
| | - Amy Q. Shen
- Micro/Bio/Nanofluidics
Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Kunigami-gun, Okinawa 904-0495, Japan
| |
Collapse
|
13
|
Kehr N, Motealleh A. Nanocomposite (Janus) paper as 3D cell culture system. Colloids Surf B Biointerfaces 2017; 156:236-242. [DOI: 10.1016/j.colsurfb.2017.05.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 04/20/2017] [Accepted: 05/05/2017] [Indexed: 12/15/2022]
|
14
|
Lin SZ, Li B, Lan G, Feng XQ. Activation and synchronization of the oscillatory morphodynamics in multicellular monolayer. Proc Natl Acad Sci U S A 2017; 114:8157-8162. [PMID: 28716911 PMCID: PMC5547635 DOI: 10.1073/pnas.1705492114] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Oscillatory morphodynamics provides necessary mechanical cues for many multicellular processes. Owing to their collective nature, these processes require robustly coordinated dynamics of individual cells, which are often separated too distantly to communicate with each other through biomaterial transportation. Although it is known that the mechanical balance generally plays a significant role in the systems' morphologies, it remains elusive whether and how the mechanical components may contribute to the systems' collective morphodynamics. Here, we study the collective oscillations in the Drosophila amnioserosa tissue to elucidate the regulatory roles of the mechanical components. We identify that the tensile stress is the key activator that switches the collective oscillations on and off. This regulatory role is shown analytically using the Hopf bifurcation theory. We find that the physical properties of the tissue boundary are directly responsible for synchronizing the oscillatory intensity and polarity of all inner cells and for orchestrating the spatial oscillation patterns inthe tissue.
Collapse
Affiliation(s)
- Shao-Zhen Lin
- Institute of Biomechanics and Medical Engineering, Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| | - Bo Li
- Institute of Biomechanics and Medical Engineering, Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China;
| | - Ganhui Lan
- Department of Physics, George Washington University, Washington DC 20052;
| | - Xi-Qiao Feng
- Institute of Biomechanics and Medical Engineering, Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China;
- Center for Advanced Mechanics and Materials, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| |
Collapse
|
15
|
Wu YL, Engl W, Hu B, Cai P, Leow WR, Tan NS, Lim CT, Chen X. Nanomechanically Visualizing Drug-Cell Interaction at the Early Stage of Chemotherapy. ACS NANO 2017; 11:6996-7005. [PMID: 28530823 DOI: 10.1021/acsnano.7b02376] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
A detailed understanding of chemotherapy is determined by the response of cell to the formation of the drug-target complex and its corresponding sudden or eventual cell death. However, visualization of this early but important process, encompassing the fast dynamics as well as complex network of molecular pathways, remains challenging. Herein, we report that the nanomechanical traction force is sensitive enough to reflect the early cellular response upon the addition of chemotherapeutical molecules in a real-time and noninvasive manner, due to interactions between chemotherapeutic drug and its cytoskeleton targets. This strategy has outperformed the traditional cell viability, cell cycle, cell impendence as well as intracellular protein analyses, in terms of fast response. Furthermore, by using the nanomechanical traction force as a nanoscale biophysical marker, we discover a cellular nanomechanical change upon drug treatment in a fast and sensitive manner. Overall, this approach could help to reveal the hidden mechanistic steps in chemotherapy and provide useful insights in drug screening.
Collapse
Affiliation(s)
- Yun-Long Wu
- School of Materials Science and Engineering, Nanyang Technological University , 50 Nanyang Avenue, Singapore 639798, Singapore
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Science, Xiamen University , Xiamen, Fujian 361102, China
| | - Wilfried Engl
- School of Materials Science and Engineering, Nanyang Technological University , 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Benhui Hu
- School of Materials Science and Engineering, Nanyang Technological University , 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Pingqiang Cai
- School of Materials Science and Engineering, Nanyang Technological University , 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Wan Ru Leow
- School of Materials Science and Engineering, Nanyang Technological University , 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Nguan Soon Tan
- School of Biological Sciences, Nanyang Technological University , 60 Nanyang Drive, Singapore 637551, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University , 59 Nanyang Drive, Singapore 636921, Singapore
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, Proteos, Agency for Science Technology & Research , Singapore 138673, Singapore
- KK Research Centre, KK Women's and Children Hospital , 100 Bukit Timah Road, Singapore 229899, Singapore
| | - Chwee Teck Lim
- Mechanobiology Institute, Department of Biomedical Engineering & Department of Mechanical Engineering, National University of Singapore , Singapore 117576, Singapore
| | - Xiaodong Chen
- School of Materials Science and Engineering, Nanyang Technological University , 50 Nanyang Avenue, Singapore 639798, Singapore
| |
Collapse
|
16
|
Bai Y, Zhou R, Cao J, Wei D, Du Q, Li B, Wang Y, Jia D, Zhou Y. Microarc oxidation coating covered Ti implants with micro-scale gouges formed by a multi-step treatment for improving osseointegration. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 76:908-917. [DOI: 10.1016/j.msec.2017.03.071] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 03/08/2017] [Accepted: 03/10/2017] [Indexed: 11/26/2022]
|
17
|
Borges FA, de Barros NR, Garms BC, Miranda MCR, Gemeinder JLP, Ribeiro-Paes JT, Silva RF, de Toledo KA, Herculano RD. Application of natural rubber latex as scaffold for osteoblast to guided bone regeneration. J Appl Polym Sci 2017. [DOI: 10.1002/app.45321] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Felipe Azevedo Borges
- Instituto de Química, Faculdade de Ciências e Letras, UNESP Univ Estadual Paulista, Campus Araraquara; Rua Prof. Francisco Degni no. 55 Araraquara SP 14800-060 Brazil
| | - Natan Roberto de Barros
- Instituto de Química, Faculdade de Ciências e Letras, UNESP Univ Estadual Paulista, Campus Araraquara; Rua Prof. Francisco Degni no. 55 Araraquara SP 14800-060 Brazil
| | - Bruna Cambraia Garms
- Instituto de Química, Faculdade de Ciências e Letras, UNESP Univ Estadual Paulista, Campus Araraquara; Rua Prof. Francisco Degni no. 55 Araraquara SP 14800-060 Brazil
| | - Matheus Carlos Romeiro Miranda
- Instituto de Química, Faculdade de Ciências e Letras, UNESP Univ Estadual Paulista, Campus Araraquara; Rua Prof. Francisco Degni no. 55 Araraquara SP 14800-060 Brazil
| | - Jose Lucio Padua Gemeinder
- Departamento de Ciências Biológicas, Faculdade de Ciências e Letras de Assis; UNESP Univ Estadual Paulista; Campus Assis. Av. Dom Antonio no. 2100 Assis SP 19806-900 Brazil
| | - João Tadeu Ribeiro-Paes
- Departamento de Ciências Biológicas, Faculdade de Ciências e Letras de Assis; UNESP Univ Estadual Paulista; Campus Assis. Av. Dom Antonio no. 2100 Assis SP 19806-900 Brazil
| | - Rodrigo Ferreira Silva
- Departamento de Química, Faculdade de Filosofia Ciêcias e Letras de Ribeirão Preto; USP Univ de São Paulo; Av. Bandeirantes no. 3900 Ribeirão Preto SP 14040-901 Brazil
| | - Karina Alves de Toledo
- Departamento de Ciências Biológicas, Faculdade de Ciências e Letras de Assis; UNESP Univ Estadual Paulista; Campus Assis. Av. Dom Antonio no. 2100 Assis SP 19806-900 Brazil
| | - Rondinelli Donizetti Herculano
- Departamento de Bioprocessos e Biotecnologia, Faculdade de Ciências Farmacêuticas de Araraquara; UNESP Univ Estadual Paulista, Campus Araraquara; Rodovia Araraquara Jaú, Km 01-s/n Araraquara SP 14800-903 Brazil
| |
Collapse
|
18
|
Lilge I, Jiang S, Schönherr H. Long-Term Stable Poly(acrylamide) Brush Modified Transparent Microwells for Cell Attachment Studies in 3D. Macromol Biosci 2017; 17. [DOI: 10.1002/mabi.201600451] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2016] [Revised: 11/23/2016] [Indexed: 12/18/2022]
Affiliation(s)
- Inga Lilge
- Physical Chemistry I; Department of Chemistry and Biology and Research Center of Micro and Nanochemistry and Engineering (Cμ); University of Siegen; Adolf-Reichwein-Str. 2 57076 Siegen Germany
| | - Siyu Jiang
- Physical Chemistry I; Department of Chemistry and Biology and Research Center of Micro and Nanochemistry and Engineering (Cμ); University of Siegen; Adolf-Reichwein-Str. 2 57076 Siegen Germany
| | - Holger Schönherr
- Physical Chemistry I; Department of Chemistry and Biology and Research Center of Micro and Nanochemistry and Engineering (Cμ); University of Siegen; Adolf-Reichwein-Str. 2 57076 Siegen Germany
| |
Collapse
|
19
|
Sun M, Qian H, Liu J, Li Y, Pang S, Xu M, Zhang J. A flexible conductive film prepared by the oriented stacking of Ag and Au/Ag alloy nanoplates and its chemically roughened surface for explosive SERS detection and cell adhesion. RSC Adv 2017. [DOI: 10.1039/c6ra25956a] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A Au–Ag alloy with oriented stacking has applications in SERS detection and cell adhesion.
Collapse
Affiliation(s)
- Mingming Sun
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications
- School of Materials Science & Engineering
- Beijing Institute of Technology
- Beijing
- P. R. China
| | - Hongmei Qian
- Department of Architecture and Civil Engineering
- West Anhui University
- Liuan
- P. R. China
| | - Jia Liu
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications
- School of Materials Science & Engineering
- Beijing Institute of Technology
- Beijing
- P. R. China
| | - Yuchuan Li
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications
- School of Materials Science & Engineering
- Beijing Institute of Technology
- Beijing
- P. R. China
| | - Siping Pang
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications
- School of Materials Science & Engineering
- Beijing Institute of Technology
- Beijing
- P. R. China
| | - Meng Xu
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications
- School of Materials Science & Engineering
- Beijing Institute of Technology
- Beijing
- P. R. China
| | - Jiatao Zhang
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications
- School of Materials Science & Engineering
- Beijing Institute of Technology
- Beijing
- P. R. China
| |
Collapse
|
20
|
Kehr NS, Motealleh A, Schäfer AH. Cell Growth on ("Janus") Density Gradients of Bifunctional Zeolite L Crystals. ACS APPLIED MATERIALS & INTERFACES 2016; 8:35081-35090. [PMID: 27966873 DOI: 10.1021/acsami.6b13667] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Nanoparticle density gradients on surfaces have attracted interest as two-dimensional material surfaces that can mimic the complex nano-/microstructure of the native extracellular matrix, including its chemical and physical gradients, and can therefore be used to systematically study cell-material interactions. In this respect, we report the preparation of density gradients made of bifunctional zeolite L crystals on glass surfaces and the effects of the density gradient and biopolymer functionalization of zeolite L crystals on cell adhesion. We also describe how we created "Janus" density gradient surfaces by gradually depositing two different types of zeolite L crystals that were functionalized and loaded with different chemical groups and guest molecules onto the two distinct sides of the same glass substrate. Our results show that more cells adhered on the density gradient of biopolymer-coated zeolites than on uncoated ones. The number of adhered cells increased up to a certain surface coverage of the glass by the zeolite L crystals, but then it decreased beyond the zeolite density at which a higher surface coverage decreased fibroblast cell adhesion and spreading. Additionally, cell experiments showed that cells gradually internalized the guest-molecule-loaded zeolite L crystals from the underlying density gradient containing bifunctional zeolite L crystals.
Collapse
Affiliation(s)
- Nermin Seda Kehr
- Physikalisches Institut and CeNTech, Westfälische Wilhelms-Universität Münster , Heisenbergstraße 11, D-48149 Münster, Germany
| | - Andisheh Motealleh
- Physikalisches Institut and CeNTech, Westfälische Wilhelms-Universität Münster , Heisenbergstraße 11, D-48149 Münster, Germany
| | | |
Collapse
|
21
|
Allena R, Scianna M, Preziosi L. A Cellular Potts Model of single cell migration in presence of durotaxis. Math Biosci 2016; 275:57-70. [PMID: 26968932 DOI: 10.1016/j.mbs.2016.02.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Revised: 02/19/2016] [Accepted: 02/26/2016] [Indexed: 01/02/2023]
Abstract
Cell migration is a fundamental biological phenomenon during which cells sense their surroundings and respond to different types of signals. In presence of durotaxis, cells preferentially crawl from soft to stiff substrates by reorganizing their cytoskeleton from an isotropic to an anisotropic distribution of actin filaments. In the present paper, we propose a Cellular Potts Model to simulate single cell migration over flat substrates with variable stiffness. We have tested five configurations: (i) a substrate including a soft and a stiff region, (ii) a soft substrate including two parallel stiff stripes, (iii) a substrate made of successive stripes with increasing stiffness to create a gradient and (iv) a stiff substrate with four embedded soft squares. For each simulation, we have evaluated the morphology of the cell, the distance covered, the spreading area and the migration speed. We have then compared the numerical results to specific experimental observations showing a consistent agreement.
Collapse
Affiliation(s)
- R Allena
- Arts et Metiers ParisTech, LBM/Institut de Biomecanique Humaine Georges Charpak, 151 bd de l'Hopital, 75013 Paris, France.
| | - M Scianna
- Dipartimento di Scienze Mathematiche, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
| | - L Preziosi
- Dipartimento di Scienze Mathematiche, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
| |
Collapse
|
22
|
Palankar R, Glaubitz M, Martens U, Medvedev N, von der Ehe M, Felix SB, Münzenberg M, Delcea M. 3D Micropillars Guide the Mechanobiology of Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes. Adv Healthc Mater 2016; 5:335-41. [PMID: 26676091 DOI: 10.1002/adhm.201500740] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Indexed: 12/25/2022]
Abstract
3D micropillars generated by photolithography are used as a platform to probe by atomic force microscopy the mechanodynamics of human induced pluripotent stem cell-derived cardiomyocytes. 3D micropillars guide subcellular cytoskeletal modifications of cardiomyocytes and lead to biochemical changes altering beating rate, stiffness, and calcium dynamics of the cells.
Collapse
Affiliation(s)
- Raghavendra Palankar
- ZIK HIKE - Centre for Innovation Competence (Humoral Immune Reactions in Cardiovascular Diseases); Ernst-Moritz-Arndt-University; 17489 Greifswald Germany
| | - Michael Glaubitz
- ZIK HIKE - Centre for Innovation Competence (Humoral Immune Reactions in Cardiovascular Diseases); Ernst-Moritz-Arndt-University; 17489 Greifswald Germany
| | - Ulrike Martens
- Institute for Physics; University of Greifswald; 17489 Greifswald Germany
| | - Nikolay Medvedev
- ZIK HIKE - Centre for Innovation Competence (Humoral Immune Reactions in Cardiovascular Diseases); Ernst-Moritz-Arndt-University; 17489 Greifswald Germany
| | - Marvin von der Ehe
- Institute for Physics; University of Greifswald; 17489 Greifswald Germany
| | - Stephan B. Felix
- Clinic for Internal Medicine B (Cardiology); University of Greifswald Sauebruchstrasse; 17475 Greifswald Germany
- DZHK (German Centre for Cardiovascular Research) partner site; Greifswald Germany
| | - Markus Münzenberg
- Institute for Physics; University of Greifswald; 17489 Greifswald Germany
| | - Mihaela Delcea
- ZIK HIKE - Centre for Innovation Competence (Humoral Immune Reactions in Cardiovascular Diseases); Ernst-Moritz-Arndt-University; 17489 Greifswald Germany
- DZHK (German Centre for Cardiovascular Research) partner site; Greifswald Germany
| |
Collapse
|
23
|
Chinnakkannu Vijayakumar C, Venkatakrishnan K, Tan B. Harmonizing HeLa cell cytoskeleton behavior by multi-Ti oxide phased nanostructure synthesized through ultrashort pulsed laser. Sci Rep 2015; 5:15294. [PMID: 26469886 PMCID: PMC4606805 DOI: 10.1038/srep15294] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 09/22/2015] [Indexed: 12/25/2022] Open
Abstract
Knowledge about cancer cell behavior on heterogeneous nanostructures is relevant for developing a distinct biomaterial that can actuate cancer cells. In this manuscript, we have demonstrated a harmonized approach of forming multi Ti-oxide phases in a nanostructure (MTOP nanostructure) for its unique cancer cell controlling behavior.Conventionally, single phases of TiO2 are used for targeted therapy and as drug carrier systems.In this research, we have shown a biomaterial that can control HeLa cells diligently using a combination of TiO, Ti3O and TiO2 phases when compared to fibroblast (NIH3T3) cells.MTOP-nanostructures are generated by varying the ionization energy in the vapor plume of the ultrashort pulse laser; this interaction with the material allows accurate tuning and composition of phases within the nanostructure. In addition, the lattice spacing of MTOP-nanostructures was analyzed as shown by HR-TEM investigations. An FESEM investigation of MTOP-nanostructures revealed a greater reduction of HeLa cells relative to fibroblast cells. Altered cell adhesion was followed by modulation of HeLa cell architecture with a significant reduction of actin stress fibers.The intricate combination of MTOP-nanostructures renders a biomaterial that can precisely alter HeLa cell but not fibroblast cell behavior, filling a void in the research for a biomaterial to modulate cancer cell behavior.
Collapse
Affiliation(s)
- Chandramouli Chinnakkannu Vijayakumar
- Ultrashort laser nano manufacturing research facility, Department of Mechanical and Industrial Engineering, Ryerson University, 350 Victoria Street, Toronto, ON, Canada, M5B 2K3
| | - Krishnan Venkatakrishnan
- Ultrashort laser nano manufacturing research facility, Department of Mechanical and Industrial Engineering, Ryerson University, 350 Victoria Street, Toronto, ON, Canada, M5B 2K3
| | - Bo Tan
- Nano imaging lab, Department of Aerospace Engineering, Ryerson University, 350 Victoria Street, Toronto, ON, Canada, M5B 2K3
| |
Collapse
|
24
|
Lan H, Wang Q, Fernandez-Gonzalez R, Feng JJ. A biomechanical model for cell polarization and intercalation duringDrosophilagermband extension. Phys Biol 2015; 12:056011. [DOI: 10.1088/1478-3975/12/5/056011] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
25
|
Mutreja I, Woodfield TBF, Sperling S, Nock V, Evans JJ, Alkaisi MM. Positive and negative bioimprinted polymeric substrates: new platforms for cell culture. Biofabrication 2015; 7:025002. [PMID: 25850524 DOI: 10.1088/1758-5090/7/2/025002] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Bioimprinting, which involves capturing cell morphological details into a polymer matrix, provides a new class of patterned surfaces which opens an opportunity to investigate how cells respond to their own signatures and may introduce possibilities for regulating their behaviour. In this study, phenotypic details of human nasal chondrocytes (HNCs) were replicated in soft polydimethylsiloxane (PDMS) mould resulting in inverse replicas of cells, which have been termed here as 'negative bioimprint'. For the first time, the information from this negative bioimprint was then transferred into another PDMS layer resulting in surfaces which resemble cell morphology and were called 'positive bioimprints'. Soft lithography was used to transfer these details from PDMS into different polymers like polystyrene, tissue culture polystyrene and clinically used block co-polymer poly (ethylene glycol) terephthalate-poly (butylene terephthalate) (PEGT-PBT). Results obtained from surface characterization confirmed that fine details of cells were successfully replicated from cells to different polymer matrices without any significant loss of information during the different steps of pattern transfer. HNCs seeded on different polymer surfaces with positive and negative bioimprints exhibited distinct behaviour. Cells cultured on positive bioimprints were more spread out and displayed high levels of proliferation compared to those on negative bioimprints, where cells were more compact with lower proliferation.
Collapse
Affiliation(s)
- I Mutreja
- The MacDiarmid Institute of Advanced Materials and Nanotechnology, Department of Electrical and Computer Engineering, University of Canterbury, Christchurch, New Zealand. The MacDiarmid Institute of Advanced Materials and Nanotechnology and Centre for Neuroendocrinology, Department of Obstetrics and Gynaecology, University of Otago, Christchurch, New Zealand
| | | | | | | | | | | |
Collapse
|
26
|
Wang C, Fan Z, Han Y. Formation and osteoblast behavior of HA nano-rod/fiber patterned coatings on tantalum in porous and compact forms. J Mater Chem B 2015; 3:5442-5454. [DOI: 10.1039/c5tb00839e] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Osteoblast survival and proliferation are enhanced on quasi-upright HA nanorods but inhibited on paralleled HA nanofibers compared to Ta.
Collapse
Affiliation(s)
- Cuicui Wang
- State-key Laboratory for Mechanical Behavior of Materials
- Xi'an Jiaotong University
- Xi'an 710049
- China
| | - Zhibin Fan
- State-key Laboratory for Mechanical Behavior of Materials
- Xi'an Jiaotong University
- Xi'an 710049
- China
| | - Yong Han
- State-key Laboratory for Mechanical Behavior of Materials
- Xi'an Jiaotong University
- Xi'an 710049
- China
| |
Collapse
|
27
|
Rocha L, Păiuş CM, Luca-Raicu A, Resmerita E, Rusu A, Moleavin IA, Hamel M, Branza-Nichita N, Hurduc N. Azobenzene based polymers as photoactive supports and micellar structures for applications in biology. J Photochem Photobiol A Chem 2014. [DOI: 10.1016/j.jphotochem.2014.06.018] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
28
|
Stanton MM, Parrillo A, Thomas GM, McGimpsey WG, Wen Q, Bellin RM, Lambert CR. Fibroblast extracellular matrix and adhesion on microtextured polydimethylsiloxane scaffolds. J Biomed Mater Res B Appl Biomater 2014; 103:861-9. [PMID: 25142015 DOI: 10.1002/jbm.b.33244] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Revised: 05/05/2014] [Accepted: 06/13/2014] [Indexed: 12/22/2022]
Abstract
The immediate physical and chemical surroundings of cells provide important biochemical cues for their behavior. Designing and tailoring biomaterials for controlled cell signaling and extracellular matrix (ECM) can be difficult due to the complexity of the cell-surface relationship. To address this issue, our research has led to the development of a polydimethylsiloxane (PDMS) scaffold with defined microtopography and chemistry for surface driven ECM assembly. When human fibroblasts were cultured on this microtextured PDMS with 2-6 µm wide vertical features, significant changes in morphology, adhesion, actin cytoskeleton, and fibronectin generation were noted when compared with cells cultured on unmodified PDMS. Investigation of cellular response and behavior was performed with atomic force microscopy in conjunction with fluorescent labeling of focal adhesion cites and fibronectin in the ECM. Changes in the surface topography induced lower adhesion, an altered actin cytoskeleton, and compacted units of fibronectin similar to that observed in vivo. Overall, these findings provide critical information of cell-surface interactions with a microtextured, polymer substrate that can be used in the field of tissue engineering for controlling cellular ECM interactions.
Collapse
Affiliation(s)
- Morgan M Stanton
- Department of Chemistry and Biochemistry, Worcester Polytechnic Institute, Worcester, Massachusetts
| | | | | | | | | | | | | |
Collapse
|
29
|
Luo T, Srivastava V, Ren Y, Robinson DN. Mimicking the mechanical properties of the cell cortex by the self-assembly of an actin cortex in vesicles. APPLIED PHYSICS LETTERS 2014; 104:153701. [PMID: 24803681 PMCID: PMC4000382 DOI: 10.1063/1.4871861] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Accepted: 03/30/2014] [Indexed: 05/07/2023]
Abstract
The composite of the actin cytoskeleton and plasma membrane plays important roles in many biological events. Here, we employed the emulsion method to synthesize artificial cells with biomimetic actin cortex in vesicles and characterized their mechanical properties. We demonstrated that the emulsion method provides the flexibility to adjust the lipid composition and protein concentrations in artificial cells to achieve the desired size distribution, internal microstructure, and mechanical properties. Moreover, comparison of the cortical elasticity measured for reconstituted artificial cells to that of real cells, including those manipulated using genetic depletion and pharmacological inhibition, strongly supports that actin cytoskeletal proteins are dominant over lipid molecules in cortical mechanics. Our study indicates that the assembly of biological systems in artificial cells with purified cellular components provides a powerful way to answer biological questions.
Collapse
Affiliation(s)
- Tianzhi Luo
- Department of Cell Biology, School of Medicine, Johns Hopkins University, Baltimore, Maryland 21205, USA
| | - Vasudha Srivastava
- Department of Cell Biology, School of Medicine, Johns Hopkins University, Baltimore, Maryland 21205, USA ; Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Yixin Ren
- Department of Cell Biology, School of Medicine, Johns Hopkins University, Baltimore, Maryland 21205, USA
| | - Douglas N Robinson
- Department of Cell Biology, School of Medicine, Johns Hopkins University, Baltimore, Maryland 21205, USA ; Department of Pharmacology and Molecular Science, School of Medicine, Johns Hopkins University, Baltimore, Maryland 21205, USA ; Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, Maryland 21218, USA
| |
Collapse
|
30
|
Lee SM, Nguyen ST. Smart Nanoscale Drug Delivery Platforms from Stimuli-Responsive Polymers and Liposomes. Macromolecules 2013; 46:9169-9180. [PMID: 28804160 PMCID: PMC5552073 DOI: 10.1021/ma401529w] [Citation(s) in RCA: 101] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Since the 1960's, stimuli-responsive polymers have been utilized as functional soft materials for biological applications such as the triggered-release delivery of biologically active cargos. Over the same period, liposomes have been explored as an alternative drug delivery system with potentials to decrease the toxic side effects often associated with conventional small-molecule drugs. However, the lack of drug-release triggers and the instability of bare liposomes often limit their practical applications, causing short circulation time and low therapeutic efficacy. This perspective article highlights recent work in integrating these two materials together to achieve a targetable, triggerable nanoscale platform that fulfills all the characteristics of a near-ideal drug delivery system. Through a drop-in, post-synthesis modification strategy, a network of stimuli-responsive polymers can be integrated onto the surface of liposomes to form polymer-caged nanobins, a multifunctional nanoscale delivery platform that allows for multi-drug loading, targeted delivery, triggered drug-release, and theranostic capabilities.
Collapse
Affiliation(s)
- Sang-Min Lee
- Department of Chemistry and Center of Cancer Nanotechnology Excellence, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113
- Department of Chemistry, The Catholic University of Korea, Bucheon, Gyeonggi-do 420-743 Korea
| | - SonBinh T. Nguyen
- Department of Chemistry and Center of Cancer Nanotechnology Excellence, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113
| |
Collapse
|
31
|
Amna T, Shamshi Hassan M, Khil MS, Lee HK, Hwang IH. Electrospun nanofibers of ZnO-TiO2
hybrid: characterization and potential as an extracellular scaffold for supporting myoblasts. SURF INTERFACE ANAL 2013. [DOI: 10.1002/sia.5350] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Touseef Amna
- Department of Animal Sciences and Biotechnology; Chonbuk National University; Jeonju 561-756 Korea
| | - M. Shamshi Hassan
- Department of Organic Materials and Fiber Engineering; Chonbuk National University; Jeonju 561-756 Korea
| | - Myung-Seob Khil
- Department of Organic Materials and Fiber Engineering; Chonbuk National University; Jeonju 561-756 Korea
| | - Hak-Kyo Lee
- Genomic Informatics Center; Hankyong National University; Anseong South Korea
| | - I. H. Hwang
- Department of Animal Sciences and Biotechnology; Chonbuk National University; Jeonju 561-756 Korea
| |
Collapse
|
32
|
Yang R, Zhang Y, Li J, Han Q, Zhang W, Lu C, Yang Y, Dong H, Wang C. Graphene oxide assisted synthesis of GaN nanostructures for reducing cell adhesion. NANOSCALE 2013; 5:11019-11027. [PMID: 24068181 DOI: 10.1039/c3nr02770h] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
We report a general approach for the synthesis of large-scale gallium nitride (GaN) nanostructures by the graphene oxide (GO) assisted chemical vapor deposition (CVD) method. A modulation effect of GaN nanostructures on cell adhesion has been observed. The morphology of the GaN surface can be controlled by GO concentrations. This approach, which is based on the predictable choice of the ratio of GO to catalysts, can be readily extended to the synthesis of other materials with controllable nanostructures. Cell studies show that GaN nanostructures reduced cell adhesion significantly compared to GaN flat surfaces. The cell-repelling property is related to the nanostructure and surface wettability. These observations of the modulation effect on cell behaviors suggest new opportunities for novel GaN nanomaterial-based biomedical devices. We believe that potential applications will emerge in the biomedical and biotechnological fields.
Collapse
Affiliation(s)
- Rong Yang
- CAS Key Lab for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing 100190, P. R. China.
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
|
34
|
Tran PL, Gamboa JR, McCracken KE, Riley MR, Slepian MJ, Yoon JY. Nanowell-trapped charged ligand-bearing nanoparticle surfaces: a novel method of enhancing flow-resistant cell adhesion. Adv Healthc Mater 2013; 2:1019-27. [PMID: 23225491 PMCID: PMC4077426 DOI: 10.1002/adhm.201200250] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Revised: 09/29/2012] [Indexed: 01/07/2023]
Abstract
Assuring cell adhesion to an underlying biomaterial surface is vital in implant device design and tissue engineering, particularly under circumstances where cells are subjected to potential detachment from overriding fluid flow. Cell-substrate adhesion is a highly regulated process involving the interplay of mechanical properties, surface topographic features, electrostatic charge, and biochemical mechanisms. At the nanoscale level, the physical properties of the underlying substrate are of particular importance in cell adhesion. Conventionally, natural, pro-adhesive, and often thrombogenic, protein biomaterials are frequently utilized to facilitate adhesion. In the present study, nanofabrication techniques are utilized to enhance the biological functionality of a synthetic polymer surface, polymethymethacrylate, with respect to cell adhesion. Specifically we examine the effect on cell adhesion of combining: 1. optimized surface texturing, 2. electrostatic charge and 3. cell adhesive ligands, uniquely assembled on the substrata surface, as an ensemble of nanoparticles trapped in nanowells. Our results reveal that the ensemble strategy leads to enhanced, more than simply additive, endothelial cell adhesion under both static and flow conditions. This strategy may be of particular utility for enhancing flow-resistant endothelialization of blood-contacting surfaces of cardiovascular devices subjected to flow-mediated shear.
Collapse
Affiliation(s)
- Phat L Tran
- Department of Biomedical Engineering, The University of Arizona, Tucson, AZ 85721, USA.
| | | | | | | | | | | |
Collapse
|
35
|
Hurduc N, Macovei A, Paius C, Raicu A, Moleavin I, Branza-Nichita N, Hamel M, Rocha L. Azo-polysiloxanes as new supports for cell cultures. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2013; 33:2440-5. [DOI: 10.1016/j.msec.2013.01.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2012] [Revised: 12/28/2012] [Accepted: 01/09/2013] [Indexed: 11/25/2022]
|
36
|
Singh AV, Patil R, Thombre DK, Gade WN. Micro-nanopatterning as tool to study the role of physicochemical properties on cell-surface interactions. J Biomed Mater Res A 2013; 101:3019-32. [PMID: 23559501 DOI: 10.1002/jbm.a.34586] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Revised: 12/27/2012] [Accepted: 12/31/2012] [Indexed: 11/09/2022]
Abstract
The current nano-biotechnologies interfacing synthetic materials and cell biology requires a better understanding of cell-surface interactions on the micro-to-nanometer scale. Cell-substrate interactions are mediated by the presence of proteins adsorbed from biological fluids to the substrate. The effect of nanotopography and surface chemistry on protein adsorption as well as the mediation effect on subsequent cellular communication with substratum is not well documented. This review discusses the role of physicochemical properties of cell-surface interactions and state-of-the-art methods currently available for micro-nanoscale surface fabrication and patterning. We also briefly discuss the current surface patterning techniques that allow the combination of a fine and independent control on nanotopography and chemistry to understand the effect of surface nanoscale substrate morphology on cell-surface interactions which has never been realized in previous reports. In addition, we discuss the influence of various chemical patterning and modulation of the nano-topography of surfaces on cell functionality and phenotype.
Collapse
Affiliation(s)
- Ajay Vikram Singh
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180-3590; Center for Biotechnology and Interdisciplinary Studies, Room 2145, Rensselaer Polytechnic Institute, 110 8th Street, Troy, New York 12180
| | | | | | | |
Collapse
|
37
|
Wu YL, Putcha N, Ng KW, Leong DT, Lim CT, Loo SCJ, Chen X. Biophysical responses upon the interaction of nanomaterials with cellular interfaces. Acc Chem Res 2013. [PMID: 23194178 DOI: 10.1021/ar300046u] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The explosion of study of nanomaterials in biological applications (the nano-bio interface) can be ascribed to nanomaterials' growing importance in diagnostics, therapeutics, theranostics (therapeutic diagnostics), and targeted modulation of cellular processes. However, a growing number of critics have raised concerns over the potential risks of nanomaterials to human health and safety. It is essential to understand nanomaterials' potential toxicity before they are tested in humans. These risks are complicated to unravel, however, because of the complexity of cells and their nanoscale macromolecular components, which enable cells to sense and respond to environmental cues, including nanomaterials. In this Account, we explore these risks from the perspective of the biophysical interactions between nanomaterials and cells. Biophysical responses to the uptake of nanomaterials can include conformational changes in biomolecules like DNA and proteins, and changes to the cellular membrane and the cytoskeleton. Changes to the latter two, in particular, can induce changes in cell elasticity, morphology, motility, adhesion, and invasion. This Account reviews what is known about cells' biophysical responses to the uptake of the most widely studied and used nanoparticles, such as carbon-based, metal, metal-oxide, and semiconductor nanomaterials. We postulate that the biophysical structure impairment induced by nanomaterials is one of the key causes of nanotoxicity. The disruption of cellular structures is affected by the size, shape, and chemical composition of nanomaterials, which are also determining factors of nanotoxicity. Currently, popular nanotoxicity characterizations, such as the MTT and lactate dehydrogenase (LDH) assays, only provide end-point results through chemical reactions. Focusing on biophysical structural changes induced by nanomaterials, possibly in real-time, could deepen our understanding of the normal and altered states of subcellular structures and provide useful perspective on the mechanisms of nanotoxicity. We strongly believe that biophysical properties of cells can serve as novel and noninvasive markers to evaluate nanomaterials' effect at the nano-bio interface and their associated toxicity. Better understanding of the effects of nanomaterials on cell structures and functions could help identify the required preconditions for the safe use of nanomaterials in therapeutic applications.
Collapse
Affiliation(s)
- Yun-Long Wu
- School of Materials Science
and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Nirupama Putcha
- School of Materials Science
and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Kee Woei Ng
- School of Materials Science
and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - David Tai Leong
- Department of Chemical & Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117576, Singapore
| | - Chwee Teck Lim
- Department of Bioengineering & Department of Mechanical Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117576, Singapore
- Mechanobiology Institute, National University of Singapore, T-Lab Engineering
Drive 5A, Singapore 117411, Singapore
| | - Say Chye Joachim Loo
- School of Materials Science
and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Xiaodong Chen
- School of Materials Science
and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| |
Collapse
|
38
|
Han Y, Zhou J, Lu S, Zhang L. Enhanced osteoblast functions of narrow interligand spaced Sr-HA nano-fibers/rods grown on microporous titania coatings. RSC Adv 2013. [DOI: 10.1039/c3ra23425h] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
39
|
Boccafoschi F, Mosca C, Cannas M. Cardiovascular biomaterials: when the inflammatory response helps to efficiently restore tissue functionality? J Tissue Eng Regen Med 2012; 8:253-67. [DOI: 10.1002/term.1526] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2011] [Revised: 01/30/2012] [Accepted: 04/03/2012] [Indexed: 01/25/2023]
Affiliation(s)
- F. Boccafoschi
- Department of Health Sciences; University of Piemonte Orientale; “A. Avogadro” 28100 Novara Italy
| | - C. Mosca
- Department of Health Sciences; University of Piemonte Orientale; “A. Avogadro” 28100 Novara Italy
| | - M. Cannas
- Department of Health Sciences; University of Piemonte Orientale; “A. Avogadro” 28100 Novara Italy
| |
Collapse
|
40
|
In vitroobservation of dynamic ordering processes in the extracellular matrix of living, adherent cells. Biointerphases 2011; 6:171-9. [DOI: 10.1116/1.3651142] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
41
|
Electrochemical desorption of self-assembled monolayers and its applications in surface chemistry and cell biology. J Electroanal Chem (Lausanne) 2011. [DOI: 10.1016/j.jelechem.2010.11.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
42
|
Junkin M, Wong PK. Probing cell migration in confined environments by plasma lithography. Biomaterials 2011; 32:1848-55. [PMID: 21134692 PMCID: PMC3023939 DOI: 10.1016/j.biomaterials.2010.11.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2010] [Accepted: 11/06/2010] [Indexed: 10/18/2022]
Abstract
Cellular processes are regulated by various mechanical and physical factors in their local microenvironment such as geometric confinements, cell-substrate interactions, and cell-cell contact. Systematic elucidation of these regulatory mechanisms is crucial for fundamental understanding of cell biology and for rational design of biomedical devices and regenerative medicine. Here, we report a generally applicable plasma lithography technique, which performs selective surface functionalization on large substrate areas, for achieving long-term, stable confinements with length scales from 100 nm to 1 cm toward the investigation of cell-microenvironment interactions. In particular, we applied plasma lithography for cellular confinement of neuroblastomas, myoblasts, endothelial cells, and mammary gland epithelial cells, and examined the motion of mouse embryonic fibroblasts in directionality-confined environments for studying the effect of confinements on migratory behavior. In conjunction with live cell imaging, the distance traveled, velocity, and angular motion of individual cells and collective cell migration behaviors were measured in confined environments with dimensions comparable to a cell. A critical length scale that a cell could conceivably occupy and migrate to was also identified by investigating the behaviors of cells using confined environments with subcellular length scales.
Collapse
Affiliation(s)
- Michael Junkin
- Department of Aerospace and Mechanical Engineering, University of Arizona, PO Box 210119, Tucson, AZ 85721 USA
| | - Pak Kin Wong
- Department of Aerospace and Mechanical Engineering, University of Arizona, PO Box 210119, Tucson, AZ 85721 USA
- Biomedical Engineering and Bio5 Institute, University of Arizona, Tucson, Arizona 85721. USA
| |
Collapse
|
43
|
Variola F, Brunski J, Orsini G, de Oliveira PT, Wazen R, Nanci A. Nanoscale surface modifications of medically relevant metals: state-of-the art and perspectives. NANOSCALE 2011; 3:335-53. [PMID: 20976359 PMCID: PMC3105323 DOI: 10.1039/c0nr00485e] [Citation(s) in RCA: 133] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Evidence that nanoscale surface properties stimulate and guide various molecular and biological processes at the implant/tissue interface is fostering a new trend in designing implantable metals. Cutting-edge expertise and techniques drawn from widely separated fields, such as nanotechnology, materials engineering and biology, have been advantageously exploited to nanoengineer surfaces in ways that control and direct these processes in predictable manners. In this review, we present and discuss the state-of-the-art of nanotechnology-based approaches currently adopted to modify the surface of metals used for orthopedic and dental applications, and also briefly consider their use in the cardiovascular field. The effects of nanoengineered surfaces on various in vitro molecular and cellular events are firstly discussed. This review also provides an overview of in vivo and clinical studies with nanostructured metallic implants, and addresses the potential influence of nanotopography on biomechanical events at interfaces. Ultimately, the objective of this work is to give the readership a comprehensive picture of the current advances, future developments and challenges in the application of the infinitesimally small to biomedical surface science. We believe that an integrated understanding of the in vitro and particularly of the in vivo behavior is mandatory for the proper exploitation of nanostructured implantable metals and, indeed, of all biomaterials.
Collapse
Affiliation(s)
- Fabio Variola
- Faculty of Engineering, Department of Mechanical Engineering, University of Ottawa, Ottawa, ON, K1N 6N5 (Canada)
- Laboratory for the Study of Calcified Tissues and Biomaterials, Faculté de Médecine Dentaire, Université de Montréal, Montréal, QC, H3C 3J7 (Canada)
| | - John Brunski
- Division of Plastic & Reconstructive Surgery, Department of Surgery PSRL, School of Medicine, Stanford University, 257 Campus Drive Stanford, CA 94305 (USA)
| | - Giovanna Orsini
- Department of Clinical Sciences and Stomatology, University of Marche, Via Tronto 10, 66026 Ancona (Italy)
| | - Paulo Tambasco de Oliveira
- Department of Morphology, Stomatology and Physiology, University of São Paulo, Ribeirão Preto, SP, 14040-904 (Brazil)
| | - Rima Wazen
- Laboratory for the Study of Calcified Tissues and Biomaterials, Faculté de Médecine Dentaire, Université de Montréal, Montréal, QC, H3C 3J7 (Canada)
| | - Antonio Nanci
- Laboratory for the Study of Calcified Tissues and Biomaterials, Faculté de Médecine Dentaire, Université de Montréal, Montréal, QC, H3C 3J7 (Canada)
| |
Collapse
|
44
|
Statistical Thermodynamics of Adhesion Points in Supported Membranes. ACTA ACUST UNITED AC 2011. [DOI: 10.1016/b978-0-12-387720-8.00005-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
45
|
Protein resistant oligo(ethylene glycol) terminated self-assembled monolayers of thiols on gold by vapor deposition in vacuum. Biointerphases 2010; 5:30-36. [PMID: 20831346 DOI: 10.1116/1.3407483] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Protein resistant oligo(ethylene glycol) (OEG) terminated self-assembled monolayers (SAMs) of thiols on gold are commonly used for suppression of nonspecific protein adsorption in biology and biotechnology. The standard preparation for these SAMs is the solution method (SM) that involves immersion of the gold surface in an OEG solution. Here the authors present the preparation of 11-(mercaptoundecyl)-triethylene glycol [HS(CH(2))(11)(OCH(2)CH(2))(3)OH] SAMs on gold surface by vapor deposition (VD) in vacuum. They compare the properties of SAMs prepared by VD and SM using x-ray photoelectron spectroscopy (XPS), polarization modulation infrared reflection absorption spectroscopy, and surface plasmon resonance measurements. VD and SM SAMs exhibit similar packing density and show a similar resistance to the nonspecific adsorption of various proteins (bovine serum albumin, trypsin, and myoglobin) under physiological conditions. A very high sensitivity of the OEG SAMs to x-ray radiation is found, which allows tuning their protein resistance. These results show a new path to in situ engineering, analysis, and patterning of protein resistant OEG SAMs by high vacuum and ultrahigh vacuum techniques.
Collapse
|
46
|
Alves NM, Pashkuleva I, Reis RL, Mano JF. Controlling cell behavior through the design of polymer surfaces. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2010; 6:2208-20. [PMID: 20848593 DOI: 10.1002/smll.201000233] [Citation(s) in RCA: 211] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Polymers have gained a remarkable place in the biomedical field as materials for the fabrication of various devices and for tissue engineering applications. The initial acceptance or rejection of an implantable device is dictated by the crosstalk of the material surface with the bioentities present in the physiological environment. Advances in microfabrication and nanotechnology offer new tools to investigate the complex signaling cascade induced by the components of the extracellular matrix and consequently allow cellular responses to be tailored through the mimicking of some elements of the signaling paths. Patterning methods and selective chemical modification schemes at different length scales can provide biocompatible surfaces that control cellular interactions on the micrometer and sub-micrometer scales on which cells are organized. In this review, the potential of chemically and topographically structured micro- and nanopolymer surfaces are discussed in hopes of a better understanding of cell-biomaterial interactions, including the recent use of biomimetic approaches or stimuli-responsive macromolecules. Additionally, the focus will be on how the knowledge obtained using these surfaces can be incorporated to design biocompatible materials for various biomedical applications, such as tissue engineering, implants, cell-based biosensors, diagnostic systems, and basic cell biology. The review focusses on the research carried out during the last decade.
Collapse
Affiliation(s)
- Natália M Alves
- 3B's Research Group - Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue, Engineering and Regenerative Medicine, AvePark, 4806-909 Taipas, Guimarães, Portugal
| | | | | | | |
Collapse
|
47
|
Desmet T, Billiet T, Berneel E, Cornelissen R, Schaubroeck D, Schacht E, Dubruel P. Post-Plasma Grafting of AEMA as a Versatile Tool to Biofunctionalise Polyesters for Tissue Engineering. Macromol Biosci 2010; 10:1484-94. [DOI: 10.1002/mabi.201000147] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2010] [Revised: 05/29/2010] [Indexed: 11/06/2022]
|
48
|
Marg A, Haase H, Neumann T, Kouno M, Morano I. AHNAK1 and AHNAK2 are costameric proteins: AHNAK1 affects transverse skeletal muscle fiber stiffness. Biochem Biophys Res Commun 2010; 401:143-8. [PMID: 20833135 DOI: 10.1016/j.bbrc.2010.09.030] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2010] [Accepted: 09/04/2010] [Indexed: 11/30/2022]
Abstract
The AHNAK scaffold PDZ-protein family is implicated in various cellular processes including membrane repair; however, AHNAK function and subcellular localization in skeletal muscle are unclear. We used specific AHNAK1 and AHNAK2 antibodies to analyzed the detailed localization of both proteins in mouse skeletal muscle. Co-localization of AHNAK1 and AHNAK2 with vinculin clearly demonstrates that both proteins are components of the costameric network. In contrast, no AHNAK expression was detected in the T-tubule system. A laser wounding assay with AHNAK1-deficient fibers suggests that AHNAK1 is not involved in membrane repair. Using atomic force microscopy (AFM), we observed a significantly higher transverse stiffness of AHNAK1⁻/⁻ fibers. These findings suggest novel functions of AHNAK proteins in skeletal muscle.
Collapse
Affiliation(s)
- Andreas Marg
- Max-Delbrück-Centrum für Molekulare Medizin, D-13092 Berlin, Germany.
| | | | | | | | | |
Collapse
|
49
|
Farago O. Fluctuation-induced attraction between adhesion sites of supported membranes. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2010; 81:050902. [PMID: 20866177 DOI: 10.1103/physreve.81.050902] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2009] [Indexed: 05/29/2023]
Abstract
We use scaling arguments and coarse-grained Monte Carlo simulations to study the fluctuation-mediated interactions between a pair of adhesion sites of a bilayer membrane and a supporting surface. We find that the potential of mean force is an infinitely long range attractive potential that grows logarithmically with the pair distance r : ϕ(r)/k B T=c ln r, where the constant c=2 and c=1 for nonstressed and stressed membranes, respectively. When, in addition to excluded volume repulsion, the membrane also interacts with the underlying surface through a height-dependent attractive potential, the potential ϕ(r) is screened at large pair distances.
Collapse
Affiliation(s)
- Oded Farago
- Department of Biomedical Engineering, Ben Gurion University, Be'er Sheva 84105, Israel
| |
Collapse
|
50
|
Manz BN, Groves JT. Spatial organization and signal transduction at intercellular junctions. Nat Rev Mol Cell Biol 2010; 11:342-52. [PMID: 20354536 PMCID: PMC3693730 DOI: 10.1038/nrm2883] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The coordinated organization of cell membrane receptors into diverse micrometre-scale spatial patterns is emerging as an important theme of intercellular signalling, as exemplified by immunological synapses. Key characteristics of these patterns are that they transcend direct protein-protein interactions, emerge transiently and modulate signal transduction. Such cooperativity over multiple length scales presents new and intriguing challenges for the study and ultimate understanding of cellular signalling. As a result, new experimental strategies have emerged to manipulate the spatial organization of molecules inside living cells. The resulting spatial mutations yield insights into the interweaving of the spatial, mechanical and chemical aspects of intercellular signalling.
Collapse
Affiliation(s)
- Boryana N. Manz
- Howard Hughes Medical Institute, Department of Chemistry, University of California, Berkeley California 94720, USA
- Biophysics Graduate Group, Lawrence Berkeley National Lab, Berkeley, California 94720, USA
| | - Jay T. Groves
- Howard Hughes Medical Institute, Department of Chemistry, University of California, Berkeley California 94720, USA
- Biophysics Graduate Group, Lawrence Berkeley National Lab, Berkeley, California 94720, USA
- Physical Biosciences and Materials Sciences Divisions, Lawrence Berkeley National Lab, Berkeley, California 94720, USA
| |
Collapse
|