1
|
Spesyvyi A, Žabka J, Polášek M, Malečková M, Khawaja N, Schmidt J, Kempf S, Postberg F, Charvat A, Abel B. Selected ice nanoparticle accelerator hypervelocity impact mass spectrometer (SELINA-HIMS): features and impacts of charged particles. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2024; 382:20230208. [PMID: 38736336 DOI: 10.1098/rsta.2023.0208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 04/02/2024] [Indexed: 05/14/2024]
Abstract
The selected ice nanoparticle accelerator, SELINA, was used to prepare beams of single ice particles with positive or negative charge. Positively charged particles were prepared from deionized water and 0.05-0.2 molar solutions of sodium chloride in water, and negatively charged ice particles were generated from water without salt. Depending on the electrospray source configuration, the measured particles vary from 50 to 1000 nm in diameter. The kinetic energy per charge for all particles was set to 200 eV by the collisional equilibration in quadrupoles, which resulted in primary velocities up to 600 m/s for the lowest m/z particles. The electrospray ionization and thus particle formation from SELINA become less efficient with increasing salt concentration, resulting in a lower detected particle frequency and size. Good instrument operation is achievable for concentrations below 0.2 M. After we have verified and characterized positively and negatively charged ice particles, we have combined SELINA with a target and time-of-flight spectrometer for a 'proof-of-principle' post acceleration of 120 nm particles towards hypervelocity (v ~ 3000 m/s) and detection of fragments from the particle impact (SELINA-HIMS). General conditions are discussed for the acceleration of particles between 50 and 1000 nm to velocities well above 3000 m/s with SELINA-HIMS instrument. This article is part of the theme issue 'Dust in the Solar System and beyond'.
Collapse
Affiliation(s)
- Anatolii Spesyvyi
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences , Prague 18223, Czechia
| | - Ján Žabka
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences , Prague 18223, Czechia
| | - Miroslav Polášek
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences , Prague 18223, Czechia
| | - Michaela Malečková
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences , Prague 18223, Czechia
| | - Nozair Khawaja
- Institute of Geological Sciences, Freie Universität Berlin , Berlin, 12249, Germany
| | - Jürgen Schmidt
- Institute of Geological Sciences, Freie Universität Berlin , Berlin, 12249, Germany
| | - Sascha Kempf
- Laboratory for Atmospheric and Space Physics, University of Colorado , Boulder, CO, 80303, USA
| | - Frank Postberg
- Institute of Geological Sciences, Freie Universität Berlin , Berlin, 12249, Germany
| | - Ales Charvat
- Institute of Chemical Technology and Wilhelm Ostwald-Institute of Physical and Theoretical Chemistry , Leipzig, 04103, Germany
- Leibniz Institute of Surface Engineering , Leipzig, 04318, Germany
| | - Bernd Abel
- Institute of Chemical Technology and Wilhelm Ostwald-Institute of Physical and Theoretical Chemistry , Leipzig, 04103, Germany
- Leibniz Institute of Surface Engineering , Leipzig, 04318, Germany
| |
Collapse
|
2
|
Khawaja N, Hortal Sánchez L, O'Sullivan TR, Bloema J, Napoleoni M, Klenner F, Beinlich A, Hillier J, John T, Postberg F. Laboratory characterization of hydrothermally processed oligopeptides in ice grains emitted by Enceladus and Europa. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2024; 382:20230201. [PMID: 38736335 DOI: 10.1098/rsta.2023.0201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 01/30/2024] [Indexed: 05/14/2024]
Abstract
The Cassini mission provided evidence for a global subsurface ocean and ongoing hydrothermal activity on Enceladus, based on results from Cassini's mass spectrometers. Laboratory simulations of hydrothermal conditions on icy moons are needed to further constrain the composition of ejected ice grains containing hydrothermally altered organic material. Here, we present results from our newly established facility to simulate the processing of ocean material within the temperature range 80-150°C and the pressure range 80-130 bar, representing conditions suggested for the water-rock interface on Enceladus. With this new facility, we investigate the hydrothermal processing of triglycine (GGG) peptide and, for the first time, analyse the extracted samples using laser-induced liquid beam ion desorption (LILBID) mass spectrometry, a laboratory analogue for impact ionization mass spectrometry of ice grains in space. We outline an approach to elucidate hydrothermally processed GGG in ice grains ejected from icy moons based on characteristic differences between GGG anion and cation mass spectra. These differences are linked to hydrothermal processing and thus provide a fingerprint of hydrothermal activity on extraterrestrial bodies. These results will serve as important guidelines for biosignatures potentially obtained by a future Enceladus mission and the SUrface Dust Analyzer (SUDA) instrument onboard Europa Clipper. This article is part of the theme issue 'Dust in the Solar System and beyond'.
Collapse
Affiliation(s)
- Nozair Khawaja
- Department of Planetary Sciences and Remote Sensing, Institut für Geologische Wissenschaften, Freie Universität Berlin , Malteserstraße, Berlin 12249, Germany
- Institute of Space Systems, University of Stuttgart , Stuttgart 70569, Germany
| | - Lucía Hortal Sánchez
- Department of Planetary Sciences and Remote Sensing, Institut für Geologische Wissenschaften, Freie Universität Berlin , Malteserstraße, Berlin 12249, Germany
| | - Thomas R O'Sullivan
- Department of Planetary Sciences and Remote Sensing, Institut für Geologische Wissenschaften, Freie Universität Berlin , Malteserstraße, Berlin 12249, Germany
| | - Judith Bloema
- Department of Planetary Sciences and Remote Sensing, Institut für Geologische Wissenschaften, Freie Universität Berlin , Malteserstraße, Berlin 12249, Germany
| | - Maryse Napoleoni
- Department of Planetary Sciences and Remote Sensing, Institut für Geologische Wissenschaften, Freie Universität Berlin , Malteserstraße, Berlin 12249, Germany
| | - Fabian Klenner
- Department of Earth and Space Sciences, University of Washington , Seattle, WA 98195, USA
| | - Andreas Beinlich
- Department of Mineralogy and Petrology, Institut für Geologische Wissenschaften, Freie Universität Berlin , Malteserstraße, Berlin 12249, Germany
| | - Jon Hillier
- Department of Planetary Sciences and Remote Sensing, Institut für Geologische Wissenschaften, Freie Universität Berlin , Malteserstraße, Berlin 12249, Germany
| | - Timm John
- Department of Mineralogy and Petrology, Institut für Geologische Wissenschaften, Freie Universität Berlin , Malteserstraße, Berlin 12249, Germany
| | - Frank Postberg
- Department of Planetary Sciences and Remote Sensing, Institut für Geologische Wissenschaften, Freie Universität Berlin , Malteserstraße, Berlin 12249, Germany
| |
Collapse
|
3
|
Klenner F, Bönigk J, Napoleoni M, Hillier J, Khawaja N, Olsson-Francis K, Cable ML, Malaska MJ, Kempf S, Abel B, Postberg F. How to identify cell material in a single ice grain emitted from Enceladus or Europa. SCIENCE ADVANCES 2024; 10:eadl0849. [PMID: 38517965 PMCID: PMC10959401 DOI: 10.1126/sciadv.adl0849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 02/20/2024] [Indexed: 03/24/2024]
Abstract
Icy moons like Enceladus, and perhaps Europa, emit material sourced from their subsurface oceans into space via plumes of ice grains and gas. Both moons are prime targets for astrobiology investigations. Cassini measurements revealed a large compositional diversity of emitted ice grains with only 1 to 4% of Enceladus's plume ice grains containing organic material in high concentrations. Here, we report experiments simulating mass spectra of ice grains containing one bacterial cell, or fractions thereof, as encountered by advanced instruments on board future space missions to Enceladus or Europa, such as the SUrface Dust Analyzer onboard NASA's upcoming Europa Clipper mission at flyby speeds of 4 to 6 kilometers per second. Mass spectral signals characteristic of the bacteria are shown to be clearly identifiable by future missions, even if an ice grain contains much less than one cell. Our results demonstrate the advantage of analyses of individual ice grains compared to a diluted bulk sample in a heterogeneous plume.
Collapse
Affiliation(s)
- Fabian Klenner
- Department of Earth and Space Sciences, University of Washington, Seattle, WA, USA
- Institute of Geological Sciences, Freie Universität Berlin, Berlin, Germany
| | - Janine Bönigk
- Institute of Geological Sciences, Freie Universität Berlin, Berlin, Germany
| | - Maryse Napoleoni
- Institute of Geological Sciences, Freie Universität Berlin, Berlin, Germany
| | - Jon Hillier
- Institute of Geological Sciences, Freie Universität Berlin, Berlin, Germany
| | - Nozair Khawaja
- Institute of Geological Sciences, Freie Universität Berlin, Berlin, Germany
| | - Karen Olsson-Francis
- Faculty of Science, Technology, Engineering and Mathematics, The Open University, Milton Keynes, UK
| | - Morgan L. Cable
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
| | - Michael J. Malaska
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
| | - Sascha Kempf
- Laboratory for Atmospheric and Space Physics, University of Colorado, Boulder, CO, USA
| | - Bernd Abel
- Institute of Chemical Technology, University of Leipzig, Leipzig, Germany
- Leibniz-Institute of Surface Engineering (IOM), Leipzig, Germany
| | - Frank Postberg
- Institute of Geological Sciences, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
4
|
Sanderink A, Klenner F, Zymak I, Žabka J, Postberg F, Lebreton JP, Gaubicher B, Charvat A, Abel B, Polášek M, Cherville B, Thirkell L, Briois C. OLYMPIA-LILBID: A New Laboratory Setup to Calibrate Spaceborne Hypervelocity Ice Grain Detectors Using High-Resolution Mass Spectrometry. Anal Chem 2023; 95:3621-3628. [PMID: 36753610 DOI: 10.1021/acs.analchem.2c04429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
The coupling of an Orbitrap-based mass analyzer to the laser-induced liquid beam ion desorption (LILBID) technique has been investigated, with the aim to reproduce the mass spectra recorded by Cassini's Cosmic Dust Analyzer (CDA) in the vicinity of Saturn's icy moon Enceladus. LILBID setups are usually coupled with time-of-flight (TOF) mass analyzers, with a limited mass resolution (∼800 m/Δm). Thanks to the Orbitrap technology, we developed a unique analytical setup that is able to simulate hypervelocity ice grains' impact in the laboratory (at speeds in the range of 15-18 km/s) with an unprecedented high mass resolution of up to 150 000 m/Δm (at m/z 19 for a 500 ms signal duration). The results will be implemented in the LILBID database and will be useful for the calibration and future data interpretation of the Europa Clipper's SUrface Dust Analyzer (SUDA), which will characterize the habitability of Jupiter's icy moon Europa.
Collapse
Affiliation(s)
- Arnaud Sanderink
- Laboratoire de Physique et Chimie de l'environnement et de l'Espace, UMR-CNRS 7328, 45071 Orléans, France.,Institute of Geological Sciences, Freie Universität Berlin, 12249 Berlin, Germany
| | - Fabian Klenner
- Institute of Geological Sciences, Freie Universität Berlin, 12249 Berlin, Germany
| | - Illia Zymak
- ELI-Beamlines, 252 41 Dolní Břežany, Czech Republic
| | - Jan Žabka
- J. Heyrovsky Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, 182 00 Prague 8, Czech Republic
| | - Frank Postberg
- Institute of Geological Sciences, Freie Universität Berlin, 12249 Berlin, Germany
| | - Jean-Pierre Lebreton
- Laboratoire de Physique et Chimie de l'environnement et de l'Espace, UMR-CNRS 7328, 45071 Orléans, France
| | - Bertrand Gaubicher
- Laboratoire de Physique et Chimie de l'environnement et de l'Espace, UMR-CNRS 7328, 45071 Orléans, France
| | - Ales Charvat
- Institute of Chemical Technology, University Leipzig, 04103 Leipzig, Germany
| | - Bernd Abel
- Institute of Chemical Technology, University Leipzig, 04103 Leipzig, Germany
| | - Miroslav Polášek
- J. Heyrovsky Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, 182 00 Prague 8, Czech Republic
| | - Barnabé Cherville
- Laboratoire de Physique et Chimie de l'environnement et de l'Espace, UMR-CNRS 7328, 45071 Orléans, France
| | - Laurent Thirkell
- Laboratoire de Physique et Chimie de l'environnement et de l'Espace, UMR-CNRS 7328, 45071 Orléans, France
| | - Christelle Briois
- Laboratoire de Physique et Chimie de l'environnement et de l'Espace, UMR-CNRS 7328, 45071 Orléans, France
| |
Collapse
|
5
|
Dannenmann M, Klenner F, Bönigk J, Pavlista M, Napoleoni M, Hillier J, Khawaja N, Olsson-Francis K, Cable ML, Malaska MJ, Abel B, Postberg F. Toward Detecting Biosignatures of DNA, Lipids, and Metabolic Intermediates from Bacteria in Ice Grains Emitted by Enceladus and Europa. ASTROBIOLOGY 2023; 23:60-75. [PMID: 36454287 DOI: 10.1089/ast.2022.0063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The reliable identification of biosignatures is key to the search for life elsewhere. On ocean worlds like Enceladus or Europa, this can be achieved by impact ionization mass spectrometers, such as the SUrface Dust Analyzer (SUDA) on board NASA's upcoming Europa Clipper mission. During spacecraft flybys, these instruments can sample ice grains formed from subsurface water and emitted by these moons. Previous laboratory analog experiments have demonstrated that SUDA-type instruments could identify amino acids, fatty acids, and peptides in ice grains and discriminate between their abiotic and biotic origins. Here, we report experiments simulating impact ionization mass spectra of ice grains containing DNA, lipids, and metabolic intermediates extracted from two bacterial cultures: Escherichia coli and Sphingopyxis alaskensis. Salty Enceladan or Europan ocean waters were simulated using matrices with different NaCl concentrations. Characteristic mass spectral signals, such as DNA nucleobases, are clearly identifiable at part-per-million-level concentrations. Mass spectra of all substances exhibit unambiguous biogenic patterns, which in some cases show significant differences between the two bacterial species. Sensitivity to the biosignatures decreases with increasing matrix salinity. The experimental parameters indicate that future impact ionization mass spectrometers will be most sensitive to the investigated biosignatures for ice grain encounter speeds of 4-6 km/s.
Collapse
Affiliation(s)
- Marie Dannenmann
- Institute of Geological Sciences, Freie Universität Berlin, Berlin, Germany
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Fabian Klenner
- Institute of Geological Sciences, Freie Universität Berlin, Berlin, Germany
| | - Janine Bönigk
- Institute of Geological Sciences, Freie Universität Berlin, Berlin, Germany
| | - Miriam Pavlista
- Institute of Geological Sciences, Freie Universität Berlin, Berlin, Germany
| | - Maryse Napoleoni
- Institute of Geological Sciences, Freie Universität Berlin, Berlin, Germany
| | - Jon Hillier
- Institute of Geological Sciences, Freie Universität Berlin, Berlin, Germany
| | - Nozair Khawaja
- Institute of Geological Sciences, Freie Universität Berlin, Berlin, Germany
| | - Karen Olsson-Francis
- AstrobiologyOU, Faculty of Science, Technology, Engineering & Mathematics, The Open University, Milton Keynes, United Kingdom
| | - Morgan L Cable
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| | - Michael J Malaska
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| | - Bernd Abel
- Leibniz-Institute of Surface Engineering (IOM), Leipzig, Germany
- Wilhelm-Ostwald-Institute for Physical and Theoretical Chemistry, Leipzig University, Leipzig, Germany
| | - Frank Postberg
- Institute of Geological Sciences, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
6
|
Abstract
Reaction dynamics in the liquid-vapor interface is one of the crucial physical sciences but is still starving for in-depth exploration. It is challenging to selectively detect the interfacial species or the yields of chemical reaction therein, meanwhile shielding or reducing the interference from the vapor and liquid bulk. Mass spectrometry is a straightforward method but is also frustrated in such a selective detection. Using a liquid microjet in combination with a pulsed electron beam, a linear time-of-flight mass spectrometer, and a quadrupole mass filter, we recently innovated time-delayed mass spectrometry for investigations of the liquid-vapor interface. In this Account, we illustrate how this unique method succeeds in disentangling different sources, i.e., the vapor and liquid-vapor interface, of the ionic yields of the electron impacts with a liquid beam of alcohol in vacuum. These achievements are basically attributed to the application of an onion-peeling strategy in the ion detection. Concretely, the microsecond time scale of molecular volatilization can be resolved well by tuning the delay time between the nanosecond pulses of incident electron bunch and ion attractor. First, the specific orientation of the interfacial molecule, i.e., a well-known fact about the hydrophobic hydrocarbon groups pointing outside the liquid surface of alcohol, is validated again. More importantly, the dynamic features of time-delayed mass spectra, in particular, for the ionic yields from the liquid-vapor interface, are rationalized explicitly. Moreover, we demonstrate evidence of in situ molecular dimers in the liquid-vapor interface of 1-propanol. As the first example of electron-induced reaction in the liquid-vapor interface, dimethyl ether can be synthesized in the liquid methanol interface due to local interfacial acidification by high-energy electron impacts. On the contrary, the low energy electron can lead to local basicity through dissociative electron attachment (DEA). Besides the primary low-energy electrons, the low-energy secondary and inelastically scattered electrons in the higher-energy impacts of the primary electrons can also participate in the DEA process. In contrast to the gas- or solid-phase DEAs, that in the liquid-vapor interface shows distinct differences in both the types and efficiencies of anionic products. With these and efforts in the future, we develop a molecular-level understanding of how the chemical reactions happen in the liquid-vapor interface.
Collapse
Affiliation(s)
| | | | | | - Shan Xi Tian
- Hefei National Laboratory, University of Science and Technology of China, Wangjiang West Road, Hefei230088, China
| |
Collapse
|
7
|
Mayer M, Vankova N, Stolz F, Abel B, Heine T, Asmis KR. Identification of a Two-Coordinate Iron(I)-Oxalate Complex. Angew Chem Int Ed Engl 2022; 61:e202117855. [PMID: 35088489 PMCID: PMC9303725 DOI: 10.1002/anie.202117855] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Indexed: 12/16/2022]
Abstract
Exotic oxidation states of the first-row transition metals have recently attracted much interest. In order to investigate the oxidation states of a series of iron-oxalate complexes, an aqueous solution of iron(III) nitrate and oxalic acid was studied by infrared free liquid matrix-assisted laser desorption/ionization as well as ionspray mass spectrometry. Here, we show that iron is not only detected in its common oxidation states +II and +III, but also in its unusual oxidation state +I, detectable in both positive-ion and in negative-ion modes, respectively. Vibrational spectra of the gas phase anionic iron oxalate complexes [FeIII (C2 O4 )2 ]- , [FeII (C2 O4 )CO2 ]- , and [FeI (C2 O4 )]- were measured by means of infrared photodissociation spectroscopy and their structures were assigned by comparison to anharmonic vibrational spectra based on second-order perturbation theory.
Collapse
Affiliation(s)
- Martin Mayer
- Wilhelm-Ostwald-Institut für Physikalische und Theoretische ChemieUniversität LeipzigLinnéstr. 204103LeipzigGermany
| | - Nina Vankova
- Theoretische ChemieTechnische Universität DresdenBergstr. 66c01062DresdenGermany
| | - Ferdinand Stolz
- Leibniz Institute for Surface Engineering (IOM)Permoserstr. 1504318LeipzigGermany
| | - Bernd Abel
- Wilhelm-Ostwald-Institut für Physikalische und Theoretische ChemieUniversität LeipzigLinnéstr. 204103LeipzigGermany
- Leibniz Institute for Surface Engineering (IOM)Permoserstr. 1504318LeipzigGermany
| | - Thomas Heine
- Theoretische ChemieTechnische Universität DresdenBergstr. 66c01062DresdenGermany
- Helmholtz-Zentrum Dresden-RossendorfForschungsstelle LeipzigPermoserstr. 1504318LeipzigGermany
- Department of ChemistryYonsei UniversitySeodaemun-gu, Seoul120-749Republic of Korea
| | - Knut R. Asmis
- Wilhelm-Ostwald-Institut für Physikalische und Theoretische ChemieUniversität LeipzigLinnéstr. 204103LeipzigGermany
| |
Collapse
|
8
|
Mayer M, Vankova N, Stolz F, Abel B, Heine T, Asmis KR. Identification of a Two‐Coordinate Iron(I)‐Oxalate Complex. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202117855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Martin Mayer
- Universität Leipzig: Universitat Leipzig Wilhelm-Ostwald-Institut GERMANY
| | - Nina Vankova
- Technische Universität Dresden: Technische Universitat Dresden Theoretische Chemie GERMANY
| | - Ferdinand Stolz
- Leibniz Institute for Surface Modification: Leibniz-Institut fur Oberflachenmodifizierung eV Chemistry GERMANY
| | - Bernd Abel
- Leibniz Institute for Surface Modification: Leibniz-Institut fur Oberflachenmodifizierung eV Chemistry GERMANY
| | - Thomas Heine
- TU Dresden: Technische Universitat Dresden Theoretische Chemie GERMANY
| | - Knut R Asmis
- Universitat Leipzig Wilhelm-Ostwald-Institut für Physikalische und Theoretische Chemie Linnéstr. 2 04103 Leipzig GERMANY
| |
Collapse
|
9
|
Prüfert C, Villatoro J, Zühlke M, Beitz T, Löhmannsröben HG. Liquid phase IR-MALDI and differential mobility analysis of nano- and sub-micron particles. Phys Chem Chem Phys 2022; 24:2275-2286. [PMID: 35014991 DOI: 10.1039/d1cp04196g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Infrared matrix-assisted desorption and ionization (IR-MALDI) enables the transfer of sub-micron particles (sMP) directly from suspensions into the gas phase and their characterization with differential mobility (DM) analysis. A nanosecond laser pulse at 2940 nm induces a phase explosion of the aqueous phase, dispersing the sample into nano- and microdroplets. The particles are ejected from the aqueous phase and become charged. Using IR-MALDI on sMP of up to 500 nm in diameter made it possible to surpass the 100 nm size barrier often encountered when using nano-electrospray for ionizing supramolecular structures. Thus, the charge distribution produced by IR-MALDI could be characterized systematically in the 50-500 nm size range. Well-resolved signals for up to octuply charged particles were obtained in both polarities for different particle sizes, materials, and surface modifications spanning over four orders of magnitude in concentrations. The physicochemical characterization of the IR-MALDI process was done via a detailed analysis of the charge distribution of the emerging particles, qualitatively as well as quantitatively. The Wiedensohler charge distribution, which describes the evolution of particle charging events in the gas phase, and a Poisson-derived charge distribution, which describes the evolution of charging events in the liquid phase, were compared with one another with respect to how well they describe the experimental data. Although deviations were found in both models, the IR-MALDI charging process seems to resemble a Poisson-like charge distribution mechanism, rather than a bipolar gas phase charging one.
Collapse
Affiliation(s)
- C Prüfert
- University of Potsdam, Physical Chemistry, Karl-Liebknecht-Str. 24-25, Potsdam, Germany.
| | - J Villatoro
- University of Potsdam, Physical Chemistry, Karl-Liebknecht-Str. 24-25, Potsdam, Germany.
| | - M Zühlke
- University of Potsdam, Physical Chemistry, Karl-Liebknecht-Str. 24-25, Potsdam, Germany.
| | - T Beitz
- University of Potsdam, Physical Chemistry, Karl-Liebknecht-Str. 24-25, Potsdam, Germany.
| | - H-G Löhmannsröben
- University of Potsdam, Physical Chemistry, Karl-Liebknecht-Str. 24-25, Potsdam, Germany.
| |
Collapse
|
10
|
Wild M, Stolz F, Naumov S, Abel B. On the in situ formation of carbenes in ionic liquids. Mol Phys 2021. [DOI: 10.1080/00268976.2021.1974589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Martin Wild
- Leibniz Institute of Surface Engineering (IOM), Leipzig, Germany
- Wilhelm-Ostwald-Institute for Physical and Theoretical Chemistry, University Leipzig, Leipzig, Germany
| | - Ferdinand Stolz
- Leibniz Institute of Surface Engineering (IOM), Leipzig, Germany
- Wilhelm-Ostwald-Institute for Physical and Theoretical Chemistry, University Leipzig, Leipzig, Germany
| | - Sergej Naumov
- Leibniz Institute of Surface Engineering (IOM), Leipzig, Germany
| | - Bernd Abel
- Leibniz Institute of Surface Engineering (IOM), Leipzig, Germany
- Wilhelm-Ostwald-Institute for Physical and Theoretical Chemistry, University Leipzig, Leipzig, Germany
| |
Collapse
|
11
|
Urban RD, Fischer TG, Charvat A, Wink K, Krafft B, Ohla S, Zeitler K, Abel B, Belder D. On-chip mass spectrometric analysis in non-polar solvents by liquid beam infrared matrix-assisted laser dispersion/ionization. Anal Bioanal Chem 2021; 413:1561-1570. [PMID: 33479818 PMCID: PMC7921053 DOI: 10.1007/s00216-020-03115-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 12/01/2020] [Accepted: 12/07/2020] [Indexed: 12/15/2022]
Abstract
By the on-chip integration of a droplet generator in front of an emitter tip, droplets of non-polar solvents are generated in a free jet of an aqueous matrix. When an IR laser irradiates this free liquid jet consisting of water as the continuous phase and the non-polar solvent as the dispersed droplet phase, the solutes in the droplets are ionized. This ionization at atmospheric pressure enables the mass spectrometric analysis of non-polar compounds with the aid of a surrounding aqueous matrix that absorbs IR light. This works both for non-polar solvents such as n-heptane and for water non-miscible solvents like chloroform. In a proof of concept study, this approach is applied to monitor a photooxidation of N-phenyl-1,2,3,4-tetrahydroisoquinoline. By using water as an infrared absorbing matrix, analytes, dissolved in non-polar solvents from reactions carried out on a microchip, can be desorbed and ionized for investigation by mass spectrometry.
Collapse
Affiliation(s)
- Raphael D Urban
- Institut für Analytische Chemie, Leipzig University, Linnéstraße 3, 04103, Leipzig, Germany
| | - Tillmann G Fischer
- Institut für Organische Chemie, Leipzig University, Johannisallee 29, 04103, Leipzig, Germany
| | - Ales Charvat
- Leibniz-Institut für Oberflächenmodifizierung e.V., Abteilung Funktionale Oberflächen, Permoserstr. 15, 04318, Leipzig, Germany
| | - Konstantin Wink
- Institut für Analytische Chemie, Leipzig University, Linnéstraße 3, 04103, Leipzig, Germany
| | - Benjamin Krafft
- Institut für Analytische Chemie, Leipzig University, Linnéstraße 3, 04103, Leipzig, Germany
| | - Stefan Ohla
- Institut für Analytische Chemie, Leipzig University, Linnéstraße 3, 04103, Leipzig, Germany
| | - Kirsten Zeitler
- Institut für Organische Chemie, Leipzig University, Johannisallee 29, 04103, Leipzig, Germany
| | - Bernd Abel
- Leibniz-Institut für Oberflächenmodifizierung e.V., Abteilung Funktionale Oberflächen, Permoserstr. 15, 04318, Leipzig, Germany
| | - Detlev Belder
- Institut für Analytische Chemie, Leipzig University, Linnéstraße 3, 04103, Leipzig, Germany.
| |
Collapse
|
12
|
LILBID laser dissociation curves: a mass spectrometry-based method for the quantitative assessment of dsDNA binding affinities. Sci Rep 2020; 10:20398. [PMID: 33230224 PMCID: PMC7683618 DOI: 10.1038/s41598-020-76867-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Accepted: 10/28/2020] [Indexed: 11/20/2022] Open
Abstract
One current goal in native mass spectrometry is the assignment of binding affinities to noncovalent complexes. Here we introduce a novel implementation of the existing laser-induced liquid bead ion desorption (LILBID) mass spectrometry method: this new method, LILBID laser dissociation curves, assesses binding strengths quantitatively. In all LILBID applications, aqueous sample droplets are irradiated by 3 µm laser pulses. Variation of the laser energy transferred to the droplet during desorption affects the degree of complex dissociation. In LILBID laser dissociation curves, laser energy transfer is purposely varied, and a binding affinity is calculated from the resulting complex dissociation. A series of dsDNAs with different binding affinities was assessed using LILBID laser dissociation curves. The binding affinity results from the LILBID laser dissociation curves strongly correlated with the melting temperatures from UV melting curves and with dissociation constants from isothermal titration calorimetry, standard solution phase methods. LILBID laser dissociation curve data also showed good reproducibility and successfully predicted the melting temperatures and dissociation constants of three DNA sequences. LILBID laser dissociation curves are a promising native mass spectrometry binding affinity method, with reduced time and sample consumption compared to melting curves or titrations.
Collapse
|
13
|
Prüfert C, Urban RD, Fischer TG, Villatoro J, Riebe D, Beitz T, Belder D, Zeitler K, Löhmannsröben HG. In situ monitoring of photocatalyzed isomerization reactions on a microchip flow reactor by IR-MALDI ion mobility spectrometry. Anal Bioanal Chem 2020; 412:7899-7911. [PMID: 32918557 PMCID: PMC7550389 DOI: 10.1007/s00216-020-02923-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 08/17/2020] [Accepted: 08/27/2020] [Indexed: 01/21/2023]
Abstract
The visible-light photocatalytic E/Z isomerization of olefins can be mediated by a wide spectrum of triplet sensitizers (photocatalysts). However, the search for the most efficient photocatalysts through screenings in photo batch reactors is material and time consuming. Capillary and microchip flow reactors can accelerate this screening process. Combined with a fast analytical technique for isomer differentiation, these reactors can enable high-throughput analyses. Ion mobility (IM) spectrometry is a cost-effective technique that allows simple isomer separation and detection on the millisecond timescale. This work introduces a hyphenation method consisting of a microchip reactor and an infrared matrix-assisted laser desorption ionization (IR-MALDI) ion mobility spectrometer that has the potential for high-throughput analysis. The photocatalyzed E/Z isomerization of ethyl-3-(pyridine-3-yl)but-2-enoate (E-1) as a model substrate was chosen to demonstrate the capability of this device. Classic organic triplet sensitizers as well as Ru-, Ir-, and Cu-based complexes were tested as catalysts. The ionization efficiency of the Z-isomer is much higher at atmospheric pressure which is due to a higher proton affinity. In order to suppress proton transfer reactions by limiting the number of collisions, an IM spectrometer working at reduced pressure (max. 100 mbar) was employed. This design reduced charge transfer reactions and allowed the quantitative determination of the reaction yield in real time. Among 14 catalysts tested, four catalysts could be determined as efficient sensitizers for the E/Z isomerization of ethyl cinnamate derivative E-1. Conversion rates of up to 80% were achieved in irradiation time sequences of 10 up to 180 s. With respect to current studies found in the literature, this reduces the acquisition times from several hours to only a few minutes per scan.
Collapse
Affiliation(s)
- Chris Prüfert
- University of Potsdam, Physical Chemistry, Karl-Liebknecht-Str. 24-25, 14476, Potsdam, Germany.
| | - Raphael David Urban
- Institute of Analytical Chemistry, Leipzig University, Linnéstraße 3, 04103, Leipzig, Germany
| | - Tillmann Georg Fischer
- Institute of Organic Chemistry, Leipzig University, Johannisallee 29, 04103, Leipzig, Germany
| | - José Villatoro
- University of Potsdam, Physical Chemistry, Karl-Liebknecht-Str. 24-25, 14476, Potsdam, Germany
| | - Daniel Riebe
- University of Potsdam, Physical Chemistry, Karl-Liebknecht-Str. 24-25, 14476, Potsdam, Germany
| | - Toralf Beitz
- University of Potsdam, Physical Chemistry, Karl-Liebknecht-Str. 24-25, 14476, Potsdam, Germany
| | - Detlev Belder
- Institute of Analytical Chemistry, Leipzig University, Linnéstraße 3, 04103, Leipzig, Germany
| | - Kirsten Zeitler
- Institute of Organic Chemistry, Leipzig University, Johannisallee 29, 04103, Leipzig, Germany
| | - Hans-Gerd Löhmannsröben
- University of Potsdam, Physical Chemistry, Karl-Liebknecht-Str. 24-25, 14476, Potsdam, Germany.
| |
Collapse
|
14
|
Villatoro J, Zühlke M, Riebe D, Beitz T, Weber M, Löhmannsröben HG. Sub-ambient pressure IR-MALDI ion mobility spectrometer for the determination of low and high field mobilities. Anal Bioanal Chem 2020; 412:5247-5260. [PMID: 32488389 DOI: 10.1007/s00216-020-02735-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 05/16/2020] [Accepted: 05/20/2020] [Indexed: 11/25/2022]
Abstract
A new ion mobility (IM) spectrometer, enabling mobility measurements in the pressure range between 5 and 500 mbar and in the reduced field strength range E/N of 5-90 Td, was developed and characterized. Reduced mobility (K0) values were studied under low E/N (constant value) as well as high E/N (deviation from low field K0) for a series of molecular ions in nitrogen. Infrared matrix-assisted laser desorption ionization (IR-MALDI) was used in two configurations: a source working at atmospheric pressure (AP) and, for the first time, an IR-MALDI source working with a liquid (aqueous) matrix at sub-ambient/reduced pressure (RP). The influence of RP on IR-MALDI was examined and new insights into the dispersion process were gained. This enabled the optimization of the IM spectrometer for best analytical performance. While ion desolvation is less efficient at RP, the transport of ions is more efficient, leading to intensity enhancement and an increased number of oligomer ions. When deciding between AP and RP IR-MALDI, a trade-off between intensity and resolving power has to be considered. Here, the low field mobility of peptide ions was first measured and compared with reference values from ESI-IM spectrometry (at AP) as well as collision cross sections obtained from molecular dynamics simulations. The second application was the determination of the reduced mobility of various substituted ammonium ions as a function of E/N in nitrogen. The mobility is constant up to a threshold at high E/N. Beyond this threshold, mobility increases were observed. This behavior can be explained by the loss of hydrated water molecules.
Collapse
Affiliation(s)
- José Villatoro
- Physical Chemistry, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476, Potsdam, Germany. .,Konrad-Zuse-Zentrum für Informationstechnik Berlin, Takustraße 7, 14195, Berlin-Dahlem, Germany.
| | - Martin Zühlke
- Physical Chemistry, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476, Potsdam, Germany
| | - Daniel Riebe
- Physical Chemistry, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476, Potsdam, Germany
| | - Toralf Beitz
- Physical Chemistry, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476, Potsdam, Germany
| | - Marcus Weber
- Konrad-Zuse-Zentrum für Informationstechnik Berlin, Takustraße 7, 14195, Berlin-Dahlem, Germany
| | - Hans-Gerd Löhmannsröben
- Physical Chemistry, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476, Potsdam, Germany
| |
Collapse
|
15
|
Klenner F, Postberg F, Hillier J, Khawaja N, Reviol R, Srama R, Abel B, Stolz F, Kempf S. Analogue spectra for impact ionization mass spectra of water ice grains obtained at different impact speeds in space. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2019; 33:1751-1760. [PMID: 31286576 DOI: 10.1002/rcm.8518] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 06/12/2019] [Accepted: 06/30/2019] [Indexed: 05/22/2023]
Abstract
RATIONALE Detecting ice grains with impact ionization mass spectrometers in space provides information about the compositions of ice grains and their sources. Depending on the impact speeds of the ice grains onto the metal target of a mass spectrometer, ionization conditions can vary substantially, resulting in changes to the appearance of the resulting mass spectra. METHODS Here we accurately reproduce mass spectra of water ice grains, recorded with the Cosmic Dust Analyzer (CDA) on board the Cassini spacecraft at typical impact speeds ranging between 4 km/s to 21 km/s, with a laboratory analogue experiment. In this Laser-Induced Liquid Beam Ion Desorption (LILBID) approach, a μm-sized liquid water beam is irradiated with a pulsed infrared laser, desorbing charged analyte and solvent aggregates and isolated ions, which are subsequently analyzed in a time-of-flight (TOF) mass spectrometer. RESULTS We show that our analogue experiment can reproduce impact ionization mass spectra of ice grains obtained over a wide range of impact speeds, aiding the quantitative analyses of mass spectra from space. CONCLUSIONS Spectra libraries created with the LILBID experiment will be a vital tool for inferring the composition of ice grains from mass spectra recorded by both past and future impact ionization mass spectrometers (e.g. the SUrface Dust Analyzer (SUDA) onboard NASA's Europa Clipper Mission or detectors on a future Enceladus Mission).
Collapse
Affiliation(s)
- Fabian Klenner
- Institut für Geologische Wissenschaften, Freie Universität Berlin, Malteserstraße 74-100, D-12249, Berlin, Germany
- Institut für Geowissenschaften, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 234-236, D-69120, Heidelberg, Germany
| | - Frank Postberg
- Institut für Geologische Wissenschaften, Freie Universität Berlin, Malteserstraße 74-100, D-12249, Berlin, Germany
- Institut für Geowissenschaften, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 234-236, D-69120, Heidelberg, Germany
| | - Jon Hillier
- Institut für Geologische Wissenschaften, Freie Universität Berlin, Malteserstraße 74-100, D-12249, Berlin, Germany
| | - Nozair Khawaja
- Institut für Geologische Wissenschaften, Freie Universität Berlin, Malteserstraße 74-100, D-12249, Berlin, Germany
- Institut für Geowissenschaften, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 234-236, D-69120, Heidelberg, Germany
| | - René Reviol
- Institut für Geologische Wissenschaften, Freie Universität Berlin, Malteserstraße 74-100, D-12249, Berlin, Germany
- Institut für Geowissenschaften, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 234-236, D-69120, Heidelberg, Germany
| | - Ralf Srama
- Institut für Raumfahrtsysteme, Universität Stuttgart, Pfaffenwaldring 29, D-70569, Stuttgart, Germany
| | - Bernd Abel
- Leibniz-Institut für Oberflächenmodifizierung, Permoserstraße 15, D-04318, Leipzig, Germany
- Wilhelm-Ostwald-Institut für Physikalische und Theoretische Chemie, Universität Leipzig, Linnéstraße 2, D-04103, Leipzig, Germany
| | - Ferdinand Stolz
- Leibniz-Institut für Oberflächenmodifizierung, Permoserstraße 15, D-04318, Leipzig, Germany
- Wilhelm-Ostwald-Institut für Physikalische und Theoretische Chemie, Universität Leipzig, Linnéstraße 2, D-04103, Leipzig, Germany
| | - Sascha Kempf
- Laboratory for Atmospheric and Space Physics, University of Colorado, 1234 Innovation Dr, Boulder, CO, 80303-7814, USA
| |
Collapse
|
16
|
John T, Gladytz A, Kubeil C, Martin LL, Risselada HJ, Abel B. Impact of nanoparticles on amyloid peptide and protein aggregation: a review with a focus on gold nanoparticles. NANOSCALE 2018; 10:20894-20913. [PMID: 30225490 DOI: 10.1039/c8nr04506b] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Society is increasingly exposed to nanoparticles as they are ubiquitous in nature and introduced as man-made air pollutants and as functional ingredients in cosmetic products as well as in nanomedicine. Nanoparticles differ in size, shape and material properties. In addition to their intended function, the side effects on biochemical processes in organisms remain unclear. Nanoparticles can significantly influence the nucleation and aggregation process of peptides. The development of several neurodegenerative diseases, such as Alzheimer's disease, is related to the aggregation of peptides into amyloid fibrils. However, there is no comprehensive or universal mechanism to predict or explain apparent acceleration or inhibition of these aggregation processes. In this work, selected studies and possible mechanisms for amyloid peptide nucleation and aggregation, in the presence of nanoparticles, are highlighted. These studies are discussed in the context of recent data from our group on the role of gold nanoparticles in amyloid peptide aggregation using experimental methods and large-scale molecular dynamics simulations. A complex interplay of the surface properties of the nanoparticles, the properties of the peptides, as well as the resulting forces between both the nanoparticles and the peptides, appear to determine whether amyloid peptide aggregation is influenced, catalysed or inhibited by the presence of nanoparticles.
Collapse
Affiliation(s)
- Torsten John
- Leibniz Institute of Surface Engineering (IOM), Permoserstraße 15, 04318 Leipzig, Germany.
| | | | | | | | | | | |
Collapse
|
17
|
Chen L, Chen Z, Li Z, Hu J, Tian SX. Time-delayed mass spectrometry of the low-energy electron impact with a liquid beam surface. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2018; 89:103102. [PMID: 30399745 DOI: 10.1063/1.5022394] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Accepted: 09/17/2018] [Indexed: 06/08/2023]
Abstract
We set up an experimental apparatus to investigate the low-energy electron impact with a liquid beam surface, in which a cylindrical liquid beam with a diameter of 25 μm emits as the laminar flow from a microjet and the positively charged ions produced by the electron-impact ionizations are detected with a linear time-of-flight mass spectrometer. We propose a time-delayed mass spectrometry for this apparatus to identify the cationic fragments produced on the liquid surface, in which the application of the ion extracting pulse is delayed with different time intervals after the electron beam pulse. Sensitivity and specificity of the present methodology are demonstrated by the combinational experiments of the gas-phase and liquid ethanol. In comparison with the gas-phase experiments, the ion peaks become much broader in the mass spectra of the liquid beam, primarily due to the molecular evaporation and diffusion. After delaying with about 2 μs, we find that the hydrocarbon ions are ultimately the predominant products in the mass spectra of the liquid ethanol and they are proposed to be produced on the liquid surface. Above observations are in line with the widely accepted picture of the molecular orientation on the liquid surface; namely, the ethanol's CH3-CH2- group on the liquid surface prefers to be oriented outside. Therefore, we demonstrate a new mass spectrometry to explore the molecular structures of the liquid surface.
Collapse
Affiliation(s)
- Lingling Chen
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemical Physics, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), University of Science and Technology of China, Hefei 230026, China
| | - Ziwei Chen
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemical Physics, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), University of Science and Technology of China, Hefei 230026, China
| | - Ziyuan Li
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemical Physics, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), University of Science and Technology of China, Hefei 230026, China
| | - Jie Hu
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemical Physics, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), University of Science and Technology of China, Hefei 230026, China
| | - Shan Xi Tian
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemical Physics, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
18
|
Postberg F, Khawaja N, Abel B, Choblet G, Glein CR, Gudipati MS, Henderson BL, Hsu HW, Kempf S, Klenner F, Moragas-Klostermeyer G, Magee B, Nölle L, Perry M, Reviol R, Schmidt J, Srama R, Stolz F, Tobie G, Trieloff M, Waite JH. Macromolecular organic compounds from the depths of Enceladus. Nature 2018; 558:564-568. [PMID: 29950623 PMCID: PMC6027964 DOI: 10.1038/s41586-018-0246-4] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 03/23/2018] [Indexed: 11/13/2022]
Abstract
Saturn's moon Enceladus harbours a global water ocean 1 , which lies under an ice crust and above a rocky core 2 . Through warm cracks in the crust 3 a cryo-volcanic plume ejects ice grains and vapour into space4-7 that contain materials originating from the ocean8,9. Hydrothermal activity is suspected to occur deep inside the porous core10-12, powered by tidal dissipation 13 . So far, only simple organic compounds with molecular masses mostly below 50 atomic mass units have been observed in plume material6,14,15. Here we report observations of emitted ice grains containing concentrated and complex macromolecular organic material with molecular masses above 200 atomic mass units. The data constrain the macromolecular structure of organics detected in the ice grains and suggest the presence of a thin organic-rich film on top of the oceanic water table, where organic nucleation cores generated by the bursting of bubbles allow the probing of Enceladus' organic inventory in enhanced concentrations.
Collapse
Affiliation(s)
- Frank Postberg
- Institut für Geowissenschaften, Universität Heidelberg, Heidelberg, Germany.
- Klaus-Tschira-Labor für Kosmochemie, Universität Heidelberg, Heidelberg, Germany.
- Institut für Geologische Wissenschaften, Freie Universität Berlin, Berlin, Germany.
| | - Nozair Khawaja
- Institut für Geowissenschaften, Universität Heidelberg, Heidelberg, Germany
| | - Bernd Abel
- Leibniz-Institute für Oberflächenmodifizierung (IOM), Leipzig, Germany
| | - Gael Choblet
- Laboratoire de Planétologie et Géodynamique, UMR-CNRS 6112, Université de Nantes, Nantes, France
| | - Christopher R Glein
- Space Science and Engineering Division, Southwest Research Institute, San Antonio, TX, USA
| | - Murthy S Gudipati
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
| | - Bryana L Henderson
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
| | - Hsiang-Wen Hsu
- Laboratory for Atmospheric and Space Physics, University of Colorado, Boulder, CO, USA
| | - Sascha Kempf
- Laboratory for Atmospheric and Space Physics, University of Colorado, Boulder, CO, USA
| | - Fabian Klenner
- Institut für Geowissenschaften, Universität Heidelberg, Heidelberg, Germany
| | | | - Brian Magee
- Space Science and Engineering Division, Southwest Research Institute, San Antonio, TX, USA
- Laboratory for Atmospheric and Space Physics, University of Colorado, Boulder, CO, USA
| | - Lenz Nölle
- Institut für Geowissenschaften, Universität Heidelberg, Heidelberg, Germany
| | - Mark Perry
- Applied Physics Laboratory, Johns Hopkins University, Laurel, MD, USA
| | - René Reviol
- Institut für Geowissenschaften, Universität Heidelberg, Heidelberg, Germany
| | - Jürgen Schmidt
- Astronomy Research Unit, University of Oulu, Oulu, Finland
| | - Ralf Srama
- Institut für Raumfahrtsysteme, Universität Stuttgart, Stuttgart, Germany
| | - Ferdinand Stolz
- Leibniz-Institute für Oberflächenmodifizierung (IOM), Leipzig, Germany
- Wilhelm-Ostwald-Institut für Physikalische und Theoretische Chemie, Universität Leipzig, Leipzig, Germany
| | - Gabriel Tobie
- Laboratoire de Planétologie et Géodynamique, UMR-CNRS 6112, Université de Nantes, Nantes, France
| | - Mario Trieloff
- Institut für Geowissenschaften, Universität Heidelberg, Heidelberg, Germany
- Klaus-Tschira-Labor für Kosmochemie, Universität Heidelberg, Heidelberg, Germany
| | - J Hunter Waite
- Laboratoire de Planétologie et Géodynamique, UMR-CNRS 6112, Université de Nantes, Nantes, France
| |
Collapse
|
19
|
Iguchi Y, Hazama H, Awazu K. Continuous flow reduced-pressure infrared laser desorption/ionization mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2017; 31:1845-1850. [PMID: 28850755 DOI: 10.1002/rcm.7970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2017] [Revised: 08/04/2017] [Accepted: 08/19/2017] [Indexed: 06/07/2023]
Abstract
RATIONALE Continuous flow ionization methods using infrared (IR) lasers have several favorable characteristics, including ionization without any additional matrices and tolerance to contaminants such as detergents and buffer salts. However, poor sensitivity due to low ion-transfer efficiency from the sample plate to the inlet capillary of the mass spectrometer under atmospheric pressure remains a serious problem. METHODS We developed a new continuous flow IR laser desorption/ionization (IR-LDI) method using a frit plate and wavelength-tunable mid-IR laser with an optical parametric oscillator. Continuous flow samples were directly injected into the ion source without any additional matrices. The ion source was covered with a decompression chamber, and could vary the pressure of the ion source from 21 to 101 kPa. RESULTS Reduction of the pressure of the IR-LDI source from 101 to 71 kPa increased the signal intensity for the [M + H]+ ion of angiotensin II by 1.8-fold. On the other hand, the ion signal intensity was reduced at pressures lower than 71 kPa. It became clear that reducing pressure was more effective when ionization occurred with lower laser pulse energy and lower ion source temperature. In addition, signal intensities for the [M + 2H]2+ and [M + 3H]3+ ions of insulin were also increased, by 1.4-fold and 1.1-fold, respectively, upon reduction of the pressure to 91 and 81 kPa. CONCLUSIONS Although many studies have described IR-LDI using a differential pumping mass spectrometer, the optimal pressure of the ion source has never been investigated. We found that a slight reduction in pressure enhances sensitivity. This knowledge may be applicable to a number of ambient ionization methods using IR lasers.
Collapse
Affiliation(s)
- Yasunari Iguchi
- Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Hisanao Hazama
- Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Kunio Awazu
- Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka, 565-0871, Japan
- Global Center for Medical Engineering and Informatics, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
20
|
Schulze S, Pahl M, Stolz F, Appun J, Abel B, Schneider C, Belder D. Liquid Beam Desorption Mass Spectrometry for the Investigation of Continuous Flow Reactions in Microfluidic Chips. Anal Chem 2017; 89:6175-6181. [PMID: 28489359 DOI: 10.1021/acs.analchem.7b01026] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In this work, we present the combination of microfluidic chips and mass spectrometry employing laser-induced liquid beam ionization/desorption. The developed system was evaluated with respect to stable beam generation and laser parameters as well as solvent compatibility. The device was exemplarily applied to study a vinylogous Mannich reaction performed in continuous flow on chip. Fast processes can be observed with this technique which in the future could be beneficial for studying intermediates or contribute to the elucidation of reaction mechanisms.
Collapse
Affiliation(s)
- Sandra Schulze
- Institute of Analytical Chemistry, University Leipzig , Linnéstraße 3, 04103 Leipzig, Germany
| | - Maik Pahl
- Institute of Analytical Chemistry, University Leipzig , Linnéstraße 3, 04103 Leipzig, Germany
| | - Ferdinand Stolz
- Wilhelm-Ostwald-Institute of Physical and Theoretical Chemistry, University Leipzig , Linnéstraße 3, 04103 Leipzig, Germany.,Leibniz Institute of Surface Modification (IOM) , Permoserstraße 15, 04318 Leipzig, Germany
| | - Johannes Appun
- Institute of Organic Chemistry, University Leipzig , Johannisallee 29, 04103 Leipzig, Germany
| | - Bernd Abel
- Wilhelm-Ostwald-Institute of Physical and Theoretical Chemistry, University Leipzig , Linnéstraße 3, 04103 Leipzig, Germany.,Leibniz Institute of Surface Modification (IOM) , Permoserstraße 15, 04318 Leipzig, Germany
| | - Christoph Schneider
- Institute of Organic Chemistry, University Leipzig , Johannisallee 29, 04103 Leipzig, Germany
| | - Detlev Belder
- Institute of Analytical Chemistry, University Leipzig , Linnéstraße 3, 04103 Leipzig, Germany
| |
Collapse
|
21
|
Stolz F, Appun J, Naumov S, Schneider C, Abel B. A Complex Catalytic Reaction Caught in the Act: Intermediates and Products Sampling Online by Liquid μ-Beam Mass Spectrometry and Theoretical Modeling. Chempluschem 2016; 82:233-240. [PMID: 31961544 DOI: 10.1002/cplu.201600347] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 09/25/2016] [Indexed: 11/08/2022]
Abstract
Liquid-beam IR-laser desorption mass spectrometry has been used to monitor the reactants, intermediates, and products of a complex organic signature reaction in real time on multiple timescales directly from the liquid phase. The reaction was chosen because it has advantages in medicinal chemistry applications, and the three-component, modular construction provides a means to generate molecular diversity rapidly. Under Lewis acid catalysis, a vinylogous Mannich reaction was monitored as it generated a δ-amino-α-silyloxy-α,β-unsaturated ester, which upon hydrolysis to the corresponding α-keto ester spontaneously reacted in a [3+2] cycloannulation to the final pyrrolo[2,1-b]benzoxazole. The kinetic data were compared with predictions of quantum chemical calculations to elucidate and verify or exclude reaction pathways and mechanisms for a possible rational optimization of the reaction. The simplicity and rapid response of this approach make it a very powerful technique for online characterization of chemical reactions on timescales spanning several orders of magnitude. This enables full control over chemical reactions, thereby maximizing the product yield. This combined experimental and theoretical approach opens up a new route for the study of novel chemistry in liquid-phase reactions.
Collapse
Affiliation(s)
- Ferdinand Stolz
- Leibniz Institute of Surface Modification, Permoserstrasse 15, 04317, Leipzig, Germany
| | - Johannes Appun
- Institut für Organische Chemie, Universität Leipzig, Johannisalle 29, 04103, Leipzig, Germany
| | - Sergej Naumov
- Leibniz Institute of Surface Modification, Permoserstrasse 15, 04317, Leipzig, Germany
| | - Christoph Schneider
- Institut für Organische Chemie, Universität Leipzig, Johannisalle 29, 04103, Leipzig, Germany
| | - Bernd Abel
- Leibniz Institute of Surface Modification, Permoserstrasse 15, 04317, Leipzig, Germany.,Wilhelm-Ostwald-Institut für Physikalische und Theoretische Chemie, Universität Leipzig, Linnéstrasse 2, 04103, Leipzig, Germany
| |
Collapse
|
22
|
IR-MALDI ion mobility spectrometry. Anal Bioanal Chem 2016; 408:6259-68. [PMID: 27370689 DOI: 10.1007/s00216-016-9739-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 06/07/2016] [Accepted: 06/22/2016] [Indexed: 10/21/2022]
Abstract
The novel combination of infrared matrix-assisted laser dispersion and ionization (IR-MALDI) with ion mobility (IM) spectrometry makes it possible to investigate biomolecules in their natural environment, liquid water. As an alternative to an ESI source, the IR-MALDI source was implemented in an in-house-developed ion mobility (IM) spectrometer. The release of ions directly from an aqueous solution is based on a phase explosion, induced by the absorption of an IR laser pulse (λ = 2.94 μm, 6 ns pulse width), which disperses the liquid as nano- and micro-droplets. The prerequisites for the application of IR-MALDI-IM spectrometry as an analytical method are narrow analyte ion signal peaks for a high spectrometer resolution. This can only be achieved by improving the desolvation of ions. One way to full desolvation is to give the cluster ions sufficient time to desolvate. Two methods for achieving this are studied: the implementation of an additional drift tube, as in ESI-IM-spectrometry, and the delayed extraction of the ions. As a result of this optimization procedure, limits of detection between 5 nM and 2.5 μM as well as linear dynamic ranges of 2-3 orders of magnitude were obtained for a number of substances. The ability of this method to analyze simple mixtures is illustrated by the separation of two different surfactant mixtures.
Collapse
|
23
|
Komatsu K, Nirasawa T, Hoshino-Nagasaka M, Kohno JY. Mechanism of Protein Molecule Isolation by IR Laser Ablation of Droplet Beam. J Phys Chem A 2016; 120:1495-500. [PMID: 26903000 DOI: 10.1021/acs.jpca.5b10873] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Gas-phase isolation of bovine serum albumin (BSA) from aqueous solutions is performed by IR laser ablation of a droplet beam. Multiply charged BSA ions (positive and negative) were produced by the IR laser irradiation onto a droplet beam of aqueous BSA solutions with various pH values prepared by addition of hydrochloric acid or sodium hydroxide to the solution. The isolation mechanism was discussed based on the charge state of the isolated BSA ions. A nanodroplet model explains the gas-phase charge distribution of the BSA ions. This study provides a fundamental basis for further studies of a wide variety of biomolecules in the gas phase isolated directly from solution.
Collapse
Affiliation(s)
- Kensuke Komatsu
- Department of Chemistry, Faculty of Science, Gakushuin University , 1-5-1 Mejiro, Toshima-ku, Tokyo 171-8588, Japan
| | - Takuya Nirasawa
- Department of Chemistry, Faculty of Science, Gakushuin University , 1-5-1 Mejiro, Toshima-ku, Tokyo 171-8588, Japan
| | - Mariko Hoshino-Nagasaka
- Department of Chemistry, Faculty of Science, Gakushuin University , 1-5-1 Mejiro, Toshima-ku, Tokyo 171-8588, Japan
| | - Jun-ya Kohno
- Department of Chemistry, Faculty of Science, Gakushuin University , 1-5-1 Mejiro, Toshima-ku, Tokyo 171-8588, Japan
| |
Collapse
|
24
|
Wiederschein F, Vöhringer-Martinez E, Beinsen A, Postberg F, Schmidt J, Srama R, Stolz F, Grubmüller H, Abel B. Charge separation and isolation in strong water droplet impacts. Phys Chem Chem Phys 2015; 17:6858-64. [PMID: 25672904 DOI: 10.1039/c4cp05618c] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Charge separation in condensed matter after strong impacts is a general and intriguing phenomenon in nature, which is often identified and described but not necessarily well understood in terms of a quantitative mechanistic picture. Here we show that charge separation naturally occurs if water droplets/clusters or ice particles with embedded charge carriers, e.g., ions, encounter a high energy impact with subsequent dispersion - even if the involved kinetic energy is significantly below the molecular ionization energy. We find that for low charge carrier concentrations (c < 0.01 mol L(-1)) a simple statistical Poisson model describes the charge distribution in the resulting molecular "fragments" or aggregates. At higher concentrations Coulomb interactions between the charge carriers become relevant, which we describe by a Monte Carlo approach. Our models are compared to experimental data for strong (laser) impacts on liquid micro beams and discussed for the charge generation in cluster-impact mass spectrometry on cosmic dust detectors where particle kinetic energies are below the plasma threshold. Taken together, a simple and intuitive but quantitative microscopic model is obtained, which may contribute to the understanding of a larger range of phenomena related to charge generation and separation in nature.
Collapse
Affiliation(s)
- F Wiederschein
- MPI für biophysikalische Chemie, Am Fassberg 11, 37077 Göttingen, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Sinz A, Arlt C, Chorev D, Sharon M. Chemical cross-linking and native mass spectrometry: A fruitful combination for structural biology. Protein Sci 2015; 24:1193-209. [PMID: 25970732 PMCID: PMC4534171 DOI: 10.1002/pro.2696] [Citation(s) in RCA: 105] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Revised: 04/14/2015] [Accepted: 04/29/2015] [Indexed: 12/31/2022]
Abstract
Mass spectrometry (MS) is becoming increasingly popular in the field of structural biology for analyzing protein three-dimensional-structures and for mapping protein-protein interactions. In this review, the specific contributions of chemical crosslinking and native MS are outlined to reveal the structural features of proteins and protein assemblies. Both strategies are illustrated based on the examples of the tetrameric tumor suppressor protein p53 and multisubunit vinculin-Arp2/3 hybrid complexes. We describe the distinct advantages and limitations of each technique and highlight synergistic effects when both techniques are combined. Integrating both methods is especially useful for characterizing large protein assemblies and for capturing transient interactions. We also point out the future directions we foresee for a combination of in vivo crosslinking and native MS for structural investigation of intact protein assemblies.
Collapse
Affiliation(s)
- Andrea Sinz
- Department of Pharmaceutical Chemistry & Bioanalytics, Institute of Pharmacy, Martin-Luther University Halle-WittenbergD-06120, Halle, Germany
| | - Christian Arlt
- Department of Pharmaceutical Chemistry & Bioanalytics, Institute of Pharmacy, Martin-Luther University Halle-WittenbergD-06120, Halle, Germany
| | - Dror Chorev
- Department of Biological Chemistry, Weizmann Institute of ScienceRehovot, 76100, Israel
| | - Michal Sharon
- Department of Biological Chemistry, Weizmann Institute of ScienceRehovot, 76100, Israel
| |
Collapse
|
26
|
Gladytz A, Lugovoy E, Charvat A, Häupl T, Siefermann KR, Abel B. Intermediates caught in the act: tracing insulin amyloid fibril formation in time by combined optical spectroscopy, light scattering, mass spectrometry and microscopy. Phys Chem Chem Phys 2015; 17:918-27. [DOI: 10.1039/c4cp03072a] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Insulin under acidic conditions. PDB-Databank structure visualized with VMD.
Collapse
Affiliation(s)
- A. Gladytz
- Leibniz-Institute of Surface Modification (IOM)
- 04318 Leipzig
- Germany
| | - E. Lugovoy
- Leibniz-Institute of Surface Modification (IOM)
- 04318 Leipzig
- Germany
- Wilhelm-Ostwald-Institut für Physikalische und Theoretische Chemie
- Universität Leipzig
| | - A. Charvat
- Leibniz-Institute of Surface Modification (IOM)
- 04318 Leipzig
- Germany
- Wilhelm-Ostwald-Institut für Physikalische und Theoretische Chemie
- Universität Leipzig
| | - T. Häupl
- Wilhelm-Ostwald-Institut für Physikalische und Theoretische Chemie
- Universität Leipzig
- 04103 Leipzig
- Germany
| | - K. R. Siefermann
- Leibniz-Institute of Surface Modification (IOM)
- 04318 Leipzig
- Germany
| | - B. Abel
- Leibniz-Institute of Surface Modification (IOM)
- 04318 Leipzig
- Germany
- Wilhelm-Ostwald-Institut für Physikalische und Theoretische Chemie
- Universität Leipzig
| |
Collapse
|
27
|
Kohno JY, Nabeta K, Sasaki N. Charge State of Lysozyme Molecules in the Gas Phase Produced by IR-Laser Ablation of Droplet Beam. J Phys Chem A 2012; 117:9-14. [DOI: 10.1021/jp3096506] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Jun-ya Kohno
- Department of Chemistry, Faculty of Science, Gakushuin University, 1-5-1 Mejiro, Toshima-ku, Tokyo
171-8588, Japan
| | - Kyohei Nabeta
- Department of Chemistry, Faculty of Science, Gakushuin University, 1-5-1 Mejiro, Toshima-ku, Tokyo
171-8588, Japan
| | - Nobuteru Sasaki
- Department of Chemistry, Faculty of Science, Gakushuin University, 1-5-1 Mejiro, Toshima-ku, Tokyo
171-8588, Japan
| |
Collapse
|
28
|
Meyer T, Gabelica V, Grubmüller H, Orozco M. Proteins in the gas phase. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE 2012. [DOI: 10.1002/wcms.1130] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
29
|
Sugiyama A, Nakajima A. Wavelength Dependence of IR Laser for Dual-laser Shattering of a Water Microdroplet. CHEM LETT 2012. [DOI: 10.1246/cl.2012.1481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Akinori Sugiyama
- Department of Chemistry, Faculty of Science and Technology, Keio University
| | - Atsushi Nakajima
- Department of Chemistry, Faculty of Science and Technology, Keio University
- JST-ERATO, Nakajima Designer Nanocluster Assembly Project
| |
Collapse
|
30
|
Maselli OJ, Gascooke JR, Shoji M, Buntine MA. Translational and rotational energy content of benzene molecules IR-desorbed from an in vacuo liquid surface. Phys Chem Chem Phys 2012; 14:9185-94. [DOI: 10.1039/c2cp40180k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
31
|
Zhou H, Ning Z, E. Starr A, Abu-Farha M, Figeys D. Advancements in Top-Down Proteomics. Anal Chem 2011; 84:720-34. [DOI: 10.1021/ac202882y] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Hu Zhou
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, K1H8M5
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China 201203
| | - Zhibing Ning
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, K1H8M5
| | - Amanda E. Starr
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, K1H8M5
| | - Mohamed Abu-Farha
- Biochemistry and Molecular Biology Unit, Dasman Diabetes Institute, Dasman 15462, Kuwait
| | - Daniel Figeys
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, K1H8M5
| |
Collapse
|
32
|
van der Spoel D, Marklund EG, Larsson DSD, Caleman C. Proteins, Lipids, and Water in the Gas Phase. Macromol Biosci 2010; 11:50-9. [DOI: 10.1002/mabi.201000291] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
33
|
Henning S, Mormann M, Peter-Katalinić J, Pohlentz G. Direct analysis of α- and β-chains of hemoglobins from mammalian blood samples by nanoESI mass spectrometry during in-capillary proteolytic digestion. Amino Acids 2010; 41:343-50. [DOI: 10.1007/s00726-010-0671-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2010] [Accepted: 06/17/2010] [Indexed: 02/02/2023]
|
34
|
Sharon M. How far can we go with structural mass spectrometry of protein complexes? JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2010; 21:487-500. [PMID: 20116283 DOI: 10.1016/j.jasms.2009.12.017] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2009] [Revised: 12/14/2009] [Accepted: 12/18/2009] [Indexed: 05/11/2023]
Abstract
Physical interactions between proteins and the formation of stable complexes form the basis of most biological functions. Therefore, a critical step toward understanding the integrated workings of the cell is to determine the structure of protein complexes, and reveal how their structural organization dictates function. Studying the three-dimensional organization of protein assemblies, however, represents a major challenge for structural biologists, due to the large size of the complexes, their heterogeneous composition, their flexibility, and their asymmetric structure. In the last decade, mass spectrometry has proven to be a valuable tool for analyzing such noncovalent complexes. Here, I illustrate the breadth of structural information that can be obtained from this approach, and the steps taken to elucidate the stoichiometry, topology, packing, dynamics, and shape of protein complexes. In addition, I illustrate the challenges that lie ahead, and the future directions toward which the field might be heading.
Collapse
Affiliation(s)
- Michal Sharon
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
35
|
Thirumuruganandham SP, Urbassek HM. Evaporation of solvent molecules by ultrafast heating: effect on conformation of solvated protein. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2010; 24:349-354. [PMID: 20049882 DOI: 10.1002/rcm.4396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Using molecular dynamics simulation, we compare two cases of ultrafast heating of a small water droplet containing a solvated protein (echistatin). If the water temperature after irradiation is above the critical temperature, explosive boiling liberates the protein within some 10 ps of its hydration shell, while its temperature remains relatively low. By comparing with the case where the water shell is heated to the same final temperature, but without complete evaporation, we demonstrate that the protein conformation is governed by the hydration shell rather than by the protein temperature.
Collapse
|
36
|
Haas J, Vöhringer-Martinez E, Bögehold A, Matthes D, Hensen U, Pelah A, Abel B, Grubmüller H. Primary steps of pH-dependent insulin aggregation kinetics are governed by conformational flexibility. Chembiochem 2009; 10:1816-22. [PMID: 19533727 DOI: 10.1002/cbic.200900266] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Insulin aggregation critically depends on pH. The underlying energetic and structural determinants are, however, unknown. Here, we measure the kinetics of the primary aggregation steps of the insulin monomer in vitro and relate it to its conformational flexibility. To assess these primary steps the monomer concentration was monitored by mass spectrometry at various pH values and aggregation products were imaged by atomic force microscopy. Lowering the pH from 3 to 1.6 markedly accelerated the observed aggregation kinetics. The influence of pH on the monomer structure and dynamics in solution was studied by molecular dynamics simulations, with the protonation states of the titrable groups obtained from electrostatic calculations. Reduced flexibility was observed for low pH values, mainly in the C terminus and in the helix of the B chain; these corresponded to an estimated entropy loss of 150 J mol(-1) K(-1). The striking correlation between entropy loss and pH value is consistent with the observed kinetic traces. In analogy to the well-known Phi value analysis, this result allows the extraction of structural information about the rate determining transition state of the primary aggregation steps. In particular, we suggest that the residues in the helix of the B chain are involved in this transition state.
Collapse
Affiliation(s)
- Jürgen Haas
- Department of Theoretical and Computational Biophysics, Max-Planck-Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Sodium salts in E-ring ice grains from an ocean below the surface of Enceladus. Nature 2009; 459:1098-101. [DOI: 10.1038/nature08046] [Citation(s) in RCA: 337] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2008] [Accepted: 04/06/2009] [Indexed: 01/02/2023]
|
38
|
Sampson JS, Murray KK, Muddiman DC. Intact and top-down characterization of biomolecules and direct analysis using infrared matrix-assisted laser desorption electrospray ionization coupled to FT-ICR mass spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2009; 20:667-73. [PMID: 19185512 PMCID: PMC3717316 DOI: 10.1016/j.jasms.2008.12.003] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2008] [Revised: 12/03/2008] [Accepted: 12/04/2008] [Indexed: 05/09/2023]
Abstract
We report the implementation of an infrared laser onto our previously reported matrix-assisted laser desorption electrospray ionization (MALDESI) source with ESI post-ionization yielding multiply charged peptides and proteins. Infrared (IR)-MALDESI is demonstrated for atmospheric pressure desorption and ionization of biological molecules ranging in molecular weight from 1.2 to 17 kDa. High resolving power, high mass accuracy single-acquisition Fourier transform ion cyclotron resonance (FT-ICR) mass spectra were generated from liquid- and solid-state peptide and protein samples by desorption with an infrared laser (2.94 mum) followed by ESI post-ionization. Intact and top-down analysis of equine myoglobin (17 kDa) desorbed from the solid state with ESI post-ionization demonstrates the sequencing capabilities using IR-MALDESI coupled to FT-ICR mass spectrometry. Carbohydrates and lipids were detected through direct analysis of milk and egg yolk using both UV- and IR-MALDESI with minimal sample preparation. Three of the four classes of biological macromolecules (proteins, carbohydrates, and lipids) have been ionized and detected using MALDESI with minimal sample preparation. Sequencing of O-linked glycans, cleaved from mucin using reductive beta-elimination chemistry, is also demonstrated.
Collapse
Affiliation(s)
- Jason S. Sampson
- W.M. Keck FT-ICR Mass Spectrometry Laboratory, Department of Chemistry, North Carolina State University, Raleigh, North Carolina, USA
| | - Kermit K. Murray
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana, USA
| | - David C. Muddiman
- W.M. Keck FT-ICR Mass Spectrometry Laboratory, Department of Chemistry, North Carolina State University, Raleigh, North Carolina, USA
| |
Collapse
|
39
|
Rapp E, Charvát A, Beinsen A, Plessmann U, Reichl U, Seidel-Morgenstern A, Urlaub H, Abel B. Atmospheric pressure free liquid infrared MALDI mass spectrometry: toward a combined ESI/ MALDI-liquid chromatography interface. Anal Chem 2009; 81:443-52. [PMID: 19125446 DOI: 10.1021/ac801863p] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A new atmospheric pressure (AP)-MALDI-type interface has been developed based on a free liquid (FL) microbeam/microdroplets and a mid-infrared optical parametric oscillator (mid-IR OPO). The device is integrated into a standard on-line nanoESI interface. The generation of molecular ions in the gas phase is believed to be the result of a fast (explosive) laser-induced evaporative dispersion(not desorption) of the microbeam into statistically charged nanodroplets. Only the lowest charge states appear insignificant abundance in this type of experiment. Mass spectra of some common peptides have been acquired in positive ion mode, and the limit-of-detection of this first prototype (liquid microbeam setup) was evaluated to be 17 fmol per second. To improve the duty cycle and to reduce the sample consumption, a droplet-on-demand system was implemented (generating 100 pL droplets).With this setup, about 20 attomole of bradykinin were sufficient to achieve a signal-to-noise ratio better than five.This setup can be operated at flow rates down to 100 nL/min and represents a liquid MALDI alternative to the nanoESI. Our particular interest was the application of the developed ion source for on-line coupling of liquid chromatography with mass spectrometry. The flow rates(>100 microL/min), required for stable operation of the ion source in continuous liquid microbeam mode, matches perfectly the flow rate range of micro HPLC. Therefore, online LC/MS experiments have been realized, employing a microbore C18 reversed-phase column to separate an artificial peptide mixture and tryptic peptides of bovine serum albumin (performing a peptide mass fingerprint). In the latter case, sequence coverage of more than 90%has been achieved.
Collapse
Affiliation(s)
- Erdmann Rapp
- Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstrasse 1, 39106 Magdeburg, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Link O, Vöhringer-Martinez E, Lugovoj E, Liu Y, Siefermann K, Faubel M, Grubmüller H, Gerber RB, Miller Y, Abel B. Ultrafast phase transitions in metastable water near liquid interfaces. Faraday Discuss 2009; 141:67-79; discussion 81-98. [DOI: 10.1039/b811659h] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
41
|
Kohno JY, Kondow T. UV laser induced proton-transfer of protein molecule in the gas phase produced by droplet-beam laser ablation. Chem Phys Lett 2008. [DOI: 10.1016/j.cplett.2008.08.032] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
42
|
Toyama N, Kohno JY, Kondow T. Delayed ejection of cluster ions from a liquid–water beam following Mid-IR and Near-IR laser irradiation. Chem Phys Lett 2008. [DOI: 10.1016/j.cplett.2008.05.053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|