• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (4602056)   Today's Articles (150)   Subscriber (49367)
For: Lange JP, Vestering JZ, Haan RJ. Towards ‘bio-based’ Nylon: conversion of γ-valerolactone to methyl pentenoate under catalytic distillation conditions. Chem Commun (Camb) 2007:3488-90. [PMID: 17700891 DOI: 10.1039/b705782b] [Citation(s) in RCA: 149] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Number Cited by Other Article(s)
1
Qiao Y, Xiao Y, Zhang X, Yu W, Li J, Xu L, Zhu X, Zheng A, Li X. Unlocking Enhanced Butadiene Selectivity: The Crucial Role of Zeolite Channel Confinement in the Selective Decarbonylation of γ-Valerolactone. CHEMSUSCHEM 2024:e202400417. [PMID: 38656661 DOI: 10.1002/cssc.202400417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/22/2024] [Accepted: 04/23/2024] [Indexed: 04/26/2024]
2
Martínez Figueredo KG, Martínez FA, Segobia DJ, Bertero NM. Valeric Biofuels from Biomass-Derived γ-Valerolactone: A Critical Overview of Production Processes. Chempluschem 2023;88:e202300381. [PMID: 37751007 DOI: 10.1002/cplu.202300381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/26/2023] [Accepted: 09/26/2023] [Indexed: 09/27/2023]
3
Li F, Yang R, Tian Z, Du Z, Dai J, Wang X, Li N, Zhang J. Microwave-Assisted One Pot Cascade Conversion of Furfural to γ-Valerolactone over Sc(OTf)3. Chemistry 2023;29:e202300950. [PMID: 37392150 DOI: 10.1002/chem.202300950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 05/19/2023] [Accepted: 06/29/2023] [Indexed: 07/03/2023]
4
Chakrabortty S, Zheng S, Kallmeier F, Baráth E, Tin S, de Vries JG. Ru-Catalyzed Direct Asymmetric Reductive Amination of Bio-Based Levulinic Acid and Ester for the Synthesis of Chiral Pyrrolidinone. CHEMSUSCHEM 2023;16:e202202353. [PMID: 36752680 DOI: 10.1002/cssc.202202353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 01/16/2023] [Accepted: 02/08/2023] [Indexed: 05/06/2023]
5
Liu Y, Gu C, Chen L, Zhou W, Liao Y, Wang C, Ma L. Ru-MnOx Interaction for Efficient Hydrodeoxygenation of Levulinic Acid and Its Derivatives. ACS APPLIED MATERIALS & INTERFACES 2023;15:4184-4193. [PMID: 36626197 DOI: 10.1021/acsami.2c22045] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
6
Ji Y, Liu H, Wang F, Guo X. Conversion of biomass to γ-valerolactone by efficient transfer hydrogenation of ethyl levulinate over Al-SPAN nanosheets. Catal Today 2022. [DOI: 10.1016/j.cattod.2022.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
7
Yuan Q, van de Bovenkamp HH, Zhang Z, Piskun AS, Sami S, Havenith RW, Heeres HJ, Deuss PJ. Mechanistic Investigations into the Catalytic Levulinic Acid Hydrogenation, Insight in H/D Exchange Pathways, and a Synthetic Route to d8-γ-Valerolactone. ACS Catal 2021. [DOI: 10.1021/acscatal.1c02662] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
8
Yang Y, Zhu H, Bao L, Xu X. Critical review on microfibrous composites for applications in chemical engineering. REV CHEM ENG 2021. [DOI: 10.1515/revce-2020-0109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
9
Tay DWP, Nobbs JD, Aitipamula S, Britovsek GJP, van Meurs M. Directing Selectivity to Aldehydes, Alcohols, or Esters with Diphobane Ligands in Pd-Catalyzed Alkene Carbonylations. Organometallics 2021. [DOI: 10.1021/acs.organomet.1c00228] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
10
Karanwal N, Sibi MG, Khan MK, Myint AA, Chan Ryu B, Kang JW, Kim J. Trimetallic Cu–Ni–Zn/H-ZSM-5 Catalyst for the One-Pot Conversion of Levulinic Acid to High-Yield 1,4-Pentanediol under Mild Conditions in an Aqueous Medium. ACS Catal 2021. [DOI: 10.1021/acscatal.0c04216] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
11
Hsiao CY, Chiu HY, Lin TY, Lin KYA. A comparative study on microwave-assisted catalytic transfer hydrogenation of levulinic acid to γ-valerolactone using Ru/C, Pt/C, and Pd/C. CHEM ENG COMMUN 2020. [DOI: 10.1080/00986445.2020.1791833] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
12
Gérardy R, Debecker DP, Estager J, Luis P, Monbaliu JCM. Continuous Flow Upgrading of Selected C2-C6 Platform Chemicals Derived from Biomass. Chem Rev 2020;120:7219-7347. [PMID: 32667196 DOI: 10.1021/acs.chemrev.9b00846] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
13
Ni Supported on Natural Clays as a Catalyst for the Transformation of Levulinic Acid into γ-Valerolactone without the Addition of Molecular Hydrogen. ENERGIES 2020. [DOI: 10.3390/en13133448] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
14
Wang T, He J, Zhang Y. Production of γ-Valerolactone from One-Pot Transformation of Biomass-Derived Carbohydrates Over Chitosan-Supported Ruthenium Catalyst Combined with Zeolite ZSM-5. European J Org Chem 2020. [DOI: 10.1002/ejoc.201901704] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
15
Anjali K, Venkatesha NJ, Christopher J, Sakthivel A. Rhodium porphyrin molecule-based catalysts for the hydrogenation of biomass derived levulinic acid to biofuel additive γ-valerolactone. NEW J CHEM 2020. [DOI: 10.1039/d0nj01180k] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
16
Fu Y, Liang K, Zhao J, Zhang Z, Zhang J. Synthesis and Properties of Bio-Based Nonisocyanate Thermoplastic Polyoxamide-Ureas. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b04617] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
17
Kasar GB, Medhekar RS, Bhosale PN, Rode CV. Kinetics of Hydrogenation of Aqueous Levulinic Acid over Bimetallic Ru–Ni/MMT Catalyst. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b03748] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
18
Stadler BM, Wulf C, Werner T, Tin S, de Vries JG. Catalytic Approaches to Monomers for Polymers Based on Renewables. ACS Catal 2019. [DOI: 10.1021/acscatal.9b01665] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
19
Water-born zirconium-based metal organic frameworks as green and effective catalysts for catalytic transfer hydrogenation of levulinic acid to γ-valerolactone: Critical roles of modulators. J Colloid Interface Sci 2019;543:52-63. [DOI: 10.1016/j.jcis.2019.02.036] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 01/30/2019] [Accepted: 02/09/2019] [Indexed: 11/23/2022]
20
Preparation and properties of biobased polyamides based on 1,9-azelaic acid and different chain length diamines. Polym Bull (Berl) 2019. [DOI: 10.1007/s00289-019-02791-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
21
Marckwordt A, El Ouahabi F, Amani H, Tin S, Kalevaru NV, Kamer PCJ, Wohlrab S, de Vries JG. Nylon Intermediates from Bio‐Based Levulinic Acid. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201812954] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
22
Marckwordt A, El Ouahabi F, Amani H, Tin S, Kalevaru NV, Kamer PCJ, Wohlrab S, de Vries JG. Nylon Intermediates from Bio‐Based Levulinic Acid. Angew Chem Int Ed Engl 2019;58:3486-3490. [DOI: 10.1002/anie.201812954] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 01/07/2019] [Indexed: 11/06/2022]
23
Lin TY, Lin KYA. Microwave-enhanced catalytic transfer hydrogenation of levulinic acid to γ-valerolactone using zirconium-based metal organic frameworks: A comparative study with conventional heating processes. J Taiwan Inst Chem Eng 2019. [DOI: 10.1016/j.jtice.2018.11.026] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
24
Dithugoe CD, van Marwijk J, Smit MS, Opperman DJ. An Alcohol Dehydrogenase from the Short-Chain Dehydrogenase/Reductase Family of Enzymes for the Lactonization of Hexane-1,6-diol. Chembiochem 2018;20:96-102. [PMID: 30252998 DOI: 10.1002/cbic.201800533] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Indexed: 01/20/2023]
25
Chen S, Wojcieszak R, Dumeignil F, Marceau E, Royer S. How Catalysts and Experimental Conditions Determine the Selective Hydroconversion of Furfural and 5-Hydroxymethylfurfural. Chem Rev 2018;118:11023-11117. [PMID: 30362725 DOI: 10.1021/acs.chemrev.8b00134] [Citation(s) in RCA: 291] [Impact Index Per Article: 48.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
26
Li F, Li Z, France LJ, Mu J, Song C, Chen Y, Jiang L, Long J, Li X. Highly Efficient Transfer Hydrogenation of Levulinate Esters to γ-Valerolactone over Basic Zirconium Carbonate. Ind Eng Chem Res 2018. [DOI: 10.1021/acs.iecr.8b00712] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
27
Wang R, Wang J, Zi H, Wang H, Xia Y, Liu X. Conversion of ethyl levulinate to γ-valerolactone catalyzed by the new Zr-containing organic-inorganic hybrid catalysts. J CHIN CHEM SOC-TAIP 2018. [DOI: 10.1002/jccs.201800020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
28
Wu Z, Zhang M, Yao Y, Wang J, Wang D, Zhang M, Li Y. One-pot catalytic production of 1, 3-propanediol and γ-valerolactone from glycerol and levulinic acid. Catal Today 2018. [DOI: 10.1016/j.cattod.2017.02.035] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
29
Gao Y, Zhang H, Han A, Wang J, Tan HR, Tok ES, Jaenicke S, Chuah GK. Ru/ZrO2 Catalysts for Transfer Hydrogenation of Levulinic Acid with Formic Acid/Formate Mixtures: Importance of Support Stability. ChemistrySelect 2018. [DOI: 10.1002/slct.201702152] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
30
Promoted catalytic performance of Ni-SBA-15 catalysts by modifying with Fe and Cu for hydrogenation of levulinic acid to gamma-valerolactone. REACTION KINETICS MECHANISMS AND CATALYSIS 2018. [DOI: 10.1007/s11144-018-1346-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
31
Gundekari S, Srinivasan K. In situ generated Ni(0)@boehmite from NiAl-LDH: An efficient catalyst for selective hydrogenation of biomass derived levulinic acid to γ-valerolactone. CATAL COMMUN 2017. [DOI: 10.1016/j.catcom.2017.08.020] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]  Open
32
Ftouni J, Genuino HC, Muñoz‐Murillo A, Bruijnincx PCA, Weckhuysen BM. Influence of Sulfuric Acid on the Performance of Ruthenium-based Catalysts in the Liquid-Phase Hydrogenation of Levulinic Acid to γ-Valerolactone. CHEMSUSCHEM 2017;10:2891-2896. [PMID: 28603841 PMCID: PMC5575478 DOI: 10.1002/cssc.201700768] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Indexed: 06/07/2023]
33
Lin L, Cornu D, Mounir Daou M, Domingos C, Herledan V, Krafft JM, Laugel G, Millot Y, Lauron-Pernot H. Role of Water on the Activity of Magnesium Silicate for Transesterification Reactions. ChemCatChem 2017. [DOI: 10.1002/cctc.201700139] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
34
Kuwahara Y, Kaburagi W, Osada Y, Fujitani T, Yamashita H. Catalytic transfer hydrogenation of biomass-derived levulinic acid and its esters to γ-valerolactone over ZrO 2 catalyst supported on SBA-15 silica. Catal Today 2017. [DOI: 10.1016/j.cattod.2016.05.016] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
35
Bond JQ, Jungong CS, Chatzidimitriou A. Microkinetic analysis of ring opening and decarboxylation of γ-valerolactone over silica alumina. J Catal 2016. [DOI: 10.1016/j.jcat.2016.10.021] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
36
Sheldon RA. Green chemistry, catalysis and valorization of waste biomass. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.molcata.2016.01.013] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
37
Guo Y, Li Y, Chen J, Chen L. Hydrogenation of Levulinic Acid into γ-Valerolactone Over Ruthenium Catalysts Supported on Metal–Organic Frameworks in Aqueous Medium. Catal Letters 2016. [DOI: 10.1007/s10562-016-1819-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
38
Nobbs JD, Zainal NZB, Tan J, Drent E, Stubbs LP, Li C, Lim SCY, Kumbang DGA, van Meurs M. Bio-based Pentenoic Acids as Intermediates to Higher Value-Added Mono- and Dicarboxylic Acids. ChemistrySelect 2016. [DOI: 10.1002/slct.201600136] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
39
Zhang Z. Synthesis of γ-Valerolactone from Carbohydrates and its Applications. CHEMSUSCHEM 2016;9:156-171. [PMID: 26733161 DOI: 10.1002/cssc.201501089] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 10/05/2015] [Indexed: 06/05/2023]
40
Ennaert T, Van Aelst J, Dijkmans J, De Clercq R, Schutyser W, Dusselier M, Verboekend D, Sels BF. Potential and challenges of zeolite chemistry in the catalytic conversion of biomass. Chem Soc Rev 2016;45:584-611. [DOI: 10.1039/c5cs00859j] [Citation(s) in RCA: 497] [Impact Index Per Article: 62.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
41
Hengne AM, Kadu BS, Biradar NS, Chikate RC, Rode CV. Transfer hydrogenation of biomass-derived levulinic acid to γ-valerolactone over supported Ni catalysts. RSC Adv 2016. [DOI: 10.1039/c6ra08637c] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]  Open
42
Rodiansono R, Astuti MD, Hara T, Ichikuni N, Shimazu S. Efficient hydrogenation of levulinic acid in water using a supported Ni–Sn alloy on aluminium hydroxide catalysts. Catal Sci Technol 2016. [DOI: 10.1039/c5cy01731a] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
43
Tominaga K, Nemoto K, Kamimura Y, Yamada A, Yamamoto Y, Sato K. A practical and efficient synthesis of methyl levulinate from cellulosic biomass catalyzed by an aluminum-based mixed acid catalyst system. RSC Adv 2016. [DOI: 10.1039/c6ra15638j] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]  Open
44
Deng T, Li Y, Zhao G, Zhang Z, Liu Y, Lu Y. Catalytic distillation for ethyl acetate synthesis using microfibrous-structured Nafion–SiO2/SS-fiber solid acid packings. REACT CHEM ENG 2016. [DOI: 10.1039/c6re00088f] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
45
Gas Phase Hydrogenation of Levulinic Acid to γ-Valerolactone. Catal Letters 2015. [DOI: 10.1007/s10562-015-1661-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
46
Kuwahara Y, Magatani Y, Yamashita H. Ru nanoparticles confined in Zr-containing spherical mesoporous silica containers for hydrogenation of levulinic acid and its esters into γ-valerolactone at ambient conditions. Catal Today 2015. [DOI: 10.1016/j.cattod.2015.01.015] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
47
Antunes MM, Lima S, Neves P, Magalhães AL, Fazio E, Fernandes A, Neri F, Silva CM, Rocha SM, Ribeiro MF, Pillinger M, Urakawa A, Valente AA. One-pot conversion of furfural to useful bio-products in the presence of a Sn,Al-containing zeolite beta catalyst prepared via post-synthesis routes. J Catal 2015. [DOI: 10.1016/j.jcat.2015.05.022] [Citation(s) in RCA: 106] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
48
Low CH, Nobbs JD, van Meurs M, Stubbs LP, Drent E, Aitipamula S, Pung MHL. Palladium Complexes with Bulky Diphosphine Ligands as Highly Selective Catalysts for the Synthesis of (Bio-) Adipic Acid from Pentenoic Acid Mixtures. Organometallics 2015. [DOI: 10.1021/acs.organomet.5b00517] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
49
Villa A, Schiavoni M, Chan-Thaw CE, Fulvio PF, Mayes RT, Dai S, More KL, Veith GM, Prati L. Acid-functionalized mesoporous carbon: an efficient support for ruthenium-catalyzed γ-valerolactone production. CHEMSUSCHEM 2015;8:2520-2528. [PMID: 26089180 DOI: 10.1002/cssc.201500331] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Revised: 04/16/2015] [Indexed: 06/04/2023]
50
Tang X, Li Z, Zeng X, Jiang Y, Liu S, Lei T, Sun Y, Lin L. In Situ Catalytic Hydrogenation of Biomass-Derived Methyl Levulinate to γ-Valerolactone in Methanol. CHEMSUSCHEM 2015;8:1601-1607. [PMID: 25873556 DOI: 10.1002/cssc.201403392] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Revised: 02/05/2015] [Indexed: 06/04/2023]
PrevPage 1 of 2 12Next
© 2004-2024 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA