1
|
Ozkendir O, Karaca I, Cullu S, Erdoğan OC, Yaşar HN, Dikici S, Owen R, Aldemir Dikici B. Engineering periodontal tissue interfaces using multiphasic scaffolds and membranes for guided bone and tissue regeneration. BIOMATERIALS ADVANCES 2024; 157:213732. [PMID: 38134730 DOI: 10.1016/j.bioadv.2023.213732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 12/06/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023]
Abstract
Periodontal diseases are one of the greatest healthcare burdens worldwide. The periodontal tissue compartment is an anatomical tissue interface formed from the periodontal ligament, gingiva, cementum, and bone. This multifaceted composition makes tissue engineering strategies challenging to develop due to the interface of hard and soft tissues requiring multiphase scaffolds to recreate the native tissue architecture. Multilayer constructs can better mimic tissue interfaces due to the individually tuneable layers. They have different characteristics in each layer, with modulation of mechanical properties, material type, porosity, pore size, morphology, degradation properties, and drug-releasing profile all possible. The greatest challenge of multilayer constructs is to mechanically integrate consecutive layers to avoid delamination, especially when using multiple manufacturing processes. Here, we review the development of multilayer scaffolds that aim to recapitulate native periodontal tissue interfaces in terms of physical, chemical, and biological characteristics. Important properties of multiphasic biodegradable scaffolds are highlighted and summarised, with design requirements, biomaterials, and fabrication methods, as well as post-treatment and drug/growth factor incorporation discussed.
Collapse
Affiliation(s)
- Ozgu Ozkendir
- Department of Bioengineering, Izmir Institute of Technology, Urla, Izmir 35433, Turkey
| | - Ilayda Karaca
- Department of Bioengineering, Izmir Institute of Technology, Urla, Izmir 35433, Turkey
| | - Selin Cullu
- Department of Bioengineering, Izmir Institute of Technology, Urla, Izmir 35433, Turkey
| | - Oğul Can Erdoğan
- Department of Molecular Biology and Genetics, Izmir Institute of Technology, Urla, Izmir 35433, Turkey
| | - Hüsniye Nur Yaşar
- Department of Molecular Biology and Genetics, Izmir Institute of Technology, Urla, Izmir 35433, Turkey
| | - Serkan Dikici
- Department of Bioengineering, Izmir Institute of Technology, Urla, Izmir 35433, Turkey
| | - Robert Owen
- School of Pharmacy, University of Nottingham Biodiscovery Institute, University of Nottingham, Nottingham NG7 2RD, United Kingdom
| | - Betül Aldemir Dikici
- Department of Bioengineering, Izmir Institute of Technology, Urla, Izmir 35433, Turkey.
| |
Collapse
|
2
|
Babanejad N, Mfoafo K, Thumma A, Omidi Y, Omidian H. Advances in cryostructures and their applications in biomedical and pharmaceutical products. Polym Bull (Berl) 2023. [DOI: 10.1007/s00289-023-04683-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
3
|
Stan L, Malutan T, Volf I, Popa M, Tincu CE, Stan CS. Photoluminescent Polymer Aerogels with R, G and B Emission. Int J Mol Sci 2022; 23:ijms232416004. [PMID: 36555646 PMCID: PMC9785137 DOI: 10.3390/ijms232416004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/07/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
In this work, three new polymer aerogels based on 2-hydroxy ethyl methacrylate (HEMA) complexes with Eu(III), Tb(III) and La(III) are prepared and investigated. The polymer aerogels present strong photoluminescence with emissions located in the red, green and blue regions of the visible spectrum. Depending on the water content used during the preparation path, the consistency of the photoluminescent aerogels varies from rigid, regularly shaped monoliths to a flexible, fibrous material with very low density. The morpho-structural investigation was performed by FT-IR, XPS and SEM. Thermal behavior was also evaluated, while steady-state fluorescence spectroscopy, absolute PLQY and lifetime were used for the investigation of their luminescent properties. The impressive photoluminescent emission located in the red, green and blue areas of the visible spectrum is preserved irrespective of the selected porosity. Their photo-emissive properties, tunable porosity and the convenience of the preparation path could be some arguments for applications as photonic conversion mediums in special-purpose optoelectronic devices or sensors.
Collapse
Affiliation(s)
- Loredana Stan
- Faculty of Chemical Engineering and Environmental Protection, Gh. Asachi Technical University, D. Mangeron 73 Ave., 700050 Iasi, Romania
| | - Teodor Malutan
- Faculty of Chemical Engineering and Environmental Protection, Gh. Asachi Technical University, D. Mangeron 73 Ave., 700050 Iasi, Romania
| | - Irina Volf
- Faculty of Chemical Engineering and Environmental Protection, Gh. Asachi Technical University, D. Mangeron 73 Ave., 700050 Iasi, Romania
| | - Marcel Popa
- Faculty of Chemical Engineering and Environmental Protection, Gh. Asachi Technical University, D. Mangeron 73 Ave., 700050 Iasi, Romania
- Academy of Romanian Scientists, Ilfov Street, 077160 Bucharest, Romania
- Correspondence: (M.P.); (C.S.S.)
| | - Camelia E. Tincu
- Faculty of Chemical Engineering and Environmental Protection, Gh. Asachi Technical University, D. Mangeron 73 Ave., 700050 Iasi, Romania
| | - Corneliu S. Stan
- Faculty of Chemical Engineering and Environmental Protection, Gh. Asachi Technical University, D. Mangeron 73 Ave., 700050 Iasi, Romania
- Correspondence: (M.P.); (C.S.S.)
| |
Collapse
|
4
|
Tonta MM, Sahin ZM, Cihaner A, Yilmaz F, Gurek A. Synthesis of Polyacrylamide‐Based Redox Active Cryogel Using Click Chemistry and Investigation of Its Electrochemical Properties. ChemistrySelect 2021. [DOI: 10.1002/slct.202103212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
| | - Zeynep M. Sahin
- Gebze Technical University Department of Chemistry Kocaeli 41400 Turkey
| | - Atilla Cihaner
- Atilim University Department of Chemical Engineering and Applied Chemistry Ankara 06836 Turkey
| | | | - Aysegul Gurek
- Gebze Technical University Department of Chemistry Kocaeli 41400 Turkey
| |
Collapse
|
5
|
Bayrak G, Perçin I, Kılıç Süloğlu A, Denizli A. Amino acid functionalized macroporous gelatin cryogels: Characterization and effects on cell proliferation. Process Biochem 2021. [DOI: 10.1016/j.procbio.2021.08.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
6
|
Savina IN, Zoughaib M, Yergeshov AA. Design and Assessment of Biodegradable Macroporous Cryogels as Advanced Tissue Engineering and Drug Carrying Materials. Gels 2021; 7:79. [PMID: 34203439 PMCID: PMC8293244 DOI: 10.3390/gels7030079] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/17/2021] [Accepted: 06/22/2021] [Indexed: 12/13/2022] Open
Abstract
Cryogels obtained by the cryotropic gelation process are macroporous hydrogels with a well-developed system of interconnected pores and shape memory. There have been significant recent advancements in our understanding of the cryotropic gelation process, and in the relationship between components, their structure and the application of the cryogels obtained. As cryogels are one of the most promising hydrogel-based biomaterials, and this field has been advancing rapidly, this review focuses on the design of biodegradable cryogels as advanced biomaterials for drug delivery and tissue engineering. The selection of a biodegradable polymer is key to the development of modern biomaterials that mimic the biological environment and the properties of artificial tissue, and are at the same time capable of being safely degraded/metabolized without any side effects. The range of biodegradable polymers utilized for cryogel formation is overviewed, including biopolymers, synthetic polymers, polymer blends, and composites. The paper discusses a cryotropic gelation method as a tool for synthesis of hydrogel materials with large, interconnected pores and mechanical, physical, chemical and biological properties, adapted for targeted biomedical applications. The effect of the composition, cross-linker, freezing conditions, and the nature of the polymer on the morphology, mechanical properties and biodegradation of cryogels is discussed. The biodegradation of cryogels and its dependence on their production and composition is overviewed. Selected representative biomedical applications demonstrate how cryogel-based materials have been used in drug delivery, tissue engineering, regenerative medicine, cancer research, and sensing.
Collapse
Affiliation(s)
- Irina N. Savina
- School of Pharmacy and Biomolecular Sciences, University of Brighton, Huxley Building, Lewes Road, Brighton BN2 4GJ, UK
| | - Mohamed Zoughaib
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 18 Kremlyovskaya St., 420008 Kazan, Russia; (M.Z.); (A.A.Y.)
| | - Abdulla A. Yergeshov
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 18 Kremlyovskaya St., 420008 Kazan, Russia; (M.Z.); (A.A.Y.)
| |
Collapse
|
7
|
Akgöl S, Ulucan-Karnak F, Kuru Cİ, Kuşat K. The usage of composite nanomaterials in biomedical engineering applications. Biotechnol Bioeng 2021; 118:2906-2922. [PMID: 34050923 DOI: 10.1002/bit.27843] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 05/04/2021] [Accepted: 05/23/2021] [Indexed: 12/23/2022]
Abstract
Nanotechnology is still developing over the decades and it is commonly used in biomedical applications with the design of nanomaterials due to the several purposes. With the investigation of materials on the molecular level has increased the develop composite nanomaterials with exceptional properties using in different applications and industries. The application of these composite nanomaterials is widely used in the fields of textile, chemical, energy, defense industry, electronics, and biomedical engineering which is growing and developing on human health. Development of biosensors for the diagnosis of diseases, drug targeting and controlled release applications, medical implants and imaging techniques are the research topics of nanobiotechnology. In this review, overview of the development of nanotechnology and applications which is use of composite nanomaterials in biomedical engineering is provided.
Collapse
Affiliation(s)
- Sinan Akgöl
- Department of Biochemistry, Faculty of Science, Ege University, İzmir, Turkey
| | | | - Cansu İlke Kuru
- Department of Biochemistry, Faculty of Science, Ege University, İzmir, Turkey
| | - Kevser Kuşat
- Department of Chemistry, Faculty of Science, Dokuz Eylul University, İzmir, Turkey
| |
Collapse
|
8
|
Park E, Ryu JH, Lee D, Lee H. Freeze-Thawing-Induced Macroporous Catechol Hydrogels with Shape Recovery and Sponge-like Properties. ACS Biomater Sci Eng 2021; 7:4318-4329. [PMID: 33821606 DOI: 10.1021/acsbiomaterials.0c01767] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Catechol-containing hydrogels have been exploited in biomedical fields due to their adhesive and cohesive properties, hemostatic abilities, and biocompatibility. Catechol moieties can be oxidized to o-catecholquinone, a chemically active intermediate, in the presence of oxygen to act as an electrophile to form catechol-catechol or catechol-amine/thiol adducts. To date, catechol cross-linking chemistry to fabricate hydrogels has been mostly performed at room temperature. Herein, we report large increases in catechol cross-linking reaction kinetics by the freeze-thawing process. The formation of ice crystals during freezing steps spatially condenses catechol-containing polymers into nearly frozen (yet unfrozen) regions, resulting in decreases in the polymeric chain distances. This environment allows great increases in catechol cross-linking kinetics, a phenomenon that can also occur during thawing steps. The increased cross-linking rate and spatial condensation in the cryogels provide unique wall and pore structures, which result in elastic, spongelike hydrogels. The moduli of the cryogels prepared by glycol-chitosan-catechol (g-chitosan-c) were improved by 3-6-fold compared to room temperature-cured conventional hydrogels, and the degree of improvement increased depending on the freezing time and the number of freeze-thawing cycles. Unlike typical cell encapsulations before cross-linking, which have often been a source of cytotoxicity, the macroporosity of cryogels allows nontoxic cell seeding with ease. This research offers a new way to utilize catechol cross-linking chemistry by freeze-thawing processes to simultaneously regulate mechanical strength and porous structures in catechol-containing hydrogels.
Collapse
Affiliation(s)
- Eunsook Park
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Ji Hyun Ryu
- Department of Carbon Convergence Engineering, Wonkwang University, Iksan, Jeonbuk 54538, Republic of Korea
| | - Daiheon Lee
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Haeshin Lee
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| |
Collapse
|
9
|
Bonalumi F, Crua C, Savina IN, Davies N, Habstesion A, Santini M, Fest-Santini S, Sandeman S. Bioengineering a cryogel-derived bioartificial liver using particle image velocimetry defined fluid dynamics. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 123:111983. [PMID: 33812611 DOI: 10.1016/j.msec.2021.111983] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 01/31/2021] [Accepted: 02/17/2021] [Indexed: 02/06/2023]
Abstract
Bioartificial Liver (BAL) devices are extracorporeal systems designed to support or recover hepatic function in patients with liver failure. The design of an effective BAL remains an open challenge since it requires a complex co-optimisation of cell colonisation, biomaterial scaffold and BAL fluid dynamics. Building on previous evidence of suitability as a blood perfusion device for detoxification, the current study investigated the use of RGD-containing p(HEMA)-alginate cryogels as BAL scaffolds. Cryogels were modified with alginate to reduce protein fouling and functionalised with an RGD-containing peptide to increase hepatocyte adhesion. A novel approach for characterisation of the internal flow through the porous matrix was developed by employing Particle Image Velocimetry (PIV) to visualise flow inside cryogels. Based on PIV results, which showed the laminar nature of flow inside cryogel pores, a multi-layered bioreactor composed of spaced cryogel discs was designed to improve blood/hepatocyte mass exchange. The stacked bioreactor showed a significantly higher production of albumin and urea compared to the column version, with improved cell colonisation and proliferation over time. The cell-free cryogel-based device was tested for safety in a bile-duct ligation model of liver cirrhosis. Thus, a stacked bioreactor prototype was developed based on a surface-engineered cryogel design with optimised fluid dynamics for BAL use.
Collapse
Affiliation(s)
- Flavia Bonalumi
- School of Pharmacy and Biomolecular Sciences, University of Brighton, Brighton, United Kingdom
| | - Cyril Crua
- Advanced Engineering Centre, University of Brighton, Brighton, United Kingdom
| | - Irina N Savina
- School of Pharmacy and Biomolecular Sciences, University of Brighton, Brighton, United Kingdom
| | - Nathan Davies
- The Institute for Liver and Digestive Health, University College London, London, United Kingdom
| | - Abeba Habstesion
- The Institute for Liver and Digestive Health, University College London, London, United Kingdom
| | - Maurizio Santini
- Department of Engineering and Applied Sciences, University of Bergamo, Bergamo, Italy
| | - Stephanie Fest-Santini
- Department of Management, Information and Production Engineering, University of Bergamo, Bergamo, Italy
| | - Susan Sandeman
- School of Pharmacy and Biomolecular Sciences, University of Brighton, Brighton, United Kingdom.
| |
Collapse
|
10
|
Demirci S, Sahiner M, Yilmaz S, Karadag E, Sahiner N. Enhanced enzymatic activity and stability by in situ entrapment of α-Glucosidase within super porous p(HEMA) cryogels during synthesis. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2020; 28:e00534. [PMID: 33024715 PMCID: PMC7528077 DOI: 10.1016/j.btre.2020.e00534] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/08/2020] [Accepted: 09/25/2020] [Indexed: 01/09/2023]
Abstract
Here, poly(2-hydroxyethyl methacrylate) (p(HEMA)) cryogel were prepared in the presence 0.48, 0.96, and 1.92 mL of α-Glucosidase enzyme (0.06 Units/mL) solutions to obtain enzyme entrapped superporous p(HEMA) cryogels, donated as α-Glucosidase@p(HEMA)-1, α-Glucosidase@p(HEMA)-2, and α-Glucosidase@p(HEMA)-3, respectively. The enzyme entrapped p(HEMA) cryogels revealed no interruption for hemolysis and coagulation of blood rendering viable biomedical application in blood contacting applications. The α-Glucosidase@p(HEMA)-1 was found to preserve its' activity% 92.3 ± 1.4 % and higher activity% against free α-Glucosidase enzymes in 15-60℃ temperature, and 4-9 pH range. The Km and Vmax values of α-Glucosidase@p(HEMA)-1 cryogel was calculated as 3.22 mM, and 0.0048 mM/min, respectively versus 1.97 mM, and 0.0032 mM/min, for free enzymes. The α-Glucosidase@p(HEMA)-1 cryogel was found to maintained enzymatic activity more than 50 % after 10 consecutive uses, and also preserved their activity more than 50 % after 10 days of storage at 25 ℃, whereas free α-Glucosidase enzyme maintained only 1.9 ± 0.9 % activity under the same conditions.
Collapse
Affiliation(s)
- Sahin Demirci
- Department of Chemistry, Faculty of Sciences and Arts, Canakkale Onsekiz Mart University Terzioglu Campus, 17100, Canakkale, Turkey
- Nanoscience and Technology Research and Application Center, Canakkale Onsekiz Mart University Terzioglu Campus, 17100, Canakkale, Turkey
| | - Mehtap Sahiner
- Department of Fashion Design, Faculty of Canakkale Applied Science, Canakkale Onsekiz Mart University Terzioglu Campus, 17100, Canakkale, Turkey
| | - Selehattin Yilmaz
- Department of Chemistry, Faculty of Sciences and Arts, Canakkale Onsekiz Mart University Terzioglu Campus, 17100, Canakkale, Turkey
| | - Erdener Karadag
- Department of Chemistry, Faculty of Sciences and Arts, Aydın Adnan Menderes University, 09010, Aydın, Turkey
| | - Nurettin Sahiner
- Department of Chemistry, Faculty of Sciences and Arts, Canakkale Onsekiz Mart University Terzioglu Campus, 17100, Canakkale, Turkey
- Nanoscience and Technology Research and Application Center, Canakkale Onsekiz Mart University Terzioglu Campus, 17100, Canakkale, Turkey
- Department of Chemical and Biomolecular Engineering, University of South Florida, Tampa, FL, 33620 USA
- Department of Ophthalmology, Morsani College of Medicine, University of South Florida, 12901 Bruce B Downs B. Downs Blv., MDC 21, Tampa, FL 33612, USA
| |
Collapse
|
11
|
Fresco-Cala B, Gálvez-Vergara A, Cárdenas S. Preparation, characterization and evaluation of hydrophilic polymers containing magnetic nanoparticles and amine-modified carbon nanotubes for the determination of anti-inflammatory drugs in urine samples. Talanta 2020; 218:121124. [DOI: 10.1016/j.talanta.2020.121124] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 04/29/2020] [Accepted: 05/04/2020] [Indexed: 10/24/2022]
|
12
|
Kaberova Z, Karpushkin E, Nevoralová M, Vetrík M, Šlouf M, Dušková-Smrčková M. Microscopic Structure of Swollen Hydrogels by Scanning Electron and Light Microscopies: Artifacts and Reality. Polymers (Basel) 2020; 12:E578. [PMID: 32150859 PMCID: PMC7182949 DOI: 10.3390/polym12030578] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 01/29/2020] [Accepted: 01/30/2020] [Indexed: 11/16/2022] Open
Abstract
The exact knowledge of hydrogel microstructure, mainly its pore topology, is a key issue in hydrogel engineering. For visualization of the swollen hydrogels, the cryogenic or high vacuum scanning electron microscopies (cryo-SEM or HVSEM) are frequently used while the possibility of artifact-biased images is frequently underestimated. The major cause of artifacts is the formation of ice crystals upon freezing of the hydrated gel. Some porous hydrogels can be visualized with SEM without the danger of artifacts because the growing crystals are accommodated within already existing primary pores of the gel. In some non-porous hydrogels the secondary pores will also not be formed due to rigid network structure of gels that counteracts the crystal nucleation and growth. We have tested the limits of true reproduction of the hydrogel morphology imposed by the swelling degree and mechanical strength of gels by investigating a series of methacrylate hydrogels made by crosslinking polymerization of glycerol monomethacrylate and 2-hydroxyethyl methacrylate including their interpenetrating networks. The hydrogel morphology was studied using cryo-SEM, HVSEM, environmental scanning electron microscopy (ESEM), laser scanning confocal microscopy (LSCM) and classical wide-field light microscopy (LM). The cryo-SEM and HVSEM yielded artifact-free micrographs for limited range of non-porous hydrogels and for macroporous gels. A true non-porous structure was observed free of artifacts only for hydrogels exhibiting relatively low swelling and high elastic modulus above 0.5 MPa, whereas for highly swollen and/or mechanically weak hydrogels the cryo-SEM/HVSEM experiments resulted in secondary porosity. In this contribution we present several cases of severe artifact formation in PHEMA and PGMA hydrogels during their visualization by cryo-SEM and HVSEM. We also put forward empirical correlation between hydrogel morphological and mechanical parameters and the occurrence and intensity of artifacts.
Collapse
Affiliation(s)
- Zhansaya Kaberova
- Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, Heyrovského náměstí 2, 162 06 Praha 6, Prague, Czech Republic; (Z.K.); (M.N.); (M.V.); (M.Š.)
| | - Evgeny Karpushkin
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia;
| | - Martina Nevoralová
- Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, Heyrovského náměstí 2, 162 06 Praha 6, Prague, Czech Republic; (Z.K.); (M.N.); (M.V.); (M.Š.)
| | - Miroslav Vetrík
- Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, Heyrovského náměstí 2, 162 06 Praha 6, Prague, Czech Republic; (Z.K.); (M.N.); (M.V.); (M.Š.)
| | - Miroslav Šlouf
- Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, Heyrovského náměstí 2, 162 06 Praha 6, Prague, Czech Republic; (Z.K.); (M.N.); (M.V.); (M.Š.)
| | - Miroslava Dušková-Smrčková
- Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, Heyrovského náměstí 2, 162 06 Praha 6, Prague, Czech Republic; (Z.K.); (M.N.); (M.V.); (M.Š.)
| |
Collapse
|
13
|
A review of cryogels synthesis, characterization and applications on the removal of heavy metals from aqueous solutions. Adv Colloid Interface Sci 2020; 276:102088. [PMID: 31887574 DOI: 10.1016/j.cis.2019.102088] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 12/14/2019] [Accepted: 12/15/2019] [Indexed: 01/27/2023]
Abstract
The physical and chemical attributes of cryogels, such as the macroporosity, elasticity, water permeability and ease of chemical modification have attracted strong research interest in a variety of areas, such as water purification, catalysis, regenerative medicine, biotechnology, bioremediation and biosensors. Cryogels have shown high removal efficiency and selectivity for heavy metals, nutrients, and toxic dyes from aqueous solutions but there are challenges when scaling up from lab to commercial scale applications. This paper represents an overview of the most recent advances in the use of cryogels for the removal of heavy metals from water and attempts to fill the gap in the literature by deepening the understanding on the mechanisms involved, which strongly depend on the initial monomer composition and post-modification agent precursors used in synthesis. The review also describes the advantages of cryogels over other adsorbents and covers synthesis and characterization methods such as SEM/EDS, TEM, FTIR, zeta potential measurements, porosimetry, swelling and mechanical properties.
Collapse
|
14
|
Luong TD, Zoughaib M, Garifullin R, Kuznetsova S, Guler MO, Abdullin TI. In Situ functionalization of Poly(hydroxyethyl methacrylate) Cryogels with Oligopeptides via β-Cyclodextrin–Adamantane Complexation for Studying Cell-Instructive Peptide Environment. ACS APPLIED BIO MATERIALS 2019; 3:1116-1128. [DOI: 10.1021/acsabm.9b01059] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Thai Duong Luong
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Russia
| | - Mohamed Zoughaib
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Russia
| | - Ruslan Garifullin
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Russia
- Institute of Materials Science and Nanotechnology, Bilkent University, Ankara 06800, Turkey
| | - Svetlana Kuznetsova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Russia
| | - Mustafa O. Guler
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Timur I. Abdullin
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Russia
| |
Collapse
|
15
|
Cryostructurization of polymeric systems for developing macroporous cryogel as a foundational framework in bioengineering applications. J CHEM SCI 2019. [DOI: 10.1007/s12039-019-1670-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
16
|
Häussling V, Deninger S, Vidoni L, Rinderknecht H, Ruoß M, Arnscheidt C, Athanasopulu K, Kemkemer R, Nussler AK, Ehnert S. Impact of Four Protein Additives in Cryogels on Osteogenic Differentiation of Adipose-Derived Mesenchymal Stem Cells. Bioengineering (Basel) 2019; 6:E67. [PMID: 31394780 PMCID: PMC6784125 DOI: 10.3390/bioengineering6030067] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 07/30/2019] [Accepted: 08/05/2019] [Indexed: 12/21/2022] Open
Abstract
Human adipose-derived mesenchymal stem/stromal cells (Ad-MSCs) have great potential for bone tissue engineering. Cryogels, mimicking the three-dimensional structure of spongy bone, represent ideal carriers for these cells. We developed poly(2-hydroxyethyl methacrylate) cryogels, containing hydroxyapatite to mimic inorganic bone matrix. Cryogels were additionally supplemented with different types of proteins, namely collagen (Coll), platelet-rich plasma (PRP), immune cells-conditioned medium (CM), and RGD peptides (RGD). The different protein components did not affect scaffolds' porosity or water-uptake capacity, but altered pore size and stiffness. Stiffness was highest in scaffolds with PRP (82.3 kPa), followed by Coll (55.3 kPa), CM (45.6 kPa), and RGD (32.8 kPa). Scaffolds with PRP, CM, and Coll had the largest pore diameters (~60 µm). Ad-MSCs were osteogenically differentiated on these scaffolds for 14 days. Cell attachment and survival rates were comparable for all four scaffolds. Runx2 and osteocalcin levels only increased in Ad-MSCs on Coll, PRP and CM cryogels. Osterix levels increased slightly in Ad-MSCs differentiated on Coll and PRP cryogels. With differentiation alkaline phosphatase activity decreased under all four conditions. In summary, besides Coll cryogel our PRP cryogel constitutes as an especially suitable carrier for bone tissue engineering. This is of special interest, as this scaffold can be generated with patients' PRP.
Collapse
Affiliation(s)
- Victor Häussling
- Siegfried Weller Research Institute, BG Unfallklinik Tuebingen, Department of Trauma and Reconstructive Surgery, Eberhard Karls University Tübingen, 72074 Tübingen, Germany
| | - Sebastian Deninger
- Siegfried Weller Research Institute, BG Unfallklinik Tuebingen, Department of Trauma and Reconstructive Surgery, Eberhard Karls University Tübingen, 72074 Tübingen, Germany
| | - Laura Vidoni
- Siegfried Weller Research Institute, BG Unfallklinik Tuebingen, Department of Trauma and Reconstructive Surgery, Eberhard Karls University Tübingen, 72074 Tübingen, Germany
| | - Helen Rinderknecht
- Siegfried Weller Research Institute, BG Unfallklinik Tuebingen, Department of Trauma and Reconstructive Surgery, Eberhard Karls University Tübingen, 72074 Tübingen, Germany
| | - Marc Ruoß
- Siegfried Weller Research Institute, BG Unfallklinik Tuebingen, Department of Trauma and Reconstructive Surgery, Eberhard Karls University Tübingen, 72074 Tübingen, Germany
| | - Christian Arnscheidt
- Siegfried Weller Research Institute, BG Unfallklinik Tuebingen, Department of Trauma and Reconstructive Surgery, Eberhard Karls University Tübingen, 72074 Tübingen, Germany
| | - Kiriaki Athanasopulu
- Department of Applied Chemistry Reutlingen University, 72762 Reutlingen, Germany
| | - Ralf Kemkemer
- Department of Applied Chemistry Reutlingen University, 72762 Reutlingen, Germany
| | - Andreas K Nussler
- Siegfried Weller Research Institute, BG Unfallklinik Tuebingen, Department of Trauma and Reconstructive Surgery, Eberhard Karls University Tübingen, 72074 Tübingen, Germany.
| | - Sabrina Ehnert
- Siegfried Weller Research Institute, BG Unfallklinik Tuebingen, Department of Trauma and Reconstructive Surgery, Eberhard Karls University Tübingen, 72074 Tübingen, Germany
| |
Collapse
|
17
|
Fan C, Ling Y, Deng W, Xue J, Sun P, Wang DA. A novel cell encapsulatable cryogel (CECG) with macro-porous structures and high permeability: a three-dimensional cell culture scaffold for enhanced cell adhesion and proliferation. ACTA ACUST UNITED AC 2019; 14:055006. [PMID: 31269472 DOI: 10.1088/1748-605x/ab2efd] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Hydrogel scaffold is a popular cell delivery vehicle in tissue engineering and regenerative medicine due to its capability to encapsulate cells as well as its modifiable properties. However, the inherent submicron- or nano-sized polymer networks of conventional hydrogel will produce spatial constraints on cellular activities of encapsulated cells. In this study, we endeavor to develop an innovative cell encapsulatable cryogel (CECG) platform with interconnected macro-pores, by combining cell cryopreservation technique with cryogel preparation process. The hyaluronan (HA) CECG constructs are fabricated under the freezing conditions via UV photo-crosslinking of the HA methacrylate (HA-MA) that are dissolved in the 'freezing solvent', namely the phosphate buffered saline supplemented with dimethyl sulphoxide and fetal bovine serum. Two model cell types, chondrocytes and human mesenchymal stem cells (hMSCs), can be uniformly three-dimensionally encapsulated into HA CECG constructs with high cell viability, respectively. The macro-porous structures, generated from phase separation under freezing, endow HA CECG constructs with higher permeability and more living space for cell growth. The chondrocytes encapsulated in HA CECG possess enhanced proliferation and extracellular matrix secretion than those in conventional HA hydrogels. In addition, the HA-Gel CECG constructs, fabricated with HA-MA and gelatin methacrylate precursors, provide cell-adhesive interfaces to facilitate hMSCs attachment and proliferation. The results of this work may lay the foundation for us to explore the applications of the CECG-based scaffolds in the field of tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Changjiang Fan
- Institute for Translational Medicine, College of Medicine, Qingdao University, Qingdao, Shandong 266021, People's Republic of China
| | | | | | | | | | | |
Collapse
|
18
|
Myszka B, Hurle K, Zheng K, Wolf SE, Boccaccini AR. Mechanical improvement of calcium carbonate cements by in situ HEMA polymerization during hardening. J Mater Chem B 2019. [DOI: 10.1039/c9tb00237e] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The brittleness of calcium carbonate-based cements, which currently impedes their exploitation, can be overcome by a straightforward polymer-reinforcement strategy.
Collapse
Affiliation(s)
- Barbara Myszka
- Institute of Biomaterials
- Friedrich-Alexander University Erlangen-Nürnberg (FAU)
- 91058 Erlangen
- Germany
| | - Katrin Hurle
- GeoZentrum Nordbayern – Mineralogy
- Friedrich-Alexander University Erlangen-Nürnberg (FAU)
- 91054 Erlangen
- Germany
| | - Kai Zheng
- Institute of Biomaterials
- Friedrich-Alexander University Erlangen-Nürnberg (FAU)
- 91058 Erlangen
- Germany
| | - Stephan E. Wolf
- Institute of Glass and Ceramics
- Friedrich-Alexander University Erlangen-Nürnberg (FAU)
- 91058 Erlangen
- Germany
- Interdisciplinary Center for Functional Particle Systems (FPS)
| | - Aldo R. Boccaccini
- Institute of Biomaterials
- Friedrich-Alexander University Erlangen-Nürnberg (FAU)
- 91058 Erlangen
- Germany
- Interdisciplinary Center for Functional Particle Systems (FPS)
| |
Collapse
|
19
|
Maji K, Dasgupta S, Pramanik K, Bissoyi A. Preparation and characterization of gelatin-chitosan-nanoβ-TCP based scaffold for orthopaedic application. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018. [DOI: 10.1016/j.msec.2018.02.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
20
|
Bakhshpour M, Yavuz H, Denizli A. Controlled release of mitomycin C from PHEMAH-Cu(II) cryogel membranes. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2018; 46:946-954. [PMID: 29457925 DOI: 10.1080/21691401.2018.1439840] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Molecular imprinting technique was used for the preparation of antibiotic and anti-neoplastic chemotherapy drug (mitomycin C) imprinted cryogel membranes (MMC-ICM). The membranes were synthezied by using metal ion coordination interactions with N-methacryloyl-(l)-histidine methyl ester (MAH) functional monomer and template molecules (i.e. MMC). The 2-hydroxyethyl methacrylate (HEMA) monomer and methylene bisacrylamide (MBAAm) crosslinker were used for the preparation of mitomycin C imprinted cryogel membranes by radical suspension polymerization technique. The imprinted cryogel membranes were characterized by scanning electron microscopy (SEM), Brunauer-Emmett-Teller (BET), Fourier transform infrared spectroscopy-attenuated total reflectance (FTIR-ATR) and swelling degree measurements. Cytotoxicity of MMC-ICMs was investigated using mouse fibroblast cell line L929. Time-dependent release of MMC was demonstrated within 150 h from cryogel membranes. Cryogels demonstrated very high MMC loading efficiency (70-80%) and sustained MMC release over hours.
Collapse
Affiliation(s)
| | - Handan Yavuz
- a Department of Chemistry , Hacettepe University , Ankara , Turkey
| | - Adil Denizli
- a Department of Chemistry , Hacettepe University , Ankara , Turkey
| |
Collapse
|
21
|
Al-Hussain SA, Ezzat AO, Gaffer AK, Atta AM. Removal of organic water pollutant using magnetite nanomaterials embedded with ionic copolymers of 2-acrylamido-2-methylpropane sodium sulfonate cryogels. POLYM INT 2017. [DOI: 10.1002/pi.5492] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Sami A Al-Hussain
- Department of Chemistry, Faculty of Science; Al Imam Mohammad Ibn Saud Islamic University; Riyadh Saudi Arabia
| | - Abdelrhman O Ezzat
- Department of Chemistry, Faculty of Science; Al Imam Mohammad Ibn Saud Islamic University; Riyadh Saudi Arabia
| | - Amany K Gaffer
- Petroleum Application Department; Egyptian Petroleum Research Institute; Nasr City, Cairo Egypt
| | - Ayman M Atta
- Petroleum Application Department; Egyptian Petroleum Research Institute; Nasr City, Cairo Egypt
- Chemistry Department, College of Science; King Saud University; Riyadh Saudi Arabia
| |
Collapse
|
22
|
Orakdogen N, Sanay B. Tailoring the physico-chemical properties and elasticity of poly(hydroxy-functional methacrylate)-based cationically charged gel beads: Combined hydrophobicity and mechanical durability through frozen droplets. Eur Polym J 2017. [DOI: 10.1016/j.eurpolymj.2017.09.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
23
|
Orakdogen N, Sanay B. Poly(Hydroxypropyl methacrylate-co-glycidyl methacrylate): Facile synthesis of well-defined hydrophobic gels containing hydroxy-functional methacrylates. Polym Degrad Stab 2017. [DOI: 10.1016/j.polymdegradstab.2017.08.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
24
|
Noppe W, Deckmyn H. Development and screening of epoxy-spacer-phage cryogels for affinity chromatography: Enhancing the binding capacity. J Sep Sci 2017; 40:2575-2583. [DOI: 10.1002/jssc.201700247] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 04/24/2017] [Accepted: 04/26/2017] [Indexed: 11/11/2022]
Affiliation(s)
- Wim Noppe
- IRF Life Sciences; KU Leuven Campus KULAK Kortrijk; Kortrijk Belgium
| | - Hans Deckmyn
- IRF Life Sciences; KU Leuven Campus KULAK Kortrijk; Kortrijk Belgium
- Laboratory for Thrombosis Research; KU Leuven Campus KULAK Kortrijk; Kortrijk Belgium
| |
Collapse
|
25
|
Andrejčič M, Podgornik A. Effect of pressure drop model implemented for description of pressure drop on chromatographic monolith on estimated adsorbed layer thickness. Chem Eng Sci 2017. [DOI: 10.1016/j.ces.2016.12.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
26
|
Öncel P, Çetin K, Topçu AA, Yavuz H, Denizli A. Molecularly imprinted cryogel membranes for mitomycin C delivery. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2017; 28:519-531. [PMID: 28105892 DOI: 10.1080/09205063.2017.1282772] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
In this study, cryogel-based implantable molecularly imprinted drug delivery systems were designed for the delivery of antineoplastic agent. Mitomycin C imprinted poly(2-hydroxyethyl methacrylate-N-methacryloyl-l-glutamic acid) cryogel membranes were produced by free-radical bulk polymerization under partially frozen conditions. The membranes were characterized by swelling tests, Fourier transform infrared spectroscopy, scanning electron microscopy, surface area measurements and in vitro hemocompatibility tests. In vitro delivery studies were carried out to examine the effects of cross-linker ratio and template content. Mitomycin C imprinted cryogel membranes have megaporous structure (10-100 μm in diameter). The cumulative release of mitomycin C was decreased with increasing cross-linking agent ratio and increased with the amount of template in the cryogel structure. The nature of transport mechanism of the mitomycin C from the membranes was non-Fickian.
Collapse
Affiliation(s)
- Pınar Öncel
- a Bioengineering Division , Hacettepe University , Ankara , Turkey
| | - Kemal Çetin
- b Biochemistry Division, Department of Chemistry , Hacettepe University , Ankara , Turkey
| | - Aykut Arif Topçu
- c Department of Chemistry , Aksaray University , Aksaray , Turkey
| | - Handan Yavuz
- b Biochemistry Division, Department of Chemistry , Hacettepe University , Ankara , Turkey
| | - Adil Denizli
- b Biochemistry Division, Department of Chemistry , Hacettepe University , Ankara , Turkey
| |
Collapse
|
27
|
Cecilia A, Baecker A, Hamann E, Rack A, van de Kamp T, Gruhl FJ, Hofmann R, Moosmann J, Hahn S, Kashef J, Bauer S, Farago T, Helfen L, Baumbach T. Optimizing structural and mechanical properties of cryogel scaffolds for use in prostate cancer cell culturing. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 71:465-472. [PMID: 27987733 DOI: 10.1016/j.msec.2016.10.038] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 09/13/2016] [Accepted: 10/18/2016] [Indexed: 12/31/2022]
Abstract
Prostate cancer (PCa) currently is the second most diagnosed cancer in men and the second most cause of cancer death after lung cancer in Western societies. This sets the necessity of modelling prostatic disorders to optimize a therapy against them. The conventional approach to investigating prostatic diseases is based on two-dimensional (2D) cell culturing. This method, however, does not provide a three-dimensional (3D) environment, therefore impeding a satisfying simulation of the prostate gland in which the PCa cells proliferate. Cryogel scaffolds represent a valid alternative to 2D culturing systems for studying the normal and pathological behavior of the prostate cells thanks to their 3D pore architecture that reflects more closely the physiological environment in which PCa cells develop. In this work the 3D morphology of three potential scaffolds for PCa cell culturing was investigated by means of synchrotron X-ray computed micro tomography (SXCμT) fitting the according requirements of high spatial resolution, 3D imaging capability and low dose requirements very well. In combination with mechanical tests, the results allowed identifying an optimal cryogel architecture, meeting the needs for a well-suited scaffold to be used for 3D PCa cell culture applications. The selected cryogel was then used for culturing prostatic lymph node metastasis (LNCaP) cells and subsequently, the presence of multi-cellular tumor spheroids inside the matrix was demonstrated again by using SXCμT.
Collapse
Affiliation(s)
- A Cecilia
- Institute for Photon Science and Synchrotron Radiation (IPS), Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen, Germany
| | - A Baecker
- Institute of Microstructure Technology (IMT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1 Bldg 329, Eggenstein-Leopoldshafen, Karlsruhe D-76344, Germany
| | - E Hamann
- Institute for Photon Science and Synchrotron Radiation (IPS), Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen, Germany
| | - A Rack
- European Synchrotron Radiation Facility (ESRF), 6 rue Jules Horowitz, 38000 Grenoble, France
| | - T van de Kamp
- Laboratory for Applications of Synchrotron Radiation (LAS), Karlsruhe Institute of Technology, 6980, D-76128 Karlsruhe, Germany
| | - F J Gruhl
- Institute of Microstructure Technology (IMT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1 Bldg 329, Eggenstein-Leopoldshafen, Karlsruhe D-76344, Germany
| | - R Hofmann
- Institute for Photon Science and Synchrotron Radiation (IPS), Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen, Germany
| | - J Moosmann
- Institute of Materials Research, Helmholtz-Zentrum Geesthacht (HZG), Max-Planck-Str. 1, D-21502 Geesthacht, Germany
| | - S Hahn
- Institute for Photon Science and Synchrotron Radiation (IPS), Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen, Germany
| | - J Kashef
- Institute for Photon Science and Synchrotron Radiation (IPS), Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen, Germany
| | - S Bauer
- Institute for Photon Science and Synchrotron Radiation (IPS), Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen, Germany
| | - T Farago
- Institute for Photon Science and Synchrotron Radiation (IPS), Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen, Germany
| | - L Helfen
- Institute for Photon Science and Synchrotron Radiation (IPS), Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen, Germany; European Synchrotron Radiation Facility (ESRF), 6 rue Jules Horowitz, 38000 Grenoble, France
| | - T Baumbach
- Institute for Photon Science and Synchrotron Radiation (IPS), Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen, Germany; Laboratory for Applications of Synchrotron Radiation (LAS), Karlsruhe Institute of Technology, 6980, D-76128 Karlsruhe, Germany
| |
Collapse
|
28
|
Shirbin SJ, Karimi F, Chan NJA, Heath DE, Qiao GG. Macroporous Hydrogels Composed Entirely of Synthetic Polypeptides: Biocompatible and Enzyme Biodegradable 3D Cellular Scaffolds. Biomacromolecules 2016; 17:2981-91. [DOI: 10.1021/acs.biomac.6b00817] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Steven J. Shirbin
- Polymer Science Group, Department of Chemical
and Biomolecular Engineering, and §Department of Chemical
and Biomolecular Engineering, University of Melbourne, Parkville, Melbourne, Victoria 3010, Australia
| | - Fatemeh Karimi
- Polymer Science Group, Department of Chemical
and Biomolecular Engineering, and §Department of Chemical
and Biomolecular Engineering, University of Melbourne, Parkville, Melbourne, Victoria 3010, Australia
| | - Nicholas Jun-An Chan
- Polymer Science Group, Department of Chemical
and Biomolecular Engineering, and §Department of Chemical
and Biomolecular Engineering, University of Melbourne, Parkville, Melbourne, Victoria 3010, Australia
| | - Daniel E. Heath
- Polymer Science Group, Department of Chemical
and Biomolecular Engineering, and §Department of Chemical
and Biomolecular Engineering, University of Melbourne, Parkville, Melbourne, Victoria 3010, Australia
| | - Greg G. Qiao
- Polymer Science Group, Department of Chemical
and Biomolecular Engineering, and §Department of Chemical
and Biomolecular Engineering, University of Melbourne, Parkville, Melbourne, Victoria 3010, Australia
| |
Collapse
|
29
|
von der Ehe C, Buś T, Weber C, Stumpf S, Bellstedt P, Hartlieb M, Schubert US, Gottschaldt M. Glycopolymer-Functionalized Cryogels as Catch and Release Devices for the Pre-Enrichment of Pathogens. ACS Macro Lett 2016; 5:326-331. [PMID: 35614729 DOI: 10.1021/acsmacrolett.5b00856] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
A highly porous cryogel is prepared and subsequently functionalized with an atom transfer radical polymerization (ATRP) initiator at the surface. Two new glycomonomers are introduced, which possess deprotected mannose as well as glucose moieties. These are copolymerized with N-isopropylacrylamide (NiPAm) from the cryogel surface, providing a highly hydrophilic porous material, which is characterized by SEM, FT-IR spectroscopy, and NMR spectroscopy. This functionalized support can be applied for affinity chromatography of whole cells owing to the high pore space and diameter. Such an application is exemplified by investigating the ability to capture Escherichia coli bacteria, revealing selective binding interactions of the bacteria with the mannose glycopolymer-functionalized cryogel surface. Thus, the presented glycopolymer-cryogel represents a promising material for affinity chromatography or enrichment of cells.
Collapse
Affiliation(s)
- Christian von der Ehe
- Laboratory
of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstraße 10, 07743 Jena, Germany
- Jena
Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
- Dutch Polymer Institute (DPI), John F. Kennedylaan 2, 5612 AB Eindhoven, The Netherlands
| | - Tanja Buś
- Laboratory
of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstraße 10, 07743 Jena, Germany
- Jena
Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
| | - Christine Weber
- Laboratory
of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstraße 10, 07743 Jena, Germany
- Jena
Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
| | - Steffi Stumpf
- Laboratory
of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstraße 10, 07743 Jena, Germany
- Jena
Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
| | - Peter Bellstedt
- Laboratory
of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstraße 10, 07743 Jena, Germany
| | - Matthias Hartlieb
- Laboratory
of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstraße 10, 07743 Jena, Germany
- Jena
Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
| | - Ulrich S. Schubert
- Laboratory
of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstraße 10, 07743 Jena, Germany
- Jena
Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
- Dutch Polymer Institute (DPI), John F. Kennedylaan 2, 5612 AB Eindhoven, The Netherlands
| | - Michael Gottschaldt
- Laboratory
of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstraße 10, 07743 Jena, Germany
- Jena
Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
| |
Collapse
|
30
|
Abstract
The preparation of macroporous zwitterionic cryogels and their excellent protein encapsulation and sustained release properties are reported.
Collapse
Affiliation(s)
- Gulsu Sener
- Department of Chemical & Biological Engineering
- Colorado School of Mines
- Golden
- USA
| | - Melissa D. Krebs
- Department of Chemical & Biological Engineering
- Colorado School of Mines
- Golden
- USA
| |
Collapse
|
31
|
Polanowski P, Jeszka JK, Krysiak K, Matyjaszewski K. Influence of intramolecular crosslinking on gelation in living copolymerization of monomer and divinyl cross-linker. Monte Carlo simulation studies. POLYMER 2015. [DOI: 10.1016/j.polymer.2015.10.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
32
|
Vlakh EG, Korzhikov VA, Hubina AV, Tennikova TB. Molecular imprinting: a tool of modern chemistry for the preparation of highly selective monolithic sorbents. RUSSIAN CHEMICAL REVIEWS 2015. [DOI: 10.1070/rcr4501] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
33
|
Gyarmati B, Mészár EZ, Kiss L, Deli MA, László K, Szilágyi A. Supermacroporous chemically cross-linked poly(aspartic acid) hydrogels. Acta Biomater 2015; 22:32-8. [PMID: 25922304 DOI: 10.1016/j.actbio.2015.04.033] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Revised: 04/05/2015] [Accepted: 04/21/2015] [Indexed: 12/17/2022]
Abstract
Chemically cross-linked poly(aspartic acid) (PASP) gels were prepared by a solid-liquid phase separation technique, cryogelation, to achieve a supermacroporous interconnected pore structure. The precursor polymer of PASP, polysuccinimide (PSI) was cross-linked below the freezing point of the solvent and the forming crystals acted as templates for the pores. Dimethyl sulfoxide was chosen as solvent instead of the more commonly used water. Thus larger temperatures could be utilized for the preparation and the drawback of increase in specific volume of water upon freezing could be eliminated. The morphology of the hydrogels was characterized by scanning electron microscopy and interconnectivity of the pores was proven by the small flow resistance of the gels. Compression tests also confirmed the interconnected porous structure and the complete re-swelling and shape recovery of the supermacroporous PASP hydrogels. The prepared hydrogels are of interest for several biomedical applications as scaffolding materials because of their cytocompatibility, controllable morphology and pH-responsive character.
Collapse
Affiliation(s)
- Benjámin Gyarmati
- Department of Physical Chemistry and Materials Science, Budapest University of Technology and Economics, Budafoki út 8., H-1111 Budapest, Hungary.
| | - E Zsuzsanna Mészár
- Department of Physical Chemistry and Materials Science, Budapest University of Technology and Economics, Budafoki út 8., H-1111 Budapest, Hungary.
| | - Lóránd Kiss
- Institute of Biophysics, Biological Research Centre of the Hungarian Academy of Sciences, Temesvári krt. 62, H-6726 Szeged, Hungary.
| | - Mária A Deli
- Institute of Biophysics, Biological Research Centre of the Hungarian Academy of Sciences, Temesvári krt. 62, H-6726 Szeged, Hungary.
| | - Krisztina László
- Department of Physical Chemistry and Materials Science, Budapest University of Technology and Economics, Budafoki út 8., H-1111 Budapest, Hungary.
| | - András Szilágyi
- Department of Physical Chemistry and Materials Science, Budapest University of Technology and Economics, Budafoki út 8., H-1111 Budapest, Hungary.
| |
Collapse
|
34
|
Rich MH, Lee MK, Marshall N, Clay N, Chen J, Mahmassani Z, Boppart M, Kong H. Water–Hydrogel Binding Affinity Modulates Freeze-Drying-Induced Micropore Architecture and Skeletal Myotube Formation. Biomacromolecules 2015; 16:2255-64. [DOI: 10.1021/acs.biomac.5b00652] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
| | | | | | | | | | | | | | - Hyunjoon Kong
- Department
of Chemical Engineering, Soongsil University, Seoul, Korea
| |
Collapse
|
35
|
Abstract
Cryogels are highly elastic three-dimensional materials consisting of a network of interconnected macropores. This unique morphology combined with high mechanical and chemical stability provides excellent mass flow properties. The matrices are synthesized at subzero temperatures from almost any gel-forming precursor. The main fields of application are in biotechnology as 3D-scaffold for cell cultivation, and tissue engineering, or bioseparation as chromatographic media for the separation and purification of biomolecules. This chapter briefly highlights the preparation, properties, and application of these materials.
Collapse
Affiliation(s)
- Senta Reichelt
- Leibniz-Institut für Oberflächenmodifizierung, Permoserstraße 15, Leipzig, 04318, Germany,
| |
Collapse
|
36
|
Dragan ES, Dinu MV. Interpenetrating polymer network composite cryogels with tailored porous morphology and sorption properties. Methods Mol Biol 2015; 1286:239-252. [PMID: 25749960 DOI: 10.1007/978-1-4939-2447-9_20] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Cryogels, by their particular morphology and mechanical properties, proved to be invaluable materials in biomedicine and biotechnology as carriers for molecules and cells, chromatographic materials for cell separations and cell culture. Methods used in the characterization of porosity and sorption properties of cryogels are very needful tools, which assist the investigator in the decision on the performances of the gel. Herein, we describe the preparation of ionic interpenetrating polymer network composite cryogels and the characterization methods of their porous morphology, and then the methods used for testing their sorption properties for ionic dyes used as models for drugs.
Collapse
Affiliation(s)
- Ecaterina Stela Dragan
- "Petru Poni" Institute of Macromolecular Chemistry, Aleea Grigore Ghica Voda 41A, 700487, Iasi, Romania,
| | | |
Collapse
|
37
|
Macroporous cryogel based spin column with immobilized concanavalin A for isolation of glycoproteins. Electrophoresis 2014; 36:1344-8. [DOI: 10.1002/elps.201400413] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Revised: 09/26/2014] [Accepted: 10/01/2014] [Indexed: 11/07/2022]
|
38
|
Přádný M, Dušková-Smrčková M, Dušek K, Janoušková O, Sadakbayeva Z, Šlouf M, Michálek J. Macroporous 2-hydroxyethyl methacrylate hydrogels of dual porosity for cell cultivation: morphology, swelling, permeability, and mechanical behavior. JOURNAL OF POLYMER RESEARCH 2014. [DOI: 10.1007/s10965-014-0579-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
39
|
Hu YY, Zhang J, Fang QC, Jiang DM, Lin CC, Zeng Y, Jiang JS. Salt and pH sensitive semi-interpenetrating polyelectrolyte hydrogels poly(HEMA-co-METAC)/PEG and its BSA adsorption behavior. J Appl Polym Sci 2014. [DOI: 10.1002/app.41537] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Yan-Yan Hu
- Department of Physics; Center for Functional Nanomateriels and Devices, East China Normal University; Shanghai 200241 People's Republic of China
| | - Jing Zhang
- Shanghai Key Laboratory of Diabeties Mellitus, Shanghai Diabetes Institute, Shanghai Clinical Center for Diabetes; Shanghai 200233 People's Republic of China
- Department of Endocrinology and Metabolism; Shanghai Jiao Tong University Affiliated Sixth People's Hospital; Shanghai 200233 People's Republic of China
| | - Qi-Chen Fang
- Shanghai Key Laboratory of Diabeties Mellitus, Shanghai Diabetes Institute, Shanghai Clinical Center for Diabetes; Shanghai 200233 People's Republic of China
- Department of Endocrinology and Metabolism; Shanghai Jiao Tong University Affiliated Sixth People's Hospital; Shanghai 200233 People's Republic of China
| | - Dong-Mei Jiang
- Department of Physics; Center for Functional Nanomateriels and Devices, East China Normal University; Shanghai 200241 People's Republic of China
| | - Chu-Cheng Lin
- Shanghai Institute of Ceramics; Chinese Academy of Science; Shanghai 200050 People's Republic of China
| | - Yi Zeng
- Shanghai Institute of Ceramics; Chinese Academy of Science; Shanghai 200050 People's Republic of China
| | - Ji-Sen Jiang
- Department of Physics; Center for Functional Nanomateriels and Devices, East China Normal University; Shanghai 200241 People's Republic of China
| |
Collapse
|
40
|
Ertürk G, Mattiasson B. Cryogels-versatile tools in bioseparation. J Chromatogr A 2014; 1357:24-35. [DOI: 10.1016/j.chroma.2014.05.055] [Citation(s) in RCA: 125] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Revised: 05/20/2014] [Accepted: 05/20/2014] [Indexed: 11/26/2022]
|
41
|
The in vitro characterization of a gelatin scaffold, prepared by cryogelation and assessed in vivo as a dermal replacement in wound repair. Acta Biomater 2014; 10:3156-66. [PMID: 24704695 DOI: 10.1016/j.actbio.2014.03.027] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Revised: 03/14/2014] [Accepted: 03/25/2014] [Indexed: 02/04/2023]
Abstract
A sheet gelatin scaffold with attached silicone pseudoepidermal layer for wound repair purposes was produced by a cryogelation technique. The resulting scaffold possessed an interconnected macroporous structure with a pore size distribution of 131 ± 17 μm at one surface decreasing to 30 ± 8 μm at the attached silicone surface. The dynamic storage modulus (G') and mechanical stability were comparable to the clinical gold standard dermal regeneration template, Integra®. The scaffolds were seeded in vitro with human primary dermal fibroblasts. The gelatin based material was not only non-cytotoxic, but over a 28 day culture period also demonstrated advantages in cell migration, proliferation and distribution within the matrix when compared with Integra®. When seeded with human keratinocytes, the neoepidermal layer that formed over the cryogel scaffold appeared to be more advanced and mature when compared with that formed over Integra®. The in vivo application of the gelatin scaffold in a porcine wound healing model showed that the material supports wound healing by allowing host cellular infiltration, biointegration and remodelling. The results of our in vitro and in vivo studies suggest that the gelatin based scaffold produced by a cryogelation technique is a promising material for dermal substitution, wound healing and other potential biomedical applications.
Collapse
|
42
|
|
43
|
Reichelt S, Becher J, Weisser J, Prager A, Decker U, Möller S, Berg A, Schnabelrauch M. Biocompatible polysaccharide-based cryogels. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2013; 35:164-70. [PMID: 24411364 DOI: 10.1016/j.msec.2013.10.034] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Revised: 10/02/2013] [Accepted: 10/29/2013] [Indexed: 12/01/2022]
Abstract
This study focuses on the development of novel biocompatible macroporous cryogels by electron-beam assisted free-radical crosslinking reaction of polymerizable dextran and hyaluronan derivatives. As a main advantage this straightforward approach provides highly pure materials of high porosity without using additional crosslinkers or initiators. The cryogels were characterized with regard to their morphology and their basic properties including thermal and mechanical characteristics, and swellability. It was found that the applied irradiation dose and the chemical composition strongly influence the material properties of the resulting cryogels. Preliminary cytotoxicity tests illustrate the excellent in vitro-cytocompatibility of the fabricated cryogels making them especially attractive as matrices in tissue regeneration procedures.
Collapse
Affiliation(s)
- Senta Reichelt
- Leibniz Institute of Surface Modification, Permoserstr. 15, 04318 Leipzig, Germany.
| | - Jana Becher
- Innovent e.V., Pruessingstr. 27B, 07745 Jena, Germany
| | | | - Andrea Prager
- Leibniz Institute of Surface Modification, Permoserstr. 15, 04318 Leipzig, Germany
| | - Ulrich Decker
- Leibniz Institute of Surface Modification, Permoserstr. 15, 04318 Leipzig, Germany
| | | | - Albrecht Berg
- Innovent e.V., Pruessingstr. 27B, 07745 Jena, Germany
| | | |
Collapse
|
44
|
Morphogical and swelling properties of porous hydrogels based on poly(hydroxyethyl methacrylate) and chitosan modulated by ice-templating process and porogen leaching. JOURNAL OF POLYMER RESEARCH 2013. [DOI: 10.1007/s10965-013-0285-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
45
|
Carvalho BMA, Da Silva SL, Da Silva LHM, Minim VPR, Da Silva MCH, Carvalho LM, Minim LA. Cryogel Poly(acrylamide): Synthesis, Structure and Applications. SEPARATION AND PURIFICATION REVIEWS 2013. [DOI: 10.1080/15422119.2013.795902] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
46
|
Gümüşderelioğlu M, Çakmak S, Timuçin HÖ, Çakmak AS. Thermosensitive PHEMA microcarriers: ATRP synthesis, characterization, and usabilities in cell cultures. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2013; 24:2110-25. [DOI: 10.1080/09205063.2013.827104] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Menemşe Gümüşderelioğlu
- Chemical Engineering, Hacettepe University, 06800, Beytepe, Ankara, Turkey
- Nanotechnology and Nanomedicine, Hacettepe University, 06800, Beytepe, Ankara, Turkey
- Bioengineering Departments, Hacettepe University, 06800, Beytepe, Ankara, Turkey
| | - Soner Çakmak
- Nanotechnology and Nanomedicine, Hacettepe University, 06800, Beytepe, Ankara, Turkey
| | - H. Özgen Timuçin
- Chemical Engineering, Hacettepe University, 06800, Beytepe, Ankara, Turkey
| | - Anıl S. Çakmak
- Bioengineering Departments, Hacettepe University, 06800, Beytepe, Ankara, Turkey
| |
Collapse
|
47
|
Dinu MV, Přádný M, Drăgan ES, Michálek J. Ice-templated hydrogels based on chitosan with tailored porous morphology. Carbohydr Polym 2013; 94:170-8. [DOI: 10.1016/j.carbpol.2013.01.084] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Revised: 11/14/2012] [Accepted: 01/13/2013] [Indexed: 11/17/2022]
|
48
|
Dragan ES, Apopei DF. Multiresponsive macroporous semi-IPN composite hydrogels based on native or anionically modified potato starch. Carbohydr Polym 2013; 92:23-32. [DOI: 10.1016/j.carbpol.2012.08.082] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Revised: 08/22/2012] [Accepted: 08/23/2012] [Indexed: 10/28/2022]
|
49
|
He W, Jiang H, Zhang L, Cheng Z, Zhu X. Atom transfer radical polymerization of hydrophilic monomers and its applications. Polym Chem 2013. [DOI: 10.1039/c3py00122a] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
50
|
Gun'ko VM, Savina IN, Mikhalovsky SV. Cryogels: morphological, structural and adsorption characterisation. Adv Colloid Interface Sci 2013; 187-188:1-46. [PMID: 23218507 DOI: 10.1016/j.cis.2012.11.001] [Citation(s) in RCA: 166] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Revised: 10/02/2012] [Accepted: 11/01/2012] [Indexed: 12/21/2022]
Abstract
Experimental results on polymer, protein, and composite cryogels and data treatment methods used for morphological, textural, structural, adsorption and diffusion characterisation of the materials are analysed and compared. Treatment of microscopic images with specific software gives quantitative structural information on both native cryogels and freeze-dried materials that is useful to analyse the drying effects on their structure. A combination of cryoporometry, relaxometry, thermoporometry, small angle X-ray scattering (SAXS), equilibrium and kinetic adsorption of low and high-molecular weight compounds, diffusion breakthrough of macromolecules within macroporous cryogel membranes, studying interactions of cells with cryogels provides a consistent and comprehensive picture of textural, structural and adsorption properties of a variety of cryogels. This analysis allows us to establish certain regularities in the cryogel properties related to narrow (diameter 0.4<d<2 nm), middle (2<d<50 nm) and broad (50<d<100 nm) nanopores, micropores (100 nm<d<100 μm) and macropores (d>100 μm) with boundary sizes within modified life science pore classification. Particular attention is paid to water bound in cryogels in native superhydrated or freeze-dried states. At least, five states of water - free unbound, weakly bound (changes in the Gibbs free energy-ΔG<0.5-0.8 kJ/mol) and strongly bound (-ΔG>0.8 kJ/mol), and weakly associated (chemical shift of the proton resonance δ(H)=1-2 ppm) and strongly associated (δ(H)=3-6 ppm) waters can be distinguished in hydrated cryogels using (1)H NMR, DSC, TSDC, TG and other methods. Different software for image treatment or developed to analyse the data obtained with the adsorption, diffusion, SAXS, cryoporometry and thermoporometry methods and based on regularisation algorithms is analysed and used for the quantitative morphological, structural and adsorption characterisation of individual and composite cryogels, including polymers filled with solid nano- or microparticles.
Collapse
Affiliation(s)
- Vladimir M Gun'ko
- Chuiko Institute of Surface Chemistry, 17 General Naumov Street, Kiev 03164, Ukraine.
| | | | | |
Collapse
|