1
|
Eissa AG, Gozzi F, Aloqab O, Parrish CE, Mohamed N, Shiali I, Al-Baldawi H, Foster PA, Simons C. Development of benzofuran-derived sulfamates as dual aromatase-steroid sulfatase inhibitors (DASIs): design, synthesis and biological evaluation. RSC Med Chem 2025:d4md00795f. [PMID: 39911137 PMCID: PMC11792066 DOI: 10.1039/d4md00795f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 01/07/2025] [Indexed: 02/07/2025] Open
Abstract
Resistance of oestrogen receptor-positive (ER+) breast cancer, the most prevalent type of breast cancer accounting for ∼70% of all cases, to current therapies necessitates the study of alternative strategies. One promising strategy is the multi-targeting approach using dual aromatase-steroid sulfatase inhibitors (DASIs). Herein, we describe the development of DASIs using a common benzofuran pharmacophore. Triazole benzofuran sulfamates were found to have low nM aromatase (Arom) inhibitory activity but no steroid sulfatase (STS) inhibitory activity (IC50 > 10 μM); by contrast, benzofuran ketone sulfamates demonstrated low nM STS inhibitory activity but no Arom inhibitory activity (IC50 > 1 μM). The addition of a methyl group at the 3rd position of the benzofuran ring in the benzofuran ketone sulfamate 19 (R1 = CH3) had a notable effect, resulting in dual aromatase and STS inhibitory activities with the 4-chloro derivative 19b (Arom IC50 = 137 nM, STS IC50 = 48 nM) and 4-methoxy derivative 19e (Arom IC50 = 35 nM, STS IC50 = 164 nM) optimal for dual inhibition. Arom/STS inhibition results combined with molecular dynamics studies provided a clear rationale for the activity observed.
Collapse
Affiliation(s)
- Ahmed G Eissa
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University King Edward VII Avenue Cardiff CF10 3NB UK
- College of Pharmacy, Al Ain University Abu Dhabi United Arab Emirates
- Department of Medicinal Chemistry, Faculty of Pharmacy, Zagazig University Zagazig P.C. 44519 Egypt
| | - Francesca Gozzi
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University King Edward VII Avenue Cardiff CF10 3NB UK
| | - Oqab Aloqab
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University King Edward VII Avenue Cardiff CF10 3NB UK
| | - Charlotte E Parrish
- Department of Metabolism and Systems Science, School of Medical Sciences, College of Medicine and Health, University of Birmingham Birmingham B15 2TT UK
| | - Nadira Mohamed
- Department of Metabolism and Systems Science, School of Medical Sciences, College of Medicine and Health, University of Birmingham Birmingham B15 2TT UK
| | - Irene Shiali
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University King Edward VII Avenue Cardiff CF10 3NB UK
| | - Harith Al-Baldawi
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University King Edward VII Avenue Cardiff CF10 3NB UK
| | - Paul A Foster
- Department of Metabolism and Systems Science, School of Medical Sciences, College of Medicine and Health, University of Birmingham Birmingham B15 2TT UK
| | - Claire Simons
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University King Edward VII Avenue Cardiff CF10 3NB UK
| |
Collapse
|
2
|
Ilovaisky AI, Scherbakov AM, Chernoburova EI, Povarov AA, Shchetinina MA, Merkulova VM, Salnikova DI, Sorokin DV, Bozhenko EI, Zavarzin IV, Terent'ev AO. Secosteroid thiosemicarbazides and secosteroid-1,2,4-triazoles as antiproliferative agents targeting breast cancer cells: Synthesis and biological evaluation. J Steroid Biochem Mol Biol 2023; 234:106386. [PMID: 37666392 DOI: 10.1016/j.jsbmb.2023.106386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/14/2023] [Accepted: 08/27/2023] [Indexed: 09/06/2023]
Abstract
A convenient and selective approach to 13,17-secoestra-1,3,5(10)-trien-17-oic acid [N'-arylcarbothioamido]hydrazides and hybrid molecules containing secosteroid and 1,2,4-triazole fragments was disclosed and these novel types of secosteroids were screened for cytotoxicity against hormone-dependent human breast cancer cell line MCF-7. Most of secosteroid-1,2,4-triazole hybrids showed significant cytotoxic effect comparable or superior to that of the reference drug cisplatin. Hit secosteroid-1,2,4-triazole hybrids 4b and 4h were characterized by high cytotoxicity and good selectivity towards MCF-7 breast cancer cells. PARP cleavage (marker of apoptosis) and ERα and cyclin D1 downregulation were discovered in MCF-7 cells treated with lead secosteroid-1,2,4-triazole hybrid 4b. The synthesized secosteroids may be considered as new promising anticancer agents.
Collapse
Affiliation(s)
- Alexey I Ilovaisky
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospect 47, Moscow 119991, Russia
| | - Alexander M Scherbakov
- N.N. Blokhin National Medical Research Center of Oncology, Kashirskoye shosse 24, Moscow 115522, Russia
| | - Elena I Chernoburova
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospect 47, Moscow 119991, Russia
| | - Andrey A Povarov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospect 47, Moscow 119991, Russia
| | - Marina A Shchetinina
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospect 47, Moscow 119991, Russia
| | - Valentina M Merkulova
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospect 47, Moscow 119991, Russia
| | - Diana I Salnikova
- N.N. Blokhin National Medical Research Center of Oncology, Kashirskoye shosse 24, Moscow 115522, Russia
| | - Danila V Sorokin
- N.N. Blokhin National Medical Research Center of Oncology, Kashirskoye shosse 24, Moscow 115522, Russia
| | - Eugene I Bozhenko
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospect 47, Moscow 119991, Russia
| | - Igor V Zavarzin
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospect 47, Moscow 119991, Russia
| | - Alexander O Terent'ev
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospect 47, Moscow 119991, Russia.
| |
Collapse
|
3
|
Wang L, Zheng Y, Zhou X, Wang H, Yan Q, Wang W, Chen F. Synthesis of α-Aryl Nitriles via Nucleophilic Substitution of α-Cyanohydrin Methanesulfonates with Malonates. CHINESE J ORG CHEM 2023. [DOI: 10.6023/cjoc202208029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
|
4
|
Mohamed A, Salah M, Tahoun M, Hawner M, Abdelsamie AS, Frotscher M. Dual Targeting of Steroid Sulfatase and 17β-Hydroxysteroid Dehydrogenase Type 1 by a Novel Drug-Prodrug Approach: A Potential Therapeutic Option for the Treatment of Endometriosis. J Med Chem 2022; 65:11726-11744. [PMID: 35993890 DOI: 10.1021/acs.jmedchem.2c00589] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A novel approach for the dual inhibition of steroid sulfatase (STS) and 17β-hydroxysteroid dehydrogenase type 1(17β HSD1) by a single drug was explored, starting from in-house 17β HSD1 inhibitors via masking their phenolic OH group with a sulfamate ester. The sulfamates were intentionally designed as drugs for the inhibition of STS and, at the same time, prodrugs for 17β-HSD1 inhibition ("drug-prodrug approach"). The most promising sulfamates 13, 16, 18-20, 22-24, 36, and 37 showed nanomolar IC50 values for STS inhibition in a cellular assay and their corresponding phenols displayed potent 17β-HSD1 inhibition in cell-free and cellular assays, high selectivity over 17β-HSD2, reasonable metabolic stability, and low estrogen receptor α affinity. A close relationship was found between the liberation of the phenolic compound by sulfamate hydrolysis and 17β-HSD1 inactivation. These results showed that the envisaged drug-prodrug concept was successfully implemented. The novel compounds constitute a promising class of therapeutics for the treatment of endometriosis and other estrogen-dependent diseases.
Collapse
Affiliation(s)
- Abdelrahman Mohamed
- Department of Pharmacy, Pharmaceutical and Medicinal Chemistry, Saarland University, Campus C23, Saarbrücken D-66123, Germany.,Pharmaceutical Organic Chemistry Department, Assiut University, Assiut 71526, Egypt
| | - Mohamed Salah
- Department of Pharmacy, Pharmaceutical and Medicinal Chemistry, Saarland University, Campus C23, Saarbrücken D-66123, Germany.,Department of Pharmaceutical Chemistry, Faculty of Pharmacy, October University for Modern Sciences and Arts, Cairo 12451, Egypt
| | - Mariam Tahoun
- Department of Pharmacy, Pharmaceutical and Medicinal Chemistry, Saarland University, Campus C23, Saarbrücken D-66123, Germany
| | - Manuel Hawner
- Department of Pharmacy, Pharmaceutical and Medicinal Chemistry, Saarland University, Campus C23, Saarbrücken D-66123, Germany
| | - Ahmed S Abdelsamie
- Department of Chemistry of Natural and Microbial Products, Institute of Pharmaceutical and Drug Industries Research, National Research Centre, El-Buhouth St., Dokki, P.O. Box 12622 Cairo 12451, Egypt.,Department of Drug Design and Optimization, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI), Campus Building E81, Saarbrücken 66123, Germany
| | - Martin Frotscher
- Department of Pharmacy, Pharmaceutical and Medicinal Chemistry, Saarland University, Campus C23, Saarbrücken D-66123, Germany
| |
Collapse
|
5
|
Douthwaite JL, Phipps RJ. Extended sulfonated bipyridine ligands targeting the para-selective borylation of arenes. Tetrahedron 2022. [DOI: 10.1016/j.tet.2022.132831] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
6
|
Foster PA. Steroid Sulphatase and Its Inhibitors: Past, Present, and Future. Molecules 2021; 26:2852. [PMID: 34064842 PMCID: PMC8151039 DOI: 10.3390/molecules26102852] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/30/2021] [Accepted: 05/03/2021] [Indexed: 12/22/2022] Open
Abstract
Steroid sulphatase (STS), involved in the hydrolysis of steroid sulphates, plays an important role in the formation of both active oestrogens and androgens. Since these steroids significantly impact the proliferation of both oestrogen- and androgen-dependent cancers, many research groups over the past 30 years have designed and developed STS inhibitors. One of the main contributors to this field has been Prof. Barry Potter, previously at the University of Bath and now at the University of Oxford. Upon Prof. Potter's imminent retirement, this review takes a look back at the work on STS inhibitors and their contribution to our understanding of sulphate biology and as potential therapeutic agents in hormone-dependent disease. A number of potent STS inhibitors have now been developed, one of which, Irosustat (STX64, 667Coumate, BN83495), remains the only one to have completed phase I/II clinical trials against numerous indications (breast, prostate, endometrial). These studies have provided new insights into the origins of androgens and oestrogens in women and men. In addition to the therapeutic role of STS inhibition in breast and prostate cancer, there is now good evidence to suggest they may also provide benefits in patients with colorectal and ovarian cancer, and in treating endometriosis. To explore the potential of STS inhibitors further, a number of second- and third-generation inhibitors have been developed, together with single molecules that possess aromatase-STS inhibitory properties. The further development of potent STS inhibitors will allow their potential therapeutic value to be explored in a variety of hormone-dependent cancers and possibly other non-oncological conditions.
Collapse
Affiliation(s)
- Paul A. Foster
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham B15 2TT, UK; ; Tel.: +44-121-414-3776
- Centre for Endocrinology, Metabolism and Diabetes, University of Birmingham, Birmingham Health Partners, Birmingham B15 2TT, UK
| |
Collapse
|
7
|
Daśko M, Demkowicz S, Biernacki K, Ciupak O, Kozak W, Masłyk M, Rachon J. Recent progress in the development of steroid sulphatase inhibitors - examples of the novel and most promising compounds from the last decade. J Enzyme Inhib Med Chem 2020; 35:1163-1184. [PMID: 32363947 PMCID: PMC7241464 DOI: 10.1080/14756366.2020.1758692] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 04/16/2020] [Accepted: 04/16/2020] [Indexed: 01/08/2023] Open
Abstract
The purpose of this review article is to provide an overview of recent achievements in the synthesis of novel steroid sulphatase (STS) inhibitors. STS is a crucial enzyme in the biosynthesis of active hormones (including oestrogens and androgens) and, therefore, represents an extremely attractive molecular target for the development of hormone-dependent cancer therapies. The inhibition of STS may effectively reduce the availability of active hormones for cancer cells, causing a positive therapeutic effect. Herein, we report examples of novel STS inhibitors based on steroidal and nonsteroidal cores that contain various functional groups (e.g. sulphamate and phosphorus moieties) and halogen atoms, which may potentially be used in therapies for hormone-dependent cancers. The presented work also includes examples of multitargeting agents with STS inhibitory activities. Furthermore, the fundamental discoveries in the development of the most promising drug candidates exhibiting STS inhibitory activities are highlighted.
Collapse
Affiliation(s)
- Mateusz Daśko
- Department of Inorganic Chemistry, Faculty of Chemistry, Gdansk University of Technology, Gdansk, Poland
| | - Sebastian Demkowicz
- Department of Organic Chemistry, Faculty of Chemistry, Gdansk University of Technology, Gdansk, Poland
| | - Karol Biernacki
- Department of Organic Chemistry, Faculty of Chemistry, Gdansk University of Technology, Gdansk, Poland
| | - Olga Ciupak
- Department of Organic Chemistry, Faculty of Chemistry, Gdansk University of Technology, Gdansk, Poland
| | - Witold Kozak
- Department of Physical Chemistry, Faculty of Chemistry, University of Gdansk, Gdansk, Poland
| | - Maciej Masłyk
- Department of Molecular Biology, Faculty of Biotechnology and Environment Sciences, The John Paul II Catholic University of Lublin, Lublin, Poland
| | - Janusz Rachon
- Department of Organic Chemistry, Faculty of Chemistry, Gdansk University of Technology, Gdansk, Poland
| |
Collapse
|
8
|
Saha T, Makar S, Swetha R, Gutti G, Singh SK. Estrogen signaling: An emanating therapeutic target for breast cancer treatment. Eur J Med Chem 2019; 177:116-143. [PMID: 31129450 DOI: 10.1016/j.ejmech.2019.05.023] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 04/29/2019] [Accepted: 05/06/2019] [Indexed: 12/15/2022]
Abstract
Breast cancer, a most common malignancy in women, was known to be associated with steroid hormone estrogen. The discovery of estrogen receptor (ER) gave us not only a powerful predictive and prognostic marker, but also an efficient target for the treatment of hormone-dependent breast cancer with various estrogen ligands. ER consists of two subtypes i.e. ERα and ERβ, that are mostly G-protein-coupled receptors and activated by estrogen, specially 17β-estradiol. The activation is followed by translocation into the nucleus and binding with DNA to modulate activities of different genes. ERs can manage synthesis of RNA through genomic actions without directly binding to DNA. Receptors are tethered by protein-protein interactions to a transcription factor complex to communicate with DNA. Estrogens also exhibit nongenomic actions, a characteristic feature of steroid hormones, which are so rapid to be considered by the activation of RNA and translation. These are habitually related to stimulation of different protein kinase cascades. Majority of post-menopausal breast cancer is estrogen dependent, mostly potent biological estrogen (E2) for continuous growth and proliferation. Estrogen helps in regulating the differentiation and proliferation of normal breast epithelial cells. In this review we have investigated the important role of ER in development and progression of breast cancer, which is complicated by receptor's interaction with co-regulatory proteins, cross-talk with other signal transduction pathways and development of treatment strategies viz. selective estrogen receptor modulators (SERMs), selective estrogen receptor down regulators (SERDs), aromatase and sulphatase inhibitors.
Collapse
Affiliation(s)
- Tanmay Saha
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (BHU), Varanasi, 221005, U.P, India
| | - Subhajit Makar
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (BHU), Varanasi, 221005, U.P, India
| | - Rayala Swetha
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (BHU), Varanasi, 221005, U.P, India
| | - Gopichand Gutti
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (BHU), Varanasi, 221005, U.P, India
| | - Sushil K Singh
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (BHU), Varanasi, 221005, U.P, India.
| |
Collapse
|
9
|
Sahin Z, Ertas M, Berk B, Biltekin SN, Yurttas L, Demirayak S. Studies on non-steroidal inhibitors of aromatase enzyme; 4-(aryl/heteroaryl)-2-(pyrimidin-2-yl)thiazole derivatives. Bioorg Med Chem 2018. [DOI: 10.1016/j.bmc.2018.02.048] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
10
|
Adhikari N, Amin SA, Saha A, Jha T. Combating breast cancer with non-steroidal aromatase inhibitors (NSAIs): Understanding the chemico-biological interactions through comparative SAR/QSAR study. Eur J Med Chem 2017. [DOI: 10.1016/j.ejmech.2017.05.041] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
11
|
Gupta P, Mahajan A. Shades of chemical beauty: An overview of synthetic routes to some anticancer drugs. SYNTHETIC COMMUN 2017. [DOI: 10.1080/00397911.2017.1324627] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Princy Gupta
- Department of Chemistry and Chemical Sciences, Central University of Jammu, Jammu, India
| | - Aman Mahajan
- Research and Development Centre, Apeejay Stya Research Foundation, Gurgaon, India
| |
Collapse
|
12
|
Abebe H, Vidavalur S, Battula VR. An Efficient N
-Bu4
NI-Catalyzed Protocol for the Synthesis of Hemiaminal Ethers by Linking Ethers with 1,2,4-Triazoles and Indazoles via
Cross Dehydrogenative Coupling Reaction. ChemistrySelect 2017. [DOI: 10.1002/slct.201700241] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Habtamu Abebe
- Departement of Organic Chemistry and FDW; College of Science and Technology; Andhra University; Visakhapatnam Andhra Pradesh India
| | - Siddaiah Vidavalur
- Departement of Organic Chemistry and FDW; College of Science and Technology; Andhra University; Visakhapatnam Andhra Pradesh India
| | - Venkateswara Rao Battula
- Departement of Organic Chemistry and FDW; College of Science and Technology; Andhra University; Visakhapatnam Andhra Pradesh India
| |
Collapse
|
13
|
Designing multi-targeted agents: An emerging anticancer drug discovery paradigm. Eur J Med Chem 2017; 136:195-211. [PMID: 28494256 DOI: 10.1016/j.ejmech.2017.05.016] [Citation(s) in RCA: 144] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 04/30/2017] [Accepted: 05/04/2017] [Indexed: 12/11/2022]
Abstract
The dominant paradigm in drug discovery is to design ligands with maximum selectivity to act on individual drug targets. With the target-based approach, many new chemical entities have been discovered, developed, and further approved as drugs. However, there are a large number of complex diseases such as cancer that cannot be effectively treated or cured only with one medicine to modulate the biological function of a single target. As simultaneous intervention of two (or multiple) cancer progression relevant targets has shown improved therapeutic efficacy, the innovation of multi-targeted drugs has become a promising and prevailing research topic and numerous multi-targeted anticancer agents are currently at various developmental stages. However, most multi-pharmacophore scaffolds are usually discovered by serendipity or screening, while rational design by combining existing pharmacophore scaffolds remains an enormous challenge. In this review, four types of multi-pharmacophore modes are discussed, and the examples from literature will be used to introduce attractive lead compounds with the capability of simultaneously interfering with different enzyme or signaling pathway of cancer progression, which will reveal the trends and insights to help the design of the next generation multi-targeted anticancer agents.
Collapse
|
14
|
Qian X, Han J, Wang L. tert-Butoxide-Mediated Arylation of 2-Substituted Cyanoacetates with Diaryliodonium Salts. Adv Synth Catal 2016. [DOI: 10.1002/adsc.201501013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
15
|
Abebe H, Vidavalur S, Battula VR. n-Bu4NI/TBHP-catalyzed C–N bond formation via cross-dehydrogenative coupling of 1H-1,2,4-triazoles (N–H) and methylarenes (Csp3–H). RSC Adv 2016. [DOI: 10.1039/c6ra18968g] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
An efficient n-Bu4NI/TBHP-catalyzed protocol for C–N bond formation via cross-dehydrogenative coupling of 1H-1,2,4-triazoles (N–H) and methylarenes (Csp3–H) has been developed under metal free conditions.
Collapse
Affiliation(s)
- Habtamu Abebe
- Department of Organic Chemistry and FDW
- College of Science and Technology
- Andhra University
- Visakhapatnam
- India
| | - Siddaiah Vidavalur
- Department of Organic Chemistry and FDW
- College of Science and Technology
- Andhra University
- Visakhapatnam
- India
| | - Venkateswara Rao Battula
- Department of Organic Chemistry and FDW
- College of Science and Technology
- Andhra University
- Visakhapatnam
- India
| |
Collapse
|
16
|
Thomas MP, Potter BVL. Discovery and Development of the Aryl O-Sulfamate Pharmacophore for Oncology and Women's Health. J Med Chem 2015; 58:7634-58. [PMID: 25992880 PMCID: PMC5159624 DOI: 10.1021/acs.jmedchem.5b00386] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
In 1994, following work from this laboratory, it was reported that estrone-3-O-sulfamate irreversibly inhibits a new potential hormone-dependent cancer target steroid sulfatase (STS). Subsequent drug discovery projects were initiated to develop the core aryl O-sulfamate pharmacophore that, over some 20 years, have led to steroidal and nonsteroidal drugs in numerous preclinical and clinical trials, with promising results in oncology and women's health, including endometriosis. Drugs have been designed to inhibit STS, e.g., Irosustat, as innovative dual-targeting aromatase-steroid sulfatase inhibitors (DASIs) and as multitargeting agents for hormone-independent tumors, such as the steroidal STX140 and nonsteroidal counterparts, acting inter alia through microtubule disruption. The aryl sulfamate pharmacophore is highly versatile, operating via three distinct mechanisms of action, and imbues attractive pharmaceutical properties. This Perspective gives a personal view of the work leading both to the therapeutic concepts and these drugs, their current status, and how they might develop in the future.
Collapse
Affiliation(s)
- Mark P. Thomas
- Wolfson Laboratory of Medicinal Chemistry, Department of Pharmacy and Pharmacology, University of Bath, Claverton Down, Bath, BA2 7AY, United Kingdom
| | - Barry V. L. Potter
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, OX1 3QT, United Kingdom
| |
Collapse
|
17
|
Mondal S, Panda G. Synthetic methodologies of achiral diarylmethanols, diaryl and triarylmethanes (TRAMs) and medicinal properties of diaryl and triarylmethanes-an overview. RSC Adv 2014. [DOI: 10.1039/c4ra01341g] [Citation(s) in RCA: 184] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
This review covers the synthesis of achiral diarylmethanols, diaryl and triarylmethanes and the bioactivities of diaryl and triarylmethanes during 1995 to 2013.
Collapse
Affiliation(s)
- Sankalan Mondal
- Central Drug Research Institute
- Medicinal and Process Chemistry Division
- Lucknow, India
| | - Gautam Panda
- Central Drug Research Institute
- Medicinal and Process Chemistry Division
- Lucknow, India
| |
Collapse
|
18
|
Spillane W, Malaubier JB. Sulfamic Acid and Its N- and O-Substituted Derivatives. Chem Rev 2013; 114:2507-86. [DOI: 10.1021/cr400230c] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- William Spillane
- School
of Chemistry, National University of Ireland, Galway, University Road, Galway, Ireland
| | - Jean-Baptiste Malaubier
- Manufacturing Science
and
Technology, Roche Ireland Limited, Clarecastle, Co. Clare, Ireland
| |
Collapse
|
19
|
Nantasenamat C, Worachartcheewan A, Prachayasittikul S, Isarankura-Na-Ayudhya C, Prachayasittikul V. QSAR modeling of aromatase inhibitory activity of 1-substituted 1,2,3-triazole analogs of letrozole. Eur J Med Chem 2013; 69:99-114. [DOI: 10.1016/j.ejmech.2013.08.015] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Revised: 07/28/2013] [Accepted: 08/07/2013] [Indexed: 10/26/2022]
|
20
|
Woo LWL, Wood PM, Bubert C, Thomas MP, Purohit A, Potter BVL. Synthesis and structure-activity relationship studies of derivatives of the dual aromatase-sulfatase inhibitor 4-{[(4-cyanophenyl)(4H-1,2,4-triazol-4-yl)amino]methyl}phenyl sulfamate. ChemMedChem 2013; 8:779-99. [PMID: 23495205 PMCID: PMC3743159 DOI: 10.1002/cmdc.201300015] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Revised: 02/13/2013] [Indexed: 02/04/2023]
Abstract
4-{[(4-Cyanophenyl)(4H-1,2,4-triazol-4-yl)amino]methyl}phenyl sulfamate and its ortho-halogenated (F, Cl, Br) derivatives are first-generation dual aromatase and sulfatase inhibitors (DASIs). Structure-activity relationship studies were performed on these compounds, and various modifications were made to their structures involving relocation of the halogen atom, introduction of more halogen atoms, replacement of the halogen with another group, replacement of the methylene linker with a difluoromethylene linker, replacement of the para-cyanophenyl ring with other ring structures, and replacement of the triazolyl group with an imidazolyl group. The most potent in vitro DASI discovered is an imidazole derivative with IC50 values against aromatase and steroid sulfatase in a JEG-3 cell preparation of 0.2 and 2.5 nM, respectively. The parent phenol of this compound inhibits aromatase with an IC50 value of 0.028 nM in the same assay.
Collapse
Affiliation(s)
- L W Lawrence Woo
- Medicinal Chemistry, Department of Pharmacy and Pharmacology, University of Bath, Claverton Down, Bath BA2 7AY, UK
| | | | | | | | | | | |
Collapse
|
21
|
Nath D, Fleming FF. Sulfinylnitriles: Sulfinyl-Metal Exchange-Alkylation Strategies. Chemistry 2012; 19:2023-9. [DOI: 10.1002/chem.201203174] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Indexed: 11/09/2022]
|
22
|
Abstract
INTRODUCTION Steroid sulfatase (STS) converts sulfated hormones to free hormones of importance in hormone-dependent diseases such as breast cancer and endometriosis. Carbohydrate sulfatases degrade complex carbohydrates as part of normal cellular turnover; certain lysosomal storage disorders (LSDs) involve defective processing of sulfated glycosaminoglycans by mutant sulfatases. AREAS COVERED Aryl sulfamates have been developed as STS inhibitors, and STX64 and PGL2001 are under evaluation in Phase I and II clinical trials for treatment of endometrial and metastatic breast and prostate cancers and endometriosis. Dual-acting compounds have emerged that are aromatase inhibitors (AIs), selective estrogen receptor antagonists, or inhibitors of microtubule polymerization. Sulfamidase inhibitors as pharmacological chaperones to assist maturation of folding-defective mutants for the treatment of Sanfilippo type A disease are under investigation. Coverage: The patent literature after the mid-1990s. EXPERT OPINION The failure of STX64 in a Phase II monotherapy clinical trial should not dissuade further investigations in multidrug regimens, particularly in combination with AIs. The recent development of dual-acting compounds may enhance the potential for success in the clinic. Further investigations into aryl sulfamates are required to clarify the molecular mechanism of action; additionally, new reversible sulfatase inhibition concepts are needed for the development of pharmacological chaperones for sulfatase LSDs.
Collapse
Affiliation(s)
- Spencer J Williams
- University of Melbourne, School of Chemistry and Bio21 Molecular Science, Parkville, Victoria, Australia.
| |
Collapse
|
23
|
Synthesis and evaluation of analogues of estrone-3-O-sulfamate as potent steroid sulfatase inhibitors. Bioorg Med Chem 2012; 20:2506-19. [PMID: 22455789 DOI: 10.1016/j.bmc.2012.03.007] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Revised: 02/28/2012] [Accepted: 03/01/2012] [Indexed: 01/06/2023]
Abstract
Estrone sulfamate (EMATE) is a potent irreversible inhibitor of steroid sulfatase (STS). In order to further expand SAR, the compound was substituted at the 2- and/or 4-positions and its 17-carbonyl group was also removed. The following general order of potency against STS in two in vitro systems is observed for the derivatives: The 4-NO(2) > 2-halogens, 2-cyano > EMATE (unsubstituted)>17-deoxyEMATE > 2-NO(2) > 4-bromo>2-(2-propenyl), 2-n-propyl > 4-(2-propenyl), 4-n-propyl > 2,4-(2-propenyl)= 2,4-di-n-propyl. There is a clear advantage in potency to place an electron-withdrawing substituent on the A-ring with halogens preferred at the 2-position, but nitro at the 4-position. Substitution with 2-propenyl or n-propyl at the 2- and/or 4-position of EMATE, and also removal of the 17-carbonyl group are detrimental to potency. Three cyclic sulfamates designed are not STS inhibitors. This further confirms that a free or N-unsubstituted sulfamate group (H(2)NSO(2)O-) is a prerequisite for potent and irreversible inhibition of STS as shown by inhibitors like EMATE and Irosustat. The most potent derivative synthesized is 4-nitroEMATE (2), whose IC(50)s in placental microsomes and MCF-7 cells are respectively 0.8 nM and 0.01 nM.
Collapse
|
24
|
Ahlem CN, Frincke JM, White SK, Reading CL, Trauger RJ, Lakshmanaswamy R. 17α-ethynyl-5α-androstane-3α, 17β-diol treatment of MNU-induced mammary cancer in rats. Int J Breast Cancer 2012; 2011:618757. [PMID: 22332014 PMCID: PMC3276108 DOI: 10.4061/2011/618757] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2010] [Accepted: 01/06/2011] [Indexed: 11/24/2022] Open
Abstract
N-methyl-N-nitrosourea (MNU) induces estrogen-dependent mammary tumors in female
Lewis rats. We explored the antineoplastic activity of a synthetic androstane derivative,
17α-ethynyl-5α-androstane-3α, 17β-diol (HE3235), as a single agent or in combination
with docetaxel compared to tamoxifen, anastrazole, and docetaxel monotherapies against
MNU-induced mammary tumors in female Lewis rats. Treatment with HE3235 alone
rapidly reduced tumor burden, similar in effect to tamoxifen and anastrozole. The
combination of HE3235 with docetaxel was more effective than any single agent, although
without apparent toxicity. Only HE3235 or HE3235 plus docetaxel continued to suppress
tumor growth after cessation of treatment. HE3235 treatment increased
immunohistochemical markers of apoptosis and expression of proapoptotic genes and
estrogen receptor beta and decreased expression of antiapoptotic genes, androgen
receptor, and estrogen receptor alpha. These data warrant clinical investigation of HE3235
for breast cancer treatment.
Collapse
Affiliation(s)
- Clarence N Ahlem
- Harbor BioSciences, Inc., 9171 Towne Centre Drive, Suite 180, San Diego, CA 92122, USA.
| | | | | | | | | | | |
Collapse
|
25
|
Nath D, Fleming FF. Nitrile Alkylations through Sulfinyl-Metal Exchange. Angew Chem Int Ed Engl 2011; 50:11790-3. [DOI: 10.1002/anie.201105630] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2011] [Revised: 10/12/2011] [Indexed: 11/11/2022]
|
26
|
|
27
|
Sangshetti JN, Lokwani DK, Sarkate AP, Shinde DB. Synthesis, Antifungal Activity, and Docking Study of Some New 1,2,4-triazole Analogs. Chem Biol Drug Des 2011; 78:800-9. [DOI: 10.1111/j.1747-0285.2011.01178.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
28
|
Doiron J, Soultan AH, Richard R, Touré MM, Picot N, Richard R, Čuperlović-Culf M, Robichaud GA, Touaibia M. Synthesis and structure–activity relationship of 1- and 2-substituted-1,2,3-triazole letrozole-based analogues as aromatase inhibitors. Eur J Med Chem 2011; 46:4010-24. [DOI: 10.1016/j.ejmech.2011.05.074] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2011] [Revised: 05/30/2011] [Accepted: 05/31/2011] [Indexed: 11/28/2022]
|
29
|
Wood PM, Woo LWL, Thomas MP, Mahon MF, Purohit A, Potter BVL. Aromatase and dual aromatase-steroid sulfatase inhibitors from the letrozole and vorozole templates. ChemMedChem 2011; 6:1423-38. [PMID: 21608133 PMCID: PMC3170879 DOI: 10.1002/cmdc.201100145] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2011] [Indexed: 11/16/2022]
Abstract
Concurrent inhibition of aromatase and steroid sulfatase (STS) may provide a more effective treatment for hormone-dependent breast cancer than monotherapy against individual enzymes, and several dual aromatase-sulfatase inhibitors (DASIs) have been reported. Three aromatase inhibitors with sub-nanomolar potency, better than the benchmark agent letrozole, were designed. To further explore the DASI concept, a new series of letrozole-derived sulfamates and a vorozole-based sulfamate were designed and biologically evaluated in JEG-3 cells to reveal structure-activity relationships. Amongst achiral and racemic compounds, 2-bromo-4-(2-(4-cyanophenyl)-2-(1H-1,2,4-triazol-1-yl)ethyl)phenyl sulfamate is the most potent DASI (aromatase: IC₅₀ =0.87 nM; STS: IC₅₀ =593 nM). The enantiomers of the phenolic precursor to this compound were separated by chiral HPLC and their absolute configuration determined by X-ray crystallography. Following conversion to their corresponding sulfamates, the S-(+)-enantiomer was found to inhibit aromatase and sulfatase most potently (aromatase: IC₅₀ =0.52 nM; STS: IC₅₀ =280 nM). The docking of each enantiomer and other ligands into the aromatase and sulfatase active sites was also investigated.
Collapse
Affiliation(s)
- Paul M Wood
- Medicinal Chemistry, Department of Pharmacy and Pharmacology, University of BathClaverton Down, Bath BA2 7AY (UK), Fax: (+44) 1225-386-114
| | - L W Lawrence Woo
- Medicinal Chemistry, Department of Pharmacy and Pharmacology, University of BathClaverton Down, Bath BA2 7AY (UK), Fax: (+44) 1225-386-114
| | - Mark P Thomas
- Medicinal Chemistry, Department of Pharmacy and Pharmacology, University of BathClaverton Down, Bath BA2 7AY (UK), Fax: (+44) 1225-386-114
| | - Mary F Mahon
- X-Ray Crystallographic Suite, Department of Chemistry, University of BathClaverton Down, Bath, BA2 7AY (UK)
| | - Atul Purohit
- Division of Diabetes, Endocrinology & Metabolism, Imperial College London, Hammersmith HospitalLondon, W12 0NN (UK)
| | - Barry V L Potter
- Medicinal Chemistry, Department of Pharmacy and Pharmacology, University of BathClaverton Down, Bath BA2 7AY (UK), Fax: (+44) 1225-386-114
| |
Collapse
|
30
|
Woo LWL, Purohit A, Potter BVL. Development of steroid sulfatase inhibitors. Mol Cell Endocrinol 2011; 340:175-85. [PMID: 21238537 DOI: 10.1016/j.mce.2010.12.035] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2010] [Revised: 10/13/2010] [Accepted: 12/22/2010] [Indexed: 11/21/2022]
Abstract
Hydrolysis of biologically inactive steroid sulfates to unconjugated steroids by steroid sulfatase (STS) is strongly implicated in rendering estrogenic stimulation to hormone-dependent cancers such as those of the breast. Considerable progress has been made in the past two decades with regard to the discovery, design and development of STS inhibitors. We outline historical aspects of their development, cumulating in the discovery of the first clinical trial candidate STX64 (BN83495, Irosustat) and other sulfamate-based inhibitors. The development of reversible STS inhibitors and the design of dual inhibitors of both aromatase and STS is also discussed.
Collapse
Affiliation(s)
- L W Lawrence Woo
- Medicinal Chemistry, Department of Pharmacy and Pharmacology, University of Bath, Claverton Down, Bath BA2 7AY, UK
| | | | | |
Collapse
|
31
|
Geisler J, Sasano H, Chen S, Purohit A. Steroid sulfatase inhibitors: promising new tools for breast cancer therapy? J Steroid Biochem Mol Biol 2011; 125:39-45. [PMID: 21356310 DOI: 10.1016/j.jsbmb.2011.02.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2010] [Revised: 02/05/2011] [Accepted: 02/07/2011] [Indexed: 12/18/2022]
Abstract
Inhibition of aromatase is currently well-established as the major treatment option of hormone-dependent breast cancer in postmenopausal women. However, despite the effects of aromatase inhibitors in both early and metastatic breast cancer, endocrine resistance may cause relapses of the disease and progression of metastasis. Thus, driven by the success of manipulating the steroidogenic enzyme aromatase, several alternative enzymes involved in steroid synthesis and metabolism have recently been investigated as possible drug targets. One of the most promising targets is the steroid sulfatase (STS) which converts steroid sulfates like estrone sulfate (E1S) and dehydroepiandrosterone sulfate (DHEAS) to estrone (E1) and dehydroepiandrosterone (DHEA), respectively. Estrone and DHEA may thereafter be used for the synthesis of more potent estrogens and androgens that may eventually fuel hormone-sensitive breast cancer cells. The present review summarizes the biology behind steroid sulfatase and its inhibition, the currently available information derived from basic and early clinical trials in breast cancer patients, as well as ongoing research. Article from the Special Issue on Targeted Inhibitors.
Collapse
Affiliation(s)
- Jürgen Geisler
- Institute of Clinical Medicine, Division of Clinical Medicine and Laboratory Sciences, University of Oslo, Norway.
| | | | | | | |
Collapse
|
32
|
Woo LWL, Bubert C, Purohit A, Potter BVL. Hybrid dual aromatase-steroid sulfatase inhibitors with exquisite picomolar inhibitory activity. ACS Med Chem Lett 2011; 2:243-7. [PMID: 24900302 PMCID: PMC4018047 DOI: 10.1021/ml100273k] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2010] [Accepted: 12/20/2010] [Indexed: 11/28/2022] Open
Abstract
Single agents against multiple drug targets are highly topical. Hormone-dependent breast cancer (HDBC) may be more effectively treated by dual inhibition of aromatase and steroid sulfatase (STS), and several dual aromatase-sulfatase inhibitors (DASIs) have been recently reported. The best compounds from two leading classes of DASI, 3 and 9, are low nanomolar inhibitors. In search of a novel class of DASI, core motifs of two leading classes were combined to give a series of hybrid structures, with several compounds showing markedly improved dual inhibitory activities in the picomolar range in JEG-3 cells. Thus, DASIs 14 (IC50: aromatase, 15 pM; STS, 830 pM) and 15 (IC50: aromatase, 18 pM; STS, 130 pM) are the first examples of an exceptional new class of highly potent dual inhibitor that should encourage further development toward multitargeted therapeutic intervention in HDBC.
Collapse
Affiliation(s)
- L. W. Lawrence Woo
- Medicinal Chemistry, Department of Pharmacy and Pharmacology, University of Bath, Claverton Down, Bath BA2 7AY, United Kingdom
| | - Christian Bubert
- Medicinal Chemistry, Department of Pharmacy and Pharmacology, University of Bath, Claverton Down, Bath BA2 7AY, United Kingdom
| | - Atul Purohit
- Endocrinology and Metabolic Medicine, Imperial College London, Faculty of Medicine, St. Mary’s Hospital, London W2 1NY, United Kingdom
| | - Barry V. L. Potter
- Medicinal Chemistry, Department of Pharmacy and Pharmacology, University of Bath, Claverton Down, Bath BA2 7AY, United Kingdom
| |
Collapse
|
33
|
Wood PM, Woo LWL, Labrosse JR, Thomas MP, Mahon MF, Chander SK, Purohit A, Reed MJ, Potter BVL. Bicyclic derivatives of the potent dual aromatase-steroid sulfatase inhibitor 2-bromo-4-{[(4-cyanophenyl)(4h-1,2,4-triazol-4-yl)amino]methyl}phenylsulfamate: synthesis, SAR, crystal structure, and in vitro and in vivo activities. ChemMedChem 2011; 5:1577-93. [PMID: 20632362 DOI: 10.1002/cmdc.201000203] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The design and synthesis of a series of bicyclic ring containing dual aromatase-sulfatase inhibitors (DASIs) based on the aromatase inhibitor (AI) 4-[(4-bromobenzyl)(4H-1,2,4-triazol-4-yl)amino]benzonitrile are reported. Biological evaluation with JEG-3 cells revealed structure-activity relationships. The X-ray crystal structure of sulfamate 23 was determined, and selected compounds were docked into the aromatase and steroid sulfatase (STS) crystal structures. In the sulfamate-containing series, compounds containing a naphthalene ring are both the most potent AI (39, IC(50 AROM)=0.25 nM) and the best STS inhibitor (31, IC(50 STS)=26 nM). The most promising DASI is 39 (IC(50 AROM)=0.25 nM, IC(50 STS)=205 nM), and this was evaluated orally in vivo at 10 mg kg(-1), showing potent inhibition of aromatase (93 %) and STS (93 %) after 3 h. Potent aromatase and STS inhibition can thus be achieved with a DASI containing a bicyclic ring system; development of such a DASI could provide an attractive new option for the treatment of hormone-dependent breast cancer.
Collapse
Affiliation(s)
- Paul M Wood
- Department of Pharmacy and Pharmacology and Sterix Ltd. University of Bath, Claverton Down, Bath BA2 7AY, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Fleming FF, Yao L, Ravikumar PC, Funk L, Shook BC. Nitrile-containing pharmaceuticals: efficacious roles of the nitrile pharmacophore. J Med Chem 2010; 53:7902-17. [PMID: 20804202 PMCID: PMC2988972 DOI: 10.1021/jm100762r] [Citation(s) in RCA: 1179] [Impact Index Per Article: 78.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Fraser F Fleming
- Department of Chemistry and Biochemistry, Duquesne University, Pittsburgh, Pennsylvania 15282-1530, USA.
| | | | | | | | | |
Collapse
|
35
|
Woo LWL, Jackson T, Putey A, Cozier G, Leonard P, Acharya KR, Chander SK, Purohit A, Reed MJ, Potter BVL. Highly Potent First Examples of Dual Aromatase−Steroid Sulfatase Inhibitors based on a Biphenyl Template. J Med Chem 2010; 53:2155-70. [DOI: 10.1021/jm901705h] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- L. W. Lawrence Woo
- Medicinal Chemistry, Department of Pharmacy and Pharmacology and Sterix Ltd, University of Bath, Claverton Down, Bath BA2 7AY, U.K
| | - Toby Jackson
- Medicinal Chemistry, Department of Pharmacy and Pharmacology and Sterix Ltd, University of Bath, Claverton Down, Bath BA2 7AY, U.K
| | - Aurélien Putey
- Medicinal Chemistry, Department of Pharmacy and Pharmacology and Sterix Ltd, University of Bath, Claverton Down, Bath BA2 7AY, U.K
| | - Gyles Cozier
- Medicinal Chemistry, Department of Pharmacy and Pharmacology and Sterix Ltd, University of Bath, Claverton Down, Bath BA2 7AY, U.K
| | - Philip Leonard
- Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath BA2 7AY, U.K
| | - K. Ravi Acharya
- Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath BA2 7AY, U.K
| | - Surinder K. Chander
- Endocrinology and Metabolic Medicine and Sterix Ltd, Imperial College London, Faculty of Medicine, St. Mary’s Hospital, London W2 1NY, U.K
| | - Atul Purohit
- Endocrinology and Metabolic Medicine and Sterix Ltd, Imperial College London, Faculty of Medicine, St. Mary’s Hospital, London W2 1NY, U.K
| | - Michael J. Reed
- Endocrinology and Metabolic Medicine and Sterix Ltd, Imperial College London, Faculty of Medicine, St. Mary’s Hospital, London W2 1NY, U.K
| | - Barry V. L. Potter
- Medicinal Chemistry, Department of Pharmacy and Pharmacology and Sterix Ltd, University of Bath, Claverton Down, Bath BA2 7AY, U.K
| |
Collapse
|
36
|
Determination of the absolute configuration of aromatase and dual aromatase-sulfatase inhibitors by vibrational and electronic circular dichroism spectra analysis. Chirality 2009; 21:802-8. [DOI: 10.1002/chir.20685] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
37
|
|
38
|
Swamy KCK, Kumar NNB, Balaraman E, Kumar KVPP. Mitsunobu and Related Reactions: Advances and Applications. Chem Rev 2009; 109:2551-651. [PMID: 19382806 DOI: 10.1021/cr800278z] [Citation(s) in RCA: 890] [Impact Index Per Article: 55.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- K. C. Kumara Swamy
- School of Chemistry, University of Hyderabad, Hyderabad − 500046, A. P., India
| | - N. N. Bhuvan Kumar
- School of Chemistry, University of Hyderabad, Hyderabad − 500046, A. P., India
| | - E. Balaraman
- School of Chemistry, University of Hyderabad, Hyderabad − 500046, A. P., India
| | | |
Collapse
|
39
|
Foster PA, Chander SK, Newman SP, Woo LWL, Sutcliffe OB, Bubert C, Zhou D, Chen S, Potter BVL, Reed MJ, Purohit A. A new therapeutic strategy against hormone-dependent breast cancer: the preclinical development of a dual aromatase and sulfatase inhibitor. Clin Cancer Res 2008; 14:6469-77. [PMID: 18927286 DOI: 10.1158/1078-0432.ccr-08-1027] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE The production of E2 is paramount for the growth of estrogen receptor-positive breast cancer. Various strategies have been used, including the use of enzyme inhibitors against either aromatase (AROM) or steroid sulfatase (STS), in an attempt to ablate E2 levels. Both these enzymes play a critical role in the formation of estrogenic steroids and their inhibitors are now showing success in the clinic. EXPERIMENTAL DESIGN We show here, in a xenograft nude mouse model, that the inhibition of both enzymes using STX681, a dual AROM and STS inhibitor (DASI), is a potential new therapeutic strategy against HDBC. MCF-7 cells stably expressing either AROM cDNA (MCF-7(AROM)) or STS cDNA (MCF-7(STS)) were generated. Ovariectomized MF-1 female nude mice receiving s.c. injections of either androstenedione (A(4)) or E2 sulfate and bearing either MCF-7(AROM) or MCF-7(STS) tumors were orally treated with STX64, letrozole, or STX681. Treatment was administered for 28 days. Mice were weighed and tumor measurements were taken weekly. RESULTS STX64, a potent STS inhibitor, completely blocked MCF-7(STS) tumor growth but failed to attenuate MCF-7(AROM) tumor growth. In contrast, letrozole inhibited MCF-7(AROM) tumors but had no effect on MCF-7(STS) tumors. STX681 completely inhibited the growth of both tumors. AROM and STS activity was also completely inhibited by STX681, which was accompanied by a significant reduction in plasma E2 levels. CONCLUSIONS This study indicates that targeting both the AROM and the STS enzyme with a DASI inhibits HDBC growth and is therefore a potentially novel treatment for this malignancy.
Collapse
|
40
|
Bubert C, Woo LL, Sutcliffe O, Mahon M, Chander S, Purohit A, Reed M, Potter B. Synthesis of Aromatase Inhibitors and Dual Aromatase Steroid Sulfatase Inhibitors by Linking an Arylsulfamate Motif to 4-(4H-1,2,4-triazol-4-ylamino)benzonitrile: SAR, Crystal Structures, in vitro and in vivo Activities. ChemMedChem 2008; 3:1708-30. [DOI: 10.1002/cmdc.200800164] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
41
|
|
42
|
Wood PM, Woo LWL, Labrosse JR, Trusselle MN, Abbate S, Longhi G, Castiglioni E, Lebon F, Purohit A, Reed MJ, Potter BVL. Chiral aromatase and dual aromatase-steroid sulfatase inhibitors from the letrozole template: synthesis, absolute configuration, and in vitro activity. J Med Chem 2008; 51:4226-38. [PMID: 18590272 DOI: 10.1021/jm800168s] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
To explore aromatase inhibition and to broaden the structural diversity of dual aromatase-sulfatase inhibitors (DASIs), we introduced the steroid sulfatase (STS) inhibitory pharmacophore to letrozole. Letrozole derivatives were prepared bearing bis-sulfamates or mono-sulfamates with or without adjacent substituents. The most potent of the achiral and racemic aromatase inhibitor was 40 (IC 50 = 3.0 nM). Its phenolic precursor 39 was separated by chiral HPLC, and the absolute configuration of each enantiomer was determined using vibrational and electronic circular dichroism in tandem with calculations of the predicted spectra. Of the two enantiomers, ( R)-phenol ( 39a) was the most potent aromatase inhibitor (IC 50 = 0.6 nM, comparable to letrozole), whereas the ( S)-sulfamate, ( 40b) inhibited STS most potently (IC 50 = 553 nM). These results suggest that a new structural class of DASI for potential treatment of hormone-dependent breast cancer has been identified, and this is the first report of STS inhibition by an enantiopure nonsteroidal compound.
Collapse
Affiliation(s)
- Paul M Wood
- Medicinal Chemistry, Department of Pharmacy and Pharmacology and Sterix Ltd., University of Bath, Claverton Down, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Jackson T, Woo LL, Trusselle M, Purohit A, Reed M, Potter B. Non-Steroidal Aromatase Inhibitors Based on a Biphenyl Scaffold: Synthesis, in vitro SAR, and Molecular Modelling. ChemMedChem 2008; 3:603-18. [DOI: 10.1002/cmdc.200700266] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|