1
|
Ochola J, Hume C, Bezuidenhout D. Analysis of morphological properties of fibrous electrospun polyurethane grafts using image segmentation. J Mech Behav Biomed Mater 2024; 155:106573. [PMID: 38744117 DOI: 10.1016/j.jmbbm.2024.106573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 04/07/2024] [Accepted: 05/08/2024] [Indexed: 05/16/2024]
Abstract
The concentration of the polymer in the electrospinning solution greatly influences the mechanical behaviour of electrospun vascular grafts due to the influence on scaffold morphology. The scaffold morphology (fiber diameter, fiber orientation and inter-fiber voids) of the grafts plays an important role in their behaviour during use. Even though manual methods and complex algorithms have been used so far for characterisation of the morphology of electrospun architecture, they still have several drawbacks that limit their reliability. This study therefore uses conventional, statistical region merging and a hybrid image segmentation algorithm, to characterise the morphology of the electrospun vascular grafts. Consequently, vascular grafts were fabricated using an in-house electrospinning equipment using three polymer material concentration levels (14%, 16% and 18%) of medical-grade thermoplastic polyurethane (Pellethane®). The image thresholding and segementation algorithms were then used for segmentation of SEM images extracted from the polymer grafts and then morphological parameters were investigated in terms of fiber diameter, fiber orientation, and interfiber spaces (pore area and porosity). The results indicate that electrospun image segmentation was "best" when the hybrid algorithm and the conventional algorithm was used, which implied that fiber property values computed from the hybrid algorithm were closed to the manually measurements especially for the 14% PU with fiber diameter 2.2%, fiber orientation 7.6% and porosity at 1.9%. However there was higher disperity between the manual and hybrid algorithm. This suggests more fiber uniformity in the 14%PU potentially affected the accuracy of the hybrid algorithm.
Collapse
Affiliation(s)
- Jerry Ochola
- Department of Manufacturing, Industrial and Textile Engineering, School of Engineering, Moi University, Eldoret, Kenya; Biomedical Engineering Research Center, Division of Biomedical Engineering, Department of Human Biology, University of Cape Town, Observatory, South Africa.
| | - Cameron Hume
- Cardiovascular Research Unit: Chris Barnard Division of Cardiothoracic Surgery, Observatory, South Africa
| | - Deon Bezuidenhout
- Cardiovascular Research Unit: Chris Barnard Division of Cardiothoracic Surgery, Observatory, South Africa
| |
Collapse
|
2
|
Zhu T, Zhu J, Lu S, Mo X. Evaluation of electrospun PCL diol-based elastomer fibers as a beneficial matrix for vascular tissue engineering. Colloids Surf B Biointerfaces 2022; 220:112963. [DOI: 10.1016/j.colsurfb.2022.112963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 10/19/2022] [Accepted: 10/20/2022] [Indexed: 11/07/2022]
|
3
|
Gao Y, Yi T, Shinoka T, Lee YU, Reneker DH, Breuer CK, Becker ML. Pilot Mouse Study of 1 mm Inner Diameter (ID) Vascular Graft Using Electrospun Poly(ester urea) Nanofibers. Adv Healthc Mater 2016; 5:2427-36. [PMID: 27390286 PMCID: PMC5951289 DOI: 10.1002/adhm.201600400] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 05/30/2016] [Indexed: 12/13/2022]
Abstract
An off-the-shelf, small diameter tissue engineered vascular graft (TEVG) would be transformative to surgeons in multiple subspecialties. Herein, the results of a small diameter (ID ≈ 1 mm) vascular graft constructed from resorbable, amino acid-based poly(ester urea) (PEU) are reported. Electrospun PEU grafts of two different wall thicknesses (type A: 250 μm; type B: 350 μm) are implanted as abdominal infra-renal aortic grafts in a severe combined immune deficient/beige mouse model and evaluated for vessel remodeling over one year. Significantly, the small diameter TEVG does not rupture or lead to acute thrombogenic events during the intervals tested. The pilot TEVG in vivo shows long-term patency and extensive tissue remodeling with type A grafts. Extensive tissue remodeling in type A grafts leads to the development of well-circumscribed neovessels with an endothelial inner lining, a neointima containing smooth muscle cells. However, due to slow degradation of the PEU scaffold materials in vivo, the grafts remain after one year. The type B grafts, which have 350 μm thick walls, experience occlusion over the one year interval due to intimal hyperplasia. This study affords significant findings that will guide the design of future generations of small diameter vascular grafts.
Collapse
Affiliation(s)
- Yaohua Gao
- Department of Polymer Science, The University of Akron, Akron, OH, 44325, USA
| | - Tai Yi
- Department of Surgery, Nationwide Children's Hospital, Columbus, OH, 43205, USA
| | - Toshiharu Shinoka
- Department of Surgery, Nationwide Children's Hospital, Columbus, OH, 43205, USA
| | - Yong Ung Lee
- Department of Surgery, Nationwide Children's Hospital, Columbus, OH, 43205, USA
| | - Darrell H Reneker
- Department of Polymer Science, The University of Akron, Akron, OH, 44325, USA
| | | | - Matthew L Becker
- Department of Polymer Science, The University of Akron, Akron, OH, 44325, USA.
| |
Collapse
|
4
|
Effect of high surface area mesoporous silica fillers (MCF and SBA-15) on solid state polymerization of PET. Eur Polym J 2016. [DOI: 10.1016/j.eurpolymj.2016.06.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
5
|
Xing S, Li R, Si J, Tang P. In situ polymerization of poly(styrene- alt -maleic anhydride)/organic montmorillonite nanocomposites and their ionomers as crystallization nucleating agents for poly(ethylene terephthalate). J IND ENG CHEM 2016. [DOI: 10.1016/j.jiec.2016.04.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
6
|
Achilias DS, Karandrea E, Triantafyllidis KS, Ladavos A, Bikiaris DN. Effect of organoclays type on solid-state polymerization (SSP) of poly(ethylene terephthalate): Experimental and modeling. Eur Polym J 2015. [DOI: 10.1016/j.eurpolymj.2014.12.027] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
7
|
Han F, Jia X, Dai D, Yang X, Zhao J, Zhao Y, Fan Y, Yuan X. Performance of a multilayered small-diameter vascular scaffold dual-loaded with VEGF and PDGF. Biomaterials 2013; 34:7302-13. [DOI: 10.1016/j.biomaterials.2013.06.006] [Citation(s) in RCA: 113] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2013] [Accepted: 06/05/2013] [Indexed: 02/06/2023]
|
8
|
Wang X, Ding B, Li B. Biomimetic electrospun nanofibrous structures for tissue engineering. MATERIALS TODAY (KIDLINGTON, ENGLAND) 2013; 16:229-241. [PMID: 25125992 PMCID: PMC4130655 DOI: 10.1016/j.mattod.2013.06.005] [Citation(s) in RCA: 441] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Biomimetic nanofibrous scaffolds mimicking important features of the native extracellular matrix provide a promising strategy to restore functions or achieve favorable responses for tissue regeneration. This review provides a brief overview of current state-of-the-art research designing and using biomimetic electrospun nanofibers as scaffolds for tissue engineering. It begins with a brief introduction of electrospinning and nanofibers, with a focus on issues related to the biomimetic design aspects. The review next focuses on several typical biomimetic nanofibrous structures (e.g. aligned, aligned to random, spiral, tubular, and sheath membrane) that have great potential for tissue engineering scaffolds, and describes their fabrication, advantages, and applications in tissue engineering. The review concludes with perspectives on challenges and future directions for design, fabrication, and utilization of scaffolds based on electrospun nanofibers.
Collapse
Affiliation(s)
- Xianfeng Wang
- Department of Orthopaedics, School of Medicine, West Virginia University, Morgantown, WV 26506, United States
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Bin Ding
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Bingyun Li
- Department of Orthopaedics, School of Medicine, West Virginia University, Morgantown, WV 26506, United States
- WVNano Initiative, Morgantown, WV 26506, United States
| |
Collapse
|
9
|
Kagesawa K, Hosono E, Okubo M, Kikkawa J, Nishio-Hamane D, Kudo T, Zhou H. VGCF-core@LiMn0.4Fe0.6PO4-sheath heterostructure nanowire for high rate Li-ion batteries. CrystEngComm 2013. [DOI: 10.1039/c3ce40289d] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
10
|
Schultz KM, Campo-Deaño L, Baldwin AD, Kiick KL, Clasen C, Furst EM. Electrospinning covalently cross-linking biocompatible hydrogelators. POLYMER 2012; 54:363-371. [PMID: 23459473 DOI: 10.1016/j.polymer.2012.09.060] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Many hydrogel materials of interest are homogeneous on the micrometer scale. Electrospinning, the formation of sub-micrometer to micrometer diameter fibers by a jet of fluid formed under an electric field, is one process being explored to create rich microstructures. However, electrospinning a hydrogel system as it reacts requires an understanding of the gelation kinetics and corresponding rheology near the liquid-solid transition. In this study, we correlate the structure of electrospun fibers of a covalently cross-linked hydrogelator with the corresponding gelation transition and kinetics. Polyethylene oxide (PEO) is used as a carrier polymer in a chemically cross-linking poly(ethylene glycol)-high molecular weight heparin (PEG-HMWH) hydrogel. Using measurements of gelation kinetics from multiple particle tracking microrheology (MPT), we correlate the material rheology with the the formation of stable fibers. An equilibrated, cross-linked hydrogel is then spun and the PEO is dissolved. In both cases, microstructural features of the electrospun fibers are retained, confirming the covalent nature of the network. The ability to spin fibers of a cross-linking hydrogel system ultimately enables the engineering of materials and microstructural length scales suitable for biological applications.
Collapse
Affiliation(s)
- Kelly M Schultz
- Department of Chemical and Biomolecular Engineering and Center for Molecular and Engineering Thermodynamics, University of Delaware, 150 Academy St., Newark, DE 19716, USA
| | | | | | | | | | | |
Collapse
|
11
|
Baudis S, Ligon SC, Seidler K, Weigel G, Grasl C, Bergmeister H, Schima H, Liska R. Hard-block degradable thermoplastic urethane-elastomers for electrospun vascular prostheses. ACTA ACUST UNITED AC 2011. [DOI: 10.1002/pola.25887] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
12
|
|
13
|
De Vrieze S, De Schoenmaker B, Ceylan Ö, Depuydt J, Van Landuyt L, Rahier H, Van Assche G, De Clerck K. Morphologic study of steady state electrospun polyamide 6 nanofibres. J Appl Polym Sci 2010. [DOI: 10.1002/app.33036] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
14
|
Feng Y, Meng F, Xiao R, Zhao H, Guo J. Electrospinning of polycarbonate urethane biomaterials. Front Chem Sci Eng 2010. [DOI: 10.1007/s11705-010-1011-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
15
|
De Vrieze S, Westbroek P, Van Camp T, De Clerck K. Solvent system for steady state electrospinning of polyamide 6.6. J Appl Polym Sci 2010. [DOI: 10.1002/app.30331] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
16
|
Jia W, Wu Y, Huang J, An Q, Xu D, Wu Y, Li F, Li G. Poly(ionic liquid) brush coated electrospun membrane: a useful platform for the development of functionalized membrane systems. ACTA ACUST UNITED AC 2010. [DOI: 10.1039/c0jm01179g] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
17
|
Hosono E, Wang Y, Kida N, Enomoto M, Kojima N, Okubo M, Matsuda H, Saito Y, Kudo T, Honma I, Zhou H. Synthesis of triaxial LiFePO4 nanowire with a VGCF core column and a carbon shell through the electrospinning method. ACS APPLIED MATERIALS & INTERFACES 2010; 2:212-218. [PMID: 20356237 DOI: 10.1021/am900656y] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
A triaxial LiFePO4 nanowire with a multi wall carbon nanotube (VGCF:Vapor-grown carbon fiber) core column and an outer shell of amorphous carbon was successfully synthesized through the electrospinning method. The carbon nanotube core oriented in the direction of the wire played an important role in the conduction of electrons during the charge-discharge process, whereas the outer amorphous carbon shell suppressed the oxidation of Fe2+. An electrode with uniformly dispersed carbon and active materials was easily fabricated via a single process by heating after the electrospinning method is applied. Mossbauer spectroscopy for the nanowire showed a broadening of the line width, indicating a disordered coordination environment of the Fe ion near the surface. The electrospinning method was proven to be suitable for the fabrication of a triaxial nanostructure.
Collapse
Affiliation(s)
- Eiji Hosono
- Energy Technology Research Institute, National Institute of Advanced Industrial Science and Technology, Umezono, 1-1-1, Tsukuba, 305-8568, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|