1
|
Zhao B, Zhang X, Bickle MS, Fu S, Li Q, Zhang F. Development of polypeptide-based materials toward messenger RNA delivery. NANOSCALE 2024; 16:2250-2264. [PMID: 38213302 DOI: 10.1039/d3nr05635j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
Messenger RNA (mRNA)-based therapeutic agents have demonstrated significant potential in recent times, particularly in the context of the COVID-19 pandemic outbreak. As a promising prophylactic and therapeutic strategy, polypeptide-based mRNA delivery systems attract significant interest because of their low cost, simple preparation, tuneable sizes and morphology, convenient large-scale production, biocompatibility, and biodegradability. In this review, we begin with a brief discussion of the synthesis of polypeptides, followed by a review of commonly used polypeptides in mRNA delivery, including classical polypeptides and cell-penetrating peptides. Then, the challenges against mRNA delivery, including extracellular, intracellular, and clinical barriers, are discussed in detail. Finally, we highlight a range of strategies for polypeptide-based mRNA delivery, offering valuable insights into the advancement of polypeptide-based mRNA carrier development.
Collapse
Affiliation(s)
- Bowen Zhao
- Department of Chemistry, University of Miami, 1301 Memorial Drive, Coral Gables, Florida, 33146, USA.
| | - Xiao Zhang
- Department of Chemistry, University of Miami, 1301 Memorial Drive, Coral Gables, Florida, 33146, USA.
| | - Molly S Bickle
- Department of Chemistry, University of Miami, 1301 Memorial Drive, Coral Gables, Florida, 33146, USA.
| | - Shiwei Fu
- Department of Chemistry, University of Miami, 1301 Memorial Drive, Coral Gables, Florida, 33146, USA.
| | - Qingchun Li
- Department of Chemistry, University of Miami, 1301 Memorial Drive, Coral Gables, Florida, 33146, USA.
| | - Fuwu Zhang
- Department of Chemistry, University of Miami, 1301 Memorial Drive, Coral Gables, Florida, 33146, USA.
- The Dr John T. Macdonald Foundation Biomedical Nanotechnology Institute, University of Miami, Miami, FL 33136, USA
| |
Collapse
|
2
|
Kheiriabad S, Dolatabadi JEN, Hamblin MR. Dendrimers for gene therapy. DENDRIMER-BASED NANOTHERAPEUTICS 2021:285-309. [DOI: 10.1016/b978-0-12-821250-9.00026-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
3
|
Roquero DM, Bollella P, Melman A, Katz E. Nanozyme-Triggered DNA Release from Alginate Films. ACS APPLIED BIO MATERIALS 2020; 3:3741-3750. [DOI: 10.1021/acsabm.0c00348] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Daniel Massana Roquero
- Department of Chemistry and Biomolecular Science, Clarkson University, 8 Clarkson Avenue, Potsdam, New York 13699, United States
| | - Paolo Bollella
- Department of Chemistry and Biomolecular Science, Clarkson University, 8 Clarkson Avenue, Potsdam, New York 13699, United States
| | - Artem Melman
- Department of Chemistry and Biomolecular Science, Clarkson University, 8 Clarkson Avenue, Potsdam, New York 13699, United States
| | - Evgeny Katz
- Department of Chemistry and Biomolecular Science, Clarkson University, 8 Clarkson Avenue, Potsdam, New York 13699, United States
| |
Collapse
|
4
|
Masi M, Bollella P, Katz E. DNA Release from a Modified Electrode Triggered by a Bioelectrocatalytic Process. ACS APPLIED MATERIALS & INTERFACES 2019; 11:47625-47634. [PMID: 31794177 DOI: 10.1021/acsami.9b18427] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
DNA release from an electrode surface was stimulated by application of a mild electrical potential (0 V vs Ag/AgCl). The release process was activated by interfacial pH increase originating from H+ consumption during O2 reduction bio-electrocatalyzed by bilirubin oxidase immobilized at the electrode surface. The pH increase resulted in a change of the electrical charge from positive to negative at the surface of SiO2 nanoparticles (200 nm) associated with the electrode surface and functionalized with trigonelline and boronic acid. While the negatively charged DNA molecules were electrostatically bound to the positively charged surface, the negative charge produced upon O2 reduction resulted in the DNA repulsion and release from the modified interface. The small electrical potential for O2 reduction resulting in the interface recharge was allowed due to the bio-electrocatalysis using bilirubin oxidase enzyme. While, in the first set of experiments, the potential was applied on the modified electrode from an electrochemical instrument, later it was generated in situ by biocatalytic or photo-biocatalytic processes at a connected electrode. A multistep biocatalytic cascade generating NADH or photosynthetic process in thylakoid membranes was used to produce in situ a small potential to stimulate the DNA release catalyzed by bilirubin oxidase. The designed system can be used for different release processes triggered by various signals (electrical, biomolecular, and light signals, etc.), thus representing a general interfacial platform for the controlled release of different biomolecules and nanosize species.
Collapse
Affiliation(s)
- Madeline Masi
- Department of Chemistry and Biomolecular Science , Clarkson University , Potsdam , New York 13699-5810 , United States
| | - Paolo Bollella
- Department of Chemistry and Biomolecular Science , Clarkson University , Potsdam , New York 13699-5810 , United States
| | - Evgeny Katz
- Department of Chemistry and Biomolecular Science , Clarkson University , Potsdam , New York 13699-5810 , United States
| |
Collapse
|
5
|
Masi M, Bollella P, Katz E. Biomolecular Release Stimulated by Electrochemical Signals at a Very Small Potential Applied. ELECTROANAL 2019. [DOI: 10.1002/elan.201900377] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Madeline Masi
- Department of Chemistry and Biomolecular ScienceClarkson University Potsdam NY 13699–5810 USA
| | - Paolo Bollella
- Department of Chemistry and Biomolecular ScienceClarkson University Potsdam NY 13699–5810 USA
| | - Evgeny Katz
- Department of Chemistry and Biomolecular ScienceClarkson University Potsdam NY 13699–5810 USA
| |
Collapse
|
6
|
Guo X, Zhang H, Wang Y, Pang W, Duan X. Programmable multi-DNA release from multilayered polyelectrolytes using gigahertz nano-electromechanical resonator. J Nanobiotechnology 2019; 17:86. [PMID: 31387581 PMCID: PMC6683436 DOI: 10.1186/s12951-019-0518-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Accepted: 07/30/2019] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Controllable and multiple DNA release is critical in modern gene-based therapies. Current approaches require complex assistant molecules for combined release. To overcome the restrictions on the materials and environment, a novel and versatile DNA release method using a nano-electromechanical (NEMS) hypersonic resonator of gigahertz (GHz) frequency is developed. RESULTS The micro-vortexes excited by ultra-high frequency acoustic wave can generate tunable shear stress at solid-liquid interface, thereby disrupting molecular interactions in immobilized multilayered polyelectrolyte thin films and releasing embedded DNA strands in a controlled fashion. Both finite element model analysis and experiment results verify the feasibility of this method. The release rate and released amount are confirmed to be well tuned. Owing to the different forces generated at different depth of the films, release of two types of DNA molecules with different velocities is achieved, which further explores its application in combined gene therapy. CONCLUSIONS Our research confirmed that this novel platform based on a nano-electromechanical hypersonic resonator works well for controllable single and multi-DNA release. In addition, the unique features of this resonator such as miniaturization and batch manufacturing open its possibility to be developed into a high-throughput, implantable and site targeting DNA release and delivery system.
Collapse
Affiliation(s)
- Xinyi Guo
- State Key Laboratory of Precision Measuring Technology & Instruments, Tianjin University, Tianjin, 300072, China
| | - Hongxiang Zhang
- College of Precision Instrument and Opto-electronics Engineering, Tianjin University, Tianjin, 300072, China
| | - Yanyan Wang
- State Key Laboratory of Precision Measuring Technology & Instruments, Tianjin University, Tianjin, 300072, China
| | - Wei Pang
- College of Precision Instrument and Opto-electronics Engineering, Tianjin University, Tianjin, 300072, China
| | - Xuexin Duan
- State Key Laboratory of Precision Measuring Technology & Instruments, Tianjin University, Tianjin, 300072, China.
| |
Collapse
|
7
|
Abstract
An ideal gene carrier requires an excellent gating system to efficiently load, protect, deliver, and release environmentally sensitive nucleic acids on demand. Presented in this communication is a polymersome with a "boarding gate" and a "debarkation gate" in the membrane to complete the above important missions. This dually gated polymersome is self-assembled from a block copolymer, poly(ethylene oxide)- block-poly[ N-isopropylacrylamide- stat-7-(2-methacryloyloxyethoxy)-4-methylcoumarin- stat-2-(diethylamino)ethyl methacrylate] [PEO- b-P(NIPAM- stat-CMA- stat-DEA)]. The hydrophilic PEO chains form the coronas of the polymersome, whereas the temperature and pH-sensitive P(NIPAM- stat-CMA- stat-DEA) block forms the dually gated heterogeneous membrane. The temperature-controlled "boarding gate" can be opened at room temperature for facile encapsulation of siRNA and plasmid DNA into polymersomes directly in aqueous solution. The "debarkation gate" can be triggered by proton sponge effect for intracellular release. Biological studies confirmed the successful encapsulation of siRNA and plasmid DNA, efficient in vitro and in vivo gene transfection, and the expression of green fluorescent protein (GFP) from GFP-encoding plasmid, suggesting that this kind of polymersome with a dual gating system can serve as an excellent biomacromolecular shuttle for gene delivery and other biological applications.
Collapse
Affiliation(s)
- Fangyingkai Wang
- Department of Orthopaedics, Shanghai Tenth People's Hospital , Tongji University School of Medicine , 301 Middle Yanchang Road , Shanghai 200072 , China
- Department of Polymeric Materials, School of Materials Science and Engineering , Tongji University , 4800 Caoan Road , Shanghai 201804 , China
| | - Jingyi Gao
- Department of Polymeric Materials, School of Materials Science and Engineering , Tongji University , 4800 Caoan Road , Shanghai 201804 , China
| | - Jiangang Xiao
- Department of Polymeric Materials, School of Materials Science and Engineering , Tongji University , 4800 Caoan Road , Shanghai 201804 , China
| | - Jianzhong Du
- Department of Orthopaedics, Shanghai Tenth People's Hospital , Tongji University School of Medicine , 301 Middle Yanchang Road , Shanghai 200072 , China
- Department of Polymeric Materials, School of Materials Science and Engineering , Tongji University , 4800 Caoan Road , Shanghai 201804 , China
| |
Collapse
|
8
|
|
9
|
Masi M, Gamella M, Guz N, Katz E. Electrochemically Triggered DNA Release from a Mixed-brush Polymer-modified Electrode. ELECTROANAL 2016. [DOI: 10.1002/elan.201600275] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Madeline Masi
- Department of Chemistry and Biomolecular Science; Clarkson University; Potsdam NY 13699-5810 USA
| | - Maria Gamella
- Department of Chemistry and Biomolecular Science; Clarkson University; Potsdam NY 13699-5810 USA
| | - Nataliia Guz
- Department of Chemistry and Biomolecular Science; Clarkson University; Potsdam NY 13699-5810 USA
| | - Evgeny Katz
- Department of Chemistry and Biomolecular Science; Clarkson University; Potsdam NY 13699-5810 USA
| |
Collapse
|
10
|
Abstract
The use of gene delivery systems for the expression of antigenic proteins is an established means for activating a patient’s own immune system against the cancer they carry. Since tumor cells are poor antigen-presenting cells, cross-presentation of tumor antigens by dendritic cells (DCs) is essential for the generation of tumor-specific cytotoxic T-lymphocyte responses. A number of polymer-based nanomedicines have been developed to deliver genes into DCs, primarily by incorporating tumor-specific, antigen-encoding plasmid DNA with polycationic molecules to facilitate DNA loading and intracellular trafficking. Direct in vivo targeting of plasmid DNA to DC surface receptors can induce high transfection efficiency and long-term gene expression, essential for antigen loading onto major histocompatibility complex molecules and stimulation of T-cell responses. This chapter summarizes the physicochemical properties and biological information on polymer-based non-viral vectors used for targeting DCs, and discusses the main challenges for successful in vivo gene transfer into DCs.
Collapse
Affiliation(s)
- Kenneth A. Howard
- Department of Molecular Biology and Gen, Interdisciplinary Nanoscience Center (i, Aarhus, Denmark
| | - Thomas Vorup-Jensen
- Department of Biomedicine, Biophysical I, Aarhus University, Aarhus, Denmark
| | - Dan Peer
- Britannia Bldg, 2nd Fl, Rm 226, Tel-Aviv Univ, Dept Cell Research, Tel-Aviv, Israel
| |
Collapse
|
11
|
Gamella M, Guz N, Katz E. DNA Release from a Bioelectronic Interface Stimulated by a DNA Signal – Amplification of DNA Signals. ELECTROANAL 2016. [DOI: 10.1002/elan.201600077] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Maria Gamella
- Department of Chemistry and Biomolecular Science Clarkson University Potsdam NY 13699-5810 USA
| | - Nataliia Guz
- Department of Chemistry and Biomolecular Science Clarkson University Potsdam NY 13699-5810 USA
| | - Evgeny Katz
- Department of Chemistry and Biomolecular Science Clarkson University Potsdam NY 13699-5810 USA
| |
Collapse
|
12
|
Privman V, Domanskyi S, Luz RAS, Guz N, Glasser ML, Katz E. Diffusion of Oligonucleotides from within Iron-Cross-Linked, Polyelectrolyte-Modified Alginate Beads: A Model System for Drug Release. Chemphyschem 2016; 17:976-84. [PMID: 26762598 DOI: 10.1002/cphc.201501186] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Indexed: 12/24/2022]
Abstract
An analytical model to describe diffusion of oligonucleotides from stable hydrogel beads is developed and experimentally verified. The synthesized alginate beads are Fe(3+) -cross-linked and polyelectrolyte-doped for uniformity and stability at physiological pH. Data on diffusion of oligonucleotides from inside the beads provide physical insights into the volume nature of the immobilization of a fraction of oligonucleotides due to polyelectrolyte cross-linking, that is, the absence of a surface-layer barrier in this case. Furthermore, the results suggest a new simple approach to measuring the diffusion coefficient of mobile oligonucleotide molecules inside hydrogels. The considered alginate beads provide a model for a well-defined component in drug-release systems and for the oligonucleotide-release transduction steps in drug-delivering and biocomputing applications. This is illustrated by destabilizing the beads with citrate, which induces full oligonucleotide release with nondiffusional kinetics.
Collapse
Affiliation(s)
- Vladimir Privman
- Department of Physics, Clarkson University, Potsdam, NY, 13676, USA.
| | - Sergii Domanskyi
- Department of Physics, Clarkson University, Potsdam, NY, 13676, USA
| | - Roberto A S Luz
- Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY, 13676, USA.,Instituto de Química de São Carlos, Universidade de São Paulo, São Carlos, SP, 13560-970, Brazil
| | - Nataliia Guz
- Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY, 13676, USA
| | | | - Evgeny Katz
- Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY, 13676, USA.
| |
Collapse
|
13
|
Sempionatto JR, Gamella M, Guz N, Pingarrón JM, Pedrosa VA, Minko S, Katz E. Electrochemically Stimulated DNA Release from a Polymer-Brush Modified Electrode. ELECTROANAL 2015. [DOI: 10.1002/elan.201500252] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
14
|
Sharker SM, Kim SM, Kim SH, In I, Lee H, Park SY. Target delivery of β-cyclodextrin/paclitaxel complexed fluorescent carbon nanoparticles: externally NIR light and internally pH sensitive-mediated release of paclitaxel with bio-imaging. J Mater Chem B 2015; 3:5833-5841. [DOI: 10.1039/c5tb00779h] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The carbonized fluorescence hyaluronic acid (HA-FCN) for triggered target bioimaging ability have conjugated with β-cyclodextrin (CD) to release PTX by intracellular pH as well as remote photothermal NIR light control.
Collapse
Affiliation(s)
- Shazid Md. Sharker
- Department of Chemistry
- Korea Advanced Institute of Science and Technology (KAIST)
- Daejeon 305-701
- Republic of Korea
| | - Sung Min Kim
- Department of Chemical and Biological Engineering
- Korea National University of Transportation
- Chungju 380-702
- Republic of Korea
| | - Sung Han Kim
- Department of IT Convergence
- Korea National University of Transportation
- Chungju 380-702
- Republic of Korea
| | - Insik In
- Department of IT Convergence
- Korea National University of Transportation
- Chungju 380-702
- Republic of Korea
- Department of Polymer Science and Engineering
| | - Haeshin Lee
- Department of Chemistry
- Korea Advanced Institute of Science and Technology (KAIST)
- Daejeon 305-701
- Republic of Korea
| | - Sung Young Park
- Department of Chemical and Biological Engineering
- Korea National University of Transportation
- Chungju 380-702
- Republic of Korea
- Department of IT Convergence
| |
Collapse
|
15
|
Berguig GY, Convertine AJ, Shi J, Palanca-Wessels MC, Duvall CL, Pun SH, Press OW, Stayton PS. Intracellular delivery and trafficking dynamics of a lymphoma-targeting antibody-polymer conjugate. Mol Pharm 2012; 9:3506-14. [PMID: 23075320 DOI: 10.1021/mp300338s] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Ratiometric fluorescence and cellular fractionation studies were employed to characterize the intracellular trafficking dynamics of antibody-poly(propylacrylic acid) (PPAA) conjugates in CD22+ RAMOS-AW cells. The HD39 monoclonal antibody (mAb) directs CD22-dependent, receptor-mediated uptake in human B-cell lymphoma cells, where it is rapidly trafficked to the lysosomal compartment. To characterize the intracellular-release dynamics of the polymer-mAb conjugates, HD39-streptavidin (HD39/SA) was dual-labeled with pH-insensitive Alexa Fluor 488 and pH-sensitive pHrodo fluorophores. The subcellular pH distribution of the HD39/SA-polymer conjugates was quantified as a function of time by live-cell fluorescence microscopy, and the average intracellular pH value experienced by the conjugates was also characterized as a function of time by flow cytometry. PPAA was shown to alter the intracellular trafficking kinetics strongly relative to HD39/SA alone or HD39/SA conjugates with a control polymer, poly(methacryclic acid) (PMAA). Subcellular trafficking studies revealed that after 6 h, only 11% of the HD39/SA-PPAA conjugates had been trafficked to acidic lysosomal compartments with values at or below pH 5.6. In contrast, the average intracellular pH of HD39/SA alone dropped from 6.7 ± 0.2 at 1 h to 5.6 ± 0.5 after 3 h and 4.7 ± 0.6 after 6 h. Conjugation of the control polymer PMAA to HD39/SA showed an average pH drop similar to that of HD39/SA. Subcellular fractionation studies with tritium-labeled HD39/SA demonstrated that after 6 h, 89% of HD39/SA was associated with endosomes (Rab5+) and lysosomes (Lamp2+), while 45% of HD39/SA-PPAA was translocated to the cytosol (lactate dehydrogenase+). These results demonstrate the endosomal-releasing properties of PPAA with antibody-polymer conjugates and detail their intracellular trafficking dynamics and subcellular compartmental distributions over time.
Collapse
Affiliation(s)
- Geoffrey Y Berguig
- Department of Bioengineering, University of Washington , Seattle, Washington 98195-5061, United States
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Balmert SC, Little SR. Biomimetic delivery with micro- and nanoparticles. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2012; 24:3757-78. [PMID: 22528985 PMCID: PMC3627374 DOI: 10.1002/adma.201200224] [Citation(s) in RCA: 96] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Indexed: 05/16/2023]
Abstract
The nascent field of biomimetic delivery with micro- and nanoparticles (MNP) has advanced considerably in recent years. Drawing inspiration from the ways that cells communicate in the body, several different modes of "delivery" (i.e., temporospatial presentation of biological signals) have been investigated in a number of therapeutic contexts. In particular, this review focuses on (1) controlled release formulations that deliver natural soluble factors with physiologically relevant temporal context, (2) presentation of surface-bound ligands to cells, with spatial organization of ligands ranging from isotropic to dynamically anisotropic, and (3) physical properties of particles, including size, shape and mechanical stiffness, which mimic those of natural cells. Importantly, the context provided by multimodal, or multifactor delivery represents a key element of most biomimetic MNP systems, a concept illustrated by an analogy to human interpersonal communication. Regulatory implications of increasingly sophisticated and "cell-like" biomimetic MNP systems are also discussed.
Collapse
Affiliation(s)
- Stephen C Balmert
- Department of Chemical Engineering, University of Pittsburgh, Pittsburgh, PA 15261 USA
| | | |
Collapse
|
17
|
Jhunjhunwala S, Little SR. Microparticulate systems for targeted drug delivery to phagocytes. Cell Cycle 2012; 10:2047-8. [PMID: 21623160 DOI: 10.4161/cc.10.13.15713] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
18
|
Kojima R, Kasuya MCZ, Ishihara K, Hatanaka K. Physicochemical delivery of amphiphilic copolymers to specific organelles. Polym J 2011. [DOI: 10.1038/pj.2011.49] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
19
|
Liu C, Zhang N. Nanoparticles in Gene Therapy. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2011; 104:509-62. [DOI: 10.1016/b978-0-12-416020-0.00013-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
20
|
Zhou Z, Shen Y, Tang J, Jin E, Ma X, Sun Q, Zhang B, Van Kirk EA, Murdoch WJ. Linear polyethyleneimine-based charge-reversal nanoparticles for nuclear-targeted drug delivery. ACTA ACUST UNITED AC 2011. [DOI: 10.1039/c1jm13576g] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
21
|
Timko BP, Dvir T, Kohane DS. Remotely triggerable drug delivery systems. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2010; 22:4925-43. [PMID: 20818618 DOI: 10.1002/adma.201002072] [Citation(s) in RCA: 434] [Impact Index Per Article: 28.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Triggerable drug delivery systems enable on-demand controlled release profiles that may enhance therapeutic effectiveness and reduce systemic toxicity. Recently, a number of new materials have been developed that exhibit sensitivity to visible light, near-infrared (NIR) light, ultrasound, or magnetic fields. This responsiveness can be triggered remotely to provide flexible control of dose magnitude and timing. Here we review triggerable materials that range in scale from nano to macro, and are activated by a range of stimuli.
Collapse
Affiliation(s)
- Brian P Timko
- Laboratory for Biomaterials and Drug Delivery, Department of Anesthesiology, Division of Critical Care Medicine, Children's Hospital Boston, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | | | | |
Collapse
|
22
|
Gao W, Chan JM, Farokhzad OC. pH-Responsive nanoparticles for drug delivery. Mol Pharm 2010; 7:1913-20. [PMID: 20836539 DOI: 10.1021/mp100253e] [Citation(s) in RCA: 672] [Impact Index Per Article: 44.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
First-generation nanoparticles (NPs) have been clinically translated as pharmaceutical drug delivery carriers for their ability to improve on drug tolerability, circulation half-life, and efficacy. Toward the development of the next-generation NPs, researchers have designed novel multifunctional platforms for sustained release, molecular targeting, and environmental responsiveness. This review focuses on environmentally responsive mechanisms used in NP designs, and highlights the use of pH-responsive NPs in drug delivery. Different organs, tissues, and subcellular compartments, as well as their pathophysiological states, can be characterized by their pH levels and gradients. When exposed to these pH stimuli, pH-responsive NPs respond with physicochemical changes to their material structure and surface characteristics. These include swelling, dissociating or surface charge switching, in a manner that favors drug release at the target site over surrounding tissues. The novel developments described here may revise the classical outlook that NPs are passive delivery vehicles, in favor of responsive, sensing vehicles that use environmental cues to achieve maximal drug potency.
Collapse
Affiliation(s)
- Weiwei Gao
- Laboratory of Nanomedicine and Biomaterials, Department of Anesthesiology, Brigham and Women's Hospital, Boston, Massachusetts 02115, United States
| | | | | |
Collapse
|
23
|
Zhang M, Xue YN, Liu M, Zhuo RX, Huang SW. Biocleavable Polycationic Micelles as Highly Efficient Gene Delivery Vectors. NANOSCALE RESEARCH LETTERS 2010; 5:1804-1811. [PMID: 21124632 PMCID: PMC2964480 DOI: 10.1007/s11671-010-9716-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2010] [Accepted: 07/26/2010] [Indexed: 05/30/2023]
Abstract
An amphiphilic disulfide-containing polyamidoamine was synthesized by Michael-type polyaddition reaction of piperazine to equimolar N, N'-bis(acryloyl)cystamine with 90% yield. The polycationic micelles (198 nm, 32.5 mV), prepared from the amphiphilic polyamidoamine by dialysis method, can condense foreign plasmid DNA to form nanosized polycationic micelles/DNA polyelectrolyte complexes with positive charges, which transfected 293T cells with high efficiency. Under optimized conditions, the transfection efficiencies of polycationic micelles/DNA complexes are comparable to, or even higher than that of commercially available branched PEI (Mw 25 kDa).
Collapse
Affiliation(s)
- Min Zhang
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry, Wuhan University, Wuhan, 430072, People’s Republic of China
| | - Ya-Nan Xue
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry, Wuhan University, Wuhan, 430072, People’s Republic of China
| | - Min Liu
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry, Wuhan University, Wuhan, 430072, People’s Republic of China
| | - Ren-Xi Zhuo
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry, Wuhan University, Wuhan, 430072, People’s Republic of China
| | - Shi-Wen Huang
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry, Wuhan University, Wuhan, 430072, People’s Republic of China
| |
Collapse
|
24
|
Dvir T, Banghart MR, Timko BP, Langer R, Kohane DS. Photo-targeted nanoparticles. NANO LETTERS 2010; 10:250-4. [PMID: 19904979 PMCID: PMC2806491 DOI: 10.1021/nl903411s] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
We report a novel and simple proof-of-concept of a nanoparticulate system that targets any tissue selectively upon illumination. Nanoparticles were covalently functionalized with the amino acid sequence YIGSR, which adheres to the beta1 integrins present on most cell surfaces. This peptide was masked with a caging group, rendering it biologically inert. Illumination with UV light released the caging group from the YIGSR, allowing binding to cells.
Collapse
Affiliation(s)
- Tal Dvir
- Department of Chemical Engineering, Massachusetts Institute of Technology, 45 Carleton Street, Cambridge, Massachusetts 02142
- Laboratory for Biomaterials and Drug Delivery, Department of Anesthesiology, Division of Critical Care Medicine, Children's Hospital Boston, Harvard Medical School, 300 Longwood Avenue, Boston, Massachusetts 02115
| | - Matthew R. Banghart
- Department of Neurobiology, Harvard Medical School, 220 Longwood Ave, Boston, Massachusetts 02115
| | - Brian P. Timko
- Laboratory for Biomaterials and Drug Delivery, Department of Anesthesiology, Division of Critical Care Medicine, Children's Hospital Boston, Harvard Medical School, 300 Longwood Avenue, Boston, Massachusetts 02115
- Harvard-Massachusetts Institute of Technology Division of Health Sciences and Technology, Cambridge, MA 02139
| | - Robert Langer
- Department of Chemical Engineering, Massachusetts Institute of Technology, 45 Carleton Street, Cambridge, Massachusetts 02142
| | - Daniel S. Kohane
- Laboratory for Biomaterials and Drug Delivery, Department of Anesthesiology, Division of Critical Care Medicine, Children's Hospital Boston, Harvard Medical School, 300 Longwood Avenue, Boston, Massachusetts 02115
- To whom correspondence should be addressed,
| |
Collapse
|
25
|
|
26
|
Gao W, Xiao Z, Radovic-Moreno A, Shi J, Langer R, Farokhzad OC. Progress in siRNA delivery using multifunctional nanoparticles. Methods Mol Biol 2010; 629:53-67. [PMID: 20387142 DOI: 10.1007/978-1-60761-657-3_4] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Nanoparticles made from synthetic polymers have been developed to deliver small interfering RNA (siRNA). For successful siRNA delivery, these nanoparticles need to efficiently encapsulate siRNA, actively target sites of interest, and release siRNA intracellularly. This chapter reviews recent progress using a multifunctional approach to design and engineer polymeric nanoparticles for siRNA delivery.
Collapse
Affiliation(s)
- Weiwei Gao
- Laboratory of Nanomedicine and Biomaterials, Department of Anesthesia, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | | | | | | | | | | |
Collapse
|
27
|
Cationic PMMA nanoparticles bind and deliver antisense oligoribonucleotides allowing restoration of dystrophin expression in the mdx mouse. Mol Ther 2009; 17:820-7. [PMID: 19240694 DOI: 10.1038/mt.2009.8] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
For subsets of Duchenne muscular dystrophy (DMD) mutations, antisense oligoribonucleotide (AON)-mediated exon skipping has proven to be efficacious in restoring the expression of dystrophin protein. In the mdx murine model systemic delivery of AON, recognizing the splice donor of dystrophin exon 23, has shown proof of concept. Here, we show that using cationic polymethylmethacrylate (PMMA) (marked as T1) nanoparticles loaded with a low dose of 2'-O-methyl-phosphorothioate (2'OMePS) AON delivered by weekly intraperitoneal (IP) injection (0.9 mg/kg/week), could restore dystrophin expression in body-wide striated muscles. Delivery of an identical dose of naked AON did not result in detectable dystrophin expression. Transcription, western, and immunohistochemical analysis showed increased levels of dystrophin transcript and protein, and correct localization at the sarcolemma. This study shows that T1 nanoparticles have the capacity to bind and convoy AONs in body-wide muscle tissues and to reduce the dose required for dystrophin rescue. By immunofluorescence and electron microscopy studies, we highlighted the diffusion pathways of this compound. This nonviral approach may valuably improve the therapeutic usage of AONs in DMD as well as the delivery of RNA molecules with many implications in both basic research and medicine.
Collapse
|
28
|
Wang F, Liu X, Li G, Li D, Dong S. Selective electrodissolution of inorganic ions/DNA multilayer film for tunable DNA release. ACTA ACUST UNITED AC 2009. [DOI: 10.1039/b812940a] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
29
|
Onaca O, Enea R, Hughes DW, Meier W. Stimuli-Responsive Polymersomes as Nanocarriers for Drug and Gene Delivery. Macromol Biosci 2008; 9:129-39. [DOI: 10.1002/mabi.200800248] [Citation(s) in RCA: 396] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|