1
|
Buyachuihan L, Reiners S, Zhao Y, Grininger M. The malonyl/acetyl-transferase from murine fatty acid synthase is a promiscuous engineering tool for editing polyketide scaffolds. Commun Chem 2024; 7:187. [PMID: 39181936 PMCID: PMC11344766 DOI: 10.1038/s42004-024-01269-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 08/05/2024] [Indexed: 08/27/2024] Open
Abstract
Modular polyketide synthases (PKSs) play a vital role in the biosynthesis of complex natural products with pharmaceutically relevant properties. Their modular architecture makes them an attractive target for engineering to produce platform chemicals and drugs. In this study, we demonstrate that the promiscuous malonyl/acetyl-transferase domain (MAT) from murine fatty acid synthase serves as a highly versatile tool for the production of polyketide analogs. We evaluate the relevance of the MAT domain using three modular PKSs; the short trimodular venemycin synthase (VEMS), as well as modules of the PKSs deoxyerythronolide B synthase (DEBS) and pikromycin synthase (PIKS) responsible for the production of the antibiotic precursors erythromycin and pikromycin. To assess the performance of the MAT-swapped PKSs, we analyze the protein quality and run engineered polyketide syntheses in vitro. Our experiments include the chemoenzymatic synthesis of fluorinated macrolactones. Our study showcases MAT-based reprogramming of polyketide biosynthesis as a facile option for the regioselective editing of substituents decorating the polyketide scaffold.
Collapse
Affiliation(s)
- Lynn Buyachuihan
- Institute of Organic Chemistry and Chemical Biology, Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, 60438, Frankfurt am Main, Germany
| | - Simon Reiners
- Institute of Organic Chemistry and Chemical Biology, Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, 60438, Frankfurt am Main, Germany
| | - Yue Zhao
- Institute of Organic Chemistry and Chemical Biology, Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, 60438, Frankfurt am Main, Germany
| | - Martin Grininger
- Institute of Organic Chemistry and Chemical Biology, Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, 60438, Frankfurt am Main, Germany.
| |
Collapse
|
2
|
Grabski M, Gawor J, Cegłowska M, Gromadka R, Mazur-Marzec H, Węgrzyn G. Genome Mining of Pseudanabaena galeata CCNP1313 Indicates a New Scope in the Search for Antiproliferative and Antiviral Agents. Microorganisms 2024; 12:1628. [PMID: 39203471 PMCID: PMC11356792 DOI: 10.3390/microorganisms12081628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 08/07/2024] [Accepted: 08/08/2024] [Indexed: 09/03/2024] Open
Abstract
Compounds derived from natural sources pave the way for novel drug development. Cyanobacteria is an ubiquitous phylum found in various habitats. The fitness of those microorganisms, within different biotopes, is partially dependent on secondary metabolite production. Their enhanced production under biotic/abiotic stress factors accounts for better survival rates of cells, and thereby cyanobacteria are as an enticing source of bioactive compounds. Previous studies have shown the potent activity of extracts and fractions from Pseudanabaena galeata (Böcher 1949) strain CCNP1313 against cancer cells and viruses. However, active agents remain unknown, as the selected peptides had no effect on the tested cell lines. Here, we present a bottom-up approach, pinpointing key structures involved in secondary metabolite production. Consisting of six replicons, a complete genome sequence of P. galeata strain CCNP1313 was found to carry genes for non-ribosomal peptide/polyketide synthetases embedded within chromosome spans (4.9 Mbp) and for a ribosomally synthesized peptide located on one of the plasmids (0.2 Mbp). Elucidation of metabolite synthesis pathways led to prediction of their structure. While none of the synthesis-predicted products were found in mass spectrometry analysis, unexplored synthetases are characterized by structural similarities to those producing potent bioactive compounds.
Collapse
Affiliation(s)
- Michał Grabski
- Department of Molecular Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland;
- Institute of Oceanology, Polish Academy of Sciences, Powstańców Warszawy 55, 81-712 Sopot, Poland;
- International Centre for Cancer Vaccine Science, University of Gdansk, Kładki 24, 80-822 Gdańsk, Poland
| | - Jan Gawor
- DNA Sequencing and Synthesis Facility, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland; (J.G.); (R.G.)
| | - Marta Cegłowska
- Institute of Oceanology, Polish Academy of Sciences, Powstańców Warszawy 55, 81-712 Sopot, Poland;
| | - Robert Gromadka
- DNA Sequencing and Synthesis Facility, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland; (J.G.); (R.G.)
| | - Hanna Mazur-Marzec
- Department of Marine Biology and Biotechnology, University of Gdansk, Piłsudskiego 46, 81-378 Gdynia, Poland;
| | - Grzegorz Węgrzyn
- Department of Molecular Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland;
| |
Collapse
|
3
|
Wang H, Liang J, Yue Q, Li L, Shi Y, Chen G, Li YZ, Bian X, Zhang Y, Zhao G, Ding X. Engineering the acyltransferase domain of epothilone polyketide synthase to alter the substrate specificity. Microb Cell Fact 2021; 20:86. [PMID: 33882930 PMCID: PMC8058987 DOI: 10.1186/s12934-021-01578-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 04/07/2021] [Indexed: 11/13/2022] Open
Abstract
Background Polyketide synthases (PKSs) include ketone synthase (KS), acyltransferase (AT) and acyl carrier protein (ACP) domains to catalyse the elongation of polyketide chains. Some PKSs also contain ketoreductase (KR), dehydratase (DH) and enoylreductase (ER) domains as modification domains. Insertion, deletion or substitution of the catalytic domains may lead to the production of novel polyketide derivatives or to the accumulation of desired products. Epothilones are 16-membered macrolides that have been used as anticancer drugs. The substrate promiscuity of the module 4 AT domain of the epothilone PKS (EPOAT4) results in production of epothilone mixtures; substitution of this domain may change the ratios of epothilones. In addition, there are two dormant domains in module 9 of the epothilone PKS. Removing these redundant domains to generate a simpler and more efficient assembly line is a desirable goal. Results The substitution of module 4 drastically diminished the activity of epothilone PKS. However, with careful design of the KS-AT linker and the post-AT linker, replacing EPOAT4 with EPOAT2, EPOAT6, EPOAT7 or EPOAT8 (specifically incorporating methylmalonyl-CoA (MMCoA)) significantly increased the ratio of epothilone D (4) to epothilone C (3) (the highest ratio of 4:3 = 4.6:1), whereas the ratio of 4:3 in the parental strain Schlegelella brevitalea 104-1 was 1.4:1. We also obtained three strains by swapping EPOAT4 with EPOAT3, EPOAT5, or EPOAT9, which specifically incorporate malonyl-CoA (MCoA). These strains produced only epothilone C, and the yield was increased by a factor of 1.8 compared to that of parental strain 104-1. Furthermore, mutations of five residues in the AT domain identified Ser310 as the critical factor for MMCoA recognition in EPOAT4. Then, the mutation of His308 to valine or tyrosine combined with the mutation of Phe310 to serine further altered the product ratios. At the same time, we successfully deleted the inactive module 9 DH and ER domains and fused the ΨKR domain with the KR domain through an ~ 25-residue linker to generate a productive and simplified epothilone PKS. Conclusions These results suggested that the substitution and deletion of catalytic domains effectively produces desirable compounds and that selection of the linkers between domains is crucial for maintaining intact PKS catalytic activity. Supplementary Information The online version contains supplementary material available at 10.1186/s12934-021-01578-3.
Collapse
Affiliation(s)
- Huimin Wang
- Collaborative Innovation Center for Genetics and Development, State Key Laboratory of Genetic Engineering, Shanghai Engineering Research Center of Industrial Microorganisms, Department of Microbiology, School of Life Sciences, Fudan University, Shanghai, 200438, People's Republic of China
| | - Junheng Liang
- Collaborative Innovation Center for Genetics and Development, State Key Laboratory of Genetic Engineering, Shanghai Engineering Research Center of Industrial Microorganisms, Department of Microbiology, School of Life Sciences, Fudan University, Shanghai, 200438, People's Republic of China
| | - Qianwen Yue
- Collaborative Innovation Center for Genetics and Development, State Key Laboratory of Genetic Engineering, Shanghai Engineering Research Center of Industrial Microorganisms, Department of Microbiology, School of Life Sciences, Fudan University, Shanghai, 200438, People's Republic of China
| | - Long Li
- The State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200433, People's Republic of China
| | - Yan Shi
- Collaborative Innovation Center for Genetics and Development, State Key Laboratory of Genetic Engineering, Shanghai Engineering Research Center of Industrial Microorganisms, Department of Microbiology, School of Life Sciences, Fudan University, Shanghai, 200438, People's Republic of China
| | - Guosong Chen
- The State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200433, People's Republic of China
| | - Yue-Zhong Li
- State Key Laboratory of Microbial Technology, School of Life Sciences, Shandong University-Helmholtz Institute of Biotechnology, Shandong University, Qingdao, Shandong, People's Republic of China
| | - Xiaoying Bian
- State Key Laboratory of Microbial Technology, School of Life Sciences, Shandong University-Helmholtz Institute of Biotechnology, Shandong University, Qingdao, Shandong, People's Republic of China
| | - Youming Zhang
- State Key Laboratory of Microbial Technology, School of Life Sciences, Shandong University-Helmholtz Institute of Biotechnology, Shandong University, Qingdao, Shandong, People's Republic of China
| | - Guoping Zhao
- Collaborative Innovation Center for Genetics and Development, State Key Laboratory of Genetic Engineering, Shanghai Engineering Research Center of Industrial Microorganisms, Department of Microbiology, School of Life Sciences, Fudan University, Shanghai, 200438, People's Republic of China.,CAS Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, People's Republic of China
| | - Xiaoming Ding
- Collaborative Innovation Center for Genetics and Development, State Key Laboratory of Genetic Engineering, Shanghai Engineering Research Center of Industrial Microorganisms, Department of Microbiology, School of Life Sciences, Fudan University, Shanghai, 200438, People's Republic of China.
| |
Collapse
|
4
|
Kalkreuter E, Bingham KS, Keeler AM, Lowell AN, Schmidt JJ, Sherman DH, Williams GJ. Computationally-guided exchange of substrate selectivity motifs in a modular polyketide synthase acyltransferase. Nat Commun 2021; 12:2193. [PMID: 33850151 PMCID: PMC8044089 DOI: 10.1038/s41467-021-22497-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 02/26/2021] [Indexed: 11/28/2022] Open
Abstract
Polyketides, one of the largest classes of natural products, are often clinically relevant. The ability to engineer polyketide biosynthesis to produce analogs is critically important. Acyltransferases (ATs) of modular polyketide synthases (PKSs) catalyze the installation of malonyl-CoA extenders into polyketide scaffolds. ATs have been targeted extensively to site-selectively introduce various extenders into polyketides. Yet, a complete inventory of AT residues responsible for substrate selection has not been established, limiting the scope of AT engineering. Here, molecular dynamics simulations are used to prioritize ~50 mutations within the active site of EryAT6 from erythromycin biosynthesis, leading to identification of two previously unexplored structural motifs. Exchanging both motifs with those from ATs with alternative extender specificities provides chimeric PKS modules with expanded and inverted substrate specificity. Our enhanced understanding of AT substrate selectivity and application of this motif-swapping strategy are expected to advance our ability to engineer PKSs towards designer polyketides.
Collapse
Affiliation(s)
- Edward Kalkreuter
- Department of Chemistry, NC State University, Raleigh, NC, USA
- Comparative Medicine Institute, NC State University, Raleigh, NC, USA
- Department of Chemistry, The Scripps Research Institute, Jupiter, FL, USA
| | - Kyle S Bingham
- Department of Chemistry, NC State University, Raleigh, NC, USA
- UNC Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Aaron M Keeler
- Department of Chemistry, NC State University, Raleigh, NC, USA
| | - Andrew N Lowell
- Life Sciences Institute, Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI, USA
- Department of Chemistry, Virginia Tech, Blacksburg, VA, USA
| | - Jennifer J Schmidt
- Life Sciences Institute, Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - David H Sherman
- Life Sciences Institute, Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI, USA
- Department of Chemistry, Department of Microbiology & Immunology, University of Michigan, Ann Arbor, MI, USA
| | - Gavin J Williams
- Department of Chemistry, NC State University, Raleigh, NC, USA.
- Comparative Medicine Institute, NC State University, Raleigh, NC, USA.
| |
Collapse
|
5
|
Ji H, Shi T, Liu L, Zhang F, Tao W, Min Q, Deng Z, Bai L, Zhao Y, Zheng J. Computational studies on the substrate specificity of an acyltransferase domain from salinomycin polyketide synthase. Catal Sci Technol 2021. [DOI: 10.1039/d1cy00284h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The complex of SalAT14 and its cognate substrate EMCoA is apt to stay in a conformation suitable for the reaction. Computational investigations reveal the structural basis of AT specificity and could potentially help the engineering of modular PKSs.
Collapse
Affiliation(s)
- Huining Ji
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Ting Shi
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Lei Liu
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Fa Zhang
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Wentao Tao
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Qing Min
- Pharmacy School, Hubei University of Science and Technology, Hubei, Xianning 437100, China
| | - Zixin Deng
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Linquan Bai
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Yilei Zhao
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Jianting Zheng
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
6
|
The biosynthetic pathway to tetromadurin (SF2487/A80577), a polyether tetronate antibiotic. PLoS One 2020; 15:e0239054. [PMID: 32925967 PMCID: PMC7489565 DOI: 10.1371/journal.pone.0239054] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 08/30/2020] [Indexed: 12/03/2022] Open
Abstract
The type I polyketide SF2487/A80577 (herein referred to as tetromadurin) is a polyether tetronate ionophore antibiotic produced by the terrestrial Gram-positive bacterium Actinomadura verrucosospora. Tetromadurin is closely related to the polyether tetronates tetronasin (M139603) and tetronomycin, all of which are characterised by containing a tetronate, cyclohexane, tetrahydropyran, and at least one tetrahydrofuran ring. We have sequenced the genome of Actinomadura verrucosospora to identify the biosynthetic gene cluster responsible for tetromadurin biosynthesis (the mad gene cluster). Based on bioinformatic analysis of the 32 genes present within the cluster a plausible biosynthetic pathway for tetromadurin biosynthesis is proposed. Functional confirmation of the mad gene cluster is obtained by performing in-frame deletions in each of the genes mad10 and mad31, which encode putative cyclase enzymes responsible for cyclohexane and tetrahydropyran formation, respectively. Furthermore, the A. verrucosospora Δmad10 mutant produces a novel tetromadurin metabolite that according to mass spectrometry analysis is analogous to the recently characterised partially cyclised tetronasin intermediate lacking its cyclohexane and tetrahydropyran rings. Our results therefore elucidate the biosynthetic machinery of tetromadurin biosynthesis and lend support for a conserved mechanism of cyclohexane and tetrahydropyran biosynthesis across polyether tetronates.
Collapse
|
7
|
Drufva EE, Hix EG, Bailey CB. Site directed mutagenesis as a precision tool to enable synthetic biology with engineered modular polyketide synthases. Synth Syst Biotechnol 2020; 5:62-80. [PMID: 32637664 PMCID: PMC7327777 DOI: 10.1016/j.synbio.2020.04.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 04/01/2020] [Accepted: 04/06/2020] [Indexed: 12/04/2022] Open
Abstract
Modular polyketide synthases (PKSs) are a multidomain megasynthase class of biosynthetic enzymes that have great promise for the development of new compounds, from new pharmaceuticals to high value commodity and specialty chemicals. Their colinear biosynthetic logic has been viewed as a promising platform for synthetic biology for decades. Due to this colinearity, domain swapping has long been used as a strategy to introduce molecular diversity. However, domain swapping often fails because it perturbs critical protein-protein interactions within the PKS. With our increased level of structural elucidation of PKSs, using judicious targeted mutations of individual residues is a more precise way to introduce molecular diversity with less potential for global disruption of the protein architecture. Here we review examples of targeted point mutagenesis to one or a few residues harbored within the PKS that alter domain specificity or selectivity, affect protein stability and interdomain communication, and promote more complex catalytic reactivity.
Collapse
Key Words
- ACP, acyl carrier protein
- AT, acyltransferase
- DEBS, 6-deoxyerthronolide B synthase
- DH, dehydratase
- EI, enoylisomerase
- ER, enoylreductase
- KR, ketoreductase
- KS, ketosynthase
- LM, loading module
- MT, methyltransferase
- Mod, module
- PKS, polyketide synthase
- PS, pyran synthase
- Polyketide synthase
- Protein engineering
- Rational design
- SNAC, N-acetyl cysteamine
- Saturation mutagenesis
- Site directed mutagenesis
- Synthetic biology
Collapse
Affiliation(s)
- Erin E. Drufva
- Department of Chemistry, University of Tennessee-Knoxville, Knoxville, TN, 37996, USA
| | - Elijah G. Hix
- Department of Chemistry, University of Tennessee-Knoxville, Knoxville, TN, 37996, USA
| | - Constance B. Bailey
- Department of Chemistry, University of Tennessee-Knoxville, Knoxville, TN, 37996, USA
| |
Collapse
|
8
|
Hwang S, Lee N, Cho S, Palsson B, Cho BK. Repurposing Modular Polyketide Synthases and Non-ribosomal Peptide Synthetases for Novel Chemical Biosynthesis. Front Mol Biosci 2020; 7:87. [PMID: 32500080 PMCID: PMC7242659 DOI: 10.3389/fmolb.2020.00087] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 04/16/2020] [Indexed: 12/16/2022] Open
Abstract
In nature, various enzymes govern diverse biochemical reactions through their specific three-dimensional structures, which have been harnessed to produce many useful bioactive compounds including clinical agents and commodity chemicals. Polyketide synthases (PKSs) and non-ribosomal peptide synthetases (NRPSs) are particularly unique multifunctional enzymes that display modular organization. Individual modules incorporate their own specific substrates and collaborate to assemble complex polyketides or non-ribosomal polypeptides in a linear fashion. Due to the modular properties of PKSs and NRPSs, they have been attractive rational engineering targets for novel chemical production through the predictable modification of each moiety of the complex chemical through engineering of the cognate module. Thus, individual reactions of each module could be separated as a retro-biosynthetic biopart and repurposed to new biosynthetic pathways for the production of biofuels or commodity chemicals. Despite these potentials, repurposing attempts have often failed owing to impaired catalytic activity or the production of unintended products due to incompatible protein–protein interactions between the modules and structural perturbation of the enzyme. Recent advances in the structural, computational, and synthetic tools provide more opportunities for successful repurposing. In this review, we focused on the representative strategies and examples for the repurposing of modular PKSs and NRPSs, along with their advantages and current limitations. Thereafter, synthetic biology tools and perspectives were suggested for potential further advancement, including the rational and large-scale high-throughput approaches. Ultimately, the potential diverse reactions from modular PKSs and NRPSs would be leveraged to expand the reservoir of useful chemicals.
Collapse
Affiliation(s)
- Soonkyu Hwang
- Systems and Synthetic Biology Laboratory, Department of Biological Sciences and KI for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Namil Lee
- Systems and Synthetic Biology Laboratory, Department of Biological Sciences and KI for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Suhyung Cho
- Systems and Synthetic Biology Laboratory, Department of Biological Sciences and KI for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Bernhard Palsson
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, United States.,Department of Pediatrics, University of California, San Diego, La Jolla, CA, United States.,The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Byung-Kwan Cho
- Systems and Synthetic Biology Laboratory, Department of Biological Sciences and KI for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon, South Korea.,Intelligent Synthetic Biology Center, Daejeon, South Korea
| |
Collapse
|
9
|
Zhang F, Shi T, Ji H, Ali I, Huang S, Deng Z, Min Q, Bai L, Zhao Y, Zheng J. Structural Insights into the Substrate Specificity of Acyltransferases from Salinomycin Polyketide Synthase. Biochemistry 2019; 58:2978-2986. [PMID: 31199122 DOI: 10.1021/acs.biochem.9b00305] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Salinomycin with antibacterial and anticoccidial activities is a commercial polyether polyketide widely used in animal husbandry as a food additive. Malonyl-CoA (MCoA), methylmalonyl-CoA (MMCoA), and ethylmalonyl-CoA (EMCoA) are used as extension units in its biosynthesis. To understand how the salinomycin modular polyketide synthase (PKS) strictly discriminates among these extension units, the acyltransferase (AT) domains selecting MCoA, MMCoA, and EMCoA were structurally characterized. Molecular dynamics simulations of the AT structures helped to reveal the key interactions involved in enzyme-substrate recognitions, which enabled the engineering of AT mutants with switched specificity. The catalytic efficiencies ( kcat/ Km) of these AT mutants are comparable with those of the wild-type AT domains. These results set the stage for engineering the AT substrate specificity of modular PKSs.
Collapse
Affiliation(s)
- Fa Zhang
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology , Shanghai Jiao Tong University , Shanghai 200240 , China
| | - Ting Shi
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology , Shanghai Jiao Tong University , Shanghai 200240 , China
| | - Huining Ji
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology , Shanghai Jiao Tong University , Shanghai 200240 , China
| | - Imtiaz Ali
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology , Shanghai Jiao Tong University , Shanghai 200240 , China
| | - Shuxin Huang
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology , Shanghai Jiao Tong University , Shanghai 200240 , China
| | - Zixin Deng
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology , Shanghai Jiao Tong University , Shanghai 200240 , China
| | - Qing Min
- Pharmacy School , Hubei University of Science and Technology , Hubei , Xianning 437100 , China
| | - Linquan Bai
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology , Shanghai Jiao Tong University , Shanghai 200240 , China
| | - Yilei Zhao
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology , Shanghai Jiao Tong University , Shanghai 200240 , China
| | - Jianting Zheng
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology , Shanghai Jiao Tong University , Shanghai 200240 , China
| |
Collapse
|
10
|
Discovery of 16-Demethylrifamycins by Removing the Predominant Polyketide Biosynthesis Pathway in Micromonospora sp. Strain TP-A0468. Appl Environ Microbiol 2019; 85:AEM.02597-18. [PMID: 30530711 DOI: 10.1128/aem.02597-18] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 11/27/2018] [Indexed: 12/13/2022] Open
Abstract
A number of strategies have been developed to mine novel natural products based on biosynthetic gene clusters and there have been dozens of successful cases facilitated by the development of genomic sequencing. During our study on biosynthesis of the antitumor polyketide kosinostatin (KST), we found that the genome of Micromonospora sp. strain TP-A0468, the producer of KST, contains other potential polyketide gene clusters, with no encoded products detected. Deletion of kst cluster led to abolishment of KST and the enrichment of several new compounds, which were isolated and characterized as 16-demethylrifamycins (referred to here as compounds 3 to 6). Transcriptional analysis demonstrated that the expression of the essential genes related to the biosynthesis of compounds 3 to 6 was comparable to the level in the wild-type and in the kst cluster deletion strain. This indicates that the accumulation of these compounds was due to the redirection of metabolic flux rather than transcriptional activation. Genetic disruption, chemical complementation, and bioinformatic analysis revealed that the production of compounds 3 to 6 was accomplished by cross talk between the two distantly placed polyketide gene clusters pks3 and M-rif This finding not only enriches the analogue pool and the biosynthetic diversity of rifamycins but also provides an auxiliary strategy for natural product discovery through genome mining in polyketide-producing microorganisms.IMPORTANCE Natural products are essential in the development of novel clinically used drugs. Discovering new natural products and modifying known compounds are still the two main ways to generate new candidates. Here, we have discovered several rifamycins with varied skeleton structures by redirecting the metabolic flux from the predominant polyketide biosynthetic pathway to the rifamycin pathway in the marine actinomycetes species Micromonospora sp. strain TP-A0468. Rifamycins are indispensable chemotherapeutics in the treatment of various diseases such as tuberculosis, leprosy, and AIDS-related mycobacterial infections. This study exemplifies a useful method for the discovery of cryptic natural products in genome-sequenced microbes. Moreover, the 16-demethylrifamycins and their genetically manipulable producer provide a new opportunity in the construction of novel rifamycin derivates to aid in the defense against the ever-growing drug resistance of Mycobacterium tuberculosis.
Collapse
|
11
|
García-Salcedo R, Álvarez-Álvarez R, Olano C, Cañedo L, Braña AF, Méndez C, de la Calle F, Salas JA. Characterization of the Jomthonic Acids Biosynthesis Pathway and Isolation of Novel Analogues in Streptomyces caniferus GUA-06-05-006A. Mar Drugs 2018; 16:md16080259. [PMID: 30065171 PMCID: PMC6117699 DOI: 10.3390/md16080259] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 07/26/2018] [Accepted: 07/28/2018] [Indexed: 12/20/2022] Open
Abstract
Jomthonic acids (JAs) are a group of natural products (NPs) with adipogenic activity. Structurally, JAs are formed by a modified β-methylphenylalanine residue, whose biosynthesis involves a methyltransferase that in Streptomyces hygroscopicus has been identified as MppJ. Up to date, three JA members (A–C) and a few other natural products containing β-methylphenylalanine have been discovered from soil-derived microorganisms. Herein, we report the identification of a gene (jomM) coding for a putative methyltransferase highly identical to MppJ in the chromosome of the marine actinobacteria Streptomyces caniferus GUA-06-05-006A. In its 5’ region, jomM clusters with two polyketide synthases (PKS) (jomP1, jomP2), a nonribosomal peptide synthetase (NRPS) (jomN) and a thioesterase gene (jomT), possibly conforming a single transcriptional unit. Insertion of a strong constitutive promoter upstream of jomP1 led to the detection of JA A, along with at least two novel JA family members (D and E). Independent inactivation of jomP1, jomN and jomM abolished production of JA A, JA D and JA E, indicating the involvement of these genes in JA biosynthesis. Heterologous expression of the JA biosynthesis cluster in Streptomyces coelicolor M1152 and in Streptomyces albus J1074 led to the production of JA A, B, C and F. We propose a pathway for JAs biosynthesis based on the findings here described.
Collapse
Affiliation(s)
- Raúl García-Salcedo
- Department of Functional Biology and University Institute of Oncology of Principado de Asturias (U.I.O.P.A), University of Oviedo, 33006 Oviedo (Asturias), Spain.
- Institute for Health Research of Principado de Asturias (IHRPA), 33006 Oviedo (Asturias), Spain.
- Drug Discovery Area, PharmaMar S.A. Avda. de los Reyes 1, 28770 Colmenar Viejo (Madrid), Spain.
| | - Rubén Álvarez-Álvarez
- Department of Functional Biology and University Institute of Oncology of Principado de Asturias (U.I.O.P.A), University of Oviedo, 33006 Oviedo (Asturias), Spain.
- Institute for Health Research of Principado de Asturias (IHRPA), 33006 Oviedo (Asturias), Spain.
| | - Carlos Olano
- Department of Functional Biology and University Institute of Oncology of Principado de Asturias (U.I.O.P.A), University of Oviedo, 33006 Oviedo (Asturias), Spain.
- Institute for Health Research of Principado de Asturias (IHRPA), 33006 Oviedo (Asturias), Spain.
| | - Librada Cañedo
- Drug Discovery Area, PharmaMar S.A. Avda. de los Reyes 1, 28770 Colmenar Viejo (Madrid), Spain.
| | - Alfredo F Braña
- Department of Functional Biology and University Institute of Oncology of Principado de Asturias (U.I.O.P.A), University of Oviedo, 33006 Oviedo (Asturias), Spain.
- Institute for Health Research of Principado de Asturias (IHRPA), 33006 Oviedo (Asturias), Spain.
| | - Carmen Méndez
- Department of Functional Biology and University Institute of Oncology of Principado de Asturias (U.I.O.P.A), University of Oviedo, 33006 Oviedo (Asturias), Spain.
- Institute for Health Research of Principado de Asturias (IHRPA), 33006 Oviedo (Asturias), Spain.
| | - Fernando de la Calle
- Drug Discovery Area, PharmaMar S.A. Avda. de los Reyes 1, 28770 Colmenar Viejo (Madrid), Spain.
| | - José A Salas
- Institute for Health Research of Principado de Asturias (IHRPA), 33006 Oviedo (Asturias), Spain.
| |
Collapse
|
12
|
Musiol-Kroll EM, Wohlleben W. Acyltransferases as Tools for Polyketide Synthase Engineering. Antibiotics (Basel) 2018; 7:antibiotics7030062. [PMID: 30022008 PMCID: PMC6164871 DOI: 10.3390/antibiotics7030062] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Revised: 07/14/2018] [Accepted: 07/16/2018] [Indexed: 12/16/2022] Open
Abstract
Polyketides belong to the most valuable natural products, including diverse bioactive compounds, such as antibiotics, anticancer drugs, antifungal agents, immunosuppressants and others. Their structures are assembled by polyketide synthases (PKSs). Modular PKSs are composed of modules, which involve sets of domains catalysing the stepwise polyketide biosynthesis. The acyltransferase (AT) domains and their “partners”, the acyl carrier proteins (ACPs), thereby play an essential role. The AT loads the building blocks onto the “substrate acceptor”, the ACP. Thus, the AT dictates which building blocks are incorporated into the polyketide structure. The precursor- and occasionally the ACP-specificity of the ATs differ across the polyketide pathways and therefore, the ATs contribute to the structural diversity within this group of complex natural products. Those features make the AT enzymes one of the most promising tools for manipulation of polyketide assembly lines and generation of new polyketide compounds. However, the AT-based PKS engineering is still not straightforward and thus, rational design of functional PKSs requires detailed understanding of the complex machineries. This review summarizes the attempts of PKS engineering by exploiting the AT attributes for the modification of polyketide structures. The article includes 253 references and covers the most relevant literature published until May 2018.
Collapse
Affiliation(s)
- Ewa Maria Musiol-Kroll
- Interfakultäres Institut für Mikrobiologie und Infektionsmedizin, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany.
| | - Wolfgang Wohlleben
- Interfakultäres Institut für Mikrobiologie und Infektionsmedizin, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany.
| |
Collapse
|
13
|
Zargar A, Barajas JF, Lal R, Keasling JD. Polyketide synthases as a platform for chemical product design. AIChE J 2018. [DOI: 10.1002/aic.16351] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Amin Zargar
- Lawrence Berkeley National LaboratoryJoint BioEnergy InstituteEmeryvilleCA94608
- Physical Biosciences Div.Lawrence Berkeley National LaboratoryBerkeleyCA94720
| | - Jesus F. Barajas
- Physical Biosciences Div.Lawrence Berkeley National LaboratoryBerkeleyCA94720
- Dept. of Energy Agile BioFoundryEmeryvilleCA94608
| | - Ravi Lal
- Lawrence Berkeley National LaboratoryJoint BioEnergy InstituteEmeryvilleCA94608
| | - Jay D. Keasling
- Lawrence Berkeley National LaboratoryJoint BioEnergy InstituteEmeryvilleCA94608
- Physical Biosciences Div.Lawrence Berkeley National LaboratoryBerkeleyCA94720
- QB3 Institute, University of California‐BerkeleyEmeryvilleCA94608
- Dept. of Chemical and Biomolecular EngineeringUniversity of CaliforniaBerkeleyCA94720
- Dept. of BioengineeringUniversity of CaliforniaBerkeleyCA94720
| |
Collapse
|
14
|
Peng R, Wang Y, Feng WW, Yue XJ, Chen JH, Hu XZ, Li ZF, Sheng DH, Zhang YM, Li YZ. CRISPR/dCas9-mediated transcriptional improvement of the biosynthetic gene cluster for the epothilone production in Myxococcus xanthus. Microb Cell Fact 2018; 17:15. [PMID: 29378572 PMCID: PMC5787926 DOI: 10.1186/s12934-018-0867-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 01/19/2018] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND The CRISPR/dCas9 system is a powerful tool to activate the transcription of target genes in eukaryotic or prokaryotic cells, but lacks assays in complex conditions, such as the biosynthesis of secondary metabolites. RESULTS In this study, to improve the transcription of the heterologously expressed biosynthetic genes for the production of epothilones, we established the CRISPR/dCas9-mediated activation technique in Myxococcus xanthus and analyzed some key factors involving in the CRISPR/dCas9 activation. We firstly optimized the cas9 codon to fit the M. xanthus cells, mutated the gene to inactivate the nuclease activity, and constructed the dCas9-activator system in an epothilone producer. We compared the improvement efficiency of different sgRNAs on the production of epothilones and the expression of the biosynthetic genes. We also compared the improvement effects of different activator proteins, the ω and α subunits of RNA polymerase, and the sigma factors σ54 and CarQ. By using a copper-inducible promoter, we determined that higher expressions of dCas9-activator improved the activation effects. CONCLUSIONS Our results showed that the CRISPR/dCas-mediated transcription activation is a simple and broadly applicable technique to improve the transcriptional efficiency for the production of secondary metabolites in microorganisms. This is the first time to construct the CRISPR/dCas9 activation system in myxobacteria and the first time to assay the CRISPR/dCas9 activations for the biosynthesis of microbial secondary metabolites.
Collapse
Affiliation(s)
- Ran Peng
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Jinan, 250100 China
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences, Beijing, 100050 China
| | - Ye Wang
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Jinan, 250100 China
| | - Wan-wan Feng
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Jinan, 250100 China
| | - Xin-jing Yue
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Jinan, 250100 China
| | - Jiang-he Chen
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Jinan, 250100 China
| | - Xiao-zhuang Hu
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Jinan, 250100 China
| | - Zhi-feng Li
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Jinan, 250100 China
| | - Duo-hong Sheng
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Jinan, 250100 China
| | - You-ming Zhang
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Jinan, 250100 China
| | - Yue-zhong Li
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Jinan, 250100 China
| |
Collapse
|
15
|
A Link between Linearmycin Biosynthesis and Extracellular Vesicle Genesis Connects Specialized Metabolism and Bacterial Membrane Physiology. Cell Chem Biol 2017; 24:1238-1249.e7. [DOI: 10.1016/j.chembiol.2017.08.008] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 06/23/2017] [Accepted: 08/02/2017] [Indexed: 12/14/2022]
|
16
|
Barajas JF, Blake-Hedges JM, Bailey CB, Curran S, Keasling JD. Engineered polyketides: Synergy between protein and host level engineering. Synth Syst Biotechnol 2017; 2:147-166. [PMID: 29318196 PMCID: PMC5655351 DOI: 10.1016/j.synbio.2017.08.005] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 08/26/2017] [Accepted: 08/26/2017] [Indexed: 01/01/2023] Open
Abstract
Metabolic engineering efforts toward rewiring metabolism of cells to produce new compounds often require the utilization of non-native enzymatic machinery that is capable of producing a broad range of chemical functionalities. Polyketides encompass one of the largest classes of chemically diverse natural products. With thousands of known polyketides, modular polyketide synthases (PKSs) share a particularly attractive biosynthetic logic for generating chemical diversity. The engineering of modular PKSs could open access to the deliberate production of both existing and novel compounds. In this review, we discuss PKS engineering efforts applied at both the protein and cellular level for the generation of a diverse range of chemical structures, and we examine future applications of PKSs in the production of medicines, fuels and other industrially relevant chemicals.
Collapse
Key Words
- ACP, Acyl carrier protein
- AT, Acyltransferase
- CoL, CoA-Ligase
- Commodity chemical
- DE, Dimerization element
- DEBS, 6-deoxyerythronolide B synthase
- DH, Dehydratase
- ER, Enoylreductase
- FAS, Fatty acid synthases
- KR, Ketoreductase
- KS, Ketosynthase
- LM, Loading module
- LTTR, LysR-type transcriptional regulator
- Metabolic engineering
- Natural products
- PCC, Propionyl-CoA carboxylase
- PDB, Precursor directed biosynthesis
- PK, Polyketide
- PKS, Polyketide synthase
- Polyketide
- Polyketide synthase
- R, Reductase domain
- SARP, Streptomyces antibiotic regulatory protein
- SNAC, N-acetylcysteamine
- Synthetic biology
- TE, Thioesterase
- TKL, Triketide lactone
Collapse
Affiliation(s)
| | | | - Constance B. Bailey
- Joint BioEnergy Institute, Emeryville, CA 94608, USA
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Samuel Curran
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Comparative Biochemistry Graduate Group, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Jay. D. Keasling
- Joint BioEnergy Institute, Emeryville, CA 94608, USA
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- QB3 Institute, University of California, Berkeley, Emeryville, CA 94608, USA
- Department of Chemical & Biomolecular Engineering, Department of Bioengineering, University of California, Berkeley, Berkeley, CA 94720, USA
- Novo Nordisk Foundation Center for Biosustainability, Technical University Denmark, DK2970 Horsholm, Denmark
| |
Collapse
|
17
|
Ma J, Huang H, Xie Y, Liu Z, Zhao J, Zhang C, Jia Y, Zhang Y, Zhang H, Zhang T, Ju J. Biosynthesis of ilamycins featuring unusual building blocks and engineered production of enhanced anti-tuberculosis agents. Nat Commun 2017; 8:391. [PMID: 28855504 PMCID: PMC5577134 DOI: 10.1038/s41467-017-00419-5] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2017] [Accepted: 06/28/2017] [Indexed: 11/13/2022] Open
Abstract
Tuberculosis remains one of the world’s deadliest communicable diseases, novel anti-tuberculosis agents are urgently needed due to severe drug resistance and the co-epidemic of tuberculosis/human immunodeficiency virus. Here, we show the isolation of six anti-mycobacterial ilamycin congeners (1–6) bearing rare L-3-nitro-tyrosine and L-2-amino-4-hexenoic acid structural units from the deep sea-derived Streptomyces atratus SCSIO ZH16. The biosynthesis of the rare L-3-nitrotyrosine and L-2-amino-4-hexenoic acid units as well as three pre-tailoring and two post-tailoring steps are probed in the ilamycin biosynthetic machinery through a series of gene inactivation, precursor chemical complementation, isotope-labeled precursor feeding experiments, as well as structural elucidation of three intermediates (6–8) from the respective mutants. Most impressively, ilamycins E1/E2, which are produced in high titers by a genetically engineered mutant strain, show very potent anti-tuberculosis activity with an minimum inhibitory concentration value ≈9.8 nM to Mycobacterium tuberculosis H37Rv constituting extremely potent and exciting anti-tuberculosis drug leads. Tuberculosis (TB) remains one of the world’s deadliest communicable diseases, novel anti-TB agents are urgently needed due to severe drug resistance and the co-epidemic of TB/HIV. Here, the authors show that anti-mycobacterial ilamycin congeners bearing unusual structural units possess extremely potent anti-tuberculosis activities.
Collapse
Affiliation(s)
- Junying Ma
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China.
| | - Hongbo Huang
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Yunchang Xie
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Zhiyong Liu
- Tuberculosis Research Laboratory, State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Jin Zhao
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Institute of Laboratory Medicine, Guangdong Medical University, Dongguan, 523808, China
| | - Chunyan Zhang
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yanxi Jia
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yun Zhang
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Hua Zhang
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Institute of Laboratory Medicine, Guangdong Medical University, Dongguan, 523808, China
| | - Tianyu Zhang
- Tuberculosis Research Laboratory, State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Jianhua Ju
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
18
|
Yuzawa S, Deng K, Wang G, Baidoo EEK, Northen TR, Adams PD, Katz L, Keasling JD. Comprehensive in Vitro Analysis of Acyltransferase Domain Exchanges in Modular Polyketide Synthases and Its Application for Short-Chain Ketone Production. ACS Synth Biol 2017; 6:139-147. [PMID: 27548700 DOI: 10.1021/acssynbio.6b00176] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Type I modular polyketide synthases (PKSs) are polymerases that utilize acyl-CoAs as substrates. Each polyketide elongation reaction is catalyzed by a set of protein domains called a module. Each module usually contains an acyltransferase (AT) domain, which determines the specific acyl-CoA incorporated into each condensation reaction. Although a successful exchange of individual AT domains can lead to the biosynthesis of a large variety of novel compounds, hybrid PKS modules often show significantly decreased activities. Using monomodular PKSs as models, we have systematically analyzed the segments of AT domains and associated linkers in AT exchanges in vitro and have identified the boundaries within a module that can be used to exchange AT domains while maintaining protein stability and enzyme activity. Importantly, the optimized domain boundary is highly conserved, which facilitates AT domain replacements in most type I PKS modules. To further demonstrate the utility of the optimized AT domain boundary, we have constructed hybrid PKSs to produce industrially important short-chain ketones. Our in vitro and in vivo analysis demonstrated production of predicted ketones without significant loss of activities of the hybrid enzymes. These results greatly enhance the mechanistic understanding of PKS modules and prove the benefit of using engineered PKSs as a synthetic biology tool for chemical production.
Collapse
Affiliation(s)
| | - Kai Deng
- Joint BioEnergy Institute, Emeryville, California 94608, United States
- Sandia National Laboratories, Livermore, California 94551, United States
| | - George Wang
- Joint BioEnergy Institute, Emeryville, California 94608, United States
| | | | - Trent R. Northen
- Joint BioEnergy Institute, Emeryville, California 94608, United States
| | - Paul D. Adams
- Joint BioEnergy Institute, Emeryville, California 94608, United States
| | - Leonard Katz
- Synthetic Biology Research Center, Emeryville, California 94608, United States
| | - Jay D. Keasling
- Joint BioEnergy Institute, Emeryville, California 94608, United States
- Synthetic Biology Research Center, Emeryville, California 94608, United States
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kogle Allé, DK2970-Hørsholm, Denmark
| |
Collapse
|
19
|
Isolation and Biosynthetic Analysis of Haliamide, a New PKS-NRPS Hybrid Metabolite from the Marine Myxobacterium Haliangium ochraceum. Molecules 2016; 21:59. [PMID: 26751435 PMCID: PMC6274090 DOI: 10.3390/molecules21010059] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Revised: 12/29/2015] [Accepted: 12/31/2015] [Indexed: 02/02/2023] Open
Abstract
Myxobacteria of marine origin are rare and hard-to-culture microorganisms, but they genetically harbor high potential to produce novel antibiotics. An extensive investigation on the secondary metabolome of the unique marine myxobacterium Haliangium ochraceum SMP-2 led to the isolation of a new polyketide-nonribosomal peptide hybrid product, haliamide (1). Its structure was elucidated by spectroscopic analyses including NMR and HR-MS. Haliamide (1) showed cytotoxicity against HeLa-S3 cells with IC50 of 12 μM. Feeding experiments were performed to identify the biosynthetic building blocks of 1, revealing one benzoate, one alanine, two propionates, one acetate and one acetate-derived terminal methylene. The biosynthetic gene cluster of haliamide (hla, 21.7 kbp) was characterized through the genome mining of the producer, allowing us to establish a model for the haliamide biosynthesis. The sulfotransferase (ST)-thioesterase (TE) domains encoded in hlaB appears to be responsible for the terminal alkene formation via decarboxylation.
Collapse
|
20
|
Weissman KJ. Genetic engineering of modular PKSs: from combinatorial biosynthesis to synthetic biology. Nat Prod Rep 2016; 33:203-30. [DOI: 10.1039/c5np00109a] [Citation(s) in RCA: 115] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
This reviews covers on-going efforts at engineering the gigantic modular polyketide synthases (PKSs), highlighting both notable successes and failures.
Collapse
Affiliation(s)
- Kira J. Weissman
- UMR 7365
- Ingénierie Moléculaire et Physiopathologie Articulaire (IMoPA)
- CNRS-Université de Lorraine
- Biopôle de l'Université de Lorraine
- 54505 Vandœuvre-lès-Nancy Cedex
| |
Collapse
|
21
|
Chiu HT, Weng CP, Lin YC, Chen KH. Target-specific identification and characterization of the putative gene cluster for brasilinolide biosynthesis revealing the mechanistic insights and combinatorial synthetic utility of 2-deoxy-l-fucose biosynthetic enzymes. Org Biomol Chem 2016; 14:1988-2006. [DOI: 10.1039/c5ob02292d] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
From Nocardia was cloned and functionally characterized a giant gene cluster for biosyntheses of brasilinolides as potent immunosuppressive and anticancer agents.
Collapse
Affiliation(s)
- Hsien-Tai Chiu
- Department of Chemistry
- National Cheng Kung University
- Tainan 701
- Taiwan
| | - Chien-Pao Weng
- Department of Chemistry
- National Cheng Kung University
- Tainan 701
- Taiwan
| | - Yu-Chin Lin
- Department of Chemistry
- National Cheng Kung University
- Tainan 701
- Taiwan
- Department of Biological Science and Technology
| | - Kuan-Hung Chen
- Department of Biological Science and Technology
- National Chiao Tung University
- Hsinchu 300
- Taiwan
| |
Collapse
|
22
|
Tao W, Yurkovich ME, Wen S, Lebe KE, Samborskyy M, Liu Y, Yang A, Liu Y, Ju Y, Deng Z, Tosin M, Sun Y, Leadlay PF. A genomics-led approach to deciphering the mechanism of thiotetronate antibiotic biosynthesis. Chem Sci 2016; 7:376-385. [PMID: 28791099 PMCID: PMC5518548 DOI: 10.1039/c5sc03059e] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 10/06/2015] [Indexed: 12/31/2022] Open
Abstract
Thiolactomycin (TLM) is a thiotetronate antibiotic that selectively targets bacterial fatty acid biosynthesis through inhibition of the β-ketoacyl-acyl carrier protein synthases (KASI/II) that catalyse chain elongation on the type II (dissociated) fatty acid synthase. It has proved effective in in vivo infection models of Mycobacterium tuberculosis and continues to attract interest as a template for drug discovery. We have used a comparative genomics approach to uncover the (hitherto elusive) biosynthetic pathway to TLM and related thiotetronates. Analysis of the whole-genome sequence of Streptomyces olivaceus Tü 3010 producing the more ramified thiotetronate Tü 3010 provided initial evidence that such thiotetronates are assembled by a novel iterative polyketide synthase-nonribosomal peptide synthetase, and revealed the identity of other pathway enzymes, encoded by adjacent genes. Subsequent genome sequencing of three other thiotetronate-producing actinomycetes, including the Lentzea sp. ATCC 31319 that produces TLM, confirmed that near-identical clusters were also present in these genomes. In-frame gene deletion within the cluster for Tü 3010 from Streptomyces thiolactonus NRRL 15439, or within the TLM cluster, led to loss of production of the respective thiotetronate, confirming their identity. Each cluster houses at least one gene encoding a KASI/II enzyme, suggesting plausible mechanisms for self-resistance. A separate genetic locus encodes a cysteine desulfurase and a (thiouridylase-like) sulfur transferase to supply the sulfur atom for thiotetronate ring formation. Transfer of the main Tü 3010 gene cluster (stu gene cluster) into Streptomyces avermitilis led to heterologous production of this thiotetronate, showing that an equivalent sulfur donor can be supplied by this host strain. Mutational analysis of the Tü 3010 and TLM clusters has revealed the unexpected role of a cytochrome P450 enzyme in thiotetronate ring formation. These insights have allowed us to propose a mechanism for sulfur insertion, and have opened the way to engineering of the biosynthesis of TLM and other thiotetronates to produce novel analogues.
Collapse
Affiliation(s)
- W Tao
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Wuhan University) , Ministry of Education , Wuhan University School of Pharmaceutical Sciences , Wuhan 430071 , People's Republic of China .
| | - M E Yurkovich
- Department of Biochemistry , University of Cambridge , Sanger Building, 80 Tennis Court Road , Cambridge CB2 1GA , UK .
| | - S Wen
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Wuhan University) , Ministry of Education , Wuhan University School of Pharmaceutical Sciences , Wuhan 430071 , People's Republic of China .
| | - K E Lebe
- Department of Biochemistry , University of Cambridge , Sanger Building, 80 Tennis Court Road , Cambridge CB2 1GA , UK .
| | - M Samborskyy
- Department of Biochemistry , University of Cambridge , Sanger Building, 80 Tennis Court Road , Cambridge CB2 1GA , UK .
| | - Y Liu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Wuhan University) , Ministry of Education , Wuhan University School of Pharmaceutical Sciences , Wuhan 430071 , People's Republic of China .
| | - A Yang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Wuhan University) , Ministry of Education , Wuhan University School of Pharmaceutical Sciences , Wuhan 430071 , People's Republic of China .
| | - Y Liu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Wuhan University) , Ministry of Education , Wuhan University School of Pharmaceutical Sciences , Wuhan 430071 , People's Republic of China .
| | - Y Ju
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Wuhan University) , Ministry of Education , Wuhan University School of Pharmaceutical Sciences , Wuhan 430071 , People's Republic of China .
| | - Z Deng
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Wuhan University) , Ministry of Education , Wuhan University School of Pharmaceutical Sciences , Wuhan 430071 , People's Republic of China .
| | - M Tosin
- Department of Chemistry , University of Warwick , Library Road , Coventry CV4 7AL , UK
| | - Y Sun
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Wuhan University) , Ministry of Education , Wuhan University School of Pharmaceutical Sciences , Wuhan 430071 , People's Republic of China .
| | - P F Leadlay
- Department of Biochemistry , University of Cambridge , Sanger Building, 80 Tennis Court Road , Cambridge CB2 1GA , UK .
| |
Collapse
|
23
|
Sheng Y, Lam PW, Shahab S, Santosa DA, Proteau PJ, Zabriskie TM, Mahmud T. Identification of Elaiophylin Skeletal Variants from the Indonesian Streptomyces sp. ICBB 9297. JOURNAL OF NATURAL PRODUCTS 2015; 78:2768-2775. [PMID: 26510047 DOI: 10.1021/acs.jnatprod.5b00752] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Four new elaiophylin macrolides (1-4), together with five known elaiophylins (5-9), have been isolated from cultures of the Indonesian soil bacterium Streptomyces sp. ICBB 9297. The new compounds have macrocyclic skeletons distinct from those of the known dimeric elaiophylins in that one or both of the polyketide chains contain(s) an additional pendant methyl group. Further investigations revealed that 1 and 2 were derived from 3 and 4, respectively, during isolation processes. Compounds 1-3 showed comparable antibacterial activity to elaiophylin against Staphylococcus aureus. However, interestingly, only compounds 1 and 3, which contain a pendant methyl group at C-2, showed activity against Mycobacterium smegmatis, whereas compound 2, which has two pendant methyl groups at C-2 and C-2', and the known elaiophylin analogues (5-7), which lack pendant methyl groups at C-2 and/or C-2', showed no activity. The production of 3 and 4 in strain ICBB 9297 indicates that one of the acyltransferase (AT) domains in the elaiophylin polyketide synthases (PKSs) can recruit both malonyl-CoA and methylmalonyl-CoA as substrates. Bioinformatic analysis of the AT domains of the elaiophylin PKSs revealed that the ela_AT7 domain contains atypical active site amino acid residues, distinct from those conserved in malonyl-CoA- or methylmalonyl-CoA-specific ATs.
Collapse
Affiliation(s)
- Yan Sheng
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University , Corvallis, Oregon 97331-3507, United States
| | - Phillip W Lam
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University , Corvallis, Oregon 97331-3507, United States
| | - Salmah Shahab
- Indonesian Center for Biodiversity and Biotechnology , ICBB-Complex, JI. Cilubang Nagrak No. 62, Situgede, Bogor 16115, Indonesia
| | - Dwi Andreas Santosa
- Indonesian Center for Biodiversity and Biotechnology , ICBB-Complex, JI. Cilubang Nagrak No. 62, Situgede, Bogor 16115, Indonesia
- Department of Soil Science and Land Resources, Faculty of Agriculture, Bogor Agricultural University , Bogor, Indonesia
| | - Philip J Proteau
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University , Corvallis, Oregon 97331-3507, United States
| | - T Mark Zabriskie
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University , Corvallis, Oregon 97331-3507, United States
| | - Taifo Mahmud
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University , Corvallis, Oregon 97331-3507, United States
| |
Collapse
|
24
|
Blažič M, Kosec G, Baebler Š, Gruden K, Petković H. Roles of the crotonyl-CoA carboxylase/reductase homologues in acetate assimilation and biosynthesis of immunosuppressant FK506 in Streptomyces tsukubaensis. Microb Cell Fact 2015; 14:164. [PMID: 26466669 PMCID: PMC4606968 DOI: 10.1186/s12934-015-0352-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2015] [Accepted: 10/01/2015] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND In microorganisms lacking a functional glyoxylate cycle, acetate can be assimilated by alternative pathways of carbon metabolism such as the ethylmalonyl-CoA (EMC) pathway. Among the enzymes converting CoA-esters of the EMC pathway, there is a unique carboxylase that reductively carboxylates crotonyl-CoA, crotonyl-CoA carboxylase/reductase (Ccr). In addition to the EMC pathway, gene homologues of ccr can be found in secondary metabolite gene clusters that are involved in the provision of structurally diverse extender units used in the biosynthesis of polyketide natural products. The roles of multiple ccr homologues in the same genome and their potential interactions in primary and secondary metabolic pathways are poorly understood. RESULTS In the genome of S. tsukubaensis we have identified two ccr homologues; ccr1 is located in the putative ethylmalonyl-CoA (emc) operon and allR is located on the left fringe of the FK506 cluster. AllR provides an unusual extender unit allylmalonyl-CoA (ALL) for the biosynthesis of FK506 and potentially also ethylmalonyl-CoA for the related compound FK520. We have demonstrated that in S. tsukubaensis the ccr1 gene does not have a significant role in the biosynthesis of FK506 or FK520 when cultivated on carbohydrate-based media. However, when overexpressed under the control of a strong constitutive promoter, ccr1 can take part in the biosynthesis of ethylmalonyl-CoA and thereby FK520, but not FK506. In contrast, if ccr1 is inactivated, allR is not able to sustain a functional ethylmalonyl-CoA pathway (EMC) and cannot support growth on acetate as the sole carbon source, even when constitutively expressed in the chimeric emc operon. This is somewhat surprising considering that the same chimeric emc operon results in production of FK506 as well as FK520, consistent with the previously proposed relaxed specificity of AllR for C4 and C5 substrates. CONCLUSIONS Different regulation of the expression of both ccr genes, ccr1 and allR, and their corresponding pathways EMC and ALL, respectively, in combination with the different enzymatic properties of the Ccr1 and AllR enzymes, determine an almost exclusive role of ccr1 in the EMC pathway in S. tsukubaensis, and an exclusive role of allR in the biosynthesis of FK506/FK520, thus separating the functional roles of these two genes between the primary and secondary metabolic pathways.
Collapse
Affiliation(s)
- Marko Blažič
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000, Ljubljana, Slovenia.
- Acies Bio, d.o.o., Tehnološki park 21, 1000, Ljubljana, Slovenia.
| | - Gregor Kosec
- Acies Bio, d.o.o., Tehnološki park 21, 1000, Ljubljana, Slovenia.
| | - Špela Baebler
- Department of Biotechnology and Systems Biology, National Institute of Biology, Večna pot 111, 1000, Ljubljana, Slovenia.
| | - Kristina Gruden
- Department of Biotechnology and Systems Biology, National Institute of Biology, Večna pot 111, 1000, Ljubljana, Slovenia.
| | - Hrvoje Petković
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000, Ljubljana, Slovenia.
- Acies Bio, d.o.o., Tehnološki park 21, 1000, Ljubljana, Slovenia.
| |
Collapse
|
25
|
Jiang H, Wang YY, Guo YY, Shen JJ, Zhang XS, Luo HD, Ren NN, Jiang XH, Li YQ. An acyltransferase domain of FK506 polyketide synthase recognizing both an acyl carrier protein and coenzyme A as acyl donors to transfer allylmalonyl and ethylmalonyl units. FEBS J 2015; 282:2527-39. [PMID: 25865045 DOI: 10.1111/febs.13296] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Revised: 04/07/2015] [Accepted: 04/08/2015] [Indexed: 11/30/2022]
Abstract
UNLABELLED Acyltransferase (AT) domains of polyketide synthases (PKSs) usually use coenzyme A (CoA) as an acyl donor to transfer common acyl units to acyl carrier protein (ACP) domains, initiating incorporation of acyl units into polyketides. Two clinical immunosuppressive agents, FK506 and FK520, are biosynthesized by the same PKSs in several Streptomyces strains. In this study, characterization of AT4FkbB (the AT domain of the fourth module of FK506 PKS) in transacylation reactions showed that AT4FkbB recognizes both an ACP domain (ACPT csA) and CoA as acyl donors for transfer of a unique allylmalonyl (AM) unit to an acyl acceptor ACP domain (ACP4FkbB), resulting in FK506 production. In addition, AT4FkbB uses CoA as an acyl donor to transfer an unusual ethylmalonyl (EM) unit to ACP4FkbB, resulting in FK520 production, and transfers AM units to non-native ACP acceptors. Characterization of AT4FkbB in self-acylation reactions suggests that AT4FkbB controls acyl unit specificity in transacylation reactions but not in self-acylation reactions. Generally, AT domains of PKSs only recognize one acyl donor; however, we report here that AT4FkbB recognizes two acyl donors for the transfer of different acyl units. DATABASE Nucleotide sequence data have been submitted to the GenBank database under accession numbers KJ000382 and KJ000383.
Collapse
Affiliation(s)
- Hui Jiang
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China.,Key Laboratory of Microbial Biochemistry and Metabolism Engineering of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Yue-Yue Wang
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yuan-Yang Guo
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jie-Jie Shen
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiao-Sheng Zhang
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Hong-Dou Luo
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Ni-Ni Ren
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xin-Hang Jiang
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yong-Quan Li
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China.,Key Laboratory of Microbial Biochemistry and Metabolism Engineering of Zhejiang Province, Hangzhou, Zhejiang, China
| |
Collapse
|
26
|
Li SG, Zhao L, Han K, Li PF, Li ZF, Hu W, Liu H, Wu ZH, Li YZ. Diversity of epothilone producers among Sorangium strains in producer-positive soil habitats. Microb Biotechnol 2013; 7:130-41. [PMID: 24308800 PMCID: PMC3937717 DOI: 10.1111/1751-7915.12103] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Revised: 10/24/2013] [Accepted: 10/30/2013] [Indexed: 11/29/2022] Open
Abstract
Large-scale surveys show that the anti-tumour compounds known as epothilones are produced by only a small proportion of Sorangium strains, thereby greatly hampering the research and development of these valuable compounds. In this study, to investigate the niche diversity of epothilone-producing Sorangium strains, we re-surveyed four soil samples where epothilone producers were previously found. Compared with the < 2.5% positive strains collected from different places, epothilone producers comprised 25.0-75.0% of the Sorangium isolates in these four positive soil samples. These sympatric epothilone producers differed not only in their 16S rRNA gene sequences and morphologies but also in their production of epothilones and biosynthesis genes. A further exploration of 14 soil samples collected from a larger area around a positive site showed a similar high positive ratio of epothilone producers among the Sorangium isolates. The present results suggest that, in an area containing epothilone producers, the long-term genetic variations and refinements resulting from selective pressure form a large reservoir of epothilone-producing Sorangium strains with diverse genetic compositions.
Collapse
Affiliation(s)
- Shu-Guang Li
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Jinan, 250100, China
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Ni S, Jiang B, Wu L, Wang Y, Zhou H, He W, Wang H, Zhu J, Li S, Li T, Zhang K. Identification of 6-demethoxy-6-methylgeldanamycin and its implication of geldanamycin biosynthesis. J Antibiot (Tokyo) 2013; 67:183-5. [DOI: 10.1038/ja.2013.94] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Revised: 08/07/2013] [Accepted: 08/27/2013] [Indexed: 02/02/2023]
|
28
|
Dunn BJ, Khosla C. Engineering the acyltransferase substrate specificity of assembly line polyketide synthases. J R Soc Interface 2013; 10:20130297. [PMID: 23720536 DOI: 10.1098/rsif.2013.0297] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Polyketide natural products act as a broad range of therapeutics, including antibiotics, immunosuppressants and anti-cancer agents. This therapeutic diversity stems from the structural diversity of these small molecules, many of which are produced in an assembly line manner by modular polyketide synthases. The acyltransferase (AT) domains of these megasynthases are responsible for selection and incorporation of simple monomeric building blocks, and are thus responsible for a large amount of the resulting polyketide structural diversity. The substrate specificity of these domains is often targeted for engineering in the generation of novel, therapeutically active natural products. This review outlines recent developments that can be used in the successful engineering of these domains, including AT sequence and structural data, mechanistic insights and the production of a diverse pool of extender units. It also provides an overview of previous AT domain engineering attempts, and concludes with proposed engineering approaches that take advantage of current knowledge. These approaches may lead to successful production of biologically active 'unnatural' natural products.
Collapse
Affiliation(s)
- Briana J Dunn
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA
| | | |
Collapse
|
29
|
Sundermann U, Bravo-Rodriguez K, Klopries S, Kushnir S, Gomez H, Sanchez-Garcia E, Schulz F. Enzyme-directed mutasynthesis: a combined experimental and theoretical approach to substrate recognition of a polyketide synthase. ACS Chem Biol 2013. [PMID: 23181268 DOI: 10.1021/cb300505w] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Acyltransferase domains control the extender unit recognition in Polyketide Synthases (PKS) and thereby the side-chain diversity of the resulting natural products. The enzyme engineering strategy presented here allows the alteration of the acyltransferase substrate profile to enable an engineered biosynthesis of natural product derivatives through the incorporation of a synthetic malonic acid thioester. Experimental sequence-function correlations combined with computational modeling revealed the origins of substrate recognition in these PKS domains and enabled a targeted mutagenesis. We show how a single point mutation was able to direct the incorporation of a malonic acid building block with a non-native functional group into erythromycin. This approach, introduced here as enzyme-directed mutasynthesis, opens a new field of possibilities beyond the state of the art for the combination of organic chemistry and biosynthesis toward natural product analogues.
Collapse
Affiliation(s)
- Uschi Sundermann
- Fakultät für Chemie,
Chemische Biologie, Technische Universität Dortmund, Otto-Hahn-Str. 6, 44221 Dortmund, Germany
- Max-Planck-Institut für molekulare Physiologie, Abteilung für
Chemische Biologie, Otto-Hahn-Str. 11, 44227 Dortmund, Germany
| | - Kenny Bravo-Rodriguez
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1,
45470 Mülheim an der Ruhr, Germany
| | - Stephan Klopries
- Fakultät für Chemie,
Chemische Biologie, Technische Universität Dortmund, Otto-Hahn-Str. 6, 44221 Dortmund, Germany
| | - Susanna Kushnir
- Fakultät für Chemie,
Chemische Biologie, Technische Universität Dortmund, Otto-Hahn-Str. 6, 44221 Dortmund, Germany
| | - Hansel Gomez
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1,
45470 Mülheim an der Ruhr, Germany
- Institut de Biotecnologia i
de Biomedicina, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès (Bellaterra), Spain
| | - Elsa Sanchez-Garcia
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1,
45470 Mülheim an der Ruhr, Germany
| | - Frank Schulz
- Fakultät für Chemie,
Chemische Biologie, Technische Universität Dortmund, Otto-Hahn-Str. 6, 44221 Dortmund, Germany
- Max-Planck-Institut für molekulare Physiologie, Abteilung für
Chemische Biologie, Otto-Hahn-Str. 11, 44227 Dortmund, Germany
| |
Collapse
|
30
|
Crosby J, Crump MP. The structural role of the carrier protein--active controller or passive carrier. Nat Prod Rep 2012; 29:1111-37. [PMID: 22930263 DOI: 10.1039/c2np20062g] [Citation(s) in RCA: 134] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Common to all FASs, PKSs and NRPSs is a remarkable component, the acyl or peptidyl carrier protein (A/PCP). These take the form of small individual proteins in type II systems or discrete folded domains in the multi-domain type I systems and are characterized by a fold consisting of three major α-helices and between 60-100 amino acids. This protein is central to these biosynthetic systems and it must bind and transport a wide variety of functionalized ligands as well as mediate numerous protein-protein interactions, all of which contribute to efficient enzyme turnover. This review covers the structural and biochemical characterization of carrier proteins, as well as assessing their interactions with different ligands, and other synthase components. Finally, their role as an emerging tool in biotechnology is discussed.
Collapse
Affiliation(s)
- John Crosby
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK
| | | |
Collapse
|
31
|
Musiol EM, Weber T. Discrete acyltransferases involved in polyketide biosynthesis. MEDCHEMCOMM 2012. [DOI: 10.1039/c2md20048a] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
32
|
Kwan DH, Schulz F. The stereochemistry of complex polyketide biosynthesis by modular polyketide synthases. Molecules 2011; 16:6092-115. [PMID: 21775938 PMCID: PMC6264292 DOI: 10.3390/molecules16076092] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2011] [Revised: 07/06/2011] [Accepted: 07/18/2011] [Indexed: 11/24/2022] Open
Abstract
Polyketides are a diverse class of medically important natural products whose biosynthesis is catalysed by polyketide synthases (PKSs), in a fashion highly analogous to fatty acid biosynthesis. In modular PKSs, the polyketide chain is assembled by the successive condensation of activated carboxylic acid-derived units, where chain extension occurs with the intermediates remaining covalently bound to the enzyme, with the growing polyketide tethered to an acyl carrier domain (ACP). Carboxylated acyl-CoA precursors serve as activated donors that are selected by the acyltransferase domain (AT) providing extender units that are added to the growing chain by condensation catalysed by the ketosynthase domain (KS). The action of ketoreductase (KR), dehydratase (DH), and enoylreductase (ER) activities can result in unreduced, partially reduced, or fully reduced centres within the polyketide chain depending on which of these enzymes are present and active. The PKS-catalysed assembly process generates stereochemical diversity, because carbon–carbon double bonds may have either cis- or trans- geometry, and because of the chirality of centres bearing hydroxyl groups (where they are retained) and branching methyl groups (the latter arising from use of propionate extender units). This review shall cover the studies that have determined the stereochemistry in many of the reactions involved in polyketide biosynthesis by modular PKSs.
Collapse
Affiliation(s)
- David H. Kwan
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver B.C., V6T 1Z1, Canada
- Authors to whom correspondence should be addressed; (D.H.K.); (F.S.); Tel.: +1-604-822-9300 (D.H.K.); +49-231-133-2429 (F.S.); Fax: +1-604-822-9126 (D.H.K.); +49-231-133-2498 (F.S.)
| | - Frank Schulz
- Fakultät für Chemie, Chemische Biologie, Technische Universität Dortmund, Otto-Hahn-Straße 6, 44221 Dortmund, Germany
- Max-Planck-Institut für Molekulare Physiologie, Abteilung für Chemische Biologie, Otto-Hahn- Straße 11, 44227 Dortmund, Germany
- Authors to whom correspondence should be addressed; (D.H.K.); (F.S.); Tel.: +1-604-822-9300 (D.H.K.); +49-231-133-2429 (F.S.); Fax: +1-604-822-9126 (D.H.K.); +49-231-133-2498 (F.S.)
| |
Collapse
|
33
|
|
34
|
Erol Ö, Schäberle TF, Schmitz A, Rachid S, Gurgui C, El Omari M, Lohr F, Kehraus S, Piel J, Müller R, König GM. Biosynthesis of the Myxobacterial Antibiotic Corallopyronin A. Chembiochem 2010; 11:1253-65. [DOI: 10.1002/cbic.201000085] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
35
|
Buntin K, Irschik H, Weissman KJ, Luxenburger E, Blöcker H, Müller R. Biosynthesis of Thuggacins in Myxobacteria: Comparative Cluster Analysis Reveals Basis for Natural Product Structural Diversity. ACTA ACUST UNITED AC 2010; 17:342-56. [DOI: 10.1016/j.chembiol.2010.02.013] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2009] [Revised: 01/22/2010] [Accepted: 02/18/2010] [Indexed: 10/19/2022]
|
36
|
Cloning of separate meilingmycin biosynthesis gene clusters by use of acyltransferase-ketoreductase didomain PCR amplification. Appl Environ Microbiol 2010; 76:3283-92. [PMID: 20348291 DOI: 10.1128/aem.02262-09] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Five meilingmycins, A to E, with A as the major component, were isolated from Streptomyces nanchangensis NS3226. Through nuclear magnetic resonance (NMR) characterization, meilingmycins A to E proved to be identical to reported milbemycins alpha11, alpha13, alpha14, beta1, and beta9, respectively. Sequencing of a previously cloned 103-kb region identified three modular type I polyketide synthase genes putatively encoding the last 11 elongation steps, three modification proteins, and one transcriptional regulatory protein for meilingmycin biosynthesis. However, the expected loading module and the first two elongation modules were missing. In meilingmycin, the presence of a methyl group at C-24 and a hydroxyl group at C-25 suggests that the elongation module 1 contains a methylmalonyl-coenzyme A (CoA)-specific acyltransferase (ATp) domain and a ketoreductase (KR) domain. Based on the conserved motifs of the ATp and KR domains, a pair of primers was designed for PCR amplification, and a 1.40-kb expected fragment was amplified, whose sequence shows significant homology with the elongation module 1 of the aveA1-encoded enzyme AVES1. A polyketide synthase (PKS) gene encoding one loading and two elongation modules, with a downstream C-5-O-methyltransferase gene, meiD, was subsequently localized 55 kb apart from the previously sequenced region, and its deletion abolishes meilingmycin production. A series of deletions within the 55-kb intercluster region rules out its involvement in meilingmycin biosynthesis. Furthermore, gene deletion of meiD eliminates meilingmycins D and E, with methyls at C-5. Our work provides a more specific strategy for the cloning of modular type I PKS gene clusters. The cloning of the meilingmycin gene clusters paves the way for its pathway engineering.
Collapse
|
37
|
McAlpine JB. Advances in the understanding and use of the genomic base of microbial secondary metabolite biosynthesis for the discovery of new natural products. JOURNAL OF NATURAL PRODUCTS 2009; 72:566-572. [PMID: 19199817 DOI: 10.1021/np800742z] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Over the past decade major changes have occurred in the access to genome sequences that encode the enzymes responsible for the biosynthesis of secondary metabolites, knowledge of how those sequences translate into the final structure of the metabolite, and the ability to alter the sequence to obtain predicted products via both homologous and heterologous expression. Novel genera have been discovered leading to new chemotypes, but more surprisingly several instances have been uncovered where the apparently general rules of modular translation have not applied. Several new biosynthetic pathways have been unearthed, and our general knowledge grows rapidly. This review aims to highlight some of the more striking discoveries and advances of the decade.
Collapse
Affiliation(s)
- James B McAlpine
- Thallion Pharmaceuticals Inc., 7150 Alexander-Fleming, Montreal H4S 2C8, Canada.
| |
Collapse
|
38
|
Khosla C, Kapur S, Cane DE. Revisiting the modularity of modular polyketide synthases. Curr Opin Chem Biol 2009; 13:135-43. [PMID: 19217343 DOI: 10.1016/j.cbpa.2008.12.018] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2008] [Accepted: 12/25/2008] [Indexed: 11/28/2022]
Abstract
Modularity is a highly sought after feature in engineering design. A modular catalyst is a multi-component system whose parts can be predictably interchanged for functional flexibility and variety. Nearly two decades after the discovery of the first modular polyketide synthase (PKS), we critically assess PKS modularity in the face of a growing body of atomic structural and in vitro biochemical investigations. Both the architectural modularity and the functional modularity of this family of enzymatic assembly lines are reviewed, and the fundamental challenges that lie ahead for the rational exploitation of their full biosynthetic potential are discussed.
Collapse
Affiliation(s)
- Chaitan Khosla
- Department of Chemistry, Stanford University, Stanford, CA 94305-5080, USA.
| | | | | |
Collapse
|
39
|
|
40
|
Bachmann BO, Ravel J. Chapter 8. Methods for in silico prediction of microbial polyketide and nonribosomal peptide biosynthetic pathways from DNA sequence data. Methods Enzymol 2009; 458:181-217. [PMID: 19374984 DOI: 10.1016/s0076-6879(09)04808-3] [Citation(s) in RCA: 281] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Fore-knowledge of the secondary metabolic potential of cultivated and previously uncultivated microorganisms can potentially facilitate the process of natural product discovery. By combining sequence-based knowledge with biochemical precedent, translated gene sequence data can be used to rapidly derive structural elements encoded by secondary metabolic gene clusters from microorganisms. These structural elements provide an estimate of the secondary metabolic potential of a given organism and a starting point for identification of potential lead compounds in isolation/structure elucidation campaigns. The accuracy of these predictions for a given translated gene sequence depends on the biochemistry of the metabolite class, similarity to known metabolite gene clusters, and depth of knowledge concerning its biosynthetic machinery. This chapter introduces methods for prediction of structural elements for two well-studied classes: modular polyketides and nonribosomally encoded peptides. A bioinformatics tool is presented for rapid preliminary analysis of these modular systems, and prototypical methods for converting these analyses into substructural elements are described.
Collapse
Affiliation(s)
- Brian O Bachmann
- Department of Chemistry, Vanderbilt Institute for Chemical Biology, Vanderbilt University, Nashville, Tennessee, USA
| | | |
Collapse
|
41
|
Lopanik NB, Shields JA, Buchholz TJ, Rath CM, Hothersall J, Haygood MG, Håkansson K, Thomas CM, Sherman DH. In vivo and in vitro trans-acylation by BryP, the putative bryostatin pathway acyltransferase derived from an uncultured marine symbiont. CHEMISTRY & BIOLOGY 2008; 15:1175-86. [PMID: 19022178 PMCID: PMC2861360 DOI: 10.1016/j.chembiol.2008.09.013] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2008] [Revised: 09/18/2008] [Accepted: 09/24/2008] [Indexed: 01/14/2023]
Abstract
The putative modular polyketide synthase (PKS) that prescribes biosynthesis of the bryostatin natural products from the uncultured bacterial symbiont of the marine bryozoan Bugula neritina possesses a discrete open reading frame (ORF) (bryP) that encodes a protein containing tandem acyltransferase (AT) domains upstream of the PKS ORFs. BryP is hypothesized to catalyze in trans acylation of the PKS modules for polyketide chain elongation. To verify conservation of function, bryP was introduced into AT-deletion mutant strains of a heterologous host containing a PKS cluster with similar architecture, and polyketide production was partially rescued. Biochemical characterization demonstrated that BryP catalyzes selective malonyl-CoA acylation of native and heterologous acyl carrier proteins and complete PKS modules in vitro. The results support the hypothesis that BryP loads malonyl-CoA onto Bry PKS modules, and provide the first biochemical evidence of the functionality of the bry cluster.
Collapse
Affiliation(s)
- Nicole B. Lopanik
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, United States
| | - Jennifer A. Shields
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Tonia J. Buchholz
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, United States
| | - Christopher M. Rath
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, United States
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, United States
| | - Joanne Hothersall
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Margo G. Haygood
- Department of Environmental and Biomolecular Systems, Oregon Health and Science University, Beaverton, OR 97006, United States
| | - Kristina Håkansson
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, United States
| | - Christopher M. Thomas
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - David H. Sherman
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, United States
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI 48109, United States
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, United States
- Department of Microbiology & Immunology, University of Michigan, Ann Arbor, MI 48109, United States
| |
Collapse
|