1
|
Liu J, Ping Chen Y, He P, Ding Z, Guo Y, Cui S, Ma C, Xie Z, Xia S, Zhang Y, Liu Y, Liu Y. A novel olfactory biosensor based on ZIF-8@SWCNT integrated with nanosome-AuNPs/Prussian blue for sensitive detection of hexanal. Food Chem 2024; 442:138349. [PMID: 38266411 DOI: 10.1016/j.foodchem.2023.138349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/17/2023] [Accepted: 12/31/2023] [Indexed: 01/26/2024]
Abstract
Hexanal is considered as an important volatile compound indicator for the assessment of freshness and maturity of foods. Therefore, sensitive and stable monitoring of hexanal is highly desired. Herein, an efficient receptor immobilization strategy based on ZIF-8@ Single-walled carbon nanotube (SWCNT) and nanosomes-AuNPs/Prussian blue (PB) was proposed for the development of olfactory biosensors. ZIF-8@SWCNT as dual support materials provided a high density of active sites for nanosomes loading. Moreover, the co-electrodeposition of nanosomes-AuNPs and PB on the sensor interface effectively amplified the electrochemical signal and maintained the activity of the receptor. The combination of ZIF-8@SWCNT with AuNPs/PB imparts excellent sensing performance of the biosensor with a wide detection range of 10-16-10-9 M, a low detection limit of 10-16 M for hexanal, and a long storage stability of 15 days. These results indicate that our biosensor can be a powerful tool for versatile applications in food and other related industries.
Collapse
Affiliation(s)
- Jing Liu
- School of Food Science and Engineering, Ningxia University, Yinchuan 750021, China
| | - Yan Ping Chen
- Department of Food Science & Technology, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Penglin He
- Department of Food Science & Technology, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ziyu Ding
- Department of Food Science & Technology, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yun Guo
- Department of Food Science & Technology, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Songhe Cui
- School of Life sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Chao Ma
- Department of Food Science & Technology, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhiping Xie
- School of Life sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Sun Xia
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255049, Shandong Province, China
| | - Yin Zhang
- Key Laboratory of Meat Processing of Sichuan, Chengdu University, Chengdu, 610106, China
| | - Ye Liu
- Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China.
| | - Yuan Liu
- Department of Food Science & Technology, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
2
|
Stepanenko OV, Sulatskaya AI, Sulatsky MI, Mikhailova EV, Kuznetsova IM, Turoverov KK, Stepanenko OV. Mammalian odorant-binding proteins are prone to form amorphous aggregates and amyloid fibrils. Int J Biol Macromol 2023; 253:126872. [PMID: 37722633 DOI: 10.1016/j.ijbiomac.2023.126872] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 09/06/2023] [Accepted: 09/10/2023] [Indexed: 09/20/2023]
Abstract
Odorant-binding proteins are involved in perceiving smell by capturing odorants within the protein's β-barrel. On the example of bovine odorant-binding protein (bOBP), the structural organization of such proteins and their ability to bind ligands under various conditions in vitro were examined. We found a tendency of bOBP to form oligomers and small amorphous aggregates without disturbing the integrity of protein monomers at physiological conditions. Changes in environmental parameters (increased temperature and pH) favored the formation of larger and dense supramolecular complexes that significantly reduce the binding of ligands by bOBP. The ability of bOBP to form fibrillar aggregates with the properties of amyloids, including high cytotoxicity, was revealed at sample stirring (even at physiological temperature and pH), at medium acidification or pre-solubilization with hexafluoroisopropanol. Fibrillogenesis of bOBP was initiated by the dissociation of the protein's supramolecular complexes into monomers and the destabilization of the protein's β-barrels without a significant destruction of its native β-strands.
Collapse
Affiliation(s)
- Olga V Stepanenko
- Laboratory of Structural Dynamics, Stability and folding of Proteins, Institute of Cytology of the Russian Academy of Sciences, 4 Tikhoretsky ave, 194064 St. Petersburg, Russia.
| | - Anna I Sulatskaya
- Laboratory of Structural Dynamics, Stability and folding of Proteins, Institute of Cytology of the Russian Academy of Sciences, 4 Tikhoretsky ave, 194064 St. Petersburg, Russia.
| | - Maksim I Sulatsky
- Laboratory of Cell Morphology, Institute of Cytology of the Russian Academy of Sciences, 4 Tikhoretsky ave., 194064 St. Petersburg, Russia.
| | - Ekaterina V Mikhailova
- Laboratory of Structural Dynamics, Stability and folding of Proteins, Institute of Cytology of the Russian Academy of Sciences, 4 Tikhoretsky ave, 194064 St. Petersburg, Russia.
| | - Irina M Kuznetsova
- Laboratory of Structural Dynamics, Stability and folding of Proteins, Institute of Cytology of the Russian Academy of Sciences, 4 Tikhoretsky ave, 194064 St. Petersburg, Russia.
| | - Konstantin K Turoverov
- Laboratory of Structural Dynamics, Stability and folding of Proteins, Institute of Cytology of the Russian Academy of Sciences, 4 Tikhoretsky ave, 194064 St. Petersburg, Russia.
| | - Olesya V Stepanenko
- Laboratory of Structural Dynamics, Stability and folding of Proteins, Institute of Cytology of the Russian Academy of Sciences, 4 Tikhoretsky ave, 194064 St. Petersburg, Russia.
| |
Collapse
|
3
|
Choi D, Lee SJ, Baek D, Kim SO, Shin J, Choi Y, Cho Y, Bang S, Park JY, Lee SH, Park TH, Hong S. Bioelectrical Nose Platform Using Odorant-Binding Protein as a Molecular Transporter Mimicking Human Mucosa for Direct Gas Sensing. ACS Sens 2022; 7:3399-3408. [PMID: 36350699 DOI: 10.1021/acssensors.2c01507] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Recently, various bioelectronic nose devices based on human receptors were developed for mimicking a human olfactory system. However, such bioelectronic nose devices could operate in an aqueous solution, and it was often very difficult to detect insoluble gas odorants. Here, we report a portable bioelectronic nose platform utilizing a receptor protein-based bioelectronic nose device as a sensor and odorant-binding protein (OBP) as a transporter for insoluble gas molecules in a solution, mimicking the functionality of human mucosa. Our bioelectronic nose platform based on I7 receptor exhibited dose-dependent responses to octanal gas in real time. Furthermore, the bioelectronic platforms with OBP exhibited the sensor sensitivity improved by ∼100% compared with those without OBP. We also demonstrated the detection of odorant gas from real orange juice and found that the electrical responses of the devices with OBP were much larger than those without OBP. Since our bioelectronic nose platform allows us to directly detect gas-phase odorant molecules including a rather insoluble species, it could be a powerful tool for versatile applications and basic research based on a bioelectronic nose.
Collapse
Affiliation(s)
- Danmin Choi
- Department of Physics and Astronomy, Institute of Applied Physics, Seoul National University, Seoul 08826, Korea
| | - Se June Lee
- Department of Bionano Engineering, Center for Bionano Intelligence Education and Research, Hanyang University, Ansan 15588, Korea
| | - Dahee Baek
- Department of Bionano Engineering, Center for Bionano Intelligence Education and Research, Hanyang University, Ansan 15588, Korea
| | - So-Ong Kim
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Korea
| | - Junghyun Shin
- Department of Physics and Astronomy, Institute of Applied Physics, Seoul National University, Seoul 08826, Korea
| | - Yoonji Choi
- Department of Physics and Astronomy, Institute of Applied Physics, Seoul National University, Seoul 08826, Korea
| | - Youngtak Cho
- Department of Physics and Astronomy, Institute of Applied Physics, Seoul National University, Seoul 08826, Korea
| | - Sunwoo Bang
- Department of Physics and Astronomy, Institute of Applied Physics, Seoul National University, Seoul 08826, Korea
| | - Jae Yeol Park
- Department of Electric Vehicle, Doowon University of Technology, Paju 10838, Korea
| | - Seung Hwan Lee
- Department of Bionano Engineering, Center for Bionano Intelligence Education and Research, Hanyang University, Ansan 15588, Korea
| | - Tai Hyun Park
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Korea
| | - Seunghun Hong
- Department of Physics and Astronomy, Institute of Applied Physics, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
4
|
The diversity of lipocalin receptors. Biochimie 2021; 192:22-29. [PMID: 34534611 DOI: 10.1016/j.biochi.2021.09.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 09/10/2021] [Accepted: 09/11/2021] [Indexed: 11/23/2022]
Abstract
Lipocalins are important carriers of preferentially hydrophobic molecules, but they can also bind other ligands, like highly polar siderophores or intact proteins. Consequently, they are involved in a variety of physiological processes in many species. Since lipocalins are mainly extracellular proteins, they have to interact with cell receptors to exert their biological effects. In contrast to the large number of lipocalins identified in the last years, the number of receptors known is still limited. Nevertheless, some novel findings concerning the molecules involved in cellular uptake or signaling effects of lipocalins have been made recently. This review presents a detailed overview of the receptors identified so far. The methods used for isolation or identification are described and structural as well as functional information on these proteins is presented essentially in chronological order of their initial discovery.
Collapse
|
5
|
El Kazzy M, Weerakkody JS, Hurot C, Mathey R, Buhot A, Scaramozzino N, Hou Y. An Overview of Artificial Olfaction Systems with a Focus on Surface Plasmon Resonance for the Analysis of Volatile Organic Compounds. BIOSENSORS-BASEL 2021; 11:bios11080244. [PMID: 34436046 PMCID: PMC8393613 DOI: 10.3390/bios11080244] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/13/2021] [Accepted: 07/14/2021] [Indexed: 12/13/2022]
Abstract
The last three decades have witnessed an increasing demand for novel analytical tools for the analysis of gases including odorants and volatile organic compounds (VOCs) in various domains. Traditional techniques such as gas chromatography coupled with mass spectrometry, although very efficient, present several drawbacks. Such a context has incited the research and industrial communities to work on the development of alternative technologies such as artificial olfaction systems, including gas sensors, olfactory biosensors and electronic noses (eNs). A wide variety of these systems have been designed using chemiresistive, electrochemical, acoustic or optical transducers. Among optical transduction systems, surface plasmon resonance (SPR) has been extensively studied thanks to its attractive features (high sensitivity, label free, real-time measurements). In this paper, we present an overview of the advances in the development of artificial olfaction systems with a focus on their development based on propagating SPR with different coupling configurations, including prism coupler, wave guide, and grating.
Collapse
Affiliation(s)
- Marielle El Kazzy
- Grenoble Alpes University, CEA, CNRS, IRIG-SyMMES, 17 Rue des Martyrs, 38000 Grenoble, France; (M.E.K.); (J.S.W.); (C.H.); (R.M.); (A.B.)
| | - Jonathan S. Weerakkody
- Grenoble Alpes University, CEA, CNRS, IRIG-SyMMES, 17 Rue des Martyrs, 38000 Grenoble, France; (M.E.K.); (J.S.W.); (C.H.); (R.M.); (A.B.)
| | - Charlotte Hurot
- Grenoble Alpes University, CEA, CNRS, IRIG-SyMMES, 17 Rue des Martyrs, 38000 Grenoble, France; (M.E.K.); (J.S.W.); (C.H.); (R.M.); (A.B.)
| | - Raphaël Mathey
- Grenoble Alpes University, CEA, CNRS, IRIG-SyMMES, 17 Rue des Martyrs, 38000 Grenoble, France; (M.E.K.); (J.S.W.); (C.H.); (R.M.); (A.B.)
| | - Arnaud Buhot
- Grenoble Alpes University, CEA, CNRS, IRIG-SyMMES, 17 Rue des Martyrs, 38000 Grenoble, France; (M.E.K.); (J.S.W.); (C.H.); (R.M.); (A.B.)
| | | | - Yanxia Hou
- Grenoble Alpes University, CEA, CNRS, IRIG-SyMMES, 17 Rue des Martyrs, 38000 Grenoble, France; (M.E.K.); (J.S.W.); (C.H.); (R.M.); (A.B.)
- Correspondence: ; Tel.: +33-43-878-9478
| |
Collapse
|
6
|
Xu C, Yang F, Duan S, Li D, Li L, Wang M, Zhou A. Discovery of behaviorally active semiochemicals in Aenasius bambawalei using a reverse chemical ecology approach. PEST MANAGEMENT SCIENCE 2021; 77:2843-2853. [PMID: 33538389 DOI: 10.1002/ps.6319] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 12/27/2020] [Accepted: 02/04/2020] [Indexed: 06/12/2023]
Abstract
BACKGROUND The invasive mealybug, Phenacoccus solenopsis, has caused serious damage to cotton crops throughout the world. Aenasius bambawalei is a dominant endoparasitoid of P. solenopsis. Exploration of behaviorally active semiochemicals may promote the efficacy of parasitoids used in biological control. Reverse chemical ecology, based on the physiological function of odorant-binding proteins (OBPs), provides an effective approach to screen behaviorally active compounds to target insect pests. Determination of the binding mechanisms and specificity towards different odorants in A. bambawalei may facilitate the development of more-efficient biological control strategies. RESULTS We characterized the expression profile and analyzed the binding affinity of OBP28 in A. bambawalei. AbamOBP28 showed high expression in the wings and antennae of both male and female A. bambawalei. A fluorescence competitive binding assay indicated that AbamOBP28 displayed strong binding affinity to most candidate ligands. Circular dichroism spectra demonstrated that 1-octen-3-one, myrcene, dodecane, 2,4,4-trimethyl-2-pentene, nonanal, and limonene elicited conformational changes in AbamOBP28. Electrophysiological and behavioral bioassays revealed that diethyl sebacate, 2,4,4-trimethyl-2-pentene, and 1-octen-3-one evoked significant electroantennography responses and functioned as attractants in A. bambawalei at specific concentrations. Furthermore, three-dimensional structure modeling and molecular docking showed that hydrogen bonds were formed by Glu1 and Ser75 of AbamOBP28 with diethyl sebacate, respectively. CONCLUSION These results demonstrate that AbamOBP28 is involved in the chemoreception of A. bambawalei. The identified protein provides a potential target for efficient enemy utilization and pest control, and the overall results may help develop protocols for more effective screening of behaviorally active semiochemicals. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Chong Xu
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Fuxiang Yang
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Shuanggang Duan
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Dongzhen Li
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Lei Li
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Manqun Wang
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Aiming Zhou
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
7
|
Gonçalves F, Ribeiro A, Silva C, Cavaco-Paulo A. Biotechnological applications of mammalian odorant-binding proteins. Crit Rev Biotechnol 2021; 41:441-455. [PMID: 33541154 DOI: 10.1080/07388551.2020.1853672] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The olfactory system of mammals allows the detection and discrimination of thousands of odors from the environment. In mammals, odorant-binding proteins (OBPs) are considered responsible to carry odorant molecules across the aqueous nasal mucus to the olfactory receptors (ORs). The three-dimensional structure of these proteins presents eight antiparallel β-sheets and a short α-helical segment close to the C terminus, typical of the lipocalins family. The great ability of OBPs to bind differentiated ligand molecules has driven the research to understand the mechanisms underlying the OBP function in nature and the development of advanced biotechnological applications. This review describes the role of mammalian OBPs in the olfactory perception, highlighting the influence of several key parameters (amino acids, temperature, ionic strength, and pH) in the formation of the OBP/ligand complex. The information from the literature regarding OBP structure, affinity, the strength of binding, and stability inspiring the development of several applications herein detailed.
Collapse
Affiliation(s)
- Filipa Gonçalves
- Centre of Biological Engineering, University of Minho - Campus de Gualtar, Braga, Portugal
| | - Artur Ribeiro
- Centre of Biological Engineering, University of Minho - Campus de Gualtar, Braga, Portugal
| | - Carla Silva
- Centre of Biological Engineering, University of Minho - Campus de Gualtar, Braga, Portugal
| | - Artur Cavaco-Paulo
- Centre of Biological Engineering, University of Minho - Campus de Gualtar, Braga, Portugal
| |
Collapse
|
8
|
The Structural Properties of Odorants Modulate Their Association to Human Odorant Binding Protein. Biomolecules 2021; 11:biom11020145. [PMID: 33499295 PMCID: PMC7912024 DOI: 10.3390/biom11020145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 01/15/2021] [Accepted: 01/20/2021] [Indexed: 11/16/2022] Open
Abstract
The binding of known odorant molecules to the human odorant-binding protein (hOBP) was evaluated in silico. Docking experiments elucidate the preferable binding site and binding affinity of odorant molecules to hOBP. The physicochemical properties molecular weight (MW), vapor pressure (Vp), hydrophobicity level (logP), number of double bonds (NºDB), degree of unsaturation (DoU) and the chemical classification, were selected for the study of odorant modulation. Here, these properties were analyzed concerning 30 pleasant and 30 unpleasant odorants, chosen to represent a wide variety of compounds and to determine their influence on the binding energy to hOBP. Our findings indicate that MW, logP and Vp are the most important odorant variables, directly correlated to odorant-binding energies (ΔGbinding) towards hOBP. Understanding how the odorants behave when complexed with the OBP in human olfaction opens new possibilities for the development of future biotechnological applications, including sensory devices, medical diagnosis, among others.
Collapse
|
9
|
Abstract
Mammalian olfactory receptors (ORs) constitute the largest family of G-protein-coupled receptors, with up to about 1000 different genes per species, each having specific odorant ligands. ORs could be used as sensing elements of highly specific and sensitive bioelectronic hybrid devices such as bioelectronic noses. After optimized immobilization onto the device, natural ORs provide molecular recognition of various odors with their intrinsic sensitivity, discrimination, and detection properties. However, the main difficulties are related to the low expression level of recombinant ORs, their stability and potential loss of activity. Such drawbacks can be successfully overcome in bioelectronic noses integrating nanosomes (nanometric membrane vesicles carrying ORs) that are stably immobilized through a specific antibody. The advantages of such a platform rely on the fact that ORs stay in the natural membrane environment, and thus preserve their full activity. Thanks to their small sizes, nanosomes offer potential for micro- and nano-scale sensor development. In this paper, we summarize the key elements regarding nanosomes production and manipulation and provide an example of their immobilization onto a gold sensor surface. Rat ORI7 is used as a representative OR that can be functionally expressed in Saccharomyces cerevisiae. The receptor was not purified but only nanosomes were prepared. Nanosomes were immobilized onto functionalized gold surface using the anti-I7 antibody. Utilization of the antibody provides enrichment of ORI7 on the sensor surface but also uniform and appropriate orientation of the receptors. These features are crucial in optimization of bioelectronic nose' analytical performances.
Collapse
|
10
|
Nakamura T, Noumi Y, Yamakawa H, Nakamura A, Wen D, Li X, Geng X, Sawada K, Iwasa T. Enhancement of the Olfactory Response by Lipocalin Cp-Lip1 in Newt Olfactory Receptor Cells: An Electrophysiological Study. Chem Senses 2020; 44:523-533. [PMID: 31346612 DOI: 10.1093/chemse/bjz048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Previously, we have detected the expression of 2 lipocalin genes (lp1 and lp2) in the olfactory epithelium of the Japanese newt Cynops pyrrhogaster. Recombinant proteins of these genes (Cp-Lip1 and Cp-Lip2, respectively) exhibited high affinities to various odorants, suggesting that they work like the odorant-binding proteins (OBPs). However, the physiological functions of OBP generally remain inconclusive. Here, we examined the effect of Cp-Lip1 on the electrophysiological responses of newt olfactory receptor cells. We observed that the electro-olfactogram induced by the vapor of an odorant with high affinity to Cp-Lip1 appeared to increase in amplitude when a tiny drop of Cp-Lip1 solution was dispersed over the olfactory epithelium. However, the analysis was difficult because of possible interference by intrinsic components in the nasal mucus. We subsequently adopted a mucus-free condition by using suction electrode recordings from isolated olfactory cells, in which impulses were generated by puffs of odorant solution. When various concentration (0-5 µM) of Cp-Lip1 was mixed with the stimulus solution of odorants highly affinitive to Cp-Lip1, the impulse frequency increased in a concentration-dependent manner. The increase by Cp-Lip1 was seen more evidently at lower concentration ranges of stimulus odorants. These results strongly suggest that Cp-Lip1 broadens the sensitivity of the olfactory cells toward the lower concentration of odorants, by which animals can detect very low concentration of odorants.
Collapse
Affiliation(s)
- Tadashi Nakamura
- Center for Neuroscience and Biomedical Engineering, The University of Electro-Communications, Tokyo, Japan.,Department of Applied Physics and Chemistry, The University of Electro-Communications, Tokyo, Japan.,Department of Engineering Sciences, The University of Electro-Communications, Tokyo, Japan
| | - Yoshihiro Noumi
- Department of Applied Physics and Chemistry, The University of Electro-Communications, Tokyo, Japan
| | - Hiroyuki Yamakawa
- Department of Engineering Sciences, The University of Electro-Communications, Tokyo, Japan
| | - Atsushi Nakamura
- Department of Engineering Sciences, The University of Electro-Communications, Tokyo, Japan
| | - Durige Wen
- Division of Engineering, Muroran Institute of Technology, Muroran, Japan
| | - Xing Li
- Division of Engineering, Muroran Institute of Technology, Muroran, Japan
| | - Xiong Geng
- Division of Engineering, Muroran Institute of Technology, Muroran, Japan
| | - Ken Sawada
- Division of Engineering, Muroran Institute of Technology, Muroran, Japan
| | - Tatsuo Iwasa
- Division of Engineering, Muroran Institute of Technology, Muroran, Japan
| |
Collapse
|
11
|
Bio-Inspired Strategies for Improving the Selectivity and Sensitivity of Artificial Noses: A Review. SENSORS 2020; 20:s20061803. [PMID: 32214038 PMCID: PMC7146165 DOI: 10.3390/s20061803] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 03/18/2020] [Accepted: 03/21/2020] [Indexed: 12/20/2022]
Abstract
Artificial noses are broad-spectrum multisensors dedicated to the detection of volatile organic compounds (VOCs). Despite great recent progress, they still suffer from a lack of sensitivity and selectivity. We will review, in a systemic way, the biomimetic strategies for improving these performance criteria, including the design of sensing materials, their immobilization on the sensing surface, the sampling of VOCs, the choice of a transduction method, and the data processing. This reflection could help address new applications in domains where high-performance artificial noses are required such as public security and safety, environment, industry, or healthcare.
Collapse
|
12
|
Gómez-Velasco H, Rojo-Domínguez A, García-Hernández E. Enthalpically-driven ligand recognition and cavity solvation of bovine odorant binding protein. Biophys Chem 2020; 257:106315. [DOI: 10.1016/j.bpc.2019.106315] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 12/05/2019] [Accepted: 12/08/2019] [Indexed: 11/29/2022]
|
13
|
Soleja N, Manzoor O, Nandal P, Mohsin M. FRET-based nanosensors for monitoring and quantification of alcohols in living cells. Org Biomol Chem 2019; 17:2413-2422. [PMID: 30735222 DOI: 10.1039/c8ob03208d] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Odorants constitute a small and chemically diverse group of molecules with ethanol functioning as a key odorant that induces reproductive toxicity and adverse chronic effects on the liver. Analytical tools designed so far for the detection of odorant molecules are relatively invasive. Therefore, a tool that can measure the corresponding rate changes of ethanol concentration in real-time is highly desirable. Here in this work, we report a genetically encoded fluorescence resonance energy transfer (FRET)-based nanosensor for in vivo quantification of ethanol at the cellular level with high spatial and temporal resolution. A human odorant-binding protein (hOBPIIa) was flanked by fluorescent proteins ECFP (Enhanced Cyan Fluorescent Protein) and Venus at the N- and C-terminus respectively. The constructed FRET nanosensor was named the fluorescent indicator protein for odorants (FLIPO). FLIPO allows in vitro and in vivo determination of FRET changes in a concentration-dependent manner. The developed nanosensor is highly specific to ethanol, stable to pH changes and provides rapid detection rate response. FLIPO-42 is the most efficient nanosensor created that measures ethanol with an apparent affinity (Kd) of 4.16 μM and covers the physiological range of 500 nM to 12 μM ethanol measurement. FLIPO-42 can measure ethanol dynamics in bacterial, yeast and mammalian cells non-invasively in real time which proves its efficacy as a sensing device in both prokaryotic and eukaryotic systems. Taken together, a prototype for a set of nanosensors was established, potentially enabling the monitoring of dynamic changes of ethanol and investigate its uptake and metabolism with subcellular resolution in vivo and ex vivo. Furthermore, the advent of a set of novel nanosensors will provide us with the tools for numerous medical, scientific, industrial and environmental applications which would help to illuminate their role in biological systems.
Collapse
Affiliation(s)
- Neha Soleja
- Department of Biosciences, Jamia Millia Islamia, New Delhi-110025, India.
| | | | | | | |
Collapse
|
14
|
Kwon OS, Song HS, Park TH, Jang J. Conducting Nanomaterial Sensor Using Natural Receptors. Chem Rev 2018; 119:36-93. [DOI: 10.1021/acs.chemrev.8b00159] [Citation(s) in RCA: 113] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Oh Seok Kwon
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
- Nanobiotechnology and Bioinformatics (Major), University of Science & Technology (UST), Daejon 34141, Republic of Korea
| | - Hyun Seok Song
- Sensor System Research Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
- Division of Bioconvergence Analysis, Korea Basic Science Institute (KBSI), Cheongju 28119, Republic of Korea
- Center for Convergent Research of Emerging Virus Infection, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea
| | - Tai Hyun Park
- School of Chemical and Biological Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Jyongsik Jang
- School of Chemical and Biological Engineering, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
15
|
Cave JW, Wickiser JK, Mitropoulos AN. Progress in the development of olfactory-based bioelectronic chemosensors. Biosens Bioelectron 2018; 123:211-222. [PMID: 30201333 DOI: 10.1016/j.bios.2018.08.063] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Revised: 08/18/2018] [Accepted: 08/25/2018] [Indexed: 12/13/2022]
Abstract
Artificial chemosensory devices have a wide range of applications in industry, security, and medicine. The development of these devices has been inspired by the speed, sensitivity, and selectivity by which the olfactory system in animals can probe the chemical nature of the environment. In this review, we examine how molecular and cellular components of natural olfactory systems have been incorporated into artificial chemosensors, or bioelectronic sensors. We focus on the biological material that has been combined with signal transduction systems to develop artificial chemosensory devices. The strengths and limitations of different biological chemosensory material at the heart of these devices, as well as the reported overall effectiveness of the different bioelectronic sensor designs, is examined. This review also discusses future directions and challenges for continuing to advance development of bioelectronic sensors.
Collapse
Affiliation(s)
- John W Cave
- Department of Chemistry and Life Science, United States Military Academy, West Point, NY, United States; Burke Neurological Institute, White Plains, NY, United States; Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, United States
| | - J Kenneth Wickiser
- Department of Chemistry and Life Science, United States Military Academy, West Point, NY, United States
| | - Alexander N Mitropoulos
- Department of Chemistry and Life Science, United States Military Academy, West Point, NY, United States; Department of Mathematical Sciences, United States Military Academy, West Point, NY, United States.
| |
Collapse
|
16
|
Li QL, Yi SC, Li DZ, Nie XP, Li SQ, Wang MQ, Zhou AM. Optimization of reverse chemical ecology method: false positive binding of Aenasius bambawalei odorant binding protein 1 caused by uncertain binding mechanism. INSECT MOLECULAR BIOLOGY 2018; 27:305-318. [PMID: 29381231 DOI: 10.1111/imb.12372] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Odorant binding proteins (OBPs) are considered as the core molecular targets in reverse chemical ecology, which is a convenient and efficient method by which to screen potential semiochemicals. Herein, we identified a classic OBP, AbamOBP1 from Aenasius bambawalei, which showed high mRNA expression in male antennae. Fluorescence competitive binding assay (FCBA) results demonstrated that AbamOBP1 has higher binding affinity with ligands at acid pH, suggesting the physiologically inconsistent binding affinity of this protein. Amongst the four compounds with the highest binding affinities at acid pH, 2, 4, 4-trimethyl-2-pentene and 1-octen-3-one were shown to have attractant activity for male adults, whereas (-)-limonene and an analogue of 1-octen-3-ol exhibited nonbehavioural activity. Further homology modelling and fluorescence quenching experiments demonstrated that the stoichiometry of the binding of this protein to these ligands was not 1: 1, suggesting that the results of FCBA were false. In contrast, the apparent association constants (Ka) of fluorescence quenching experiments seemed to be more reliable, because 2, 4, 4-trimethyl-2-pentene and 1-octen-3-one had observably higher Ka than (-)-limonene and 1-octen-3-ol at neutral pH. Based on the characteristics of different OBPs, various approaches should be applied to study their binding affinities with ligands, which could modify and complement the results of FCBA and contribute to the application of reverse chemical ecology.
Collapse
Affiliation(s)
- Q L Li
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - S C Yi
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - D Z Li
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - X P Nie
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - S Q Li
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - M-Q Wang
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - A M Zhou
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
17
|
Zhang X, Cheng J, Wu L, Mei Y, Jaffrezic-Renault N, Guo Z. An overview of an artificial nose system. Talanta 2018; 184:93-102. [PMID: 29674088 DOI: 10.1016/j.talanta.2018.02.113] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 01/31/2018] [Accepted: 02/28/2018] [Indexed: 12/22/2022]
Abstract
The present review describes recent advances in the development of an artificial nose system based on olfactory receptors and various sensing platforms. The kind of artificial nose, the production of olfactory receptors, the sensor platform for signal conversion and the application of the artificial nose system based on olfactory receptors and various sensing platforms are presented. The associated transduction modes are also discussed. The paper presents a review of the latest achievements and a critical evaluation of the state of the art in the field of artificial nose systems.
Collapse
Affiliation(s)
- Xiu Zhang
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Medical College, Wuhan University of Science and Technology, Wuhan 430065, PR China
| | - Jing Cheng
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Medical College, Wuhan University of Science and Technology, Wuhan 430065, PR China
| | - Lei Wu
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Medical College, Wuhan University of Science and Technology, Wuhan 430065, PR China
| | - Yong Mei
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Medical College, Wuhan University of Science and Technology, Wuhan 430065, PR China.
| | - Nicole Jaffrezic-Renault
- Institute of Analytical Sciences, UMR-CNRS 5280, University of Lyon, 5, La Doua Street, Villeurbanne 69100, France.
| | - Zhenzhong Guo
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Medical College, Wuhan University of Science and Technology, Wuhan 430065, PR China.
| |
Collapse
|
18
|
Son M, Kim D, Kang J, Lim JH, Lee SH, Ko HJ, Hong S, Park TH. Bioelectronic Nose Using Odorant Binding Protein-Derived Peptide and Carbon Nanotube Field-Effect Transistor for the Assessment of Salmonella Contamination in Food. Anal Chem 2016; 88:11283-11287. [PMID: 27934112 DOI: 10.1021/acs.analchem.6b03284] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Salmonella infection is the one of the major causes of food borne illnesses including fever, abdominal pain, diarrhea, and nausea. Thus, early detection of Salmonella contamination is important for our healthy life. Conventional detection methods for the food contamination have limitations in sensitivity and rapidity; thus, the early detection has been difficult. Herein, we developed a bioelectronic nose using a carbon nanotube (CNT) field-effect transistor (FET) functionalized with Drosophila odorant binding protein (OBP)-derived peptide for easy and rapid detection of Salmonella contamination in ham. 3-Methyl-1-butanol is known as a specific volatile organic compound, generated from the ham contaminated with Salmonella. We designed and synthesized the peptide based on the sequence of the Drosophila OBP, LUSH, which specifically binds to alcohols. The C-terminus of the synthetic peptide was modified with three phenylalanine residues and directly immobilized onto CNT channels using the π-π interaction. The p-type properties of FET were clearly maintained after the functionalization using the peptide. The biosensor detected 1 fM of 3-methyl-1-butanol with high selectivity and successfully assessed Salmonella contamination in ham. These results indicate that the bioelectronic nose can be used for the rapid detection of Salmonella contamination in food.
Collapse
Affiliation(s)
- Manki Son
- Interdisciplinary Program for Bioengineering, Seoul National University , Seoul 151-742, Korea
| | - Daesan Kim
- Department of Biophysics and Chemical Biology, Seoul National University , Seoul 151-742, Korea
| | - Jinkyung Kang
- School of Chemical and Biological Engineering, Seoul National University , Seoul 151-742, Korea
| | - Jong Hyun Lim
- School of Chemical and Biological Engineering, Seoul National University , Seoul 151-742, Korea
| | - Seung Hwan Lee
- School of Chemical and Biological Engineering, Seoul National University , Seoul 151-742, Korea
| | - Hwi Jin Ko
- Bio-MAX Institute, Seoul National University , Seoul 151-818, Korea
| | - Seunghun Hong
- Department of Physics and Astronomy and Institute of Applied Physics, Seoul National University , Seoul 151-747, Korea
| | - Tai Hyun Park
- Interdisciplinary Program for Bioengineering, Seoul National University , Seoul 151-742, Korea.,School of Chemical and Biological Engineering, Seoul National University , Seoul 151-742, Korea.,Bio-MAX Institute, Seoul National University , Seoul 151-818, Korea.,Advanced Institutes of Convergence Technology , Suwon, Gyeonggi-do 443-270, Korea
| |
Collapse
|
19
|
Wasilewski T, Gębicki J, Kamysz W. Bioelectronic nose: Current status and perspectives. Biosens Bioelectron 2016; 87:480-494. [PMID: 27592240 DOI: 10.1016/j.bios.2016.08.080] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 08/23/2016] [Accepted: 08/24/2016] [Indexed: 11/30/2022]
Abstract
A characteristic feature of human and animal organs of smell is the ability to identify hundreds of thousands of odours. It is accompanied by particular smell sensations, which are a basic source of information about odour mixture. The main structural elements of biological smell systems are the olfactory receptors. Small differences in a structure of odorous molecules (odorants) can lead to significant change of odour, which is due to the fact that each of the olfactory receptors is coded with different gene and usually corresponds to different type of odour. Discovery and characterisation of the gene family coding the olfactory receptors contributed to the elaboration and development of the electronic smell systems, the so-called bioelectronic noses. The olfactory receptors are employed as a biological element in this type of instruments. An electronic system includes a converter part, which allows measurement and processing of generated signals. A suitable data analysis system is also required to visualise the results. Application potentialities of the bioelectronic noses are focused on the fields of economy and science where highly selective and sensitive analysis of odorous substances is required. The paper presents a review of the latest achievements and critical evaluation of the state of art in the field of bioelectronic noses.
Collapse
Affiliation(s)
- Tomasz Wasilewski
- Medical University of Gdansk, Department of Inorganic Chemistry, Faculty of Pharmacy, Medical University of Gdansk, Poland, Al. Hallera 107, Gdansk 80-416, Poland.
| | - Jacek Gębicki
- Gdańsk University of Technology, Department of Chemical and Process Engineering, Chemical Faculty, Gdańsk University of Technology, Gabriela Narutowicza 11/12 Str., Gdańsk 80-233, Poland
| | - Wojciech Kamysz
- Medical University of Gdansk, Department of Inorganic Chemistry, Faculty of Pharmacy, Medical University of Gdansk, Poland, Al. Hallera 107, Gdansk 80-416, Poland
| |
Collapse
|
20
|
Peng M, Hautus MJ, Jaeger SR. Methods for Fitting Olfactory Psychometric Functions: A Case Study Comparing Psychometric Functions for Individuals with a “Sensitive” or “Insensitive” Genotype for β-Ionone. Chem Senses 2016; 41:771-782. [DOI: 10.1093/chemse/bjw090] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
|
21
|
Silva Teixeira CS, Cerqueira NMFSA, Silva Ferreira AC. Unravelling the Olfactory Sense: From the Gene to Odor Perception. Chem Senses 2015; 41:105-21. [PMID: 26688501 DOI: 10.1093/chemse/bjv075] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Although neglected by science for a long time, the olfactory sense is now the focus of a panoply of studies that bring new insights and raises interesting questions regarding its functioning. The importance in the clarification of this process is of interest for science, but also motivated by the food and perfume industries boosted by a consumer society with increasingly demands for higher quality standards. In this review, a general overview of the state of art of science regarding the olfactory sense is presented with the main focus on the peripheral olfactory system. Special emphasis will be given to the deorphanization of the olfactory receptors (ORs), a critical issue because the specificity and functional properties of about 90% of human ORs remain unknown mainly due to the difficulties associated with the functional expression of ORs in high yields.
Collapse
Affiliation(s)
- Carla S Silva Teixeira
- Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Arquiteto Lobão Vital, Apartado 2511, 4202-401 Porto, Portugal
| | - Nuno M F S A Cerqueira
- UCIBIO@Requimte/Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal and
| | - António C Silva Ferreira
- Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Arquiteto Lobão Vital, Apartado 2511, 4202-401 Porto, Portugal, Department of Viticulture and Oenology, Institute for Wine Biotechnology, University of Stellenbosch, Private Bag XI, Matieland 7602, South Africa
| |
Collapse
|
22
|
Guo Z, Zine N, Lagarde F, Daligault J, Persuy MA, Pajot-Augy E, Zhang A, Jaffrezic-Renault N. A novel platform based on immobilized histidine tagged olfactory receptors, for the amperometric detection of an odorant molecule characteristic of boar taint. Food Chem 2015; 184:1-6. [DOI: 10.1016/j.foodchem.2015.03.066] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2014] [Revised: 01/10/2015] [Accepted: 03/19/2015] [Indexed: 10/23/2022]
|
23
|
de March CA, Ryu S, Sicard G, Moon C, Golebiowski J. Structure-odour relationships reviewed in the postgenomic era. FLAVOUR FRAG J 2015. [DOI: 10.1002/ffj.3249] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Claire A. de March
- Institut de Chimie de Nice; Université Nice Sophia Antipolis; UMR CNRS 7272, parc Valrose 06108 Nice cedex 02 France
| | - SangEun Ryu
- Laboratory of Chemical Senses, Department of Brain and Cognitive Science; DGIST (Daegu Gyeongbuk Institute of Science & Technology); 50-1 Sang-Ri, Hyeonpung-Myeon, Dalseong-Gun Daegu 711-873 Korea
| | - Gilles Sicard
- Neurobiology of Cellular Interactions and Neurophysiopathology; Aix-Marseille Université; UMR CNRS 7259 13331 Marseille cedex 03 France
| | - Cheil Moon
- Laboratory of Chemical Senses, Department of Brain and Cognitive Science; DGIST (Daegu Gyeongbuk Institute of Science & Technology); 50-1 Sang-Ri, Hyeonpung-Myeon, Dalseong-Gun Daegu 711-873 Korea
| | - Jérôme Golebiowski
- Institut de Chimie de Nice; Université Nice Sophia Antipolis; UMR CNRS 7272, parc Valrose 06108 Nice cedex 02 France
| |
Collapse
|
24
|
Lu Y, Yao Y, Zhang Q, Zhang D, Zhuang S, Li H, Liu Q. Olfactory biosensor for insect semiochemicals analysis by impedance sensing of odorant-binding proteins on interdigitated electrodes. Biosens Bioelectron 2015; 67:662-9. [DOI: 10.1016/j.bios.2014.09.098] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Revised: 09/06/2014] [Accepted: 09/29/2014] [Indexed: 11/16/2022]
|
25
|
Pomerantz A, Blachman-Braun R, Galnares-Olalde JA, Berebichez-Fridman R, Capurso-García M. The possibility of inventing new technologies in the detection of cancer by applying elements of the canine olfactory apparatus. Med Hypotheses 2015; 85:160-72. [PMID: 25936534 DOI: 10.1016/j.mehy.2015.04.024] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Revised: 04/17/2015] [Accepted: 04/23/2015] [Indexed: 12/29/2022]
Abstract
In order to find better tools in the diagnosis of cancer in an earlier and more precise manner, researchers have explored the use of volatile organic compound (VOCs) as a way to detect this disease. Interestingly, the canine olfactory apparatus was observed to detect cancer in two anecdotal reports. After the description of these events, researchers began to study this phenomenon in a structured way in order to assess the ability of canines in detecting cancer-related VOCs. Due to the fact that some of these studies have shown that the canine olfactory apparatus is highly proficient in the detection of cancer-related VOCs, in this article we assess the possibility of constructing a bioelectronic-nose, based on canine olfactory receptors (ORs), for the purpose of diagnosing cancer in a more sensitive, specific, and cost effective manner than what is available nowadays. Furthermore, in order to prove the feasibility and the need of the proposed apparatus, we searched for the following type of articles: all of the studies that have examined, to our knowledge, the ability of dogs in detecting cancer; articles that assess the dog olfactory receptor (OR) gene repertoire, since a central part of the proposed bioelectronic nose is being able to recognize the odorant that emanates from the cancerous lesion, and for that purpose is necessary to express the canine ORs in heterologous cells; examples of articles that depict different devices that have been built for the purpose of detecting cancer-related VOCs, so as to assess if the construction of the proposed apparatus is needed; and articles that describe examples of already constructed bioelectronic noses, in order to demonstrate the existence of a technical precedent and thus the plausibility of the proposed device.
Collapse
Affiliation(s)
- Alan Pomerantz
- Universidad Anáhuac México Norte, Facultad de Ciencias de la Salud, Edo. de México, Mexico.
| | - Ruben Blachman-Braun
- Universidad Anáhuac México Norte, Facultad de Ciencias de la Salud, Edo. de México, Mexico
| | | | | | - Marino Capurso-García
- Universidad Anáhuac México Norte, Facultad de Ciencias de la Salud, Edo. de México, Mexico
| |
Collapse
|
26
|
Mitsuno H, Sakurai T, Namiki S, Mitsuhashi H, Kanzaki R. Novel cell-based odorant sensor elements based on insect odorant receptors. Biosens Bioelectron 2015; 65:287-94. [DOI: 10.1016/j.bios.2014.10.026] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Accepted: 10/13/2014] [Indexed: 01/09/2023]
|
27
|
Persuy MA, Sanz G, Tromelin A, Thomas-Danguin T, Gibrat JF, Pajot-Augy E. Mammalian olfactory receptors: molecular mechanisms of odorant detection, 3D-modeling, and structure-activity relationships. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2014; 130:1-36. [PMID: 25623335 DOI: 10.1016/bs.pmbts.2014.11.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
This chapter describes the main characteristics of olfactory receptor (OR) genes of vertebrates, including generation of this large multigenic family and pseudogenization. OR genes are compared in relation to evolution and among species. OR gene structure and selection of a given gene for expression in an olfactory sensory neuron (OSN) are tackled. The specificities of OR proteins, their expression, and their function are presented. The expression of OR proteins in locations other than the nasal cavity is regulated by different mechanisms, and ORs display various additional functions. A conventional olfactory signal transduction cascade is observed in OSNs, but individual ORs can also mediate different signaling pathways, through the involvement of other molecular partners and depending on the odorant ligand encountered. ORs are engaged in constitutive dimers. Ligand binding induces conformational changes in the ORs that regulate their level of activity depending on odorant dose. When present, odorant binding proteins induce an allosteric modulation of OR activity. Since no 3D structure of an OR has been yet resolved, modeling has to be performed using the closest G-protein-coupled receptor 3D structures available, to facilitate virtual ligand screening using the models. The study of odorant binding modes and affinities may infer best-bet OR ligands, to be subsequently checked experimentally. The relationship between spatial and steric features of odorants and their activity in terms of perceived odor quality are also fields of research that development of computing tools may enhance.
Collapse
Affiliation(s)
- Marie-Annick Persuy
- INRA UR 1197 NeuroBiologie de l'Olfaction, Domaine de Vilvert, Jouy-en-Josas, France
| | - Guenhaël Sanz
- INRA UR 1197 NeuroBiologie de l'Olfaction, Domaine de Vilvert, Jouy-en-Josas, France
| | - Anne Tromelin
- INRA UMR 1129 Flaveur, Vision et Comportement du Consommateur, Dijon, France
| | | | - Jean-François Gibrat
- INRA UR1077 Mathématique Informatique et Génome, Domaine de Vilvert, Jouy-en-Josas, France
| | - Edith Pajot-Augy
- INRA UR 1197 NeuroBiologie de l'Olfaction, Domaine de Vilvert, Jouy-en-Josas, France.
| |
Collapse
|
28
|
A computational microscope focused on the sense of smell. Biochimie 2014; 107 Pt A:3-10. [PMID: 24952349 DOI: 10.1016/j.biochi.2014.06.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Accepted: 06/07/2014] [Indexed: 11/24/2022]
Abstract
In this article, we review studies of the protagonists of the perception of smell focusing on Odorant-Binding Proteins and Olfactory Receptors. We notably put forward studies performed by means of molecular modeling, generally combined with experimental data. Those works clearly emphasize that computational approaches are now a force to reckon with. In the future, they will certainly be more and more used, notably in the framework of a computational microscope meant to observe how the laws of physics govern the biomolecular systems originating our sense of smell.
Collapse
|
29
|
Jin P, Ren Z, Ye F, Ying W. A novel label-free live-cell biosensor for G-protein-coupled receptor functional assay with enhanced sensitivity. Anal Biochem 2014; 450:27-9. [DOI: 10.1016/j.ab.2013.12.036] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Revised: 12/29/2013] [Accepted: 12/30/2013] [Indexed: 12/12/2022]
|
30
|
Jayanthi KPD, Kempraj V, Aurade RM, Roy TK, Shivashankara KS, Verghese A. Computational reverse chemical ecology: virtual screening and predicting behaviorally active semiochemicals for Bactrocera dorsalis. BMC Genomics 2014; 15:209. [PMID: 24640964 PMCID: PMC4003815 DOI: 10.1186/1471-2164-15-209] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Accepted: 03/03/2014] [Indexed: 11/16/2022] Open
Abstract
Background Semiochemical is a generic term used for a chemical substance that influences the behaviour of an organism. It is a common term used in the field of chemical ecology to encompass pheromones, allomones, kairomones, attractants and repellents. Insects have mastered the art of using semiochemicals as communication signals and rely on them to find mates, host or habitat. This dependency of insects on semiochemicals has allowed chemical ecologists to develop environment friendly pest management strategies. However, discovering semiochemicals is a laborious process that involves a plethora of behavioural and analytical techniques, making it expansively time consuming. Recently, reverse chemical ecology approach using odorant binding proteins (OBPs) as target for elucidating behaviourally active compounds is gaining eminence. In this scenario, we describe a “computational reverse chemical ecology” approach for rapid screening of potential semiochemicals. Results We illustrate the high prediction accuracy of our computational method. We screened 25 semiochemicals for their binding potential to a GOBP of B. dorsalis using molecular docking (in silico) and molecular dynamics. Parallely, compounds were subjected to fluorescent quenching assays (Experimental). The correlation between in silico and experimental data were significant (r2 = 0.9408; P < 0.0001). Further, predicted compounds were subjected to behavioral bioassays and were found to be highly attractive to insects. Conclusions The present study provides a unique methodology for rapid screening and predicting behaviorally active semiochemicals. This methodology may be developed as a viable approach for prospecting active semiochemicals for pest control, which otherwise is a laborious process.
Collapse
Affiliation(s)
| | - Vivek Kempraj
- National Fellow Lab, Division of Entomology and Nematology, Indian Institute of Horticultural Research, Bangalore, India.
| | | | | | | | | |
Collapse
|
31
|
Heydel JM, Coelho A, Thiebaud N, Legendre A, Bon AML, Faure P, Neiers F, Artur Y, Golebiowski J, Briand L. Odorant-Binding Proteins and Xenobiotic Metabolizing Enzymes: Implications in Olfactory Perireceptor Events. Anat Rec (Hoboken) 2013; 296:1333-45. [DOI: 10.1002/ar.22735] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Revised: 02/01/2013] [Accepted: 02/26/2013] [Indexed: 11/10/2022]
Affiliation(s)
- Jean-Marie Heydel
- INRA UMR1324, CNRS UMR6265; Université de Bourgogne, Centre des Sciences du Goût et de l'Alimentation; F-21000 Dijon France
| | - Alexandra Coelho
- INRA UMR1324, CNRS UMR6265; Université de Bourgogne, Centre des Sciences du Goût et de l'Alimentation; F-21000 Dijon France
| | - Nicolas Thiebaud
- INRA UMR1324, CNRS UMR6265; Université de Bourgogne, Centre des Sciences du Goût et de l'Alimentation; F-21000 Dijon France
| | - Arièle Legendre
- INRA UMR1324, CNRS UMR6265; Université de Bourgogne, Centre des Sciences du Goût et de l'Alimentation; F-21000 Dijon France
| | - Anne-Marie Le Bon
- INRA UMR1324, CNRS UMR6265; Université de Bourgogne, Centre des Sciences du Goût et de l'Alimentation; F-21000 Dijon France
| | - Philippe Faure
- INRA UMR1324, CNRS UMR6265; Université de Bourgogne, Centre des Sciences du Goût et de l'Alimentation; F-21000 Dijon France
| | - Fabrice Neiers
- INRA UMR1324, CNRS UMR6265; Université de Bourgogne, Centre des Sciences du Goût et de l'Alimentation; F-21000 Dijon France
| | - Yves Artur
- INRA UMR1324, CNRS UMR6265; Université de Bourgogne, Centre des Sciences du Goût et de l'Alimentation; F-21000 Dijon France
| | - Jérôme Golebiowski
- Université de Nice Sophia Antipolis; CNRS UMR7272, Institut de Chimie de Nice; F-06108 Nice Cedex 2 France
| | - Loïc Briand
- INRA UMR1324, CNRS UMR6265; Université de Bourgogne, Centre des Sciences du Goût et de l'Alimentation; F-21000 Dijon France
| |
Collapse
|
32
|
Alfinito E, Pousset J, Reggiani L. The electrical properties of olfactory receptors in the development of biological smell sensors. Methods Mol Biol 2013; 1003:67-83. [PMID: 23585034 DOI: 10.1007/978-1-62703-377-0_5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
We present here the results of the investigation of the electrical properties of two olfactory receptors (ORs): rat, OR I7, and human, OR 17-40, which are of interest in the creation of smell nanobiosensors. Described here is our investigation comparing the results from experiments using electrochemical impedance spectroscopy with the theoretical predictions obtained from a recently developed impedance network protein analog. The changes in the OR response following excitation correlated with the protein conformational change. The satisfactory agreement between theory and experiment points to a promising development of a new class of nanobiosensors based on the electrical properties of sensing proteins.
Collapse
Affiliation(s)
- Eleonora Alfinito
- Dipartimento di Ingegneria dell'Innovazione, Università del Salento, Lecce, Italy
| | | | | |
Collapse
|
33
|
Sanz G, Pajot-Augy E. Deciphering activation of olfactory receptors using heterologous expression in Saccharomyces cerevisiae and bioluminescence resonance energy transfer. Methods Mol Biol 2013; 1003:149-160. [PMID: 23585040 DOI: 10.1007/978-1-62703-377-0_11] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Hetero- and homo-oligomerization of G protein-coupled receptors (GPCRs) has been addressed in the past years using various approaches such as co-immunoprecipitation, fluorescence resonance energy transfer and bioluminescence resonance energy transfer (BRET). Here, we report the methodological details from a previously published study to investigate the relationships between oligomerization and activation states of olfactory receptors (ORs). This methodology combines heterologous expression of ORs in Saccharomyces cerevisiae and BRET assays on membrane fractions, in particular, upon odorant stimulation. We have demonstrated that ORs constitutively homodimerize at the plasma membrane and that high odorant concentrations promote a conformational change of the dimer, which becomes inactive. We proposed a model in which one odorant molecule binding the dimer would induce activation, while two odorant molecules, each binding one protomer of the dimer, would blunt signaling.
Collapse
Affiliation(s)
- Guenhaël Sanz
- Unité de Neurobiologie de l'Olfaction et Modélisation en Imagerie & Equipe Biologie de l'Olfaction et Biosenseurs, INRA, Jouy-en-Josas, France
| | | |
Collapse
|
34
|
Brookes JC, Horsfield AP, Stoneham AM. The swipe card model of odorant recognition. SENSORS (BASEL, SWITZERLAND) 2012; 12:15709-49. [PMID: 23202229 PMCID: PMC3522982 DOI: 10.3390/s121115709] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Revised: 10/31/2012] [Accepted: 11/02/2012] [Indexed: 01/24/2023]
Abstract
Just how we discriminate between the different odours we encounter is not completely understood yet. While obviously a matter involving biology, the core issue isa matter for physics: what microscopic interactions enable the receptors in our noses-small protein switches—to distinguish scent molecules? We survey what is and is not known about the physical processes that take place when we smell things, highlighting the difficulties in developing a full understanding of the mechanics of odorant recognition. The main current theories, discussed here, fall into two major groups. One class emphasises the scent molecule's shape, and is described informally as a "lock and key" mechanism. But there is another category, which we focus on and which we call "swipe card" theories:the molecular shape must be good enough, but the information that identifies the smell involves other factors. One clearly-defined "swipe card" mechanism that we discuss here is Turin's theory, in which inelastic electron tunnelling is used to discern olfactant vibration frequencies. This theory is explicitly quantal, since it requires the molecular vibrations to take in or give out energy only in discrete quanta. These ideas lead to obvious experimental tests and challenges. We describe the current theory in a form that takes into account molecular shape as well as olfactant vibrations. It emerges that this theory can explain many observations hard to reconcile in other ways. There are still some important gaps in a comprehensive physics-based description of the central steps in odorant recognition. We also discuss how far these ideas carry over to analogous processes involving other small biomolecules, like hormones, steroids and neurotransmitters. We conclude with a discussion of possible quantum behaviours in biology more generally, the case of olfaction being just one example. This paper is presented in honour of Prof. Marshall Stoneham who passed away unexpectedly during its writing.
Collapse
Affiliation(s)
- Jennifer C. Brookes
- Department of Chemistry and Chemical Biology, Harvard University, Oxford Street, Cambridge, MA 02138, USA
| | - Andrew P. Horsfield
- Department of Materials, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - A. Marshall Stoneham
- London Centre for Nanotechnology, 17-19 Gordon Street, London WC1H 0AH, UK; E-Mail:
| |
Collapse
|
35
|
Du L, Wu C, Liu Q, Huang L, Wang P. Recent advances in olfactory receptor-based biosensors. Biosens Bioelectron 2012; 42:570-80. [PMID: 23261691 DOI: 10.1016/j.bios.2012.09.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2012] [Revised: 08/20/2012] [Accepted: 09/02/2012] [Indexed: 12/30/2022]
Abstract
The biological olfactory system can recognize and discriminate thousands of volatile organic compounds (VOCs) with extremely high sensitivity and specificity. The most fundamental elements are olfactory receptors (ORs) in the cilia of olfactory sensory neurons (OSNs), which contribute greatly to the high-performance olfactory system. The excellent properties of ORs are generally recognized in the development of biomimetic OR-based biosensors. Over the past two decades, much work has been done in developing OR-based biosensors due to their promising potential in many applications. In this article, we will outline the latest advances of OR-based biosensors. Two current crucial issues in this field will be discussed, namely, the production methods and immobilization techniques of ORs. We will also elaborate on various OR-based biosensors and their latest developments. Finally, current research trends and future challenges in this field will be discussed.
Collapse
Affiliation(s)
- Liping Du
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China
| | | | | | | | | |
Collapse
|
36
|
Golebiowski J, Topin J, Charlier L, Briand L. Interaction between odorants and proteins involved in the perception of smell: the case of odorant-binding proteins probed by molecular modelling and biophysical data. FLAVOUR FRAG J 2012. [DOI: 10.1002/ffj.3121] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Jérôme Golebiowski
- Institut de Chimie de Nice, UMR7272 CNRS; Université de Nice Sophia Antipolis; 06108; Nice; France
| | - Jérémie Topin
- Institut de Chimie de Nice, UMR7272 CNRS; Université de Nice Sophia Antipolis; 06108; Nice; France
| | - Landry Charlier
- Institut de Chimie de Nice, UMR7272 CNRS; Université de Nice Sophia Antipolis; 06108; Nice; France
| | - Loïc Briand
- Centre des Sciences du Goût et de l'Alimentation, INRA UMR1324, CNRS UMR6265; Université de Bourgogne; 21000; Dijon; France
| |
Collapse
|
37
|
Fukutani Y, Ishii J, Noguchi K, Kondo A, Yohda M. An improved bioluminescence-based signaling assay for odor sensing with a yeast expressing a chimeric olfactory receptor. Biotechnol Bioeng 2012; 109:3143-51. [DOI: 10.1002/bit.24589] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Revised: 06/03/2012] [Accepted: 06/12/2012] [Indexed: 12/30/2022]
|
38
|
|
39
|
Oh EH, Song HS, Park TH. Recent advances in electronic and bioelectronic noses and their biomedical applications. Enzyme Microb Technol 2011; 48:427-37. [PMID: 22113013 DOI: 10.1016/j.enzmictec.2011.04.003] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2011] [Accepted: 04/01/2011] [Indexed: 01/28/2023]
Abstract
Significant effort has been made in the development of an artificial nose system for various applications. Advances in sensor technology have facilitated the development of high-performance electronic and bioelectronic noses. Numerous articles describe the advantages of artificial nose systems for biomedical applications. Recent advances in the development of electronic and bioelectronic noses and their biomedical applications are reviewed in this article.
Collapse
Affiliation(s)
- Eun Hae Oh
- Interdisciplinary Program of Bioengineering, Seoul National University, Seoul, Republic of Korea
| | | | | |
Collapse
|
40
|
Wade F, Espagne A, Persuy MA, Vidic J, Monnerie R, Merola F, Pajot-Augy E, Sanz G. Relationship between homo-oligomerization of a mammalian olfactory receptor and its activation state demonstrated by bioluminescence resonance energy transfer. J Biol Chem 2011; 286:15252-9. [PMID: 21454689 DOI: 10.1074/jbc.m110.184580] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
G-protein-coupled receptor homo-oligomerization has been increasingly reported. However, little is known regarding the relationship between activation of the receptor and its association/conformational states. The mammalian olfactory receptors (ORs) belong to the G protein-coupled receptor superfamily. In this study, the homo-oligomerization status of the human OR1740 receptor and its involvement in receptor activation upon odorant ligand binding were addressed by co-immunoprecipitation and bioluminescence resonance energy transfer approaches using crude membranes or membranes from different cellular compartments. For the first time, our data clearly show that mammalian ORs constitutively self-associate into homodimers at the plasma membrane level. This study also demonstrates that ligand binding mediates a conformational change and promotes an inactive state of the OR dimers at high ligand concentrations. These findings support and validate our previously proposed model of OR activation/inactivation based on the tripartite odorant-binding protein-odorant-OR partnership.
Collapse
Affiliation(s)
- Fallou Wade
- UR1197 Neurobiologie de l'Olfaction et Modélisation en Imagerie, Institut National de la Recherche Agronomique, Domaine de Vilvert, F-78350 Jouy-en-Josas, France
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Borysik AJ, Briand L, Taylor AJ, Scott DJ. Rapid odorant release in mammalian odour binding proteins facilitates their temporal coupling to odorant signals. J Mol Biol 2010; 404:372-80. [PMID: 20932975 DOI: 10.1016/j.jmb.2010.09.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2010] [Revised: 09/07/2010] [Accepted: 09/09/2010] [Indexed: 10/19/2022]
Abstract
We have measured the effect of rat odorant-binding protein 1 on the rates of ligand uptake and liquid-to-air transfer rates with a set of defined odorous compounds. Comparison of observed rate constants (k(obs)) with data simulated over a wide range of different kinetic and thermodynamic regimes shows that the data do not agree with the previously held view of a slow off-rate regime (k(off) <0.0004 s(-1)). We propose that a rapid k(off) would be a necessary requirement for such a system, since slow odorant-release rates would result in significant decorrelation between the olfactory world and odour perception.
Collapse
Affiliation(s)
- Antoni J Borysik
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Sutton Bonington LE12 5RD, UK
| | | | | | | |
Collapse
|
42
|
Glatz R, Bailey-Hill K. Mimicking nature's noses: from receptor deorphaning to olfactory biosensing. Prog Neurobiol 2010; 93:270-96. [PMID: 21130137 DOI: 10.1016/j.pneurobio.2010.11.004] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2010] [Revised: 11/09/2010] [Accepted: 11/22/2010] [Indexed: 12/21/2022]
Abstract
The way in which organisms detect specific volatile compounds within their environment, and the associated neural processing which produces perception and subsequent behavioural responses, have been of interest to scientists for decades. Initially, most olfaction research was conducted using electrophysiological techniques on whole animals. However, the discovery of genes encoding the family of human olfactory receptors (ORs) paved the way for the development of a range of cellular assays, primarily used to deorphan ORs from mammals and insects. These assays have greatly advanced our knowledge of the molecular basis of olfaction, however, while there is currently good agreement on vertebrate and nematode olfactory signalling cascades, debate still surrounds the signalling mechanisms in insects. The inherent specificity and sensitivity of ORs makes them prime candidates as biological detectors of volatile ligands within biosensor devices, which have many potential applications. In the previous decade, researchers have investigated various technologies for transducing OR:ligand interactions into a readable format and thereby produce an olfactory biosensor (or bioelectronic nose) that maintains the discriminating power of the ORs in vivo. Here we review and compare the molecular mechanisms of olfaction in vertebrates and invertebrates, and also summarise the assay technologies utilising sub-tissue level sensing elements (cells and cell extracts), which have been applied to OR deorphanization and biosensor research. Although there are currently no commercial, "field-ready" olfactory biosensors of the kind discussed here, there have been several technological proof-of-concept studies suggesting that we will see their emergence within the next decade.
Collapse
Affiliation(s)
- Richard Glatz
- South Australian Research and Development Institute (SARDI), Entomology, GPO Box 397, Adelaide 5001, Australia.
| | | |
Collapse
|
43
|
Highly sensitive and selective odorant sensor using living cells expressing insect olfactory receptors. Proc Natl Acad Sci U S A 2010; 107:15340-4. [PMID: 20798064 DOI: 10.1073/pnas.1004334107] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
This paper describes a highly sensitive and selective chemical sensor using living cells (Xenopus laevis oocytes) within a portable fluidic device. We constructed an odorant sensor whose sensitivity is a few parts per billion in solution and can simultaneously distinguish different types of chemicals that have only a slight difference in double bond isomerism or functional group such as -OH, -CHO and -C(=O)-. We developed a semiautomatic method to install cells to the fluidic device and achieved stable and reproducible odorant sensing. In addition, we found that the sensor worked for multiple-target chemicals and can be integrated with a robotic system without any noise reduction systems. Our developed sensor is compact and easy to replace in the system. We believe that the sensor can potentially be incorporated into a portable system for monitoring environmental and physical conditions.
Collapse
|
44
|
Brimau F, Cornard JP, Le Danvic C, Lagant P, Vergoten G, Grebert D, Pajot E, Nagnan-Le Meillour P. Binding specificity of recombinant odorant-binding protein isoforms is driven by phosphorylation. J Chem Ecol 2010; 36:801-13. [PMID: 20589419 DOI: 10.1007/s10886-010-9820-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2010] [Revised: 06/04/2010] [Accepted: 06/11/2010] [Indexed: 01/20/2023]
Abstract
Native porcine odorant-binding protein (OBP) bears eleven sites of phosphorylation, which are not always occupied in the molecular population, suggesting that different isoforms could co-exist in animal tissues. As phosphorylation is a dynamic process resulting in temporary conformational changes that regulate the function of target proteins, we investigated the possibility that OBP isoforms could display different binding affinities to biologically relevant ligands. The availability of recombinant proteins is of particular interest for the study of protein/ligand structure-function relationships, but prokaryotic expression systems do not perform eukaryotic post-translational modifications. To investigate the role of phosphorylation in the binding capacities of OBP isoforms, we produced recombinant porcine OBP in two eukaryotic systems, the yeast, Pichia pastoris, and the mammalian CHO cell line. Isoforms were separated by anion exchange HPLC, and their phosphorylation sites were mapped by MALDI-TOF mass spectrometry and compared to those of the native protein. Binding experiments with ligands of biological relevance in the pig, Sus scrofa, were performed by fluorescence spectroscopy on two isoforms of recombinant OBP expressed in the yeast. The two isoforms, differing only by their phosphorylation pattern, displayed different binding properties, suggesting that binding specificity is driven by phosphorylation.
Collapse
Affiliation(s)
- Fanny Brimau
- INRA, UMR8576 CNRS/USTL, UGSF, 59655, Villeneuve d'Ascq, France
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Abstract
Surface plasmon resonance has become one of the most important techniques for studying bimolecular interactions. Most of the researchers are using it to study protein-protein interactions, but in recent years membrane model systems have also become available and this makes it possible to study protein-membrane interactions as well. In this review chapter we describe possible ways to prepare lipid membrane surfaces on various sensor chips and some of the experimental considerations one has to take into account when performing such experiments.
Collapse
|
46
|
|
47
|
Rich RL, Myszka DG. Grading the commercial optical biosensor literature-Class of 2008: 'The Mighty Binders'. J Mol Recognit 2010; 23:1-64. [PMID: 20017116 DOI: 10.1002/jmr.1004] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Optical biosensor technology continues to be the method of choice for label-free, real-time interaction analysis. But when it comes to improving the quality of the biosensor literature, education should be fundamental. Of the 1413 articles published in 2008, less than 30% would pass the requirements for high-school chemistry. To teach by example, we spotlight 10 papers that illustrate how to implement the technology properly. Then we grade every paper published in 2008 on a scale from A to F and outline what features make a biosensor article fabulous, middling or abysmal. To help improve the quality of published data, we focus on a few experimental, analysis and presentation mistakes that are alarmingly common. With the literature as a guide, we want to ensure that no user is left behind.
Collapse
Affiliation(s)
- Rebecca L Rich
- Center for Biomolecular Interaction Analysis, University of Utah, Salt Lake City, UT 84132, USA
| | | |
Collapse
|
48
|
Cometto-Muñiz JE, Abraham MH. Odor detection by humans of lineal aliphatic aldehydes and helional as gauged by dose-response functions. Chem Senses 2010; 35:289-99. [PMID: 20190010 DOI: 10.1093/chemse/bjq018] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We have measured concentration detection (i.e., psychometric) functions to determine the odor detectability of homologous aliphatic aldehydes (propanal, butanal, hexanal, octanal, and nonanal) and helional. Subjects (16 < or = n < or = 18) used a 3-alternative forced-choice procedure against carbon-filtered air (blanks), under an ascending concentration approach. Generation, delivery, and control of each vapor were achieved via an 8-station vapor delivery device. Gas chromatography served to quantify the concentrations presented. Group and individual functions were modeled by a sigmoid (logistic) equation. Odor detection thresholds (ODTs) were defined as the concentration producing a detectability (P) halfway (P = 0.5) between chance (P = 0.0) and perfect detection (P = 1.0). ODTs decreased with carbon chain length: 2.0, 0.46, 0.33, and 0.17 ppb, respectively, from propanal to octanal, but the threshold increased for nonanal (0.53 ppb), revealing maximum sensitivity for the 8-carbon member. The strong olfactory receptor (OR) ligands octanal and helional (0.14 ppb) showed the lowest thresholds. ODTs fell at the lower end of previously reported values. Interindividual variability (ODT ratios) amounted to a factor ranging from 10 to 50, lower than typically reported, and was highest for octanal and hexanal. The behavioral dose-response functions emerge at concentrations 2-5 orders of magnitude lower than those required for functions tracing the activation of specific human ORs by the same aldehydes in cell/molecular studies, after all functions were expressed as vapor concentrations.
Collapse
Affiliation(s)
- J Enrique Cometto-Muñiz
- Chemosensory Perception Laboratory, Department of Surgery (Otolaryngology), 9500 Gilman Drive-Mail Code 0957, University of California, San Diego, La Jolla, CA 92093-0957, USA.
| | | |
Collapse
|
49
|
Stopková R, Zdráhal Z, Ryba S, Sedo O, Sandera M, Stopka P. Novel OBP genes similar to hamster Aphrodisin in the bank vole, Myodes glareolus. BMC Genomics 2010; 11:45. [PMID: 20085627 PMCID: PMC2824723 DOI: 10.1186/1471-2164-11-45] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2009] [Accepted: 01/19/2010] [Indexed: 12/03/2022] Open
Abstract
Background Chemical communication in mammals involves globular lipocalins that protect and transport pheromones during their passage out of the body. Efficient communication via this protein - pheromone complex is essential for triggering multiple responses including aggression, mate choice, copulatory behaviour, and onset and synchronization of oestrus. The roles of lipocalins in communication were studied in many organisms and especially in mice (i.e. Mus musculus domesticus) which excrete Major Urinary Proteins (Mup) in excessive amounts in saliva and urine. Other mammals, however, often lack the genes for Mups or their expression is very low. Therefore, we aimed at characterization of candidate lipocalins in Myodes glareolus which are potentially linked to chemical communication. One of them is Aphrodisin which is a unique lipocalin that was previously described from hamster vaginal discharge and is known to carry pheromones stimulating copulatory behaviour in males. Results Here we show that Aphrodisin-like proteins exist in other species, belong to a group of Odorant Binding Proteins (Obp), and contrary to the expression of Aphrodisin only in hamster genital tract and parotid glands of females, we have detected these transcripts in both sexes of M. glareolus with the expression confirmed in various tissues including prostate, prepucial and salivary glands, liver and uterus. On the level of mRNA, we have detected three different gene variants. To assess their relevance for chemical communication we investigated the occurrence of particular proteins in saliva, urine and vaginal discharge. On the protein level we confirmed the presence of Obp2 and Obp3 in both saliva and urine. Appropriate bands in the range of 17-20 kDa from vaginal discharge were, however, beyond the MS detection limits. Conclusion Our results demonstrate that three novel Obps (Obp1, Obp2, and Obp3) are predominant lipocalins in Myodes urine and saliva. On the protein level we have detected further variants and thus we assume that similarly as Major Urinary Proteins in mice, these proteins may be important in chemical communication in this Cricetid rodent.
Collapse
Affiliation(s)
- Romana Stopková
- Department of Zoology, Faculty of Science, Charles University in Prague, Prague, CZ-128 44, Czech Republic
| | | | | | | | | | | |
Collapse
|
50
|
Badonnel K, Durieux D, Monnerie R, Grébert D, Salesse R, Caillol M, Baly C. Leptin-sensitive OBP-expressing mucous cells in rat olfactory epithelium: a novel target for olfaction-nutrition crosstalk? Cell Tissue Res 2009; 338:53-66. [PMID: 19688223 DOI: 10.1007/s00441-009-0846-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2009] [Accepted: 07/10/2009] [Indexed: 01/22/2023]
Abstract
Although odorant-binding proteins (OBP) are one of the most abundant classes of proteins in the mammalian olfactory mucus, they have only recently been ascribed a functional role in the detection of odorants by olfactory neurons. Among the three OBPs described in the rat, OBP-1f is mainly secreted by the lateral nasal glands (LNG) and Bowman's glands, and its expression is transcriptionally regulated by food deprivation in the olfactory mucosa, but not in LNG. Therefore, mucus composition might be locally regulated by hormones or molecules relevant to nutritional status. Our aim has been to investigate the mechanisms of such physiological regulation at the cellular level, through both the examination of OBP-1f synthesis sites in the olfactory mucosa and their putative regulation by leptin, a locally acting satiety hormone. Immunohistochemical observations have allowed the identification of a novel population of OBP-1f-secreting cells displaying morphological and functional characteristics similar to those of epithelial mucous cells. Ultrastructural analyses by both transmission and scanning electron microscopy has enabled a more complete cytoarchitectural characterization of these specialized olfactory mucous cells in their tissue environment. These globular cells are localized in discrete zones of the olfactory epithelium, mainly in the fourth turbinate, and are often scattered from the basal to the apical surface of the epithelium. They contain numerous small droplets of mucosubstances. Using an in-vitro-derived model of olfactory mucosa primary culture, we have been able to demonstrate that leptin increases the production of mucus by these cells, so that they constitute potential targets for the physiological modulation of mucus composition by nutritional cues.
Collapse
Affiliation(s)
- Karine Badonnel
- INRA, UMR1197 Neurobiologie de l'Olfaction et de la Prise Alimentaire, Jouy en Josas, France
| | | | | | | | | | | | | |
Collapse
|