1
|
Arora A, Kumar S, Kumar S, Dua A, Singh BK. Synthesis, characterization and photophysical studies of dual-emissive base-modified fluorescent nucleosides. Org Biomol Chem 2024; 22:4922-4939. [PMID: 38808609 DOI: 10.1039/d4ob00749b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
A straightforward and efficient methodology has been employed for the synthesis of a diverse set of base-modified fluorescent nucleoside conjugates via Cu(I)-catalysed cycloaddition reaction of 5-ethynyl-2',3',5'-tri-O-acetyluridine/3',5'-di-O-acetyl-2'-deoxyuridine with 4-(azidomethyl)-N9-(4'-aryl)-9,10-dihydro-2H,8H-chromeno[8,7-e][1,3]oxazin-2-ones in tBuOH to afford the desired 1,2,3-triazoles in 92-95% yields. Treatment with NaOMe/MeOH resulted in the final deprotected nucleoside analogues. The synthesized 1,2,3-triazoles demonstrated a significant emission spectrum, featuring two robust bands in the region from 350-500 nm (with excitation at 300 nm) in fluorescence studies. Photophysical investigations revealed a dual-emissive band with high fluorescence intensity, excellent Stokes shift (140-164 nm) and superior quantum yields (0.068-0.350). Furthermore, the electronic structures of the synthesized triazoles have been further verified by DFT studies. Structural characterization of all synthesized compounds was carried out using various analytical techniques, including IR, 1H-NMR, 13C-NMR, 1H-1H COSY, 1H-13C HETCOR experiments, and HRMS measurements. The dual-emissive nature of these nucleosides would be a significant contribution to nucleoside chemistry as there are limited literature reports on the same.
Collapse
Affiliation(s)
- Aditi Arora
- Bioorganic Laboratory, Department of Chemistry, University of Delhi, Delhi-110007, India.
| | - Sumit Kumar
- Bioorganic Laboratory, Department of Chemistry, University of Delhi, Delhi-110007, India.
| | - Sandeep Kumar
- Bioorganic Laboratory, Department of Chemistry, University of Delhi, Delhi-110007, India.
- Department of Chemistry, Ramjas College, University of Delhi, Delhi-110007, India
| | - Amita Dua
- Department of Chemistry, Dyal Singh College, University of Delhi, Delhi-110007, India
| | - Brajendra K Singh
- Bioorganic Laboratory, Department of Chemistry, University of Delhi, Delhi-110007, India.
| |
Collapse
|
2
|
Kumar S, Arora A, Kumar R, Senapati NN, Singh BK. Recent advances in synthesis of sugar and nucleoside coumarin conjugates and their biological impact. Carbohydr Res 2023; 530:108857. [PMID: 37343455 DOI: 10.1016/j.carres.2023.108857] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 05/27/2023] [Accepted: 05/29/2023] [Indexed: 06/23/2023]
Abstract
Naturally occurring coumarin and sugar molecules have a diverse range of applications along with superior biocompatibility. Coumarin, a member of the benzopyrone family, exhibits a wide spectrum of medicinal properties, such as anti-coagulant, anti-bacterial, anti-tumor, anti-oxidant, anti-cancer, anti-inflammatory and anti-viral activities. The sugar moiety functions as the central scaffold for the synthesis of complex molecules, attributing to their excellent biocompatibility, well-defined stereochemistry, benign nature and outstanding aqueous solubility. When the coumarin moiety is conjugated with the sugar or nucleoside molecule, the resulting conjugates exhibit significant biological properties. Due to the remarkable growth of such bioconjugates in the field of science over the last decade, owing to their future prospect as a potential bioactive core, an update to this area is very much needed. The present review focusses on the synthesis, characterization and the various therapeutic applications of coumarin conjugates, i.e., sugar and nucleoside coumarin conjugates along with their perspective for future research.
Collapse
Affiliation(s)
- Sumit Kumar
- Bioorganic Laboratory, Department of Chemistry, University of Delhi, Delhi, 110007, India; Department of Chemistry and Environmental Science, Medgar Evers College, City University of New York, Brooklyn, NY, 11225, USA
| | - Aditi Arora
- Bioorganic Laboratory, Department of Chemistry, University of Delhi, Delhi, 110007, India
| | - Rajesh Kumar
- P.G. Department of Chemistry, R.D.S College, B.R.A. Bihar University, Muzaffarpur, 842002, India.
| | | | - Brajendra K Singh
- Bioorganic Laboratory, Department of Chemistry, University of Delhi, Delhi, 110007, India.
| |
Collapse
|
3
|
Wang D, Shalamberidze A, Arguello AE, Purse BW, Kleiner RE. Live-Cell RNA Imaging with Metabolically Incorporated Fluorescent Nucleosides. J Am Chem Soc 2022; 144:14647-14656. [PMID: 35930766 PMCID: PMC9940818 DOI: 10.1021/jacs.2c04142] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Fluorescence imaging is a powerful method for probing macromolecular dynamics in biological systems; however, approaches for cellular RNA imaging are limited to the investigation of individual RNA constructs or bulk RNA labeling methods compatible primarily with fixed samples. Here, we develop a platform for fluorescence imaging of bulk RNA dynamics in living cells. We show that fluorescent bicyclic and tricyclic cytidine analogues can be metabolically incorporated into cellular RNA by overexpression of uridine-cytidine kinase 2. In particular, metabolic feeding with the tricyclic cytidine-derived nucleoside tC combined with confocal imaging enables the investigation of RNA synthesis, degradation, and trafficking at single-cell resolution. We apply our imaging modality to study RNA metabolism and localization during the oxidative stress response and find that bulk RNA turnover is greatly accelerated upon NaAsO2 treatment. Furthermore, we identify cytoplasmic RNA granules containing RNA transcripts generated during oxidative stress that are distinct from canonical stress granules and P-bodies and co-localize with the RNA helicase DDX6. Taken together, our work provides a powerful approach for live-cell RNA imaging and reveals how cells reshape RNA transcriptome dynamics in response to oxidative stress.
Collapse
Affiliation(s)
- Danyang Wang
- Department of Chemistry, Princeton University, Princeton, NJ 08544, USA
| | - Ana Shalamberidze
- Department of Chemistry and Biochemistry and the Viral Information Institute, San Diego State University, San Diego, CA 92182, USA
| | | | - Byron W. Purse
- Department of Chemistry and Biochemistry and the Viral Information Institute, San Diego State University, San Diego, CA 92182, USA
| | - Ralph E. Kleiner
- Department of Chemistry, Princeton University, Princeton, NJ 08544, USA
| |
Collapse
|
4
|
Abstract
Coumarin (2H-chromen-2-one) derivatives have important uses in medicinal and synthetic chemistry, for example, as fluorescent probes. These properties have prompted chemists to develop efficient synthetic methods to synthesize the coumarin core and/or to functionalize it. In this context, many metal-catalyzed syntheses of coumarins have been introduced; among them, copper-catalyzed reactions appear to be very promising owing to the non-toxicity and cheapness of copper complexes. In this mini-review, the results in this field are summarized. We hope to stimulate other applications of these complexes in the preparation of coumarin derivatives.
Collapse
|
5
|
Baraniak D, Boryski J. Triazole-Modified Nucleic Acids for the Application in Bioorganic and Medicinal Chemistry. Biomedicines 2021; 9:628. [PMID: 34073038 PMCID: PMC8229351 DOI: 10.3390/biomedicines9060628] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/26/2021] [Accepted: 05/26/2021] [Indexed: 02/07/2023] Open
Abstract
This review covers studies which exploit triazole-modified nucleic acids in the range of chemistry and biology to medicine. The 1,2,3-triazole unit, which is obtained via click chemistry approach, shows valuable and unique properties. For example, it does not occur in nature, constitutes an additional pharmacophore with attractive properties being resistant to hydrolysis and other reactions at physiological pH, exhibits biological activity (i.e., antibacterial, antitumor, and antiviral), and can be considered as a rigid mimetic of amide linkage. Herein, it is presented a whole area of useful artificial compounds, from the clickable monomers and dimers to modified oligonucleotides, in the field of nucleic acids sciences. Such modifications of internucleotide linkages are designed to increase the hybridization binding affinity toward native DNA or RNA, to enhance resistance to nucleases, and to improve ability to penetrate cell membranes. The insertion of an artificial backbone is used for understanding effects of chemically modified oligonucleotides, and their potential usefulness in therapeutic applications. We describe the state-of-the-art knowledge on their implications for synthetic genes and other large modified DNA and RNA constructs including non-coding RNAs.
Collapse
Affiliation(s)
- Dagmara Baraniak
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland;
| | | |
Collapse
|
6
|
Gupta GR, Shah J, Vadagaonkar KS, Lavekar AG, Kapdi AR. Hetero-bimetallic cooperative catalysis for the synthesis of heteroarenes. Org Biomol Chem 2019; 17:7596-7631. [DOI: 10.1039/c9ob01152h] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Review covering the synthesis of 5- and 6-membered as well as condensed heteroarenes, focussing on the combinations in cooperative catalytic systems in strategies used to achieve selectivity and also highlights the mode of action for the cooperative catalysis leading to the synthesis of commercially and biologically relevant heteroarenes.
Collapse
Affiliation(s)
- Gaurav R. Gupta
- Department of Chemistry
- Institute of Chemical Technology
- Mumbai-400019
- India
| | - Jagrut Shah
- Department of Chemistry
- Institute of Chemical Technology
- Mumbai-400019
- India
| | | | - Aditya G. Lavekar
- Former Research Fellow
- Medicinal and Process Chemistry Division
- CSIR-Central Drug Research Institute
- Lucknow-226031
- India
| | - Anant R. Kapdi
- Department of Chemistry
- Institute of Chemical Technology
- Mumbai-400019
- India
| |
Collapse
|
7
|
Srivastava S, Maikhuri VK, Kumar R, Bohra K, Singla H, Maity J, Prasad AK. Synthesis and Photophysical Studies on N1-(2′-O,4′-C-Methyleneribofurano-nucleoside-3′-yl)-C4-(coumarin-7-oxymethyl)-1,2,3-triazoles. Carbohydr Res 2018; 470:19-25. [DOI: 10.1016/j.carres.2018.09.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Revised: 09/27/2018] [Accepted: 09/27/2018] [Indexed: 12/17/2022]
|
8
|
Ziarani GM, Moradi R, Lashgari N, Kruger HG. Coumarin Dyes. METAL-FREE SYNTHETIC ORGANIC DYES 2018:117-125. [DOI: 10.1016/b978-0-12-815647-6.00007-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
|
9
|
Kapadiya K, Jadeja Y, Khunt R. Synthesis of Purine-based Triazoles by Copper (I)-catalyzed Huisgen Azide-Alkyne Cycloaddition Reaction. J Heterocycl Chem 2017. [DOI: 10.1002/jhet.3025] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Khushal Kapadiya
- School of Science, Department of Chemistry; RK University; Rajkot Gujarat India
| | - Yashwantsinh Jadeja
- Center of Excellence, NFDD Center; Saurashtra University; Rajkot Gujarat India
| | - Ranjan Khunt
- Chemical Research Laboratory, Department of Chemistry; Saurashtra University; Rajkot Gujarat India
| |
Collapse
|
10
|
A new size-expanded RNA alphabet: Computational design of benzo-homologated (xtz-) isothiazole RNA and comparisons to the x-thieno RNA. J Mol Graph Model 2017; 77:339-349. [DOI: 10.1016/j.jmgm.2017.09.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 09/11/2017] [Accepted: 09/12/2017] [Indexed: 11/17/2022]
|
11
|
Krajčovičová S, Soural M. Solid-Phase Synthetic Strategies for the Preparation of Purine Derivatives. ACS COMBINATORIAL SCIENCE 2016; 18:371-86. [PMID: 27248804 DOI: 10.1021/acscombsci.6b00061] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
This Review summarizes all of the currently described strategies applicable for the solid-phase synthesis of purine derivatives. The individual approaches are classified according to the immobilization procedure used resulting in a linkage of the final scaffold at various positions.
Collapse
Affiliation(s)
- Soňa Krajčovičová
- Department
of Organic Chemistry, Faculty of Science, Palacký University, 771 46 Olomouc, Czech Republic
| | - Miroslav Soural
- Department
of Organic Chemistry, Faculty of Science, Palacký University, 771 46 Olomouc, Czech Republic
- Institute
of Molecular and Translation Medicine, Faculty of Medicine and Dentistry, Palacký University, Hněvotínská 5, 779 00, Olomouc, Czech Republic
| |
Collapse
|
12
|
Dadová J, Cahová H, Hocek M. Polymerase Synthesis of Base-Modified DNA. MODIFIED NUCLEIC ACIDS 2016. [DOI: 10.1007/978-3-319-27111-8_6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
13
|
Mačková M, Boháčová S, Perlíková P, Poštová Slavětínská L, Hocek M. Polymerase Synthesis and Restriction Enzyme Cleavage of DNA Containing 7-Substituted 7-Deazaguanine Nucleobases. Chembiochem 2015; 16:2225-36. [PMID: 26382079 DOI: 10.1002/cbic.201500315] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Indexed: 01/06/2023]
Abstract
Previous studies of polymerase synthesis of base-modified DNAs and their cleavage by restriction enzymes have mostly related only to 5-substituted pyrimidine and 7-substituted 7-deazaadenine nucleotides. Here we report the synthesis of a series of 7-substituted 7-deazaguanine 2'-deoxyribonucleoside 5'-O-triphosphates (dG(R) TPs), their use as substrates for polymerase synthesis of modified DNA and the influence of the modification on their cleavage by type II restriction endonucleases (REs). The dG(R) TPs were generally good substrates for polymerases but the PCR products could not be visualised on agarose gels by intercalator staining, due to fluorescence quenching. The presence of 7-substituted 7-deazaguanine residues in recognition sequences of REs in most cases completely blocked the cleavage.
Collapse
Affiliation(s)
- Michaela Mačková
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Gilead Sciences and IOCB Research Center, Flemingovo nám. 2, 16610, Prague 6, Czech Republic
| | - Soňa Boháčová
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Gilead Sciences and IOCB Research Center, Flemingovo nám. 2, 16610, Prague 6, Czech Republic
| | - Pavla Perlíková
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Gilead Sciences and IOCB Research Center, Flemingovo nám. 2, 16610, Prague 6, Czech Republic
| | - Lenka Poštová Slavětínská
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Gilead Sciences and IOCB Research Center, Flemingovo nám. 2, 16610, Prague 6, Czech Republic
| | - Michal Hocek
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Gilead Sciences and IOCB Research Center, Flemingovo nám. 2, 16610, Prague 6, Czech Republic. .,Department of Organic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 8, 12843, Prague 2, Czech Republic.
| |
Collapse
|
14
|
Dadová J, Vrábel M, Adámik M, Brázdová M, Pohl R, Fojta M, Hocek M. Azidopropylvinylsulfonamide as a New Bifunctional Click Reagent for Bioorthogonal Conjugations: Application for DNA–Protein Cross‐Linking. Chemistry 2015; 21:16091-102. [DOI: 10.1002/chem.201502209] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Indexed: 01/03/2023]
Affiliation(s)
- Jitka Dadová
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Gilead Sciences & IOCB Research Center, Flemingovo nám. 2, 16610 Prague 6 (Czech Republic)
| | - Milan Vrábel
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Gilead Sciences & IOCB Research Center, Flemingovo nám. 2, 16610 Prague 6 (Czech Republic)
| | - Matej Adámik
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Kralovopolska 135, 61265 Brno (Czech Republic)
| | - Marie Brázdová
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Kralovopolska 135, 61265 Brno (Czech Republic)
| | - Radek Pohl
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Gilead Sciences & IOCB Research Center, Flemingovo nám. 2, 16610 Prague 6 (Czech Republic)
| | - Miroslav Fojta
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Kralovopolska 135, 61265 Brno (Czech Republic)
- Central European Institute of Technology, Masaryk University, Kamenice 753/5, 625 00 Brno (Czech Republic)
| | - Michal Hocek
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Gilead Sciences & IOCB Research Center, Flemingovo nám. 2, 16610 Prague 6 (Czech Republic)
- Department of Organic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 8, 12843 Prague 2 (Czech Republic)
| |
Collapse
|
15
|
Ingale SA, Leonard P, Yang H, Seela F. 5-Nitroindole oligonucleotides with alkynyl side chains: universal base pairing, triple bond hydration and properties of pyrene "click" adducts. Org Biomol Chem 2015; 12:8519-32. [PMID: 25236942 DOI: 10.1039/c4ob01478b] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Oligonucleotides with 3-ethynyl-5-nitroindole and 3-octadiynyl-5-nitroindole 2'-deoxyribonucleosides were prepared by solid-phase synthesis. To this end, nucleoside phosphoramidites with clickable side chains were synthesized. The 3-ethynylated 5-nitroindole nucleoside was hydrated during automatized DNA synthesis to 3-acetyl-5-nitroindole 2'-deoxyribonucleoside. Side product formation was circumvented by triisopropylsilyl protection of the ethynyl side chain and was removed with TBAF after oligonucleotide synthesis. All compounds with a clickable 5-nitroindole skeleton show universal base pairing and can be functionalized with almost any azide in any position of the DNA chain. Functionalization of the side chain with 1-azidomethylpyrene afforded click adducts in which the fluorescence was quenched by the 5-nitroindole moieties. However, fluorescence was slightly recovered during duplex formation. Oligonucleotides with a pyrene residue and a long linker arm are stabilized over those with non-functionalized side chains. From the UV red shift of the pyrene residue in oligonucleotides and modelling studies, pyrene intercalation was established for the long linker adduct showing increased duplex stability over those with a short side chain.
Collapse
Affiliation(s)
- Sachin A Ingale
- Laboratory of Bioorganic Chemistry and Chemical Biology, Center for Nanotechnology, Heisenbergstrasse 11, 48149 Münster, Germany
| | | | | | | |
Collapse
|
16
|
Lawson CP, Dierckx A, Miannay FA, Wellner E, Wilhelmsson LM, Grøtli M. Synthesis and photophysical characterisation of new fluorescent triazole adenine analogues. Org Biomol Chem 2015; 12:5158-67. [PMID: 24912077 DOI: 10.1039/c4ob00904e] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Fluorescent nucleic acid base analogues are powerful probes of DNA structure. Here we describe the synthesis and photo-physical characterisation of a series of 2-(4-amino-5-(1H-1,2,3-triazol-4-yl)-7H-pyrrolo[2,3-d]pyrimidin-7-yl) and 2-(4-amino-3-(1H-1,2,3-triazol-4-yl)-1H-pyrazolo[3,4-d]pyrimidin-1-yl) analogues via Sonogashira cross-coupling and [3 + 2]-cycloaddition reactions as the key steps in the synthesis. Compounds with a nitrogen atom in position 8 showed an approximately ten-fold increase in quantum yield and decreased Stokes shift compared to analogues with a carbon atom in position 8. Furthermore, the analogues containing nitrogen in the 8-position showed a more red-shifted and structured absorption as opposed to those which have a carbon incorporated in the same position. Compared to the previously characterised C8-triazole modified adenine, the emissive potential was significantly lower (tenfold or more) for this new family of triazoles-adenine compounds. However, three of the compounds have photophysical properties which will make them interesting to monitor inside DNA.
Collapse
Affiliation(s)
- Christopher P Lawson
- Department of Chemistry, Medicinal Chemistry, University of Gothenburg, S-41296 Gothenburg, Sweden.
| | | | | | | | | | | |
Collapse
|
17
|
Owens EA, Hyun H, Tawney JG, Choi HS, Henary M. Correlating molecular character of NIR imaging agents with tissue-specific uptake. J Med Chem 2015; 58:4348-56. [PMID: 25923454 DOI: 10.1021/acs.jmedchem.5b00475] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Near-infrared (NIR) fluorescent contrast agents are emerging in optical imaging as sensitive, cost-effective, and nonharmful alternatives to current agents that emit harmful ionizing radiation. Developing spectrally distinct NIR fluorophores to visualize sensitive vital tissues to selectively avoid them during surgical resection of diseased tissue is of great significance. Herein, we report the synthetic variation of pentamethine cyanine fluorophores with modifications of physicochemical properties toward prompting tissue-specific uptake into sensitive tissues (i.e., endocrine glands). Tissue-specific targeting and biodistribution studies revealed localization of contrast agents in the adrenal and pituitary glands, pancreas, and lymph nodes with dependence on molecular characteristics. Incorporation of hydrophobic heterocyclic rings, alkyl groups, and halogens allowed a fine-tuning capability to the hydrophobic character and dipole moment for observing perturbation in biological activity in response to minor structural alterations. These NIR contrast agents have potential for clinical translation for intraoperative imaging in the delineation of delicate glands.
Collapse
Affiliation(s)
- Eric A Owens
- †Center for Diagnostics and Therapeutics, Center for Biotechnology and Drug Design, Department of Chemistry, Georgia State University, Petit Science Center, 100 Piedmont Ave SE, Atlanta, Georgia 30303, United States
| | - Hoon Hyun
- ‡Division of Hematology/Oncology, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, 330 Brookline Avenue, Massachusetts 02215, United States
| | - Joseph G Tawney
- †Center for Diagnostics and Therapeutics, Center for Biotechnology and Drug Design, Department of Chemistry, Georgia State University, Petit Science Center, 100 Piedmont Ave SE, Atlanta, Georgia 30303, United States
| | - Hak Soo Choi
- ‡Division of Hematology/Oncology, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, 330 Brookline Avenue, Massachusetts 02215, United States
| | - Maged Henary
- †Center for Diagnostics and Therapeutics, Center for Biotechnology and Drug Design, Department of Chemistry, Georgia State University, Petit Science Center, 100 Piedmont Ave SE, Atlanta, Georgia 30303, United States
| |
Collapse
|
18
|
Hocek M. Synthesis of base-modified 2'-deoxyribonucleoside triphosphates and their use in enzymatic synthesis of modified DNA for applications in bioanalysis and chemical biology. J Org Chem 2014; 79:9914-21. [PMID: 25321948 DOI: 10.1021/jo5020799] [Citation(s) in RCA: 122] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The synthesis of 2'-deoxyribonucleoside triphosphates (dNTPs) either by classical triphosphorylation of nucleosides or by aqueous cross-coupling reactions of halogenated dNTPs is discussed. Different enzymatic methods for synthesis of modified oligonucleotides and DNA by polymerase incorporation of modified nucleotides are summarized, and the applications in redox or fluorescent labeling, as well as in bioconjugations and modulation of interactions of DNA with proteins, are outlined.
Collapse
Affiliation(s)
- Michal Hocek
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Gilead Sciences & IOCB Research Center , Flemingovo nám. 2, CZ-16610 Prague 6, Czech Republic
| |
Collapse
|
19
|
Piecyk K, Lukaszewicz M, Darzynkiewicz E, Jankowska-Anyszka M. Triazole-containing monophosphate mRNA cap analogs as effective translation inhibitors. RNA (NEW YORK, N.Y.) 2014; 20:1539-47. [PMID: 25150228 PMCID: PMC4174436 DOI: 10.1261/rna.046193.114] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Accepted: 07/14/2014] [Indexed: 05/19/2023]
Abstract
Synthetic analogs of the 5' end of mRNA (cap structure) are widely used in molecular studies on mechanisms of cellular processes such as translation, intracellular transport, splicing, and turnover. The best-characterized cap binding protein is translation initiation factor 4E (eIF4E). Recognition of the mRNA cap by eIF4E is a critical, rate-limiting step for efficient translation initiation and is considered a major target for anticancer therapy. Here, we report a facile methodology for the preparation of N2-triazole-containing monophosphate cap analogs and present their biological evaluation as inhibitors of protein synthesis. Five analogs possessing this unique hetero-cyclic ring spaced from the m7-guanine of the cap structure at a distance of one or three carbon atoms and/or additionally substituted by various groups containing the benzene ring were synthesized. All obtained compounds turned out to be effective translation inhibitors with IC50 similar to dinucleotide triphosphate m(7)GpppG. As these compounds possess a reduced number of phosphate groups and, thereby, a negative charge, which may support their cell penetration, this type of cap analog might be promising in terms of designing new potential therapeutic molecules. In addition, an exemplary dinucleotide from a corresponding mononucleotide containing benzyl substituted 1,2,3-triazole was prepared and examined. The superior inhibitory properties of this analog (10-fold vs. m(7)GpppG) suggest the usefulness of such compounds for the preparation of mRNA transcripts with high translational activity.
Collapse
Affiliation(s)
- Karolina Piecyk
- Faculty of Chemistry, University of Warsaw, 02-093, Warsaw, Poland
| | - Maciej Lukaszewicz
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, 02-089, Warsaw, Poland
| | - Edward Darzynkiewicz
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, 02-089, Warsaw, Poland Centre of New Technologies, University of Warsaw, 02-097, Warsaw, Poland
| | | |
Collapse
|
20
|
Balintová J, Špaček J, Pohl R, Brázdová M, Havran L, Fojta M, Hocek M. Azidophenyl as a click-transformable redox label of DNA suitable for electrochemical detection of DNA-protein interactions. Chem Sci 2014; 6:575-587. [PMID: 28970873 PMCID: PMC5618110 DOI: 10.1039/c4sc01906g] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Accepted: 09/09/2014] [Indexed: 12/17/2022] Open
Abstract
A new azido-based DNA redox label which can be transformed into nitrophenyltriazole by a CuAAC click reaction was developed. It was used for the mapping of DNA–protein interactions with electrochemical detection.
New redox labelling of DNA by an azido group which can be chemically transformed to nitrophenyltriazole or silenced to phenyltriazole was developed and applied to the electrochemical detection of DNA–protein interactions. 5-(4-Azidophenyl)-2′-deoxycytidine and 7-(4-azidophenyl)-7-deaza-2′-deoxyadenosine nucleosides were prepared by aqueous-phase Suzuki cross-coupling and converted to nucleoside triphosphates (dNTPs) which served as substrates for incorporation into DNA by DNA polymerase. The azidophenyl-modified nucleotides and azidophenyl-modified DNA gave a strong signal in voltammetric studies, at –0.9 V, due to reduction of the azido function. The Cu-catalyzed click reaction of azidophenyl-modified nucleosides or azidophenyl-modified DNA with 4-nitrophenylacetylene gave nitrophenyl-substituted triazoles, exerting a reduction peak at –0.4 V under voltammetry, whereas the click reaction with phenylacetylene gave electrochemically silent phenyltriazoles. The transformation of the azidophenyl label to nitrophenyltriazole was used for electrochemical detection of DNA–protein interactions (p53 protein) since only those azidophenyl groups in the parts of the DNA not shielded by the bound p53 protein were transformed to nitrophenyltriazoles, whereas those covered by the protein were not.
Collapse
Affiliation(s)
- Jana Balintová
- Institute of Organic Chemistry and Biochemistry , Academy of Sciences of the Czech Republic , Gilead & IOCB Research Center , Flemingovo nam. 2 , CZ-16610 Prague 6 , Czech Republic .
| | - Jan Špaček
- Institute of Biophysics , v.v.i. Academy of Sciences of the Czech Republic , Kralovopolska 135 , 61265 Brno , Czech Republic .
| | - Radek Pohl
- Institute of Organic Chemistry and Biochemistry , Academy of Sciences of the Czech Republic , Gilead & IOCB Research Center , Flemingovo nam. 2 , CZ-16610 Prague 6 , Czech Republic .
| | - Marie Brázdová
- Institute of Biophysics , v.v.i. Academy of Sciences of the Czech Republic , Kralovopolska 135 , 61265 Brno , Czech Republic .
| | - Luděk Havran
- Institute of Biophysics , v.v.i. Academy of Sciences of the Czech Republic , Kralovopolska 135 , 61265 Brno , Czech Republic . .,Central European Institute of Technology , Masaryk University , Kamenice 753/5 , CZ-625 00 Brno , Czech Republic
| | - Miroslav Fojta
- Institute of Biophysics , v.v.i. Academy of Sciences of the Czech Republic , Kralovopolska 135 , 61265 Brno , Czech Republic . .,Central European Institute of Technology , Masaryk University , Kamenice 753/5 , CZ-625 00 Brno , Czech Republic
| | - Michal Hocek
- Institute of Organic Chemistry and Biochemistry , Academy of Sciences of the Czech Republic , Gilead & IOCB Research Center , Flemingovo nam. 2 , CZ-16610 Prague 6 , Czech Republic . .,Department of Organic Chemistry , Faculty of Science , Charles University in Prague , Hlavova 8 , CZ-12843 Prague 2 , Czech Republic
| |
Collapse
|
21
|
Mei H, Röhl I, Seela F. Ag+-mediated DNA base pairing: extraordinarily stable pyrrolo-dC-pyrrolo-dC pairs binding two silver ions. J Org Chem 2013; 78:9457-63. [PMID: 23965151 DOI: 10.1021/jo401109w] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
6-Substituted pyrrolo-dC-pyrrolo-dC mismatches selectively capture silver ions to form extraordinarily stable metal-mediated base pairs. One single modification in a 12-mer duplex causes a Tm increase of 36.0 °C relative to the metal-free mismatched duplex. Spectrophotometric titrations as well as ESI mass spectra confirmed the binding of two silver ions per base pair. The Ag(+)-mediated base pairs may permit the construction of metal-responsive DNA with a very high silver loading.
Collapse
Affiliation(s)
- Hui Mei
- Laboratory of Bioorganic Chemistry and Chemical Biology, Center for Nanotechnology , Heisenbergstraße 11, 48149 Münster, Germany
| | | | | |
Collapse
|
22
|
Dadová J, Orság P, Pohl R, Brázdová M, Fojta M, Hocek M. Vinylsulfonamide and Acrylamide Modification of DNA for Cross-linking with Proteins. Angew Chem Int Ed Engl 2013; 52:10515-8. [DOI: 10.1002/anie.201303577] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Revised: 06/24/2013] [Indexed: 12/15/2022]
|
23
|
Dadová J, Orság P, Pohl R, Brázdová M, Fojta M, Hocek M. Vinylsulfonamide and Acrylamide Modification of DNA for Cross-linking with Proteins. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201303577] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
24
|
Sun H, Peng X. Template-directed fluorogenic oligonucleotide ligation using "click" chemistry: detection of single nucleotide polymorphism in the human p53 tumor suppressor gene. Bioconjug Chem 2013; 24:1226-34. [PMID: 23806001 DOI: 10.1021/bc4001678] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
A novel nonfluorescent alkyne-modified coumarin phosphoramidite was synthesized and successfully incorporated into oligonucleotides, which were then used in highly efficient DNA interstrand cross-linking and ligation reactions via "click" chemistry. The template-directed fluorogenic ligation "click" chemistry reaction was used for single nucleotide polymorphism analysis, where the target DNA catalyzes the ligation of two nonfluorescent probes to generate a fluorescent product. The upstream oligonucleotide probe is a nonfluorescent alkyne-modified coumarin and the downstream probe is an azide-modified oligonucleotide. When bound to a fully complementary template, the oligonucleotides ligated to produce a fluorescent product with a fluorophore at the ligation point. Wild-type and mutant p53 alleles were used to demonstrate that template-directed fluorogenic oligonucleotide ligation is sequence-specific and is capable of single nucleotide discrimination under mild conditions, even without the removal of unreacted probes.
Collapse
Affiliation(s)
- Huabing Sun
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, 3210 North Cramer Street, Milwaukee, WI 53211, USA
| | | |
Collapse
|
25
|
Kalachova L, Pohl R, Bednárová L, Fanfrlík J, Hocek M. Synthesis of nucleosides and dNTPs bearing oligopyridine ligands linked through an octadiyne tether, their incorporation into DNA and complexation with transition metal cations. Org Biomol Chem 2013; 11:78-89. [PMID: 23090069 DOI: 10.1039/c2ob26881g] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Modified nucleosides (dA(R)s and dC(R)s) bearing bipyridine or terpyridine ligands attached through an octadiyne linker were prepared by single-step aqueous-phase Sonogashira cross-coupling of 7-iodo-7-deaza-2'-deoxyadenosine and 5-iodo-2'-deoxycytidine with the corresponding bipyridine- or terpyridine-octadiynes and were triphosphorylated to the corresponding nucleoside triphosphates (dA(R)TPs and dC(R)TPs). The modified dN(R)TPs were successfully incorporated into the oligonucleotides by primer extension experiment (PEX) using different DNA polymerases and the PEX products were used for post-synthetic complexation with divalent metal cations. The complexation of these DNAs containing flexibly-tethered ligands was compared with the previously reported ones bearing rigid acetylene-linked ligands suggesting the possible formation of both inter- and intra-strand complexes with Ni(2+) or Fe(2+).
Collapse
Affiliation(s)
- Lubica Kalachova
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Gilead & IOCB Research Center, Flemingovo nam. 2, CZ-16610 Prague 6, Czech Republic
| | | | | | | | | |
Collapse
|
26
|
El-Sagheer AH, Brown T. Click Chemistry – a Versatile Method for Nucleic Acid Labelling, Cyclisation and Ligation. DNA CONJUGATES AND SENSORS 2012. [DOI: 10.1039/9781849734936-00119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The copper-catalysed [3+2] alkyne azide cycloaddition reaction (the CuAAC reaction) is the classic example of ‘click’ chemistry, a relatively new concept that has been influential in many areas of science. It is used in the nucleic acid field for DNA cross-linking, oligonucleotide ligation and cyclisation, DNA and RNA labelling, attaching DNA to surfaces, producing modified nucleobases and backbones, synthesising ribozymes and monitoring nucleic acid biosynthesis. More recently a related click reaction, the ring strain-promoted azide–alkyne [3+2] cycloaddition (SPAAC) reaction has been used successfully in DNA strand ligation and labelling. This does not require copper catalysis, and therefore has many potential uses in vivo. In this review we discuss recent developments in nucleic acid click chemistry and their applications in biology, biotechnology and nanotechnology.
Collapse
Affiliation(s)
- Afaf H. El-Sagheer
- School of Chemistry University of Southampton Highfield, Southampton SO17 1BJ UK
- Chemistry Branch Dept. of Science and Mathematics Faculty of Petroleum and Mining Engineering, Suez Canal University, Suez, 43721 Egypt
| | - Tom Brown
- School of Chemistry University of Southampton Highfield, Southampton SO17 1BJ UK
| |
Collapse
|
27
|
Tanpure AA, Srivatsan SG. Synthesis and photophysical characterisation of a fluorescent nucleoside analogue that signals the presence of an abasic site in RNA. Chembiochem 2012; 13:2392-9. [PMID: 23070860 DOI: 10.1002/cbic.201200408] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2012] [Indexed: 11/07/2022]
Abstract
The synthesis and site-specific incorporation of an environment-sensitive fluorescent nucleoside analogue (2), based on a 5-(benzofuran-2-yl)pyrimidine core, into DNA oligonucleotides (ONs), and its photophysical properties within these ONs are described. Interestingly and unlike 2-aminopurine (a widely used nucleoside analogue probe), when incorporated into an ON and hybridised with a complementary ON, the emissive nucleoside 2 displays significantly higher emission intensity than the free nucleoside. Furthermore, photophysical characterisation shows that the fluorescence properties of the nucleoside analogue within ONs are significantly influenced by flanking bases, especially by guanosine. By utilising the responsiveness of the nucleoside to changes in base environment, a DNA ON reporter labelled with the emissive nucleoside 2 was constructed; this signalled the presence of an abasic site in a model depurinated sarcin/ricin RNA motif of a eukaryotic 28S rRNA.
Collapse
Affiliation(s)
- Arun A Tanpure
- Department of Chemistry, Indian Institute of Science Education and Research, 900, NCL Innovation Park, Dr. Homi Bhabha Road, Pune 411008, India
| | | |
Collapse
|
28
|
Ming X, Seela F. A Nucleobase-Discriminating Pyrrolo-dC Click Adduct Designed for DNA Fluorescence Mismatch Sensing. Chemistry 2012; 18:9590-600. [DOI: 10.1002/chem.201103385] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2011] [Revised: 04/17/2012] [Indexed: 11/10/2022]
|
29
|
Lakshman MK, Kumar A, Balachandran R, Day BW, Andrei G, Snoeck R, Balzarini J. Synthesis and biological properties of C-2 triazolylinosine derivatives. J Org Chem 2012; 77:5870-83. [PMID: 22758929 DOI: 10.1021/jo300628y] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
O(6)-(Benzotriazol-1H-yl)guanosine and its 2'-deoxy analogue are readily converted to the O(6)-allyl derivatives that upon diazotization with t-BuONO and TMS-N(3) yield the C-2 azido derivatives. We have previously analyzed the solvent-dependent azide·tetrazole equilibrium of C-6 azidopurine nucleosides, and in contrast to these, the O(6)-allyl C-2 azido nucleosides appear to exist predominantly in the azido form, relatively independent of solvent polarity. In the presently described cases, the tetrazole appears to be very minor. Consistent with the presence of the azido functionality, each neat C-2 azide displayed a prominent IR band at 2126-2130 cm(-1). A screen of conditions for the ligation of the azido nucleosides with alkynes showed that CuCl in t-BuOH/H(2)O is optimal, yielding C-2 1,2,3-triazolyl nucleosides in 70-82% yields. Removal of the silyl groups with Et(3)N·3HF followed by deallylation with PhSO(2)Na/Pd(PPh(3))(4) gave the C-2 triazolylinosine nucleosides. In a continued demonstration of the versatility of O(6)-(benzotriazol-1H-yl)purine nucleosides, one C-2 triazolylinosine derivative was converted to two adenosine analogues via these intermediates, under mild conditions. Products were desilylated for biological assays. The two C-2 triazolyl adenosine analogues demonstrated pronounced antiproliferative activity in human ovarian and colorectal carcinoma cell cultures. When evaluated for antiviral activity against a broad spectrum of DNA and RNA viruses, some of the C-2 triazolylinosine derivatives showed modest inhibitory activity against cytomegalovirus.
Collapse
Affiliation(s)
- Mahesh K Lakshman
- Department of Chemistry, The City College and The City University of New York, 160 Convent Avenue, New York, New York 10031, USA.
| | | | | | | | | | | | | |
Collapse
|
30
|
Quencher-free molecular beacon tethering 7-hydroxycoumarin detects targets through protonation/deprotonation. Bioorg Med Chem 2012; 20:4310-5. [DOI: 10.1016/j.bmc.2012.05.052] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Revised: 05/23/2012] [Accepted: 05/23/2012] [Indexed: 12/11/2022]
|
31
|
Raindlová V, Pohl R, Klepetářová B, Havran L, Šimková E, Horáková P, Pivoňková H, Fojta M, Hocek M. Synthesis of Hydrazone-Modified Nucleotides and Their Polymerase Incorporation onto DNA for Redox Labeling. Chempluschem 2012. [DOI: 10.1002/cplu.201200056] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
32
|
Fresneau N, Hiebel MA, Agrofoglio LA, Berteina-Raboin S. One-pot Sonogashira-cyclization protocol to obtain substituted furopyrimidine nucleosides in aqueous conditions. Tetrahedron Lett 2012. [DOI: 10.1016/j.tetlet.2012.01.106] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
33
|
Winz ML, Samanta A, Benzinger D, Jäschke A. Site-specific terminal and internal labeling of RNA by poly(A) polymerase tailing and copper-catalyzed or copper-free strain-promoted click chemistry. Nucleic Acids Res 2012; 40:e78. [PMID: 22344697 PMCID: PMC3378897 DOI: 10.1093/nar/gks062] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The modification of RNA with fluorophores, affinity tags and reactive moieties is of enormous utility for studying RNA localization, structure and dynamics as well as diverse biological phenomena involving RNA as an interacting partner. Here we report a labeling approach in which the RNA of interest—of either synthetic or biological origin—is modified at its 3′-end by a poly(A) polymerase with an azido-derivatized nucleotide. The azide is later on conjugated via copper-catalyzed or strain-promoted azide–alkyne click reaction. Under optimized conditions, a single modified nucleotide of choice (A, C, G, U) containing an azide at the 2′-position can be incorporated site-specifically. We have identified ligases that tolerate the presence of a 2′-azido group at the ligation site. This azide is subsequently reacted with a fluorophore alkyne. With this stepwise approach, we are able to achieve site-specific, internal backbone-labeling of de novo synthesized RNA molecules.
Collapse
Affiliation(s)
- Marie-Luise Winz
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Im Neuenheimer Feld 364, Heidelberg 69120, Germany
| | | | | | | |
Collapse
|
34
|
Raindlová V, Pohl R, Hocek M. Synthesis of aldehyde-linked nucleotides and DNA and their bioconjugations with lysine and peptides through reductive amination. Chemistry 2012; 18:4080-7. [PMID: 22337599 DOI: 10.1002/chem.201103270] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2011] [Indexed: 11/06/2022]
Abstract
5-(5-Formylthienyl)-, 5-(4-formylphenyl)- and 5-(2-fluoro-5-formylphenyl)cytosine 2'-deoxyribonucleoside mono- (dC(R)MP) and triphosphates (dC(R)TP) were prepared by aqueous Suzuki-Miyaura cross-coupling of 5-iodocytosine nucleotides with the corresponding formylarylboronic acids. The dC(R)TPs were excellent substrates for DNA polymerases and were incorporated into DNA by primer extension or PCR. Reductive aminations of the model dC(R)MPs with lysine or lysine-containing tripeptide were studied and optimized. In aqueous phosphate buffer (pH 6.7) the yields of the reductive aminations with tripeptide III were up to 25 %. Bioconjugation of an aldehyde-containing DNA with a lysine-containing tripeptide was achieved through reductive amination in yields of up to 90 % in aqueous phosphate buffer.
Collapse
Affiliation(s)
- Veronika Raindlová
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Gilead Sciences & IOCB Research Center, Flemingovo nam. 2, 16610 Prague 6, Czech Republic
| | | | | |
Collapse
|
35
|
Ingale SA, Pujari SS, Sirivolu VR, Ding P, Xiong H, Mei H, Seela F. 7-Deazapurine and 8-aza-7-deazapurine nucleoside and oligonucleotide pyrene "click" conjugates: synthesis, nucleobase controlled fluorescence quenching, and duplex stability. J Org Chem 2011; 77:188-99. [PMID: 22129276 DOI: 10.1021/jo202103q] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
7-Deazapurine and 8-aza-7-deazapurine nucleosides related to dA and dG bearing 7-octadiynyl or 7-tripropargylamine side chains as well as corresponding oligonucleotides were synthesized. "Click" conjugation with 1-azidomethyl pyrene (10) resulted in fluorescent derivatives. Octadiynyl conjugates show only monomer fluorescence, while the proximal alignment of pyrene residues in the tripropargylamine derivatives causes excimer emission. 8-Aza-7-deazapurine pyrene "click" conjugates exhibit fluorescence emission much higher than that of 7-deazapurine derivatives. They are quenched by intramolecular charge transfer between the nucleobase and the dye. Oligonucleotide single strands decorated with two "double clicked" pyrenes show weak or no excimer fluorescence. However, when duplexes carry proximal pyrenes in complementary strands, strong excimer fluorescence is observed. A single replacement of a canonical nucleoside by a pyrene conjugate stabilizes the duplex substantially, most likely by stacking interactions: 6-12 °C for duplexes with a modified "adenine" base and 2-6 °C for a modified "guanine" base. The favorable photophysical properties of 8-aza-7-deazapurine pyrene conjugates improve the utility of pyrene fluorescence reporters in oligonucleotide sensing as these nucleoside conjugates are not affected by nucleobase induced quenching.
Collapse
Affiliation(s)
- Sachin A Ingale
- Laboratory of Bioorganic Chemistry and Chemical Biology, Center for Nanotechnology , Heisenbergstraße 11, 48149 Münster, Germany
| | | | | | | | | | | | | |
Collapse
|
36
|
Kielkowski P, Macíčková-Cahová H, Pohl R, Hocek M. Transient and Switchable (Triethylsilyl)ethynyl Protection of DNA against Cleavage by Restriction Endonucleases. Angew Chem Int Ed Engl 2011. [DOI: 10.1002/ange.201102898] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
37
|
Kielkowski P, Macíčková-Cahová H, Pohl R, Hocek M. Transient and Switchable (Triethylsilyl)ethynyl Protection of DNA against Cleavage by Restriction Endonucleases. Angew Chem Int Ed Engl 2011; 50:8727-30. [DOI: 10.1002/anie.201102898] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2011] [Revised: 06/30/2011] [Indexed: 12/13/2022]
|
38
|
Hocek M, Fojta M. Nucleobase modification as redox DNA labelling for electrochemical detection. Chem Soc Rev 2011; 40:5802-14. [PMID: 21625726 DOI: 10.1039/c1cs15049a] [Citation(s) in RCA: 110] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Basic aspects of DNA electrochemistry with a strong focus on the use of modified nucleobases as redox probes for electrochemical bioanalysis are reviewed. Intrinsic electrochemical properties of nucleobases in combination with artificial redox-active nucleobase modifications are frequently applied in this field. Synthetic approaches (both chemical and enzymatic) to base-modified nucleic acids are briefly summarized and their applications in redox labelling are discussed. Finally, analytical applications including DNA hybridization, primer extension, PCR, SNP typing, DNA damage and DNA-protein interaction analysis are presented (critical review, 91 references).
Collapse
Affiliation(s)
- Michal Hocek
- Institute of Organic Chemistry and Biochemistry, v.v.i., Academy of Sciences of the Czech Republic, Gilead Sciences & IOCB Research Center, Prague, Czech Republic.
| | | |
Collapse
|
39
|
Macíčková-Cahová H, Pohl R, Hocek M. Cleavage of Functionalized DNA Containing 5-Modified Pyrimidines by Type II Restriction Endonucleases. Chembiochem 2011; 12:431-8. [DOI: 10.1002/cbic.201000644] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2010] [Indexed: 12/18/2022]
|
40
|
Gutsmiedl K, Fazio D, Carell T. High-density DNA functionalization by a combination of Cu-catalyzed and cu-free click chemistry. Chemistry 2010; 16:6877-83. [PMID: 20458711 DOI: 10.1002/chem.201000363] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
We report the regioselective Cu-free click modification of styrene functionalized DNA with nitrile oxides. A series of modified oligodeoxynucleotides (nine base pairs) was prepared with increasing styrene density. 1,3-Dipolar cycloaddition with nitrile oxides allows the high density functionalization of the styrene modified DNA directly on the DNA solid support and in solution. This click reaction proceeds smoothly even directly in the DNA synthesizer and gives exclusively 3,5-disubstituted isoxazolines. Additionally, PCR products (300 and 900 base pairs) were synthesized with a styrene triphosphate and KOD XL polymerase. The click reaction on the highly modified PCR fragments allows functionalization of hundreds of styrene units on these large DNA fragments simultaneously. Even sequential Cu-free and Cu-catalyzed click reaction of PCR amplicons containing styrene and alkyne carrying nucleobases was achieved. This new approach towards high-density functionalization of DNA is simple, modular, and efficient.
Collapse
Affiliation(s)
- Katrin Gutsmiedl
- Department of Chemistry, Center for Integrated Protein Science (CiPSM), Butenandtstrasse 5-13, 81377 Munich, Germany
| | | | | |
Collapse
|
41
|
Ustinov AV, Stepanova IA, Dubnyakova VV, Zatsepin TS, Nozhevnikova EV, Korshun VA. Modification of nucleic acids using [3 + 2]-dipolar cycloaddition of azides and alkynes. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2010; 36:437-81. [DOI: 10.1134/s1068162010040011] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
42
|
Ohkubo A, Sakaue T, Tsunoda H, Seio K, Sekine M. Synthesis and Hybridization Properties of Oligonucleotides Incorporating Bi- and Tricyclic Cytosine Derivatives. CHEM LETT 2010. [DOI: 10.1246/cl.2010.726] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
43
|
Lakshman MK, Singh MK, Parrish D, Balachandran R, Day BW. Azide-tetrazole equilibrium of C-6 azidopurine nucleosides and their ligation reactions with alkynes. J Org Chem 2010; 75:2461-73. [PMID: 20297785 DOI: 10.1021/jo902342z] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Facile syntheses of C-6 azidopurine ribonucleosides and 2'-deoxyribonucleosides have been developed. For silyl- and acetyl-protected as well as unprotected nucleosides, access to the azido derivatives could be readily attained via displacement of BtO(-) from the O(6)-(benzotriazol-1-yl)inosine nucleosides by azide anion. Use of diphenylphosphoryl azide/DBU as a simple route to the acetyl-protected azido nucleosides was also evaluated, but this proved to be inferior. Since these azido nucleosides can exist in an azide.tetrazole equilibrium, the effect of solvent polarity on this equilibrium was investigated. Subsequently, a detailed analysis of Cu-mediated azide-alkyne ("click") ligation was undertaken. Biphasic CH(2)Cl(2)/H(2)O medium proved to be best for the ligation reactions, suppressing the undesired azide reduction that was competing. Interestingly, although the tetrazolyl isomer predominates (ca. 80%) in CD(2)Cl(2) and in CD(2)Cl(2)/D(2)O, the Cu-catalyzed click reactions proceed smoothly with the silyl-protected ribo- and 2'-deoxyribonucleosides, leading to the C-6 triazolyl products in good to excellent yields. Thus, depletion of the azido form from the reaction mixture shifts the azide.tetrazole equilibrium, eventually resulting in complete consumption of azide and tetrazole. In several cases, major and minor azide-alkyne ligation products were observed, and characterization data are provided for both. In order to confirm the regiochemistry leading to the major isomer, one product was crystallized and evaluated by X-ray crystallography. The Cu-catalyzed azide-alkyne ligation is clearly efficient and significantly superior to thermal reactions, which were slow. Biological evaluation showed low cytotoxicities for the agents, suggesting their usefulness as biological probes.
Collapse
Affiliation(s)
- Mahesh K Lakshman
- Department of Chemistry, The City College and The City University of New York, 160 Convent Avenue, New York, New York 10031, USA.
| | | | | | | | | |
Collapse
|
44
|
Abstract
The use of fluorescent nucleic acid base analogues is becoming increasingly important in the fields of biology, biochemistry and biophysical chemistry as well as in the field of DNA nanotechnology. The advantage of being able to incorporate a fluorescent probe molecule close to the site of examination in the nucleic acid-containing system of interest with merely a minimal perturbation to the natural structure makes fluorescent base analogues highly attractive. In recent years, there has been a growing interest in developing novel candidates in this group of fluorophores for utilization in various investigations. This review describes the different classes of fluorophores that can be used for studying nucleic acid-containing systems, with an emphasis on choosing the right kind of probe for the system under investigation. It describes the characteristics of the large group of base analogues that has an emission that is sensitive to the surrounding microenvironment and gives examples of investigations in which this group of molecules has been used so far. Furthermore, the characterization and use of fluorescent base analogues that are virtually insensitive to changes in their microenvironment are described in detail. This group of base analogues can be used in several fluorescence investigations of nucleic acids, especially in fluorescence anisotropy and fluorescence resonance energy transfer (FRET) measurements. Finally, the development and characterization of the first nucleic base analogue FRET pair, tC(O)-tC(nitro), and its possible future uses are discussed.
Collapse
|
45
|
Sinkeldam RW, Greco NJ, Tor Y. Fluorescent analogs of biomolecular building blocks: design, properties, and applications. Chem Rev 2010; 110:2579-619. [PMID: 20205430 PMCID: PMC2868948 DOI: 10.1021/cr900301e] [Citation(s) in RCA: 668] [Impact Index Per Article: 47.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Renatus W. Sinkeldam
- Department of Chemistry and Biochemistry, University of California, San Diego 9500 Gilman Drive, La Jolla, California 92093-0358
| | | | - Yitzhak Tor
- Department of Chemistry and Biochemistry, University of California, San Diego 9500 Gilman Drive, La Jolla, California 92093-0358
| |
Collapse
|
46
|
Synthesis and ‘double click’ density functionalization of 8-aza-7-deazaguanine DNA bearing branched side chains with terminal triple bonds. Tetrahedron 2010. [DOI: 10.1016/j.tet.2010.03.086] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
47
|
Seela F, Ingale SA. "Double click" reaction on 7-deazaguanine DNA: synthesis and excimer fluorescence of nucleosides and oligonucleotides with branched side chains decorated with proximal pyrenes. J Org Chem 2010; 75:284-95. [PMID: 20000692 DOI: 10.1021/jo902300e] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The 7-tripropargylamine-7-deaza-2'-deoxyguanosine (2) containing two terminal triple bonds in the side chain was synthesized by the Sonogashira cross-coupling reaction from the corresponding 7-iodo nucleoside 1b. This was protected at the 2-amino group with an iso-butyryl residue, affording the protected intermediate 5. Then, compound 5 was converted to the 5'-O-DMT derivative 6, which on phosphitylation afforded the phosphoramidite 7. This was employed in solid-phase synthesis of a series of oligonucleotides. T(m) measurements demonstrate that a covalently attached tripropargylamine side chain increases duplex stability. Both terminal triple bonds of nucleoside 2 and corresponding oligonucleotides were functionalized by the Cu(I)-mediated 1,3-dipolar cycloaddition "double click reaction" with 1-azidomethyl pyrene 3, decorating the side chain with two proximal pyrenes. While the monomeric tripropargylamine nucleoside with two proximal pyrenes (4) shows strong excimer fluorescence, the ss-oligonucleotide containing 4 does not. This was also observed for ds-oligonucleotides when the complementary strand was unmodified. However, duplex DNA bearing pyrene residues in both strands exhibits strong excimer fluorescence when each strand contains two pyrene residues linked to the tripropargylamine moiety. This pyrene-pyrene interstrand interaction occurs when the pyrene modification sites of the duplex are separated by two base pairs which bring the fluorescent dyes in a proximal position. Molecular modeling indicates that only two out of four pyrene residues are interacting forming the exciplex while the other two do not communicate.
Collapse
Affiliation(s)
- Frank Seela
- Laboratory of Bioorganic Chemistry and Chemical Biology, Center for Nanotechnology, Heisenbergstrasse 11, 48149 Münster, Germany.
| | | |
Collapse
|
48
|
Abstract
The advent of click chemistry has led to an influx of new ideas in the nucleic acids field. The copper catalysed alkyne-azide cycloaddition (CuAAC) reaction is the method of choice for DNA click chemistry due to its remarkable efficiency. It has been used to label oligonucleotides with fluorescent dyes, sugars, peptides and other reporter groups, to cyclise DNA, to synthesise DNA catenanes, to join oligonucleotides to PNA, and to produce analogues of DNA with modified nucleobases and backbones. In this critical review we describe some of the pioneering work that has been carried out in this area (78 references).
Collapse
Affiliation(s)
- Afaf H El-Sagheer
- School of Chemistry, University of Southampton, Highfield, Southampton, UK SO17 1BJ
| | | |
Collapse
|
49
|
Raindlová V, Pohl R, Šanda M, Hocek M. Direct Polymerase Synthesis of Reactive Aldehyde-Functionalized DNA and Its Conjugation and Staining with Hydrazines. Angew Chem Int Ed Engl 2010; 49:1064-6. [DOI: 10.1002/anie.200905556] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
50
|
Ikonen S, Macícková-Cahová H, Pohl R, Sanda M, Hocek M. Synthesis of nucleoside and nucleotide conjugates of bile acids, and polymerase construction of bile acid-functionalized DNA. Org Biomol Chem 2010; 8:1194-201. [PMID: 20165813 DOI: 10.1039/b924072a] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Aqueous Sonogashira cross-coupling reactions of 5-iodopyrimidine or 7-iodo-7-deazaadenine nucleosides with bile acid-derived terminal acetylenes linked via an ester or amide tether gave the corresponding bile acid-nucleoside conjugates. Analogous reactions of halogenated nucleoside triphosphates gave directly bile acid-modified dNTPs. Enzymatic incorporation of these modified nucleotides to DNA was successfully performed using Phusion polymerase for primer extension. One of the dNTPs (dCTP bearing cholic acid) was also efficient for PCR amplification.
Collapse
Affiliation(s)
- Satu Ikonen
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Gilead & IOCB Research Center, Flemingovo nam. 2, CZ-16610, Prague 6, Czech Republic
| | | | | | | | | |
Collapse
|