1
|
Hong B, Näder A, Sawallisch T, Bode T, Fichter S, Gericke R, Kaden P, Patzschke M, Stumpf T, Schmidt M, März J. Structure, Covalency, and Paramagnetism of Homoleptic Actinide and Lanthanide Amidinate Complexes. Inorg Chem 2024; 63:17488-17501. [PMID: 39219060 PMCID: PMC11423402 DOI: 10.1021/acs.inorgchem.4c01901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Isostructural trivalent lanthanide and actinide amidinates bearing the N,N'-bis(isopropyl)benzamidinate (iPr2BA) ligand [LnIII/AnIII(iPr2BA)3] (Ln = La, Nd, Sm, Eu, Yb, Lu; An = U, Np) have been synthesized and characterized in both solid and solution states. All compounds were examined in the solid state utilizing single crystal X-ray diffraction (SC-XRD), revealing a notable deviation in the actinide series with shortened bond lengths compared to the trend in the lanthanide series, suggesting a nonionic contribution to the actinide-ligand bonding. Quantum-chemical bonding analysis further elucidated the nature of these interactions, highlighting increased covalency within the actinide series, as evidenced by higher delocalization indices and greater 5f orbital occupation, except for Th(III) and Pa(III), which demonstrated substantial 6d orbital occupancies. An in-depth paramagnetic NMR study in solution also sheds light on the covalent character of actinide-ligand bonding, with the separation of pseudocontact (PCS) and contact shift (FCS) contributions employing the Bleaney and Reilley method. This analysis unveiled significant contact contributions in the actinide complexes, indicating enhanced covalency in actinide-ligand bonding. To corroborate these observations, an accurate PCS calculation method based on the Kuprov equation, incorporating both the distribution of electronic spin density and magnetic susceptibility obtained from CASSCF calculations, was applied and compared with experimental values.
Collapse
Affiliation(s)
- Boseok Hong
- Institute of Resource Ecology, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden 01328, Germany
| | - Adrian Näder
- Institute of Resource Ecology, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden 01328, Germany
| | - Till Sawallisch
- Institute of Resource Ecology, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden 01328, Germany
| | - Tobias Bode
- Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Dresden 01069, Germany
| | - Sebastian Fichter
- Institute of Ion Beam Physics and Materials Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden 01328, Germany
| | - Robert Gericke
- Institute of Resource Ecology, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden 01328, Germany
| | - Peter Kaden
- Institute of Resource Ecology, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden 01328, Germany
| | - Michael Patzschke
- Institute of Resource Ecology, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden 01328, Germany
| | - Thorsten Stumpf
- Institute of Resource Ecology, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden 01328, Germany
| | - Moritz Schmidt
- Institute of Resource Ecology, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden 01328, Germany
| | - Juliane März
- Institute of Resource Ecology, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden 01328, Germany
| |
Collapse
|
2
|
Baek Y, Lee M. Solid-state NMR spectroscopic analysis for structure determination of a zinc-bound catalytic amyloid fibril. Methods Enzymol 2024; 697:435-471. [PMID: 38816132 DOI: 10.1016/bs.mie.2024.01.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
Zinc ions are commonly involved in enzyme catalysis and protein structure stabilization, but their coordination geometry of zinc-protein complex is rarely determined. Here, in this chapter, we introduce a systematic solid-state NMR approach to determine the oligomeric assembly and Zn2+ coordination geometry of a de novo designed amyloid fibrils that catalyze zinc dependent ester hydrolysis. NMR chemical shifts and intermolecular contacts confirm that the peptide forms parallel-in-register β-sheets, with the two forms of Zn2+ bound histidines in each peptide. The amphiphilic parallel β-sheets assemble into stacked bilayers that are stabilized by hydrophobic side chains between β-sheets. The conformations of the histidine side chains, determined by 13C-15N distance measurements, reveal how histidines protrude from the β-sheet. 1H-15N correlation spectra show that the single-Zn2+ coordinated histidine associated with dynamic water. The resulting structure provides insight into how metal ions contribute to stabilizing the protein structure and driving its catalytic reactivity.
Collapse
Affiliation(s)
- Yoongyeong Baek
- Department of Chemistry, Drexel University, Philadelphia, PA, United States
| | - Myungwoon Lee
- Department of Chemistry, Drexel University, Philadelphia, PA, United States.
| |
Collapse
|
3
|
Spenner JM, Berg JM. Exploring the use of cobalt(II) dipolar shifts in refining the structure of a zinc finger peptide. J Inorg Biochem 2022; 235:111912. [PMID: 35850025 DOI: 10.1016/j.jinorgbio.2022.111912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 06/13/2022] [Accepted: 07/03/2022] [Indexed: 10/17/2022]
Abstract
The uses of dipolar shifts due to cobalt(II) substituted for zinc(II) in a consensus zinc finger peptide for refining the NMR-determined structure were examined. Substantial differences between the calculated and observed chemical shift differences between the cobalt(II) and zinc(II) complexes were observed when these dipolar shifts were not used as constraints in the structure refinement. However, inclusion of these constraints resulted in excellent agreement with minor adjustments in the structure and a slight improvement in the precision of the structure determination. Other calculations revealed that the dipolar shifts were not adequate to determine the overall folded structure by themselves, but were useful in increasing the accuracy and precision of a structure determined based only on nuclear Overhauser effects constraints involving only backbone atoms.
Collapse
Affiliation(s)
- Jonathan M Spenner
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Jeremy M Berg
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA.
| |
Collapse
|
4
|
Hou XN, Tochio H. Characterizing conformational ensembles of multi-domain proteins using anisotropic paramagnetic NMR restraints. Biophys Rev 2022; 14:55-66. [PMID: 35340613 PMCID: PMC8921464 DOI: 10.1007/s12551-021-00916-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 11/16/2021] [Indexed: 01/13/2023] Open
Abstract
It has been over two decades since paramagnetic NMR started to form part of the essential techniques for structural analysis of proteins under physiological conditions. Paramagnetic NMR has significantly expanded our understanding of the inherent flexibility of proteins, in particular, those that are formed by combinations of two or more domains. Here, we present a brief overview of techniques to characterize conformational ensembles of such multi-domain proteins using paramagnetic NMR restraints produced through anisotropic metals, with a focus on the basics of anisotropic paramagnetic effects, the general procedures of conformational ensemble reconstruction, and some representative reweighting approaches.
Collapse
Affiliation(s)
- Xue-Ni Hou
- Department of Biophysics, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto, 606-8502 Japan
| | - Hidehito Tochio
- Department of Biophysics, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto, 606-8502 Japan
| |
Collapse
|
5
|
Crespi AF, Sánchez VM, Vega D, Pérez AL, Brondino CD, Linck YG, Hodgkinson P, Rodríguez-Castellón E, Lázaro-Martínez JM. Paramagnetic solid-state NMR assignment and novel chemical conversion of the aldehyde group to dihydrogen ortho ester and hemiacetal moieties in copper(ii)- and cobalt(ii)-pyridinecarboxaldehyde complexes. RSC Adv 2021; 11:20216-20231. [PMID: 35479880 PMCID: PMC9033980 DOI: 10.1039/d1ra02512k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 06/01/2021] [Indexed: 12/16/2022] Open
Abstract
The complex chemical functionalization of aldehyde moieties in Cu(ii)- and Co(ii)-pyridinecarboxaldehyde complexes was studied. X-ray studies demonstrated that the aldehyde group (RCHO) of the four pyridine molecules is converted to dihydrogen ortho ester (RC(OCH3)(OH)2) and hemiacetal (RCH(OH)(OCH3)) moieties in both 4-pyridinecarboxaldehyde copper and cobalt complexes. In contrast, the aldehyde group is retained when the 3-pyridinecarboxaldehyde ligand is complexed with cobalt. In the different copper complexes, similar paramagnetic 1H resonance lines were obtained in the solid state; however, the connectivity with the carbon structure and the 1H vicinities were done with 2D 1H–13C HETCOR, 1H–1H SQ/DQ and proton spin diffusion (PSD) experiments. The strong paramagnetic effect exerted by the cobalt center prevented the observation of 13C NMR signals and chemical information could only be obtained from X-ray experiments. 2D PSD experiments in the solid state were useful for the proton assignments in both Cu(ii) complexes. The combination of X-ray crystallography experiments with DFT calculations together with the experimental results obtained from EPR and solid-state NMR allowed the assignment of NMR signals in pyridinecarboxaldehyde ligands coordinated with copper ions. In cases where the crystallographic information was not available, as in the case of the 3-pyridinecarboxaldehyde Cu(ii) complex, the combination of these techniques allowed not only the assignment of NMR signals but also the study of the functionalization of the substituent group. The complex chemical functionalization of the aldehyde group was elucidated in copper and cobalt complexes for 4- and 3-pyridinecarboxaldehyde ligands.![]()
Collapse
Affiliation(s)
- Ayelén F Crespi
- Universidad de Buenos Aires - CONICET, Facultad de Farmacia y Bioquímica, Instituto de Química y Metabolismo del Fármaco (IQUIMEFA) Ciudad Autónoma de Buenos Aires Argentina
| | - Verónica M Sánchez
- Centro de Simulación Computacional para Aplicaciones Tecnológicas, CSC-CONICET Ciudad Autónoma de Buenos Aires Argentina.,Universidad Nacional de General San Martín San Martín Buenos Aires Argentina
| | - Daniel Vega
- Universidad Nacional de General San Martín San Martín Buenos Aires Argentina.,Comisión Nacional de Energía Atómica San Martín Buenos Aires Argentina
| | - Ana L Pérez
- Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral - CONICET, Ciudad Universitaria Santa Fe Argentina
| | - Carlos D Brondino
- Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral - CONICET, Ciudad Universitaria Santa Fe Argentina
| | | | | | | | - Juan M Lázaro-Martínez
- Universidad de Buenos Aires - CONICET, Facultad de Farmacia y Bioquímica, Instituto de Química y Metabolismo del Fármaco (IQUIMEFA) Ciudad Autónoma de Buenos Aires Argentina
| |
Collapse
|
6
|
Ravera E, Gigli L, Suturina EA, Calderone V, Fragai M, Parigi G, Luchinat C. A High-Resolution View of the Coordination Environment in a Paramagnetic Metalloprotein from its Magnetic Properties. Angew Chem Int Ed Engl 2021; 60:14960-14966. [PMID: 33595173 DOI: 10.1002/anie.202101149] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Indexed: 12/13/2022]
Abstract
Metalloproteins constitute a significant fraction of the proteome of all organisms and their characterization is critical for both basic sciences and biomedical applications. A large portion of metalloproteins bind paramagnetic metal ions, and paramagnetic NMR spectroscopy has been widely used in their structural characterization. However, the signals of nuclei in the immediate vicinity of the metal center are often broadened beyond detection. In this work, we show that it is possible to determine the coordination environment of the paramagnetic metal in the protein at a resolution inaccessible to other techniques. Taking the structure of a diamagnetic analogue as a starting point, a geometry optimization is carried out by fitting the pseudocontact shifts obtained from first principles quantum chemical calculations to the experimental ones.
Collapse
Affiliation(s)
- Enrico Ravera
- Magnetic Resonance Center (CERM), University of Florence, and Consorzio Interuniversitario Risonanze Magnetiche di Metalloproteine (CIRMMP), Via L. Sacconi 6, 50019, Sesto Fiorentino, Italy.,Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3, 50019, Sesto Fiorentino, Italy
| | - Lucia Gigli
- Magnetic Resonance Center (CERM), University of Florence, and Consorzio Interuniversitario Risonanze Magnetiche di Metalloproteine (CIRMMP), Via L. Sacconi 6, 50019, Sesto Fiorentino, Italy.,Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3, 50019, Sesto Fiorentino, Italy
| | | | - Vito Calderone
- Magnetic Resonance Center (CERM), University of Florence, and Consorzio Interuniversitario Risonanze Magnetiche di Metalloproteine (CIRMMP), Via L. Sacconi 6, 50019, Sesto Fiorentino, Italy.,Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3, 50019, Sesto Fiorentino, Italy
| | - Marco Fragai
- Magnetic Resonance Center (CERM), University of Florence, and Consorzio Interuniversitario Risonanze Magnetiche di Metalloproteine (CIRMMP), Via L. Sacconi 6, 50019, Sesto Fiorentino, Italy.,Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3, 50019, Sesto Fiorentino, Italy
| | - Giacomo Parigi
- Magnetic Resonance Center (CERM), University of Florence, and Consorzio Interuniversitario Risonanze Magnetiche di Metalloproteine (CIRMMP), Via L. Sacconi 6, 50019, Sesto Fiorentino, Italy.,Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3, 50019, Sesto Fiorentino, Italy
| | - Claudio Luchinat
- Magnetic Resonance Center (CERM), University of Florence, and Consorzio Interuniversitario Risonanze Magnetiche di Metalloproteine (CIRMMP), Via L. Sacconi 6, 50019, Sesto Fiorentino, Italy.,Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3, 50019, Sesto Fiorentino, Italy
| |
Collapse
|
7
|
Ravera E, Gigli L, Suturina EA, Calderone V, Fragai M, Parigi G, Luchinat C. A High‐Resolution View of the Coordination Environment in a Paramagnetic Metalloprotein from its Magnetic Properties. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202101149] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Enrico Ravera
- Magnetic Resonance Center (CERM) University of Florence, and Consorzio Interuniversitario Risonanze Magnetiche di Metalloproteine (CIRMMP) Via L. Sacconi 6 50019 Sesto Fiorentino Italy
- Department of Chemistry “Ugo Schiff” University of Florence Via della Lastruccia 3 50019 Sesto Fiorentino Italy
| | - Lucia Gigli
- Magnetic Resonance Center (CERM) University of Florence, and Consorzio Interuniversitario Risonanze Magnetiche di Metalloproteine (CIRMMP) Via L. Sacconi 6 50019 Sesto Fiorentino Italy
- Department of Chemistry “Ugo Schiff” University of Florence Via della Lastruccia 3 50019 Sesto Fiorentino Italy
| | | | - Vito Calderone
- Magnetic Resonance Center (CERM) University of Florence, and Consorzio Interuniversitario Risonanze Magnetiche di Metalloproteine (CIRMMP) Via L. Sacconi 6 50019 Sesto Fiorentino Italy
- Department of Chemistry “Ugo Schiff” University of Florence Via della Lastruccia 3 50019 Sesto Fiorentino Italy
| | - Marco Fragai
- Magnetic Resonance Center (CERM) University of Florence, and Consorzio Interuniversitario Risonanze Magnetiche di Metalloproteine (CIRMMP) Via L. Sacconi 6 50019 Sesto Fiorentino Italy
- Department of Chemistry “Ugo Schiff” University of Florence Via della Lastruccia 3 50019 Sesto Fiorentino Italy
| | - Giacomo Parigi
- Magnetic Resonance Center (CERM) University of Florence, and Consorzio Interuniversitario Risonanze Magnetiche di Metalloproteine (CIRMMP) Via L. Sacconi 6 50019 Sesto Fiorentino Italy
- Department of Chemistry “Ugo Schiff” University of Florence Via della Lastruccia 3 50019 Sesto Fiorentino Italy
| | - Claudio Luchinat
- Magnetic Resonance Center (CERM) University of Florence, and Consorzio Interuniversitario Risonanze Magnetiche di Metalloproteine (CIRMMP) Via L. Sacconi 6 50019 Sesto Fiorentino Italy
- Department of Chemistry “Ugo Schiff” University of Florence Via della Lastruccia 3 50019 Sesto Fiorentino Italy
| |
Collapse
|
8
|
Fu R, Rooney MT, Zhang R, Cotten ML. Coordination of Redox Ions within a Membrane-Binding Peptide: A Tale of Aromatic Rings. J Phys Chem Lett 2021; 12:4392-4399. [PMID: 33939920 DOI: 10.1021/acs.jpclett.1c00636] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The amino-terminal-copper-and-nickel-binding (ATCUN) motif, a tripeptide sequence ending with a histidine, confers important functions to proteins and peptides. Few high-resolution studies have been performed on the ATCUN motifs of membrane-associated proteins and peptides, limiting our understanding of how they stabilize Cu2+/Ni2+ in membranes. Here, we leverage solid-state NMR to investigate metal-binding to piscidin-1 (P1), a host-defense peptide featuring F1F2H3 as its ATCUN motif. Bound to redox ions, P1 chemically and physically damages pathogenic cell membranes. We design 13C/15N correlation experiments to detect and assign the deprotonated nitrogens produced and/or shifted by Ni2+-binding. Occupying multiple chemical states in P1-apo, H3 and the neighboring H4 respond to metalation by populating only the τ-tautomer. H3, as a proximal histidine, directly coordinates the metal, compared to the distal H4. Density functional theory calculations reflect this noncanonical arrangement and point toward cation-π interactions between the F1/F2/H4 aromatic rings and metal. These structural findings, which are relevant to other ATCUN-containing membrane peptides, could help design new therapeutics and materials for use in the areas of drug-resistant bacteria, neurological disorders, and biomedical imaging.
Collapse
Affiliation(s)
- Riqiang Fu
- National High Magnetic Field Laboratory, 1800 East Paul Dirac Drive, Tallahassee, Florida 32310, United States
| | - Mary T Rooney
- Department of Applied Science, William & Mary, Williamsburg, Virginia 23185, United States
| | - Rongfu Zhang
- National High Magnetic Field Laboratory, 1800 East Paul Dirac Drive, Tallahassee, Florida 32310, United States
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| | - Myriam L Cotten
- Department of Applied Science, William & Mary, Williamsburg, Virginia 23185, United States
| |
Collapse
|
9
|
Anklin C, Byrd RA. Combined multi-band decoupling in biomolecular NMR spectroscopy. JOURNAL OF BIOMOLECULAR NMR 2021; 75:89-95. [PMID: 33751371 PMCID: PMC8317164 DOI: 10.1007/s10858-021-00360-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 03/08/2021] [Indexed: 06/12/2023]
Abstract
Multi-resonance NMR experiments are powerful analytical and structural tools. Their conceptualization assumes that RF fields may be combined independently to manipulate spin interactions. However, practical implementation can compromise performance. One limitation is the generation of combination bands when two or more RF fields are applied simultaneously within the NMR probe. The combination bands can lead to significant interference with the detection circuitry. A facile approach to combined multi-band decoupling can resolve these problems and increase sensitivity two-fold (or more), by time sharing the application of the individual frequencies rather than time sharing decoupling and data acquisition.
Collapse
Affiliation(s)
| | - R Andrew Byrd
- Structural Biophysics Laboratory, National Cancer Institute, Frederick, MD, USA.
| |
Collapse
|
10
|
Webster AM, Peacock AFA. De novo designed coiled coils as scaffolds for lanthanides, including novel imaging agents with a twist. Chem Commun (Camb) 2021; 57:6851-6862. [DOI: 10.1039/d1cc02013g] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The design of artificial miniature lanthanide proteins, provide an opportunity to access new functional metalloproteins as well as insight into native lanthanide biochemistry.
Collapse
|
11
|
Dasgupta R, Gupta KBSS, Nami F, de Groot HJM, Canters GW, Groenen EJJ, Ubbink M. Chemical Exchange at the Trinuclear Copper Center of Small Laccase from Streptomyces coelicolor. Biophys J 2020; 119:9-14. [PMID: 32531206 PMCID: PMC7335907 DOI: 10.1016/j.bpj.2020.05.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 04/30/2020] [Accepted: 05/11/2020] [Indexed: 01/05/2023] Open
Abstract
The trinuclear copper center (TNC) of laccase reduces oxygen to water with very little overpotential. The arrangement of the coppers and ligands in the TNC is known to be from many crystal structures, yet information about possible dynamics of the ligands is absent. Here, we report dynamics at the TNC of small laccase from Streptomyces coelicolor using paramagnetic NMR and electron paramagnetic resonance spectroscopy. Fermi contact-shifted resonances tentatively assigned to histidine Hδ1 display a two-state chemical exchange with exchange rates in the order of 100 s−1. In the electron paramagnetic resonance spectra, at least two forms are observed with different gz-values. It is proposed that the exchange processes reflect the rotational motion of histidine imidazole rings that coordinate the coppers in the TNC.
Collapse
Affiliation(s)
- Rubin Dasgupta
- Gorlaeus Laboratories, Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - Karthick B S S Gupta
- Huygens-Kammerlingh Onnes Laboratory, Leiden Institute of Physics, Leiden, The Netherlands
| | - Faezeh Nami
- Gorlaeus Laboratories, Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands; Huygens-Kammerlingh Onnes Laboratory, Leiden Institute of Physics, Leiden, The Netherlands
| | - Huub J M de Groot
- Gorlaeus Laboratories, Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - Gerard W Canters
- Huygens-Kammerlingh Onnes Laboratory, Leiden Institute of Physics, Leiden, The Netherlands
| | - Edgar J J Groenen
- Huygens-Kammerlingh Onnes Laboratory, Leiden Institute of Physics, Leiden, The Netherlands
| | - Marcellus Ubbink
- Gorlaeus Laboratories, Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands.
| |
Collapse
|
12
|
Fishman NN, Lukzen NN, Ivanov KL, Edeleva MV, Fokin SV, Romanenko GV, Ovcharenko VI. Multifrequency Nuclear Magnetic Resonance as an Efficient Tool To Investigate Heterospin Complexes in Solutions. J Phys Chem A 2020; 124:1343-1352. [PMID: 31986040 DOI: 10.1021/acs.jpca.9b11104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We report a multifrequency nuclear magnetic resonance (NMR) study of heterospin complexes [Eu(SQ)3Ln], where SQ is 3,6-di(tert-butyl)-1,2-semiquinone, L is tetrahydrofuran (THF), pyridine (Py), or 2,2'-dipyridyl (Dipy), and n is the number of diamagnetic ligands. Multifrequency NMR experiments allowed us to determine the effective paramagnetic shifts of the ligands (L = THF or Py) and the chemical equilibrium constant for [Eu(SQ)3(THF)2]. In addition, we have found a strong magnetic field effect on the NMR line broadening, giving rise to very broad NMR lines at high magnetic fields. We attribute this effect to broadening under fast exchange conditions when the NMR spectrum represents a homogeneously broadened line with a width proportional to the square of the NMR frequency difference of the free and bound forms of L. Consequently, the line width strongly increases with the magnetic field. This broadening effect allows one to determine relevant kinetic parameters, i.e., the effective exchange time. The strong broadening effect allows one to exploit the [Eu(SQ)3(THF)2] complex as an efficient shift reagent, which not only shifts unwanted NMR signals but also broadens them, notably, in high-field NMR experiments. We have also found that [Eu(SQ)3Dipy] is a thermodynamically stable complex; hence, one can study [Eu(SQ)3Dipy] solutions without special precautions. We report an X-ray structure of the [Eu(SQ)3Dipy]·C6D6 crystals that have been grown directly in an NMR tube. This shows that multifrequency NMR investigations of heterospin compound solutions not only provide thermodynamic and kinetic data for heterospin species but also can be useful for the rational design of stable heterospin complexes and optimization of synthetic approaches.
Collapse
Affiliation(s)
- Natalya N Fishman
- International Tomography Center , Siberian Branch of the Russian Academy of Sciences , Institutskaya Strasse 3a , Novosibirsk 630090 , Russia.,Novosibirsk State University , Pirogova Strasse 1 , Novosibirsk 630090 , Russia
| | - Nikita N Lukzen
- International Tomography Center , Siberian Branch of the Russian Academy of Sciences , Institutskaya Strasse 3a , Novosibirsk 630090 , Russia.,Novosibirsk State University , Pirogova Strasse 1 , Novosibirsk 630090 , Russia
| | - Konstantin L Ivanov
- International Tomography Center , Siberian Branch of the Russian Academy of Sciences , Institutskaya Strasse 3a , Novosibirsk 630090 , Russia.,Novosibirsk State University , Pirogova Strasse 1 , Novosibirsk 630090 , Russia
| | - Mariya V Edeleva
- Vorozhtsov Novosibirsk Institute of Organic Chemistry , Siberian Branch of the Russian Academy of Sciences , Academician Lavrentyev Avenue 9 , Novosibirsk 630090 , Russia
| | - Sergey V Fokin
- International Tomography Center , Siberian Branch of the Russian Academy of Sciences , Institutskaya Strasse 3a , Novosibirsk 630090 , Russia
| | - Galina V Romanenko
- International Tomography Center , Siberian Branch of the Russian Academy of Sciences , Institutskaya Strasse 3a , Novosibirsk 630090 , Russia
| | - Victor I Ovcharenko
- International Tomography Center , Siberian Branch of the Russian Academy of Sciences , Institutskaya Strasse 3a , Novosibirsk 630090 , Russia
| |
Collapse
|
13
|
Chen JL, Wang X, Xiao YH, Su XC. Resonance Assignments of Lowly Populated and Unstable Enzyme Intermediate Complex under Real-Time Conditions. Chembiochem 2019; 20:2738-2742. [PMID: 31136055 DOI: 10.1002/cbic.201900240] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Indexed: 11/08/2022]
Abstract
Unstable and low-abundance protein complexes represent a large family of transient protein complexes that are difficult to characterize, even by means of high-resolution NMR spectroscopy. A method to assign the NMR signals of these unstable complexes through a combination of selective isotope labeling of amino acids in a protein and site-specific labeling the protein with a paramagnetic tag is presented herein. By using this method, the resonances of unstable thioester intermediate complex (lifetime <5 h and highest concentration ≈20 μm) generated by Staphylococcus aureus sortase A and its peptide substrate under a real-time reaction have been assigned.
Collapse
Affiliation(s)
- Jia-Liang Chen
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, P.R. China
| | - Xiao Wang
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, P.R. China
| | - Yu-Hao Xiao
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, P.R. China
| | - Xun-Cheng Su
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, P.R. China
| |
Collapse
|
14
|
Pigliapochi R, O’Brien L, Pell AJ, Gaultois MW, Janssen Y, Khalifah PG, Grey CP. When Do Anisotropic Magnetic Susceptibilities Lead to Large NMR Shifts? Exploring Particle Shape Effects in the Battery Electrode Material LiFePO4. J Am Chem Soc 2019; 141:13089-13100. [DOI: 10.1021/jacs.9b04674] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
| | - Liam O’Brien
- Department of Physics, University of Liverpool, L69 7ZE Liverpool, U.K
| | - Andrew J. Pell
- Department of Chemistry, University of Cambridge, CB2 1EW Cambridge, U.K
| | | | - Yuri Janssen
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794, United States
| | - Peter G. Khalifah
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794, United States
- Department of Chemistry, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Clare P. Grey
- Department of Chemistry, University of Cambridge, CB2 1EW Cambridge, U.K
| |
Collapse
|
15
|
Bonechi C, Donati A, Tamasi G, Pardini A, Volpi V, Leone G, Consumi M, Magnani A, Rossi C. Metal-Ligand Recognition Index Determination by NMR Proton Relaxation Study. Molecules 2019; 24:E1050. [PMID: 30884870 PMCID: PMC6472049 DOI: 10.3390/molecules24061050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 03/14/2019] [Accepted: 03/15/2019] [Indexed: 11/29/2022] Open
Abstract
In this study, we developed and validated a new proposed parameter quantifying the interaction strength between natural and/or synthetic molecules with paramagnetic metal ions. The Metal ion Recognition Index, Miri, is a quantitative parameter to describe the proton environment and to define their involvement in the inner and/or outer sphere of the paramagnetic metal ion. The method is based on the analysis of NMR proton spin-lattice relaxation rates of a specific ligand in both the diamagnetic and paramagnetic conditions. The proposed procedure is also useful to calculate the ligand proton spin-lattice relaxation rate in the paramagnetic bound conditions, which is typically very difficult to determine experimentally. Miri was used to compare the ligand proton involvement toward different paramagnetic species, in particular the Copper(II)-Piroxicam system. Copper(II)-Piroxicam complex is one of the most active anti-inflammatory and anti-arthritic species. Miri provides an opportunity to improve our knowledge of metal-ligand complexes that play a fundamental role in bioinorganic interactions.
Collapse
Affiliation(s)
- Claudia Bonechi
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy.
- Centre for Colloid and Surface Science (CSGI), University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Firenze, Italy.
| | - Alessandro Donati
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy.
- Centre for Colloid and Surface Science (CSGI), University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Firenze, Italy.
| | - Gabriella Tamasi
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy.
- Centre for Colloid and Surface Science (CSGI), University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Firenze, Italy.
| | - Alessio Pardini
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy.
| | - Vanessa Volpi
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy.
| | - Gemma Leone
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy.
- National Interuniversity Consortium of Materials Science and Technology (INSTM), Via G. Giusti 9, 50121 Firenze, Italy.
| | - Marco Consumi
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy.
- National Interuniversity Consortium of Materials Science and Technology (INSTM), Via G. Giusti 9, 50121 Firenze, Italy.
| | - Agnese Magnani
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy.
- National Interuniversity Consortium of Materials Science and Technology (INSTM), Via G. Giusti 9, 50121 Firenze, Italy.
| | - Claudio Rossi
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy.
- Centre for Colloid and Surface Science (CSGI), University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Firenze, Italy.
- Operative Unit, University of Siena, Campo Verde, Calabria, 53100 Siena, Italy.
| |
Collapse
|
16
|
Ju LC, Cheng Z, Fast W, Bonomo RA, Crowder MW. The Continuing Challenge of Metallo-β-Lactamase Inhibition: Mechanism Matters. Trends Pharmacol Sci 2018; 39:635-647. [PMID: 29680579 DOI: 10.1016/j.tips.2018.03.007] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 03/16/2018] [Accepted: 03/22/2018] [Indexed: 01/16/2023]
Abstract
Metallo-β-lactamases (MBLs) are a significant clinical problem because they hydrolyze and inactivate nearly all β-lactam-containing antibiotics. These 'lifesaving drugs' constitute >50% of the available contemporary antibiotic arsenal. Despite the global spread of MBLs, MBL inhibitors have not yet appeared in clinical trials. Most MBL inhibitors target active site zinc ions and vary in mechanism from ternary complex formation to metal ion stripping. Importantly, differences in mechanism can impact pharmacology in terms of reversibility, target selectivity, and structure-activity relationship interpretation. This review surveys the mechanisms of MBL inhibitors and describes methods that determine the mechanism of inhibition to guide development of future therapeutics.
Collapse
Affiliation(s)
- Lin-Cheng Ju
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, PR China; Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056, USA.
| | - Zishuo Cheng
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056, USA
| | - Walter Fast
- Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, University of Texas, Austin, TX 78712, USA
| | - Robert A Bonomo
- Research Services, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH 44106, USA; Departments of Medicine, Pharmacology, Molecular Biology and Microbiology, Biochemistry, Proteomics, and Bioinformatics and the CWRU-Cleveland VAMC Center for Antimicrobial Resistance and Epidemiology, Cleveland, OH 44106, USA
| | - Michael W Crowder
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056, USA
| |
Collapse
|
17
|
Tsitovich PB, Tittiris TY, Cox JM, Benedict JB, Morrow JR. Fe(ii) and Co(ii) N-methylated CYCLEN complexes as paraSHIFT agents with large temperature dependent shifts. Dalton Trans 2018; 47:916-924. [PMID: 29260180 DOI: 10.1039/c7dt03812g] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Several complexes of Co(ii) or Fe(ii) with 1,4,7,10-tetraazacyclododecane (CYCLEN) appended with 1,7-(6-methyl)2-picolyl groups are studied as 1H NMR paraSHIFT agents (paramagnetic shift agents) for the registration of temperature. Two of the complexes, [Co(BMPC)]2+ and [Fe(BMPC)]2+, contain methyl groups only on the methyl picolyl pendents. Two other complexes, [Co(2MPC)]2+ and [Fe(2MPC)]2+, contain picolyl groups and also methyl groups on the macrocyclic amines. All macrocyclic complexes are in high spin form as shown by solution magnetic moments in the range of 5.0-5.9μBM and 5.3-5.8μBM for Co(ii) and Fe(ii) complexes, respectively. The 1H NMR spectra of both of the Fe(ii) complexes and one of the Co(ii) complexes are consistent with a predominant diastereomeric form in deuterium oxide solutions. The highly shifted methyl proton resonances for [Co(2MPC)]2+ appear at 164 and -113 ppm for macrocycle and pendent picolyl methyls and show temperature coefficients of -0.58 ppm °C-1 and 0.49 ppm °C-1, respectively. Fe(ii) complexes have less shifted methyl proton resonances and smaller temperature coefficients. The 1H resonances of [Fe(2MPC)]2+ appear at 105 ppm and -46 ppm with corresponding temperature coefficients (CT) of -0.29 ppm °C-1 and 0.22 ppm °C-1, respectively. The relatively narrow linewidths of [Fe(2MPC)]2+, however, produce superior CT/FWHM values of 0.44 and 0.31 °C-1 for the N-methyl and picolyl proton resonances where FWHM is the full width at half maximum of the 1H resonance. The crystal structure of [Co(BMPC)]Cl2 shows a six-coordinate Co(ii) bound to the macrocyclic amines and two pendent picolyl groups. The distorted trigonal prismatic geometry of the complex resembles that of an analogous complex containing four 6-methyl-2-picolyl groups, in which only two picolyl pendents are coordinated.
Collapse
Affiliation(s)
- Pavel B Tsitovich
- Department of Chemistry, University at Buffalo, State University of New York, Amherst, NY 14260, USA.
| | | | | | | | | |
Collapse
|
18
|
Taguchi AT, Miyajima-Nakano Y, Fukazawa R, Lin MT, Baldansuren A, Gennis RB, Hasegawa K, Kumasaka T, Dikanov SA, Iwasaki T. Unpaired Electron Spin Density Distribution across Reduced [2Fe-2S] Cluster Ligands by 13Cβ-Cysteine Labeling. Inorg Chem 2017; 57:741-746. [DOI: 10.1021/acs.inorgchem.7b02676] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Alexander T. Taguchi
- Department of Biochemistry and Molecular Biology, Nippon Medical School, Sendagi, Tokyo 113-8602, Japan
| | - Yoshiharu Miyajima-Nakano
- Department of Biochemistry and Molecular Biology, Nippon Medical School, Sendagi, Tokyo 113-8602, Japan
| | - Risako Fukazawa
- Department of Biochemistry and Molecular Biology, Nippon Medical School, Sendagi, Tokyo 113-8602, Japan
| | | | - Amgalanbaatar Baldansuren
- Department of Veterinary
Clinical Medicine, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Robert B. Gennis
- Department of Biochemistry, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Kazuya Hasegawa
- Japan Synchrotron Radiation Research Institute (SPring-8/JASRI), Sayo, Hyogo 679-5198, Japan
| | - Takashi Kumasaka
- Japan Synchrotron Radiation Research Institute (SPring-8/JASRI), Sayo, Hyogo 679-5198, Japan
| | - Sergei A. Dikanov
- Department of Veterinary
Clinical Medicine, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Toshio Iwasaki
- Department of Biochemistry and Molecular Biology, Nippon Medical School, Sendagi, Tokyo 113-8602, Japan
| |
Collapse
|
19
|
Ravera E, Parigi G, Luchinat C. Perspectives on paramagnetic NMR from a life sciences infrastructure. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2017; 282:154-169. [PMID: 28844254 DOI: 10.1016/j.jmr.2017.07.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 07/28/2017] [Accepted: 07/31/2017] [Indexed: 05/17/2023]
Abstract
The effects arising in NMR spectroscopy because of the presence of unpaired electrons, collectively referred to as "paramagnetic NMR" have attracted increasing attention over the last decades. From the standpoint of the structural and mechanistic biology, paramagnetic NMR provides long range restraints that can be used to assess the accuracy of crystal structures in solution and to improve them by simultaneous refinements through NMR and X-ray data. These restraints also provide information on structure rearrangements and conformational variability in biomolecular systems. Theoretical improvements in quantum chemistry calculations can nowadays allow for accurate calculations of the paramagnetic data from a molecular structural model, thus providing a tool to refine the metal coordination environment by matching the paramagnetic effects observed far away from the metal. Furthermore, the availability of an improved technology (higher fields and faster magic angle spinning) has promoted paramagnetic NMR applications in the fast-growing area of biomolecular solid-state NMR. Major improvements in dynamic nuclear polarization have been recently achieved, especially through the exploitation of the Overhauser effect occurring through the contact-driven relaxation mechanism: the very large enhancement of the 13C signal observed in a variety of liquid organic compounds at high fields is expected to open up new perspectives for applications of solution NMR.
Collapse
Affiliation(s)
- Enrico Ravera
- Magnetic Resonance Center (CERM) and Department of Chemistry "Ugo Schiff", University of Florence, via Sacconi 6, 50019 Sesto Fiorentino, Italy
| | - Giacomo Parigi
- Magnetic Resonance Center (CERM) and Department of Chemistry "Ugo Schiff", University of Florence, via Sacconi 6, 50019 Sesto Fiorentino, Italy
| | - Claudio Luchinat
- Magnetic Resonance Center (CERM) and Department of Chemistry "Ugo Schiff", University of Florence, via Sacconi 6, 50019 Sesto Fiorentino, Italy.
| |
Collapse
|
20
|
Pilla KB, Gaalswyk K, MacCallum JL. Molecular modeling of biomolecules by paramagnetic NMR and computational hybrid methods. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2017. [PMID: 28648524 DOI: 10.1016/j.bbapap.2017.06.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The 3D atomic structures of biomolecules and their complexes are key to our understanding of biomolecular function, recognition, and mechanism. However, it is often difficult to obtain structures, particularly for systems that are complex, dynamic, disordered, or exist in environments like cell membranes. In such cases sparse data from a variety of paramagnetic NMR experiments offers one possible source of structural information. These restraints can be incorporated in computer modeling algorithms that can accurately translate the sparse experimental data into full 3D atomic structures. In this review, we discuss various types of paramagnetic NMR/computational hybrid modeling techniques that can be applied to successful modeling of not only the atomic structure of proteins but also their interacting partners. This article is part of a Special Issue entitled: Biophysics in Canada, edited by Lewis Kay, John Baenziger, Albert Berghuis and Peter Tieleman.
Collapse
Affiliation(s)
| | - Kari Gaalswyk
- Department of Chemistry, University of Calgary, Calgary, AB, Canada
| | | |
Collapse
|
21
|
Abstract
Throughout biology, amyloids are key structures in both functional proteins and the end product of pathologic protein misfolding. Amyloids might also represent an early precursor in the evolution of life because of their small molecular size and their ability to self-purify and catalyze chemical reactions. They also provide attractive backbones for advanced materials. When β-strands of an amyloid are arranged parallel and in register, side chains from the same position of each chain align, facilitating metal chelation when the residues are good ligands such as histidine. High-resolution structures of metalloamyloids are needed to understand the molecular bases of metal-amyloid interactions. Here we combine solid-state NMR and structural bioinformatics to determine the structure of a zinc-bound metalloamyloid that catalyzes ester hydrolysis. The peptide forms amphiphilic parallel β-sheets that assemble into stacked bilayers with alternating hydrophobic and polar interfaces. The hydrophobic interface is stabilized by apolar side chains from adjacent sheets, whereas the hydrated polar interface houses the Zn2+-binding histidines with binding geometries unusual in proteins. Each Zn2+ has two bis-coordinated histidine ligands, which bridge adjacent strands to form an infinite metal-ligand chain along the fibril axis. A third histidine completes the protein ligand environment, leaving a free site on the Zn2+ for water activation. This structure defines a class of materials, which we call metal-peptide frameworks. The structure reveals a delicate interplay through which metal ions stabilize the amyloid structure, which in turn shapes the ligand geometry and catalytic reactivity of Zn2.
Collapse
|
22
|
Schnorr KA, Gophane DB, Helmling C, Cetiner E, Pasemann K, Fürtig B, Wacker A, Qureshi NS, Gränz M, Barthelmes D, Jonker HRA, Stirnal E, Sigurdsson ST, Schwalbe H. Impact of spin label rigidity on extent and accuracy of distance information from PRE data. JOURNAL OF BIOMOLECULAR NMR 2017; 68:53-63. [PMID: 28500543 DOI: 10.1007/s10858-017-0114-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 05/03/2017] [Indexed: 06/07/2023]
Abstract
Paramagnetic relaxation enhancement (PRE) is a versatile tool for NMR spectroscopic structural and kinetic studies in biological macromolecules. Here, we compare the quality of PRE data derived from two spin labels with markedly different dynamic properties for large RNAs using the I-A riboswitch aptamer domain (78 nt) from Mesoplamsa florum as model system. We designed two I-A aptamer constructs that were spin-labeled by noncovalent hybridization of short spin-labeled oligomer fragments. As an example of a flexible spin label, UreidoU-TEMPO was incorporated into the 3' terminal end of helix P1 while, the recently developed rigid spin-label Çm was incorporated in the 5' terminal end of helix P1. We determined PRE rates obtained from aromatic 13C bound proton intensities and compared these rates to PREs derived from imino proton intensities in this sizeable RNA (~78 nt). PRE restraints derived from both imino and aromatic protons yielded similar data quality, and hence can both be reliably used for PRE determination. For NMR, the data quality derived from the rigid spin label Çm is slightly better than the data quality for the flexible UreidoTEMPO as judged by comparison of the structural agreement with the I-A aptamer crystal structure (3SKI).
Collapse
Affiliation(s)
- K A Schnorr
- Center for Biomolecular Magnetic Resonance (BMRZ), Institute of Organic Chemistry and Chemical Biology, Johann Wolfgang Goethe-Universität, Max-von-Laue Strasse 7, 60438, Frankfurt am Main, Germany
| | - D B Gophane
- Department of Chemistry, Science Institute, University of Iceland, Dunhaga 3, 107, Reykjavik, Iceland
| | - C Helmling
- Center for Biomolecular Magnetic Resonance (BMRZ), Institute of Organic Chemistry and Chemical Biology, Johann Wolfgang Goethe-Universität, Max-von-Laue Strasse 7, 60438, Frankfurt am Main, Germany
| | - E Cetiner
- Center for Biomolecular Magnetic Resonance (BMRZ), Institute of Organic Chemistry and Chemical Biology, Johann Wolfgang Goethe-Universität, Max-von-Laue Strasse 7, 60438, Frankfurt am Main, Germany
| | - K Pasemann
- Center for Biomolecular Magnetic Resonance (BMRZ), Institute of Organic Chemistry and Chemical Biology, Johann Wolfgang Goethe-Universität, Max-von-Laue Strasse 7, 60438, Frankfurt am Main, Germany
| | - B Fürtig
- Center for Biomolecular Magnetic Resonance (BMRZ), Institute of Organic Chemistry and Chemical Biology, Johann Wolfgang Goethe-Universität, Max-von-Laue Strasse 7, 60438, Frankfurt am Main, Germany
| | - A Wacker
- Center for Biomolecular Magnetic Resonance (BMRZ), Institute of Organic Chemistry and Chemical Biology, Johann Wolfgang Goethe-Universität, Max-von-Laue Strasse 7, 60438, Frankfurt am Main, Germany
| | - N S Qureshi
- Center for Biomolecular Magnetic Resonance (BMRZ), Institute of Organic Chemistry and Chemical Biology, Johann Wolfgang Goethe-Universität, Max-von-Laue Strasse 7, 60438, Frankfurt am Main, Germany
| | - M Gränz
- Center for Biomolecular Magnetic Resonance (BMRZ), Institute of Physical and Theoretical Chemistry, Johann Wolfgang Goethe-Universität, Max-von-Laue Strasse 7, 60438, Frankfurt am Main, Germany
| | - D Barthelmes
- Center for Biomolecular Magnetic Resonance (BMRZ), Institute of Organic Chemistry and Chemical Biology, Johann Wolfgang Goethe-Universität, Max-von-Laue Strasse 7, 60438, Frankfurt am Main, Germany
| | - H R A Jonker
- Center for Biomolecular Magnetic Resonance (BMRZ), Institute of Organic Chemistry and Chemical Biology, Johann Wolfgang Goethe-Universität, Max-von-Laue Strasse 7, 60438, Frankfurt am Main, Germany
| | - E Stirnal
- Center for Biomolecular Magnetic Resonance (BMRZ), Institute of Organic Chemistry and Chemical Biology, Johann Wolfgang Goethe-Universität, Max-von-Laue Strasse 7, 60438, Frankfurt am Main, Germany
| | - S Th Sigurdsson
- Department of Chemistry, Science Institute, University of Iceland, Dunhaga 3, 107, Reykjavik, Iceland
| | - H Schwalbe
- Center for Biomolecular Magnetic Resonance (BMRZ), Institute of Organic Chemistry and Chemical Biology, Johann Wolfgang Goethe-Universität, Max-von-Laue Strasse 7, 60438, Frankfurt am Main, Germany.
| |
Collapse
|
23
|
Xu G, Zhao J, Cheng K, Wu Q, Liu X, Liu M, Li C. The Effects of Macromolecular Crowding on Calmodulin Structure and Function. Chemistry 2017; 23:6736-6740. [DOI: 10.1002/chem.201700367] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Indexed: 02/07/2023]
Affiliation(s)
- Guohua Xu
- Key Laboratory of Magnetic Resonance in Biological Systems; State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics; National Center for Magnetic Resonance in Wuhan; Wuhan Institute of Physics and Mathematics; Chinese Academy of Sciences; Wuhan 430071 P. R. China
| | - Jiajing Zhao
- Key Laboratory of Magnetic Resonance in Biological Systems; State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics; National Center for Magnetic Resonance in Wuhan; Wuhan Institute of Physics and Mathematics; Chinese Academy of Sciences; Wuhan 430071 P. R. China
- Graduate University of Chinese Academy of Sciences; Beijing 100029 P. R. China
| | - Kai Cheng
- Key Laboratory of Magnetic Resonance in Biological Systems; State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics; National Center for Magnetic Resonance in Wuhan; Wuhan Institute of Physics and Mathematics; Chinese Academy of Sciences; Wuhan 430071 P. R. China
- Graduate University of Chinese Academy of Sciences; Beijing 100029 P. R. China
| | - Qiong Wu
- Key Laboratory of Magnetic Resonance in Biological Systems; State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics; National Center for Magnetic Resonance in Wuhan; Wuhan Institute of Physics and Mathematics; Chinese Academy of Sciences; Wuhan 430071 P. R. China
| | - Xiaoli Liu
- Key Laboratory of Magnetic Resonance in Biological Systems; State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics; National Center for Magnetic Resonance in Wuhan; Wuhan Institute of Physics and Mathematics; Chinese Academy of Sciences; Wuhan 430071 P. R. China
| | - Maili Liu
- Key Laboratory of Magnetic Resonance in Biological Systems; State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics; National Center for Magnetic Resonance in Wuhan; Wuhan Institute of Physics and Mathematics; Chinese Academy of Sciences; Wuhan 430071 P. R. China
| | - Conggang Li
- Key Laboratory of Magnetic Resonance in Biological Systems; State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics; National Center for Magnetic Resonance in Wuhan; Wuhan Institute of Physics and Mathematics; Chinese Academy of Sciences; Wuhan 430071 P. R. China
| |
Collapse
|
24
|
Chiliveri SC, Deshmukh MV. Recent excitements in protein NMR: Large proteins and biologically relevant dynamics. J Biosci 2017; 41:787-803. [PMID: 27966496 DOI: 10.1007/s12038-016-9640-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The advent of Transverse Relaxation Optimized SpectroscopY (TROSY) and perdeuteration allowed biomolecular NMR spectroscopists to overcome the size limitation barrier (approx. 20 kDa) in de novo structure determination of proteins. The utility of these techniques was immediately demonstrated on large proteins and protein complexes (e.g. GroELGroES, ClpP protease, Hsp90-p53, 20S proteasome, etc.). Further, recent methodological developments such as Residual Dipolar Couplings and Paramagnetic Relaxation Enhancement allowed accurate measurement of long-range structural restraints. Additionally, Carr-Purcell-Meiboom-Gill (CPMG), rotating frame relaxation experiments (R1(rho)) and saturation transfer experiments (CEST and DEST) created never-before accessibility to the (mu)s-ms timescale dynamic parameters that led to the deeper understanding of biological processes. Meanwhile, the excitement in the field continued with a series of developments in the fast data acquisition methods allowing rapid structural studies on less stable proteins. This review aims to discuss important developments in the field of biomolecular NMR spectroscopy in the recent past, i.e., in the post TROSY era. These developments not only gave access to the structural studies of large protein assemblies, but also revolutionized tools in the arsenal of today's biomolecular NMR and point to a bright future of biomolecular NMR spectroscopy.
Collapse
|
25
|
Cherry PJ, Rouf SA, Vaara J. Paramagnetic Enhancement of Nuclear Spin–Spin Coupling. J Chem Theory Comput 2017; 13:1275-1283. [DOI: 10.1021/acs.jctc.6b01080] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Peter John Cherry
- Institute of Inorganic
Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, SK-84536 Bratislava, Slovakia
| | - Syed Awais Rouf
- NMR Research Unit, University of Oulu, P.O. Box 3000, FIN-90014 Oulu, Finland
| | - Juha Vaara
- NMR Research Unit, University of Oulu, P.O. Box 3000, FIN-90014 Oulu, Finland
| |
Collapse
|
26
|
Nitsche C, Otting G. Pseudocontact shifts in biomolecular NMR using paramagnetic metal tags. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2017; 98-99:20-49. [PMID: 28283085 DOI: 10.1016/j.pnmrs.2016.11.001] [Citation(s) in RCA: 115] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 11/11/2016] [Accepted: 11/12/2016] [Indexed: 05/14/2023]
Affiliation(s)
- Christoph Nitsche
- Australian National University, Research School of Chemistry, Canberra, ACT 2601, Australia.
| | - Gottfried Otting
- Australian National University, Research School of Chemistry, Canberra, ACT 2601, Australia. http://www.rsc.anu.edu.au/~go/index.html
| |
Collapse
|
27
|
Xu G, Cheng K, Wu Q, Liu M, Li C. Confinement Alters the Structure and Function of Calmodulin. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201609639] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Guohua Xu
- Key Laboratory of Magnetic Resonance in Biological Systems; State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics; National Center for Magnetic Resonance in Wuhan; Collaborative Innovation Center of Chemistry for Life Sciences; Wuhan Institute of Physics and Mathematics; Chinese Academy of Sciences; Wuhan 430071 P.R. China
| | - Kai Cheng
- Key Laboratory of Magnetic Resonance in Biological Systems; State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics; National Center for Magnetic Resonance in Wuhan; Collaborative Innovation Center of Chemistry for Life Sciences; Wuhan Institute of Physics and Mathematics; Chinese Academy of Sciences; Wuhan 430071 P.R. China
- Graduate University of Chinese Academy of Sciences; Beijing 100029 P.R. China
| | - Qiong Wu
- Key Laboratory of Magnetic Resonance in Biological Systems; State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics; National Center for Magnetic Resonance in Wuhan; Collaborative Innovation Center of Chemistry for Life Sciences; Wuhan Institute of Physics and Mathematics; Chinese Academy of Sciences; Wuhan 430071 P.R. China
| | - Maili Liu
- Key Laboratory of Magnetic Resonance in Biological Systems; State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics; National Center for Magnetic Resonance in Wuhan; Collaborative Innovation Center of Chemistry for Life Sciences; Wuhan Institute of Physics and Mathematics; Chinese Academy of Sciences; Wuhan 430071 P.R. China
| | - Conggang Li
- Key Laboratory of Magnetic Resonance in Biological Systems; State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics; National Center for Magnetic Resonance in Wuhan; Collaborative Innovation Center of Chemistry for Life Sciences; Wuhan Institute of Physics and Mathematics; Chinese Academy of Sciences; Wuhan 430071 P.R. China
| |
Collapse
|
28
|
Abstract
Computational modeling of proteins using evolutionary or de novo approaches offers rapid structural characterization, but often suffers from low success rates in generating high quality models comparable to the accuracy of structures observed in X-ray crystallography or nuclear magnetic resonance (NMR) spectroscopy. A computational/experimental hybrid approach incorporating sparse experimental restraints in computational modeling algorithms drastically improves reliability and accuracy of 3D models. This chapter discusses the use of structural information obtained from various paramagnetic NMR measurements and demonstrates computational algorithms implementing pseudocontact shifts as restraints to determine the structure of proteins at atomic resolution.
Collapse
|
29
|
Xu G, Cheng K, Wu Q, Liu M, Li C. Confinement Alters the Structure and Function of Calmodulin. Angew Chem Int Ed Engl 2016; 56:530-534. [DOI: 10.1002/anie.201609639] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2016] [Revised: 11/11/2016] [Indexed: 11/08/2022]
Affiliation(s)
- Guohua Xu
- Key Laboratory of Magnetic Resonance in Biological Systems; State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics; National Center for Magnetic Resonance in Wuhan; Collaborative Innovation Center of Chemistry for Life Sciences; Wuhan Institute of Physics and Mathematics; Chinese Academy of Sciences; Wuhan 430071 P.R. China
| | - Kai Cheng
- Key Laboratory of Magnetic Resonance in Biological Systems; State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics; National Center for Magnetic Resonance in Wuhan; Collaborative Innovation Center of Chemistry for Life Sciences; Wuhan Institute of Physics and Mathematics; Chinese Academy of Sciences; Wuhan 430071 P.R. China
- Graduate University of Chinese Academy of Sciences; Beijing 100029 P.R. China
| | - Qiong Wu
- Key Laboratory of Magnetic Resonance in Biological Systems; State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics; National Center for Magnetic Resonance in Wuhan; Collaborative Innovation Center of Chemistry for Life Sciences; Wuhan Institute of Physics and Mathematics; Chinese Academy of Sciences; Wuhan 430071 P.R. China
| | - Maili Liu
- Key Laboratory of Magnetic Resonance in Biological Systems; State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics; National Center for Magnetic Resonance in Wuhan; Collaborative Innovation Center of Chemistry for Life Sciences; Wuhan Institute of Physics and Mathematics; Chinese Academy of Sciences; Wuhan 430071 P.R. China
| | - Conggang Li
- Key Laboratory of Magnetic Resonance in Biological Systems; State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics; National Center for Magnetic Resonance in Wuhan; Collaborative Innovation Center of Chemistry for Life Sciences; Wuhan Institute of Physics and Mathematics; Chinese Academy of Sciences; Wuhan 430071 P.R. China
| |
Collapse
|
30
|
Sala D, Giachetti A, Luchinat C, Rosato A. A protocol for the refinement of NMR structures using simultaneously pseudocontact shift restraints from multiple lanthanide ions. JOURNAL OF BIOMOLECULAR NMR 2016; 66:175-185. [PMID: 27771862 DOI: 10.1007/s10858-016-0065-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 09/29/2016] [Indexed: 06/06/2023]
Abstract
The binding of paramagnetic metal ions to proteins produces a number of different effects on the NMR spectra of the system. In particular, when the magnetic susceptibility of the metal ion is anisotropic, pseudocontact shifts (PCSs) arise and can be easily measured. They constitute very useful restraints for the solution structure determination of metal-binding proteins. In this context, there has been great interest in the use of lanthanide(III) ions to induce PCSs in diamagnetic proteins, e.g. through the replacement native calcium(II) ions. By preparing multiple samples in each of which a different ion of the lanthanide series is introduced, it is possible to obtain multiple independent PCS datasets that can be used synergistically to generate protein structure ensembles (typically called bundles). For typical NMR-based determination of protein structure, it is necessary to perform an energetic refinement of such initial bundles to obtain final structures whose geometric quality is suitable for deposition in the PDB. This can be conveniently done by using restrained molecular dynamics simulations (rMD) in explicit solvent. However, there are no available protocols for rMD using multiple PCS datasets as part of the restraints. In this work, we extended the PCS module of the AMBER MD package to handle multiple datasets and tuned a previously developed protocol for NMR structure refinement to achieve consistent convergence with PCS restraints. Test calculations with real experimental data show that this new implementation delivers the expected improvement of protein geometry, resulting in final structures that are of suitable quality for deposition. Furthermore, we observe that also initial structures generated only with traditional restraints can be successfully refined using traditional and PCS restraints simultaneously.
Collapse
Affiliation(s)
- Davide Sala
- Magnetic Resonance Center (CERM), University of Florence, Via Luigi Sacconi 6, 50019, Sesto Fiorentino, Italy
| | - Andrea Giachetti
- Magnetic Resonance Center (CERM), University of Florence, Via Luigi Sacconi 6, 50019, Sesto Fiorentino, Italy
| | - Claudio Luchinat
- Magnetic Resonance Center (CERM), University of Florence, Via Luigi Sacconi 6, 50019, Sesto Fiorentino, Italy.
- Department of Chemistry, University of Florence, Via della Lastruccia 3, 50019, Sesto Fiorentino, Italy.
| | - Antonio Rosato
- Magnetic Resonance Center (CERM), University of Florence, Via Luigi Sacconi 6, 50019, Sesto Fiorentino, Italy.
- Department of Chemistry, University of Florence, Via della Lastruccia 3, 50019, Sesto Fiorentino, Italy.
| |
Collapse
|
31
|
Wahba HM, Lecoq L, Stevenson M, Mansour A, Cappadocia L, Lafrance-Vanasse J, Wilkinson KJ, Sygusch J, Wilcox DE, Omichinski JG. Structural and Biochemical Characterization of a Copper-Binding Mutant of the Organomercurial Lyase MerB: Insight into the Key Role of the Active Site Aspartic Acid in Hg-Carbon Bond Cleavage and Metal Binding Specificity. Biochemistry 2016; 55:1070-81. [PMID: 26820485 DOI: 10.1021/acs.biochem.5b01298] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In bacterial resistance to mercury, the organomercurial lyase (MerB) plays a key role in the detoxification pathway through its ability to cleave Hg-carbon bonds. Two cysteines (C96 and C159; Escherichia coli MerB numbering) and an aspartic acid (D99) have been identified as the key catalytic residues, and these three residues are conserved in all but four known MerB variants, where the aspartic acid is replaced with a serine. To understand the role of the active site serine, we characterized the structure and metal binding properties of an E. coli MerB mutant with a serine substituted for D99 (MerB D99S) as well as one of the native MerB variants containing a serine residue in the active site (Bacillus megaterium MerB2). Surprisingly, the MerB D99S protein copurified with a bound metal that was determined to be Cu(II) from UV-vis absorption, inductively coupled plasma mass spectrometry, nuclear magnetic resonance, and electron paramagnetic resonance studies. X-ray structural studies revealed that the Cu(II) is bound to the active site cysteine residues of MerB D99S, but that it is displaced following the addition of either an organomercurial substrate or an ionic mercury product. In contrast, the B. megaterium MerB2 protein does not copurify with copper, but the structure of the B. megaterium MerB2-Hg complex is highly similar to the structure of the MerB D99S-Hg complexes. These results demonstrate that the active site aspartic acid is crucial for both the enzymatic activity and metal binding specificity of MerB proteins and suggest a possible functional relationship between MerB and its only known structural homologue, the copper-binding protein NosL.
Collapse
Affiliation(s)
- Haytham M Wahba
- Faculty of Pharmacy, Beni-suef University , Beni-suef, Egypt
| | | | - Michael Stevenson
- Department of Chemistry, Dartmouth College , Hanover, New Hampshire 03755, United States
| | | | | | | | | | | | - Dean E Wilcox
- Department of Chemistry, Dartmouth College , Hanover, New Hampshire 03755, United States
| | | |
Collapse
|
32
|
Yang Y, Huang F, Huber T, Su XC. Site-specific tagging proteins with a rigid, small and stable transition metal chelator, 8-hydroxyquinoline, for paramagnetic NMR analysis. JOURNAL OF BIOMOLECULAR NMR 2016; 64:103-113. [PMID: 26732873 DOI: 10.1007/s10858-016-0011-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 01/01/2016] [Indexed: 06/05/2023]
Abstract
Design of a paramagnetic metal binding motif in a protein is a valuable way for understanding the function, dynamics and interactions of a protein by paramagnetic NMR spectroscopy. Several strategies have been proposed to site-specifically tag proteins with paramagnetic lanthanide ions. Here we report a simple approach of engineering a transition metal binding motif via site-specific labelling of a protein with 2-vinyl-8-hydroxyquinoline (2V-8HQ). The protein-2V-8HQ adduct forms a stable complex with transition metal ions, Mn(II), Co(II), Ni(II), Cu(II) and Zn(II). The paramagnetic effects generated by these transition metal ions were evaluated by NMR spectroscopy. We show that 2V-8HQ is a rigid and stable transition metal binding tag. The coordination of the metal ion can be assisted by protein sidechains. More importantly, tunable paramagnetic tensors are simply obtained in an α-helix that possesses solvent exposed residues in positions i and i + 3, where i is the residue to be mutated to cysteine, i + 3 is Gln or Glu or i - 4 is His. The coordination of a sidechain carboxylate/amide or imidazole to cobalt(II) results in different structural geometries, leading to different paramagnetic tensors as shown by experimental data.
Collapse
Affiliation(s)
- Yin Yang
- State Key Laboratory of Elemento-Organic Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin, 300071, China
| | - Feng Huang
- State Key Laboratory of Elemento-Organic Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin, 300071, China
| | - Thomas Huber
- Research School of Chemistry, Australian National University, Canberra, ACT, 0200, Australia
| | - Xun-Cheng Su
- State Key Laboratory of Elemento-Organic Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin, 300071, China.
| |
Collapse
|
33
|
Yang F, Wang X, Pan BB, Su XC. Single-armed phenylsulfonated pyridine derivative of DOTA is rigid and stable paramagnetic tag in protein analysis. Chem Commun (Camb) 2016; 52:11535-11538. [DOI: 10.1039/c6cc06114a] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Single-armed DOTA-like phenylsulfonated pyridine derivatives are rigid and stable paramagnetic tags for site-specific labelling of proteins. The respective protein conjugates yield valuable long-range structural restraints for proteins.
Collapse
Affiliation(s)
- Feng Yang
- State Key Laboratory of Elemento-Organic Chemistry
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)
- Nankai University
- Tianjin 300071
- China
| | - Xiao Wang
- State Key Laboratory of Elemento-Organic Chemistry
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)
- Nankai University
- Tianjin 300071
- China
| | - Bin-Bin Pan
- State Key Laboratory of Elemento-Organic Chemistry
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)
- Nankai University
- Tianjin 300071
- China
| | - Xun-Cheng Su
- State Key Laboratory of Elemento-Organic Chemistry
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)
- Nankai University
- Tianjin 300071
- China
| |
Collapse
|
34
|
Pseudocontact Shift-Driven Iterative Resampling for 3D Structure Determinations of Large Proteins. J Mol Biol 2016; 428:522-32. [DOI: 10.1016/j.jmb.2016.01.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 01/08/2016] [Accepted: 01/08/2016] [Indexed: 01/23/2023]
|
35
|
O'Brien ES, Nucci NV, Fuglestad B, Tommos C, Wand AJ. Defining the Apoptotic Trigger: THE INTERACTION OF CYTOCHROME c AND CARDIOLIPIN. J Biol Chem 2015; 290:30879-87. [PMID: 26487716 PMCID: PMC4692216 DOI: 10.1074/jbc.m115.689406] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 10/14/2015] [Indexed: 11/06/2022] Open
Abstract
The interaction between cytochrome c and the anionic lipid cardiolipin has been proposed as a primary event in the apoptotic signaling cascade. Numerous studies that have examined the interaction of cytochrome c with cardiolipin embedded in a variety of model phospholipid membranes have suggested that partial unfolding of the protein is a precursor to the apoptotic response. However, these studies lacked site resolution and used model systems with negligible or a positive membrane curvature, which is distinct from the large negative curvature of the invaginations of the inner mitochondrial membrane where cytochrome c resides. We have used reverse micelle encapsulation to mimic the potential effects of confinement on the interaction of cytochrome c with cardiolipin. Encapsulation of oxidized horse cytochrome c in 1-decanoyl-rac-glycerol/lauryldimethylamine-N-oxide/hexanol reverse micelles prepared in pentane yields NMR spectra essentially identical to the protein in free aqueous solution. The structure of encapsulated ferricytochrome c was determined to high precision (bb ∼ 0.23 Å) using NMR-based methods and is closely similar to the cryogenic crystal structure (bb ∼ 1.2 Å). Incorporation of cardiolipin into the reverse micelle surfactant shell causes localized chemical shift perturbations of the encapsulated protein, providing the first view of the cardiolipin/cytochrome c interaction interface at atomic resolution. Three distinct sites of interaction are detected: the so-called A- and L-sites, plus a previously undocumented interaction centered on residues Phe-36, Gly-37, Thr-58, Trp-59, and Lys-60. Importantly, in distinct contrast to earlier studies of this interaction, the protein is not significantly disturbed by the binding of cardiolipin in the context of the reverse micelle.
Collapse
Affiliation(s)
- Evan S O'Brien
- From the Johnson Research Foundation and Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6059
| | - Nathaniel V Nucci
- From the Johnson Research Foundation and Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6059
| | - Brian Fuglestad
- From the Johnson Research Foundation and Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6059
| | - Cecilia Tommos
- From the Johnson Research Foundation and Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6059
| | - A Joshua Wand
- From the Johnson Research Foundation and Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6059
| |
Collapse
|
36
|
Andrałojć W, Berlin K, Fushman D, Luchinat C, Parigi G, Ravera E, Sgheri L. Information content of long-range NMR data for the characterization of conformational heterogeneity. JOURNAL OF BIOMOLECULAR NMR 2015; 62:353-71. [PMID: 26044033 PMCID: PMC4782772 DOI: 10.1007/s10858-015-9951-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 05/25/2015] [Indexed: 05/16/2023]
Abstract
Long-range NMR data, namely residual dipolar couplings (RDCs) from external alignment and paramagnetic data, are becoming increasingly popular for the characterization of conformational heterogeneity of multidomain biomacromolecules and protein complexes. The question addressed here is how much information is contained in these averaged data. We have analyzed and compared the information content of conformationally averaged RDCs caused by steric alignment and of both RDCs and pseudocontact shifts caused by paramagnetic alignment, and found that, despite the substantial differences, they contain a similar amount of information. Furthermore, using several synthetic tests we find that both sets of data are equally good towards recovering the major state(s) in conformational distributions.
Collapse
Affiliation(s)
- Witold Andrałojć
- Center for Magnetic Resonance (CERM), University of Florence, Via
L. Sacconi 6, 50019, Sesto Fiorentino, Italy
| | - Konstantin Berlin
- Department of Chemistry and Biochemistry, Center for Biomolecular
Structure and Organization, University of Maryland, College Park, MD 20742, USA
| | - David Fushman
- Department of Chemistry and Biochemistry, Center for Biomolecular
Structure and Organization, University of Maryland, College Park, MD 20742, USA
- Corresponding authors: David Fushman, ,
Claudio Luchinat,
| | - Claudio Luchinat
- Center for Magnetic Resonance (CERM), University of Florence, Via
L. Sacconi 6, 50019, Sesto Fiorentino, Italy
- Department of Chemistry "Ugo Schiff", University
of Florence, Via della Lastruccia 3, 50019, Sesto Fiorentino, Italy
- Corresponding authors: David Fushman, ,
Claudio Luchinat,
| | - Giacomo Parigi
- Center for Magnetic Resonance (CERM), University of Florence, Via
L. Sacconi 6, 50019, Sesto Fiorentino, Italy
- Department of Chemistry "Ugo Schiff", University
of Florence, Via della Lastruccia 3, 50019, Sesto Fiorentino, Italy
| | - Enrico Ravera
- Center for Magnetic Resonance (CERM), University of Florence, Via
L. Sacconi 6, 50019, Sesto Fiorentino, Italy
- Department of Chemistry "Ugo Schiff", University
of Florence, Via della Lastruccia 3, 50019, Sesto Fiorentino, Italy
| | - Luca Sgheri
- Istituto per le Applicazioni del Calcolo, Sezione di Firenze,
CNR, Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy
| |
Collapse
|
37
|
Kong X, Terskikh VV, Khade RL, Yang L, Rorick A, Zhang Y, He P, Huang Y, Wu G. Solid-state ¹⁷O NMR spectroscopy of paramagnetic coordination compounds. Angew Chem Int Ed Engl 2015; 54:4753-7. [PMID: 25694203 PMCID: PMC4418630 DOI: 10.1002/anie.201409888] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Indexed: 11/09/2022]
Abstract
High-quality solid-state (17)O (I=5/2) NMR spectra can be successfully obtained for paramagnetic coordination compounds in which oxygen atoms are directly bonded to the paramagnetic metal centers. For complexes containing V(III) (S=1), Cu(II) (S=1/2), and Mn(III) (S=2) metal centers, the (17)O isotropic paramagnetic shifts were found to span a range of more than 10,000 ppm. In several cases, high-resolution (17)O NMR spectra were recorded under very fast magic-angle spinning (MAS) conditions at 21.1 T. Quantum-chemical computations using density functional theory (DFT) qualitatively reproduced the experimental (17)O hyperfine shift tensors.
Collapse
Affiliation(s)
- Xianqi Kong
- Department of Chemistry, Queen's University Kingston, Ontario, K7L 3N6 (Canada)
| | - Victor V. Terskikh
- Department of Chemistry, University of Ottawa Ottawa, Ontario, K1N 6N5 (Canada)
| | - Rahul L. Khade
- Department of Chemistry, Chemical Biology, and Biomedical Engineering, Stevens Institute of Technology Castle Point on Hudson, Hoboken, New Jersey 07030 (USA)
| | - Liu Yang
- Department of Chemistry, Chemical Biology, and Biomedical Engineering, Stevens Institute of Technology Castle Point on Hudson, Hoboken, New Jersey 07030 (USA)
| | - Amber Rorick
- Department of Chemistry, Chemical Biology, and Biomedical Engineering, Stevens Institute of Technology Castle Point on Hudson, Hoboken, New Jersey 07030 (USA)
| | - Yong Zhang
- Department of Chemistry, Chemical Biology, and Biomedical Engineering, Stevens Institute of Technology Castle Point on Hudson, Hoboken, New Jersey 07030 (USA)
| | - Peng He
- Department of Chemistry, University of Western Ontario London, Ontario, N6A 5B7 (Canada)
| | - Yining Huang
- Department of Chemistry, University of Western Ontario London, Ontario, N6A 5B7 (Canada)
| | - Gang Wu
- Department of Chemistry, Queen's University Kingston, Ontario, K7L 3N6 (Canada)
| |
Collapse
|
38
|
Park SH, Wang V, Radoicic J, De Angelis AA, Berkamp S, Opella SJ. Paramagnetic relaxation enhancement of membrane proteins by incorporation of the metal-chelating unnatural amino acid 2-amino-3-(8-hydroxyquinolin-3-yl)propanoic acid (HQA). JOURNAL OF BIOMOLECULAR NMR 2015; 61:185-96. [PMID: 25430059 PMCID: PMC4398598 DOI: 10.1007/s10858-014-9884-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Accepted: 11/20/2014] [Indexed: 05/16/2023]
Abstract
The use of paramagnetic constraints in protein NMR is an active area of research because of the benefits of long-range distance measurements (>10 Å). One of the main issues in successful execution is the incorporation of a paramagnetic metal ion into diamagnetic proteins. The most common metal ion tags are relatively long aliphatic chains attached to the side chain of a selected cysteine residue with a chelating group at the end where it can undergo substantial internal motions, decreasing the accuracy of the method. An attractive alternative approach is to incorporate an unnatural amino acid that binds metal ions at a specific site on the protein using the methods of molecular biology. Here we describe the successful incorporation of the unnatural amino acid 2-amino-3-(8-hydroxyquinolin-3-yl)propanoic acid (HQA) into two different membrane proteins by heterologous expression in E. coli. Fluorescence and NMR experiments demonstrate complete replacement of the natural amino acid with HQA and stable metal chelation by the mutated proteins. Evidence of site-specific intra- and inter-molecular PREs by NMR in micelle solutions sets the stage for the use of HQA incorporation in solid-state NMR structure determinations of membrane proteins in phospholipid bilayers.
Collapse
|
39
|
Jaroniec CP. Structural studies of proteins by paramagnetic solid-state NMR spectroscopy. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2015; 253:50-9. [PMID: 25797004 PMCID: PMC4371136 DOI: 10.1016/j.jmr.2014.12.017] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 12/17/2014] [Indexed: 05/03/2023]
Abstract
Paramagnetism-based nuclear pseudocontact shifts and spin relaxation enhancements contain a wealth of information in solid-state NMR spectra about electron-nucleus distances on the ∼20 Å length scale, far beyond that normally probed through measurements of nuclear dipolar couplings. Such data are especially vital in the context of structural studies of proteins and other biological molecules that suffer from a sparse number of experimentally-accessible atomic distances constraining their three-dimensional fold or intermolecular interactions. This perspective provides a brief overview of the recent developments and applications of paramagnetic magic-angle spinning NMR to biological systems, with primary focus on the investigations of metalloproteins and natively diamagnetic proteins modified with covalent paramagnetic tags.
Collapse
Affiliation(s)
- Christopher P Jaroniec
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, OH 43210, USA.
| |
Collapse
|
40
|
Kong X, Terskikh VV, Khade RL, Yang L, Rorick A, Zhang Y, He P, Huang Y, Wu G. Solid-State17O NMR Spectroscopy of Paramagnetic Coordination Compounds. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201409888] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
41
|
Lázaro-Martínez JM, Rodríguez-Castellón E, Vega D, Monti GA, Chattah AK. Solid-state Studies of the Crystalline/Amorphous Character in Linear Poly(ethylenimine hydrochloride) (PEI·HCl) Polymers and Their Copper Complexes. Macromolecules 2015. [DOI: 10.1021/ma5023082] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Juan Manuel Lázaro-Martínez
- CONICET, Av. Rivadavia 1917 (C1033AAJ), CABA, Argentina
- Departamento
de Química Orgánica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956 (C1113AAD), CABA, Argentina
| | - Enrique Rodríguez-Castellón
- Departamento
de Química Inorgánica, Cristalografía y Mineralogía,
Facultad de Ciencias, Universidad de Málaga, Campus de Teatinos, Málaga, 29071, Spain
| | - Daniel Vega
- Departamento
de Física de la Materia Condensada, Comisión Nacional de Energía Atómica, Av. Gral. Paz 1499, 1650 San Martín, Buenos
Aires, Argentina
- Escuela de
Ciencia y Tecnología, Universidad Nacional de General San Martín, Buenos Aires, Argentina
| | - Gustavo Alberto Monti
- FaMAF-Universidad Nacional de Córdoba and IFEG-CONICET, Medina Allende s/n (X5000HUA), Córdoba, Argentina
| | - Ana Karina Chattah
- FaMAF-Universidad Nacional de Córdoba and IFEG-CONICET, Medina Allende s/n (X5000HUA), Córdoba, Argentina
| |
Collapse
|
42
|
Yang Y, Wang JT, Pei YY, Su XC. Site-specific tagging proteins via a rigid, stable and short thiolether tether for paramagnetic spectroscopic analysis. Chem Commun (Camb) 2015; 51:2824-7. [DOI: 10.1039/c4cc08493d] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The reaction of phenylsulfonated pyridine derivatives and protein thiols is suitable for high-resolution spectroscopic analysis by generation of a rigid, stable and short thiolether tether.
Collapse
Affiliation(s)
- Yin Yang
- State-Key Laboratory of Elemento-organic Chemistry
- Innovation Center of Chemical Science and Engineering (Tianjin)
- Nankai University
- Tianjin
- China
| | - Jin-Tao Wang
- State-Key Laboratory of Elemento-organic Chemistry
- Innovation Center of Chemical Science and Engineering (Tianjin)
- Nankai University
- Tianjin
- China
| | - Ying-Ying Pei
- State-Key Laboratory of Elemento-organic Chemistry
- Innovation Center of Chemical Science and Engineering (Tianjin)
- Nankai University
- Tianjin
- China
| | - Xun-Cheng Su
- State-Key Laboratory of Elemento-organic Chemistry
- Innovation Center of Chemical Science and Engineering (Tianjin)
- Nankai University
- Tianjin
- China
| |
Collapse
|
43
|
Abdullin D, Florin N, Hagelueken G, Schiemann O. EPR-based approach for the localization of paramagnetic metal ions in biomolecules. Angew Chem Int Ed Engl 2014; 54:1827-31. [PMID: 25522037 DOI: 10.1002/anie.201410396] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Indexed: 11/10/2022]
Abstract
Metal ions play an important role in the catalysis and folding of proteins and oligonucleotides. Their localization within the three-dimensional fold of such biomolecules is therefore an important goal in understanding structure-function relationships. A trilateration approach for the localization of metal ions by means of long-range distance measurements based on electron paramagnetic resonance (EPR) is introduced. The approach is tested on the Cu(2+) center of azurin, and factors affecting the precision of the method are discussed.
Collapse
Affiliation(s)
- Dinar Abdullin
- Institute of Physical and Theoretical Chemistry, University of Bonn, Wegelerstrasse 12, 53115 Bonn (Germany) http://www.schiemann.uni-bonn.de
| | | | | | | |
Collapse
|
44
|
Abdullin D, Florin N, Hagelueken G, Schiemann O. EPR-Based Approach for the Localization of Paramagnetic Metal Ions in Biomolecules. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201410396] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
45
|
Wang S, Ladizhansky V. Recent advances in magic angle spinning solid state NMR of membrane proteins. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2014; 82:1-26. [PMID: 25444696 DOI: 10.1016/j.pnmrs.2014.07.001] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2014] [Revised: 07/16/2014] [Accepted: 07/20/2014] [Indexed: 05/14/2023]
Abstract
Membrane proteins mediate many critical functions in cells. Determining their three-dimensional structures in the native lipid environment has been one of the main objectives in structural biology. There are two major NMR methodologies that allow this objective to be accomplished. Oriented sample NMR, which can be applied to membrane proteins that are uniformly aligned in the magnetic field, has been successful in determining the backbone structures of a handful of membrane proteins. Owing to methodological and technological developments, Magic Angle Spinning (MAS) solid-state NMR (ssNMR) spectroscopy has emerged as another major technique for the complete characterization of the structure and dynamics of membrane proteins. First developed on peptides and small microcrystalline proteins, MAS ssNMR has recently been successfully applied to large membrane proteins. In this review we describe recent progress in MAS ssNMR methodologies, which are now available for studies of membrane protein structure determination, and outline a few examples, which highlight the broad capability of ssNMR spectroscopy.
Collapse
Affiliation(s)
- Shenlin Wang
- Beijing Nuclear Magnetic Resonance Center, Peking University, Beijing 100871, China; College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| | - Vladimir Ladizhansky
- Department of Physics, University of Guelph, 50 Stone Road East, Guelph, Ontario N1G 2W1, Canada; Biophysics Interdepartmental Group, University of Guelph, 50 Stone Road East, Guelph, Ontario N1G 2W1, Canada.
| |
Collapse
|
46
|
Garino C, Borfecchia E, Gobetto R, van Bokhoven JA, Lamberti C. Determination of the electronic and structural configuration of coordination compounds by synchrotron-radiation techniques. Coord Chem Rev 2014. [DOI: 10.1016/j.ccr.2014.03.027] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
47
|
Yamaguchi T, Sakae Y, Zhang Y, Yamamoto S, Okamoto Y, Kato K. Exploration of conformational spaces of high-mannose-type oligosaccharides by an NMR-validated simulation. Angew Chem Int Ed Engl 2014; 53:10941-4. [PMID: 25196214 DOI: 10.1002/anie.201406145] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Indexed: 12/11/2022]
Abstract
Exploration of the conformational spaces of flexible biomacromolecules is essential for quantitatively understanding the energetics of their molecular recognition processes. We employed stable isotope- and lanthanide-assisted NMR approaches in conjunction with replica-exchange molecular dynamics (REMD) simulations to obtain atomic descriptions of the conformational dynamics of high-mannose-type oligosaccharides, which harbor intracellular glycoprotein-fate determinants in their triantennary structures. The experimentally validated REMD simulation provided quantitative views of the dynamic conformational ensembles of the complicated, branched oligosaccharides, and indicated significant expansion of the conformational space upon removal of a terminal mannose residue during the functional glycan-processing pathway.
Collapse
Affiliation(s)
- Takumi Yamaguchi
- Institute for Molecular Science and Okazaki Institute for Integrative Bioscience, 5-1 Higashiyama, Myodaiji, Okazaki, 444-8787 (Japan); Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya 467-8603 (Japan); School of Physical Sciences, The Graduate University for Advanced Studies, 5-1 Higashiyama, Myodaiji, Okazaki, 444-8787 (Japan)
| | | | | | | | | | | |
Collapse
|
48
|
Yamaguchi T, Sakae Y, Zhang Y, Yamamoto S, Okamoto Y, Kato K. Exploration of Conformational Spaces of High-Mannose-Type Oligosaccharides by an NMR-Validated Simulation. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201406145] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
49
|
Abelein A, Abrahams JP, Danielsson J, Gräslund A, Jarvet J, Luo J, Tiiman A, Wärmländer SKTS. The hairpin conformation of the amyloid β peptide is an important structural motif along the aggregation pathway. J Biol Inorg Chem 2014; 19:623-34. [PMID: 24737040 DOI: 10.1007/s00775-014-1131-8] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Accepted: 04/02/2014] [Indexed: 12/29/2022]
Abstract
The amyloid β (Aβ) peptides are 39-42 residue-long peptides found in the senile plaques in the brains of Alzheimer's disease (AD) patients. These peptides self-aggregate in aqueous solution, going from soluble and mainly unstructured monomers to insoluble ordered fibrils. The aggregation process(es) are strongly influenced by environmental conditions. Several lines of evidence indicate that the neurotoxic species are the intermediate oligomeric states appearing along the aggregation pathways. This minireview summarizes recent findings, mainly based on solution and solid-state NMR experiments and electron microscopy, which investigate the molecular structures and characteristics of the Aβ peptides at different stages along the aggregation pathways. We conclude that a hairpin-like conformation constitutes a common motif for the Aβ peptides in most of the described structures. There are certain variations in different hairpin conformations, for example regarding H-bonding partners, which could be one reason for the molecular heterogeneity observed in the aggregated systems. Interacting hairpins are the building blocks of the insoluble fibrils, again with variations in how hairpins are organized in the cross-section of the fibril, perpendicular to the fibril axis. The secondary structure propensities can be seen already in peptide monomers in solution. Unfortunately, detailed structural information about the intermediate oligomeric states is presently not available. In the review, special attention is given to metal ion interactions, particularly the binding constants and ligand structures of Aβ complexes with Cu(II) and Zn(II), since these ions affect the aggregation process(es) and are considered to be involved in the molecular mechanisms underlying AD pathology.
Collapse
Affiliation(s)
- Axel Abelein
- Department of Biochemistry and Biophysics, Arrhenius Laboratories, Stockholm University, 106 91, Stockholm, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Rinaldelli M, Ravera E, Calderone V, Parigi G, Murshudov GN, Luchinat C. Simultaneous use of solution NMR and X-ray data in REFMAC5 for joint refinement/detection of structural differences. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2014; 70:958-67. [PMID: 24699641 PMCID: PMC4306559 DOI: 10.1107/s1399004713034160] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Accepted: 12/18/2013] [Indexed: 11/12/2022]
Abstract
The program REFMAC5 from CCP4 was modified to allow the simultaneous use of X-ray crystallographic data and paramagnetic NMR data (pseudocontact shifts and self-orientation residual dipolar couplings) and/or diamagnetic residual dipolar couplings. Incorporation of these long-range NMR restraints in REFMAC5 can reveal differences between solid-state and solution conformations of molecules or, in their absence, can be used together with X-ray crystallographic data for structural refinement. Since NMR and X-ray data are complementary, when a single structure is consistent with both sets of data and still maintains reasonably `ideal' geometries, the reliability of the derived atomic model is expected to increase. The program was tested on five different proteins: the catalytic domain of matrix metalloproteinase 1, GB3, ubiquitin, free calmodulin and calmodulin complexed with a peptide. In some cases the joint refinement produced a single model consistent with both sets of observations, while in other cases it indicated, outside the experimental uncertainty, the presence of different protein conformations in solution and in the solid state.
Collapse
Affiliation(s)
- Mauro Rinaldelli
- Center for Magnetic Resonance (CERM), University of Florence, Via L. Sacconi 6, 50019 Sesto Fiorentino (FI), Italy
- Department of Chemistry ‘Ugo Schiff’, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino (FI), Italy
| | - Enrico Ravera
- Center for Magnetic Resonance (CERM), University of Florence, Via L. Sacconi 6, 50019 Sesto Fiorentino (FI), Italy
- Department of Chemistry ‘Ugo Schiff’, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino (FI), Italy
| | - Vito Calderone
- Center for Magnetic Resonance (CERM), University of Florence, Via L. Sacconi 6, 50019 Sesto Fiorentino (FI), Italy
- Department of Chemistry ‘Ugo Schiff’, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino (FI), Italy
| | - Giacomo Parigi
- Center for Magnetic Resonance (CERM), University of Florence, Via L. Sacconi 6, 50019 Sesto Fiorentino (FI), Italy
- Department of Chemistry ‘Ugo Schiff’, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino (FI), Italy
| | - Garib N. Murshudov
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, England
| | - Claudio Luchinat
- Center for Magnetic Resonance (CERM), University of Florence, Via L. Sacconi 6, 50019 Sesto Fiorentino (FI), Italy
- Department of Chemistry ‘Ugo Schiff’, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino (FI), Italy
| |
Collapse
|