1
|
Yamazaki H, Sugawara R, Takayama Y. Development of label-free light-controlled gene expression technologies using mid-IR and terahertz light. Front Bioeng Biotechnol 2024; 12:1324757. [PMID: 39465004 PMCID: PMC11502365 DOI: 10.3389/fbioe.2024.1324757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 09/25/2024] [Indexed: 10/29/2024] Open
Abstract
Gene expression is a fundamental process that regulates diverse biological activities across all life stages. Given its vital role, there is an urgent need to develop innovative methodologies to effectively control gene expression. Light-controlled gene expression is considered a favorable approach because of its ability to provide precise spatiotemporal control. However, current light-controlled technologies rely on photosensitive molecular tags, making their practical use challenging. In this study, we review current technologies for light-controlled gene expression and propose the development of label-free light-controlled technologies using mid-infrared (mid-IR) and terahertz light.
Collapse
Affiliation(s)
- Hirohito Yamazaki
- Top Runner Incubation Center for Academia-Industry Fusion, Nagaoka University of Technology, Nagaoka, Japan
- Department of Mechanical Engineering, Nagaoka University of Technology, Nagaoka, Japan
| | - Ryusei Sugawara
- Department of Mechanical Engineering, Nagaoka University of Technology, Nagaoka, Japan
| | - Yurito Takayama
- Department of Mechanical Engineering, Nagaoka University of Technology, Nagaoka, Japan
| |
Collapse
|
2
|
Sohrabi M, Babaei Z, Haghpanah V, Larijani B, Abbasi A, Mahdavi M. Recent advances in gene therapy-based cancer monotherapy and synergistic bimodal therapy using upconversion nanoparticles: Structural and biological aspects. Biomed Pharmacother 2022; 156:113872. [DOI: 10.1016/j.biopha.2022.113872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/06/2022] [Accepted: 10/13/2022] [Indexed: 11/02/2022] Open
|
3
|
Darrah KE, Deiters A. Translational control of gene function through optically regulated nucleic acids. Chem Soc Rev 2021; 50:13253-13267. [PMID: 34739027 DOI: 10.1039/d1cs00257k] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Translation of mRNA into protein is one of the most fundamental processes within biological systems. Gene expression is tightly regulated both in space and time, often involving complex signaling or gene regulatory networks, as most prominently observed in embryo development. Thus, studies of gene function require tools with a matching level of external control. Light is an excellent conditional trigger as it is minimally invasive, can be easily tuned in wavelength and amplitude, and can be applied with excellent spatial and temporal resolution. To this end, modification of established oligonucleotide-based technologies with optical control elements, in the form of photocaging groups and photoswitches, has rendered these tools capable of navigating the dynamic regulatory pathways of mRNA translation in cellular and in vivo models. In this review, we discuss the different optochemical approaches used to generate photoresponsive nucleic acids that activate and deactivate gene expression and function at the translational level.
Collapse
Affiliation(s)
- Kristie E Darrah
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania, 15260, USA.
| | - Alexander Deiters
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania, 15260, USA.
| |
Collapse
|
4
|
Park HS, Jash B, Xiao L, Jun YW, Kool ET. Control of RNA with quinone methide reversible acylating reagents. Org Biomol Chem 2021; 19:8367-8376. [PMID: 34528657 PMCID: PMC8609948 DOI: 10.1039/d1ob01713f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Caging RNA by polyacylation (cloaking) has been developed recently as a simple and rapid method to control the function of RNAs. Previous approaches for chemical reversal of acylation (uncloaking) made use of azide reduction followed by amine cyclization, requiring ∼2-4 h for the completion of cyclization. In new studies aimed at improving reversal rates and yields, we have designed novel acylating reagents that utilize quinone methide (QM) elimination for reversal. The QM de-acylation reactions were tested with two bioorthogonally cleavable motifs, azide and vinyl ether, and their acylation and reversal efficiencies were assessed with NMR and mass spectrometry on model small-molecule substrates as well as on RNAs. Successful reversal both with phosphines and strained alkenes was documented. Among the compounds tested, the azido-QM compound A-3 displayed excellent de-acylation efficiency, with t1/2 for de-acylation of less than an hour using a phosphine trigger. To test its function in RNA caging, A-3 was successfully applied to control EGFP mRNA translation in vitro and in HeLa cells. We expect that this molecular caging strategy can serve as a valuable tool for biological investigation and control of RNAs both in vitro and in cells.
Collapse
Affiliation(s)
- Hyun Shin Park
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA.
| | - Biswarup Jash
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA.
| | - Lu Xiao
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA.
| | - Yong Woong Jun
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA.
| | - Eric T Kool
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
5
|
Chen C, Wang Z, Jing N, Chen W, Tang X. Photomodulation of Caged RNA Oligonucleotide Functions in Living Systems. CHEMPHOTOCHEM 2020. [DOI: 10.1002/cptc.202000220] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Changmai Chen
- School of Pharmacy Fujian Medical University No.1 Xuefu N Rd, University Town Fuzhou 350122 China
- State Key Laboratory of Natural and Biomimetic Drugs School of Pharmaceutical Sciences Peking University No. 38 Xueyuan Rd, Haidian District Beijing 100191 China
| | - Zhongyu Wang
- State Key Laboratory of Natural and Biomimetic Drugs School of Pharmaceutical Sciences Peking University No. 38 Xueyuan Rd, Haidian District Beijing 100191 China
| | - Nannan Jing
- State Key Laboratory of Natural and Biomimetic Drugs School of Pharmaceutical Sciences Peking University No. 38 Xueyuan Rd, Haidian District Beijing 100191 China
| | - Wei Chen
- School of Pharmacy Fujian Medical University No.1 Xuefu N Rd, University Town Fuzhou 350122 China
| | - Xinjing Tang
- State Key Laboratory of Natural and Biomimetic Drugs School of Pharmaceutical Sciences Peking University No. 38 Xueyuan Rd, Haidian District Beijing 100191 China
| |
Collapse
|
6
|
Xiao L, Habibian M, Kool ET. Site-Selective RNA Functionalization via DNA-Induced Structure. J Am Chem Soc 2020; 142:16357-16363. [PMID: 32865995 PMCID: PMC7962339 DOI: 10.1021/jacs.0c06824] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Methods for RNA functionalization at specific sites are in high demand but remain a challenge, particularly for RNAs produced by transcription rather than by total synthesis. Recent studies have described acylimidazole reagents that react in high yields at 2'-OH groups stochastically at nonbase-paired regions, covering much of the RNA in scattered acyl esters. Localized reactions, if possible, could prove useful in many applications, providing functional handles at specific sites and sequences of the biopolymer. Here, we describe a DNA-directed strategy for in vitro functionalization of RNA at site-localized 2'-OH groups. The method, RNA Acylation at Induced Loops (RAIL), utilizes complementary helper DNA oligonucleotides that expose gaps or loops at selected positions while protecting the remainder in DNA-RNA duplexes. Reaction with an acylimidazole reagent is then carried out, providing high yields of 2'-OH conjugation at predetermined sites. Experiments reveal optimal helper oligodeoxynucleotide designs and conditions for the reaction, and tests of the approach are carried out to control localized ribozyme activities and to label RNAs with dual-color fluorescent dyes. The RAIL approach offers a simple and novel strategy for site-selective labeling and control of RNAs, potentially of any length and origin.
Collapse
Affiliation(s)
- Lu Xiao
- Department of Chemistry, ChEM-H Institute and Stanford Cancer Institute, Stanford University, Stanford, California 94305, United States
| | - Maryam Habibian
- Department of Chemistry, ChEM-H Institute and Stanford Cancer Institute, Stanford University, Stanford, California 94305, United States
| | - Eric T. Kool
- Department of Chemistry, ChEM-H Institute and Stanford Cancer Institute, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
7
|
Hartmann D, Smith JM, Mazzotti G, Chowdhry R, Booth MJ. Controlling gene expression with light: a multidisciplinary endeavour. Biochem Soc Trans 2020; 48:1645-1659. [PMID: 32657338 PMCID: PMC7458398 DOI: 10.1042/bst20200014] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 06/19/2020] [Accepted: 06/22/2020] [Indexed: 12/21/2022]
Abstract
The expression of a gene to a protein is one of the most vital biological processes. The use of light to control biology offers unparalleled spatiotemporal resolution from an external, orthogonal signal. A variety of methods have been developed that use light to control the steps of transcription and translation of specific genes into proteins, for cell-free to in vivo biotechnology applications. These methods employ techniques ranging from the modification of small molecules, nucleic acids and proteins with photocages, to the engineering of proteins involved in gene expression using naturally light-sensitive proteins. Although the majority of currently available technologies employ ultraviolet light, there has been a recent increase in the use of functionalities that work at longer wavelengths of light, to minimise cellular damage and increase tissue penetration. Here, we discuss the different chemical and biological methods employed to control gene expression, while also highlighting the central themes and the most exciting applications within this diverse field.
Collapse
Affiliation(s)
- Denis Hartmann
- Chemistry Research Laboratory, University of Oxford, Oxford OX1 3TA, U.K
| | - Jefferson M. Smith
- Chemistry Research Laboratory, University of Oxford, Oxford OX1 3TA, U.K
| | - Giacomo Mazzotti
- Chemistry Research Laboratory, University of Oxford, Oxford OX1 3TA, U.K
| | - Razia Chowdhry
- Chemistry Research Laboratory, University of Oxford, Oxford OX1 3TA, U.K
| | - Michael J. Booth
- Chemistry Research Laboratory, University of Oxford, Oxford OX1 3TA, U.K
| |
Collapse
|
8
|
Zhang Y, Xu C, Yang X, Pu K. Photoactivatable Protherapeutic Nanomedicine for Cancer. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2002661. [PMID: 32667701 DOI: 10.1002/adma.202002661] [Citation(s) in RCA: 123] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 05/21/2020] [Indexed: 05/24/2023]
Abstract
Therapeutic systems with site-specific pharmaceutical activation hold great promise to enhance therapeutic efficacy while reducing systemic toxicity in cancer therapy. With operational flexibility, noninvasiveness, and high spatiotemporal resolution, photoactivatable nanomedicines have drawn growing attention. Distinct from traditional controlled release systems relying on the difference of biomarker concentrations between disease and healthy tissues, photoactivatable nanomedicines capitalize on the interaction between nanotransducers and light to either trigger photochemical reactions or generate reactive oxygen species (ROS) or heat effect to remotely induce pharmaceutical actions in living subjects. Herein, the recent advances in the development of photoactivatable protherapeutic nanoagents for oncology are summarized. The design strategies and therapeutic applications of these nanoagents are described. Representative examples of each type are discussed in terms of structure, photoactivation mechanism, and preclinical models. Last, potential challenges and perspectives to further develop photoactivatable protherapeutic nanoagents in cancer nanomedicine are discussed.
Collapse
Affiliation(s)
- Yan Zhang
- National Research Centre for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Cheng Xu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, 637457, Singapore
| | - Xiangliang Yang
- National Research Centre for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Kanyi Pu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, 637457, Singapore
| |
Collapse
|
9
|
Zhang D, Jin S, Piao X, Devaraj NK. Multiplexed Photoactivation of mRNA with Single-Cell Resolution. ACS Chem Biol 2020; 15:1773-1779. [PMID: 32484653 DOI: 10.1021/acschembio.0c00205] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We demonstrate sequential optical activation of two types of mRNAs in the same mammalian cell through the sequential photocleavage of small molecule caging groups ("photocages") tethered to the 5'-untranslated region (5'-UTR) of mRNAs. Synthetic photocages were conjugated onto target mRNA using RNA-TAG, an enzymatic site-specific RNA modification technique. Translation of mRNA was severely reduced upon conjugation of the photocages onto the 5'-UTR. However, subsequent photorelease of the cages from the mRNA transcript triggered activation of translation with single-cell spatiotemporal resolution. To achieve sequential photoactivation of two mRNAs in the same cell, we synthesized a pair of photocages that can be selectively cleaved from mRNA upon photoirradiation with different wavelengths of light. Sequential photoactivation of two mRNAs enabled precise optical control of translation of two unique transcripts. We believe that this modular approach to precisely and rapidly control gene expression will serve as a powerful tool in future biological studies that require controlling translation of multiple transcripts with high spatiotemporal resolution.
Collapse
Affiliation(s)
- Dongyang Zhang
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, United States
| | - Shuaijiang Jin
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, United States
| | - Xijun Piao
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, United States
| | - Neal K. Devaraj
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, United States
| |
Collapse
|
10
|
Li J, Duan H, Pu K. Nanotransducers for Near-Infrared Photoregulation in Biomedicine. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1901607. [PMID: 31199021 DOI: 10.1002/adma.201901607] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 04/05/2019] [Indexed: 06/09/2023]
Abstract
Photoregulation, which utilizes light to remotely control biological events, provides a precise way to decipher biology and innovate in medicine; however, its potential is limited by the shallow tissue penetration and/or phototoxicity of ultraviolet (UV)/visible light that are required to match the optical responses of endogenous photosensitive substances. Thereby, biologically friendly near-infrared (NIR) light with improved tissue penetration is desired for photoregulation. Since there are a few endogenous biomolecules absorbing or emitting light in the NIR region, the development of molecular transducers is essential to convert NIR light into the cues for regulation of biological events. In this regard, optical nanomaterials able to convert NIR light into UV/visible light, heat, or free radicals are suitable for this task. Here, the recent developments of optical nanotransducers for NIR-light-mediated photoregulation in medicine are summarized. The emerging applications, including photoregulation of neural activity, gene expression, and visual systems, as well as photochemical tissue bonding, are highlighted, along with the design principles of nanotransducers. Moreover, the current challenges and perspectives in this field are discussed.
Collapse
Affiliation(s)
- Jingchao Li
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, 637457, Singapore
| | - Hongwei Duan
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, 637457, Singapore
| | - Kanyi Pu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, 637457, Singapore
| |
Collapse
|
11
|
Habibian M, Velema WA, Kietrys AM, Onishi Y, Kool ET. Polyacetate and Polycarbonate RNA: Acylating Reagents and Properties. Org Lett 2019; 21:5413-5416. [PMID: 31268332 PMCID: PMC6775763 DOI: 10.1021/acs.orglett.9b01526] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Acylation of RNA at 2'-OH groups is widely applied in mapping RNA structure and recently for controlling RNA function. Reactions are described that install the smallest 2-carbon acyl groups on RNA-namely, 2'-O-acetyl and 2'-O-carbonate groups. Hybridization and thermal melting experiments are performed to assess the effects of the acyl groups on duplex formation. Both reagents can be employed at lower concentrations to map RNA secondary structure by reverse transcriptase primer extension (SHAPE) methods.
Collapse
Affiliation(s)
| | | | - Anna M. Kietrys
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Yoshiyuki Onishi
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Eric T. Kool
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
12
|
Li J, Leung CWT, Wong DSH, Xu J, Li R, Zhao Y, Yung CYY, Zhao E, Tang BZ, Bian L. Photocontrolled SiRNA Delivery and Biomarker-Triggered Luminogens of Aggregation-Induced Emission by Up-Conversion NaYF 4:Yb 3+Tm 3+@SiO 2 Nanoparticles for Inducing and Monitoring Stem-Cell Differentiation. ACS APPLIED MATERIALS & INTERFACES 2019; 11:22074-22084. [PMID: 28350958 DOI: 10.1021/acsami.7b00845] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Controlling the differentiation of stem cells and monitoring cell differentiation has attracted much research interest since the discovery of stem cells. In this regard, a novel near-infrared (NIR) light-activated nanoplatform is obtained by encapsulating the photoactivatable caged compound (DMNPE/siRNA) and combining a MMP13 cleaved imaging peptide-tetrapheny-lethene (TPE) unit conjugated with the mesoporous silica-coated up-conversion nanoparticles (UCNPs) for the remote control of cell differentiation and, simultaneously, for the real-time monitoring of differentiation. Upon NIR light illumination, the photoactivated caged compound is activated, and the siRNA is released from UCNPs, allowing controlled differentiation of stem cells by light. More importantly, MMP13 enzyme triggered by osteogenic differentiation would effectively cleave the TPE probe peptide, thereby allowing the real-time monitoring of differentiation in living stem cells by aggregation-induced emission (AIE).
Collapse
Affiliation(s)
- Jinming Li
- Division of Biomedical Engineering , The Chinese University of Hong Kong , Hong Kong , China
| | - Chris Wai Tung Leung
- Department of Chemistry, Institute of Molecular Functional Materials , The Hong Kong University of Science and Technology (HKUST) , Kowloon, Hong Kong , China
| | - Dexter Siu Hong Wong
- Division of Biomedical Engineering , The Chinese University of Hong Kong , Hong Kong , China
| | - Jianbin Xu
- Division of Biomedical Engineering , The Chinese University of Hong Kong , Hong Kong , China
| | - Rui Li
- Division of Biomedical Engineering , The Chinese University of Hong Kong , Hong Kong , China
| | - Yueyue Zhao
- Department of Chemistry, Institute of Molecular Functional Materials , The Hong Kong University of Science and Technology (HKUST) , Kowloon, Hong Kong , China
| | - Chris Yu Yee Yung
- Department of Chemistry, Institute of Molecular Functional Materials , The Hong Kong University of Science and Technology (HKUST) , Kowloon, Hong Kong , China
| | - Engui Zhao
- Department of Chemistry, Institute of Molecular Functional Materials , The Hong Kong University of Science and Technology (HKUST) , Kowloon, Hong Kong , China
| | - Ben Zhong Tang
- Department of Chemistry, Institute of Molecular Functional Materials , The Hong Kong University of Science and Technology (HKUST) , Kowloon, Hong Kong , China
| | - Liming Bian
- Division of Biomedical Engineering , The Chinese University of Hong Kong , Hong Kong , China
- China Orthopedic Regenerative Medicine Group (CORMed) , Hangzhou , China
| |
Collapse
|
13
|
Park HS, Kietrys AM, Kool ET. Simple alkanoyl acylating agents for reversible RNA functionalization and control. Chem Commun (Camb) 2019; 55:5135-5138. [PMID: 30977472 PMCID: PMC6541391 DOI: 10.1039/c9cc01598a] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
We describe the synthesis and RNA acylation activity of a series of minimalist azidoalkanoyl imidazole reagents, with the aim of functionalizing RNA at 2'-hydroxyl groups at stoichiometric to superstoichiometric levels. We find marked effects of small structural changes on their ability to acylate and be reductively removed, and identify reagents and methods that enable efficient RNA functionalization and control.
Collapse
Affiliation(s)
- Hyun Shin Park
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA.
| | | | | |
Collapse
|
14
|
Abstract
External photocontrol over RNA function has emerged as a useful tool for studying nucleic acid biology. Most current methods rely on fully synthetic nucleic acids with photocaged nucleobases, limiting application to relatively short synthetic RNAs. Here we report a method to gain photocontrol over RNA by postsynthetic acylation of 2'-hydroxyls with photoprotecting groups. One-step introduction of these groups efficiently blocks hybridization, which is restored after light exposure. Polyacylation (termed cloaking) enables control over a hammerhead ribozyme, illustrating optical control of RNA catalytic function. Use of the new approach on a transcribed 237 nt RNA aptamer demonstrates the utility of this method to switch on RNA folding in a cellular context, and underlines the potential for application in biological studies.
Collapse
Affiliation(s)
- Willem A Velema
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Anna M. Kietrys
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Eric T. Kool
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
15
|
Kadina A, Kietrys AM, Kool ET. RNA Cloaking by Reversible Acylation. Angew Chem Int Ed Engl 2018; 57:3059-3063. [PMID: 29370460 PMCID: PMC5842138 DOI: 10.1002/anie.201708696] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 01/18/2018] [Indexed: 11/08/2022]
Abstract
We describe a selective and mild chemical approach for controlling RNA hybridization, folding, and enzyme interactions. Reaction of RNAs in aqueous buffer with an azide-substituted acylating agent (100-200 mm) yields several 2'-OH acylations per RNA strand in as little as 10 min. This poly-acylated ("cloaked") RNA is strongly blocked from hybridization with complementary nucleic acids, from cleavage by RNA-processing enzymes, and from folding into active aptamer structures. Importantly, treatment with a water-soluble phosphine triggers a Staudinger reduction of the azide groups, resulting in spontaneous loss of acyl groups ("uncloaking"). This fully restores RNA folding and biochemical activity.
Collapse
Affiliation(s)
- Anastasia Kadina
- Department of Chemistry, Stanford University, Stanford, CA, 94305, USA
| | - Anna M Kietrys
- Department of Chemistry, Stanford University, Stanford, CA, 94305, USA
| | - Eric T Kool
- Department of Chemistry, Stanford University, Stanford, CA, 94305, USA
| |
Collapse
|
16
|
Yang J, Chen C, Tang X. Cholesterol-Modified Caged siRNAs for Photoregulating Exogenous and Endogenous Gene Expression. Bioconjug Chem 2018. [DOI: 10.1021/acs.bioconjchem.8b00080] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jiali Yang
- State Key Laboratory of Natural and Biomimetic Drugs, Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, the School of Pharmaceutical Sciences and Center for Noncoding RNA Medicine, Peking University Health Center, Peking University, Beijing 100191, China
| | - Changmai Chen
- State Key Laboratory of Natural and Biomimetic Drugs, Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, the School of Pharmaceutical Sciences and Center for Noncoding RNA Medicine, Peking University Health Center, Peking University, Beijing 100191, China
| | - Xinjing Tang
- State Key Laboratory of Natural and Biomimetic Drugs, Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, the School of Pharmaceutical Sciences and Center for Noncoding RNA Medicine, Peking University Health Center, Peking University, Beijing 100191, China
| |
Collapse
|
17
|
Zhang L, Chen C, Fan X, Tang X. Photomodulating Gene Expression by Using Caged siRNAs with Single-Aptamer Modification. Chembiochem 2018; 19:1259-1263. [PMID: 29488297 DOI: 10.1002/cbic.201700623] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Indexed: 12/21/2022]
Abstract
Caged siRNAs incorporating terminal modification were rationally designed for photochemical regulation of gene silencing induced by RNA interference (RNAi). Through the conjugation of a single oligonucleotide aptamer at the 5' terminus of the antisense RNA strand, enhancement of the blocking effect for RNA-induced silencing complex (RISC) formation/processing was expected, due both/either to the aptamers themselves and/or to their interaction with large binding proteins. Two oligonucleotide aptamers (AS1411 and MUC-1) were chosen for aptamer-siRNA conjugation through a photolabile linker. This caging strategy was successfully used to photoregulate gene expression both of firefly luciferase and of green fluorescent protein (GFP) in cells. Further patterning experiments revealed that spatial regulation of GFP expression was successfully achieved by using the aptamer-modified caged siRNA and light activation. We expect that further optimized caged siRNAs featuring aptamer conjugation will be promising for practical applications to spatiotemporal photoregulation of gene expression in the future.
Collapse
Affiliation(s)
- Liangliang Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, P.R. China
| | - Changmai Chen
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, P.R. China
| | - Xinli Fan
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, P.R. China
| | - Xinjing Tang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, P.R. China
| |
Collapse
|
18
|
Affiliation(s)
- Anastasia Kadina
- Department of Chemistry; Stanford University; Stanford CA 94305 USA
| | - Anna M. Kietrys
- Department of Chemistry; Stanford University; Stanford CA 94305 USA
| | - Eric T. Kool
- Department of Chemistry; Stanford University; Stanford CA 94305 USA
| |
Collapse
|
19
|
Zhang L, Liang D, Wang Y, Li D, Zhang J, Wu L, Feng M, Yi F, Xu L, Lei L, Du Q, Tang X. Caged circular siRNAs for photomodulation of gene expression in cells and mice. Chem Sci 2017; 9:44-51. [PMID: 29629072 PMCID: PMC5869302 DOI: 10.1039/c7sc03842a] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2017] [Accepted: 10/18/2017] [Indexed: 12/12/2022] Open
Abstract
Caged siRNAs with a circular structure were successfully used for photoregulation of target genes in both cells and mice.
By means of RNA interference (RNAi), small interfering RNAs (siRNAs) play important roles in gene function study and drug development. Recently, photolabile siRNAs were developed to elucidate the process of gene silencing in terms of space, time and degree through chemical modification of siRNAs. We report herein a novel type of photolabile siRNA that was synthesized through cyclizing two ends of a single stranded RNA with a photocleavable linker. These circular siRNAs became more resistant to serum degradation. Using reporter assays of firefly/Renilla luciferase and GFP/RFP, the gene silencing activities of caged circular siRNAs for both genes were evaluated in HEK293 cells. The results indicated that the target genes were successfully photomodulated using these caged circular siRNAs that were formed by caged circular antisense guide RNAs and their linear complementary sense RNAs. Using the caged circular siRNA targeting GFP, we also successfully achieved photomodulation of GFP expression in mice. Upon further optimization, this new type of caged circular siRNA is expected to be a promising tool for studying gene therapy.
Collapse
Affiliation(s)
- Liangliang Zhang
- State Key Laboratory of Natural and Biomimetic Drugs , School of Pharmaceutical Sciences , Peking University , No. 38, Xueyuan Rd , Beijing 100191 , China .
| | - Duanwei Liang
- State Key Laboratory of Natural and Biomimetic Drugs , School of Pharmaceutical Sciences , Peking University , No. 38, Xueyuan Rd , Beijing 100191 , China .
| | - Yuan Wang
- State Key Laboratory of Natural and Biomimetic Drugs , School of Pharmaceutical Sciences , Peking University , No. 38, Xueyuan Rd , Beijing 100191 , China .
| | - Dong Li
- State Key Laboratory of Natural and Biomimetic Drugs , School of Pharmaceutical Sciences , Peking University , No. 38, Xueyuan Rd , Beijing 100191 , China .
| | - Jinhao Zhang
- State Key Laboratory of Natural and Biomimetic Drugs , School of Pharmaceutical Sciences , Peking University , No. 38, Xueyuan Rd , Beijing 100191 , China .
| | - Li Wu
- State Key Laboratory of Natural and Biomimetic Drugs , School of Pharmaceutical Sciences , Peking University , No. 38, Xueyuan Rd , Beijing 100191 , China .
| | - Mengke Feng
- State Key Laboratory of Natural and Biomimetic Drugs , School of Pharmaceutical Sciences , Peking University , No. 38, Xueyuan Rd , Beijing 100191 , China .
| | - Fan Yi
- State Key Laboratory of Natural and Biomimetic Drugs , School of Pharmaceutical Sciences , Peking University , No. 38, Xueyuan Rd , Beijing 100191 , China .
| | - Luzheng Xu
- Medical and Health Analytical Center , Peking University , No. 38, Xueyuan Rd , Beijing 100191 , China
| | - Liandi Lei
- Medical and Health Analytical Center , Peking University , No. 38, Xueyuan Rd , Beijing 100191 , China
| | - Quan Du
- State Key Laboratory of Natural and Biomimetic Drugs , School of Pharmaceutical Sciences , Peking University , No. 38, Xueyuan Rd , Beijing 100191 , China .
| | - XinJing Tang
- State Key Laboratory of Natural and Biomimetic Drugs , School of Pharmaceutical Sciences , Peking University , No. 38, Xueyuan Rd , Beijing 100191 , China .
| |
Collapse
|
20
|
Jayakumar MKG, Bansal A, Li BN, Zhang Y. Mesoporous silica-coated upconversion nanocrystals for near infrared light-triggered control of gene expression in zebrafish. Nanomedicine (Lond) 2016; 10:1051-61. [PMID: 25929564 DOI: 10.2217/nnm.14.198] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
AIM To develop a platform technology for photoactivation of gene expression in deep tissues. MATERIALS & METHODS Upconversion nanoparticles (UCNs) were synthesized from rare earth elements like Ytterbium, Yttrium and Thulium. The nanoparticles were then further coated with a layer of mesoporous silica and loaded with photomorpholinos or photocaged plasmids and tested in zebrafish. The UCNs were activated using safe near-infrared (NIR) light which in turn produced UV light locally to enable photoactivation in deep tissues. RESULTS Light-controlled gene knockdown was demonstrated in an in vivo model, namely zebrafish. UCNs loaded with photomorpholinos were used to knockdown a gene - ntl, which is essential for notochord formation and mesoderm patterning in zebrafish using NIR light. UCN-mediated light-controlled gene expression was also achieved by expressing GFP in tumor cells transplanted into adult zebrafish by irradiating the fish with NIR light. Apart from the delivery and control of genes, the UCNs were also used as imaging agents to image both zebrafish embryos and adult zebrafish. enabled excellent background-free, fluorescent imaging of both embryos and adult zebrafish. CONCLUSION This technique of controlling gene expression/knockdown through NIR using UCNs is a game changer in the field of genetic manipulation and has the potential of being an excellent, safe and easy to implement tool for developmental biologists to investigate the role of specific genes in development. However, this technique is not restricted to be used only in zebrafish and can be extended for use in other animal models and even for clinical use, in various gene therapy applications.
Collapse
Affiliation(s)
- Muthu Kumara Gnanasammandhan Jayakumar
- Department of Biomedical Engineering, Faculty of Engineering, Block EA #03-12, National University of Singapore, 9 Engineering Drive 1, 117576, Singapore
| | | | | | | |
Collapse
|
21
|
Ji Y, Yang J, Wu L, Yu L, Tang X. Photochemical Regulation of Gene Expression Using Caged siRNAs with Single Terminal Vitamin E Modification. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201510921] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Yuzhuo Ji
- State Key Laboratory of Natural and Biomimetic Drugs; School of Pharmaceutical Sciences; Peking University; No. 38, Xueyuan Rd. Beijing 100191 China
| | - Jiali Yang
- State Key Laboratory of Natural and Biomimetic Drugs; School of Pharmaceutical Sciences; Peking University; No. 38, Xueyuan Rd. Beijing 100191 China
| | - Li Wu
- State Key Laboratory of Natural and Biomimetic Drugs; School of Pharmaceutical Sciences; Peking University; No. 38, Xueyuan Rd. Beijing 100191 China
| | - Lijia Yu
- State Key Laboratory of Natural and Biomimetic Drugs; School of Pharmaceutical Sciences; Peking University; No. 38, Xueyuan Rd. Beijing 100191 China
| | - Xinjing Tang
- State Key Laboratory of Natural and Biomimetic Drugs; School of Pharmaceutical Sciences; Peking University; No. 38, Xueyuan Rd. Beijing 100191 China
| |
Collapse
|
22
|
Ji Y, Yang J, Wu L, Yu L, Tang X. Photochemical Regulation of Gene Expression Using Caged siRNAs with Single Terminal Vitamin E Modification. Angew Chem Int Ed Engl 2015; 55:2152-6. [DOI: 10.1002/anie.201510921] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Indexed: 01/18/2023]
Affiliation(s)
- Yuzhuo Ji
- State Key Laboratory of Natural and Biomimetic Drugs; School of Pharmaceutical Sciences; Peking University; No. 38, Xueyuan Rd. Beijing 100191 China
| | - Jiali Yang
- State Key Laboratory of Natural and Biomimetic Drugs; School of Pharmaceutical Sciences; Peking University; No. 38, Xueyuan Rd. Beijing 100191 China
| | - Li Wu
- State Key Laboratory of Natural and Biomimetic Drugs; School of Pharmaceutical Sciences; Peking University; No. 38, Xueyuan Rd. Beijing 100191 China
| | - Lijia Yu
- State Key Laboratory of Natural and Biomimetic Drugs; School of Pharmaceutical Sciences; Peking University; No. 38, Xueyuan Rd. Beijing 100191 China
| | - Xinjing Tang
- State Key Laboratory of Natural and Biomimetic Drugs; School of Pharmaceutical Sciences; Peking University; No. 38, Xueyuan Rd. Beijing 100191 China
| |
Collapse
|
23
|
On-demand drug delivery from local depots. J Control Release 2015; 219:8-17. [PMID: 26374941 DOI: 10.1016/j.jconrel.2015.09.011] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 09/08/2015] [Accepted: 09/08/2015] [Indexed: 11/22/2022]
Abstract
Stimuli-responsive polymeric depots capable of on-demand release of therapeutics promise a substantial improvement in the treatment of many local diseases. These systems have the advantage of controlling local dosing so that payload is released at a time and with a dose chosen by a physician or patient, and the dose can be varied as disease progresses or healing occurs. Macroscale drug depot can be induced to release therapeutics through the action of physical stimuli such as ultrasound, electric and magnetic fields and light as well as through the addition of pharmacological stimuli such as nucleic acids and small molecules. In this review, we highlight recent advances in the development of polymeric systems engineered for releasing therapeutic molecules through physical and pharmacological stimulation.
Collapse
|
24
|
Wu L, Wang J, Tang X. Synthesis of Site‐Specifically Phosphate‐Caged siRNAs. ACTA ACUST UNITED AC 2015; 61:6.12.1-6.12.15. [DOI: 10.1002/0471142700.nc0612s61] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Li Wu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University Beijing China
- School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences Beijing China
| | - Jie Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University Beijing China
| | - Xinjing Tang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University Beijing China
| |
Collapse
|
25
|
Caged oligonucleotides for studying biological systems. J Inorg Biochem 2015; 150:182-8. [PMID: 25865001 DOI: 10.1016/j.jinorgbio.2015.03.010] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Revised: 03/17/2015] [Accepted: 03/18/2015] [Indexed: 01/08/2023]
Abstract
Light-activated ("caged") compounds have been widely employed for studying biological processes with high spatial and temporal control. In the past decade, several new approaches for caging the structure and function of DNA and RNA oligonucleotides have been developed. This review focuses on caged oligonucleotides that incorporate site-specifically one or two photocleavable linkers, whose photolysis yields oligonucleotides with dramatic structural and functional changes. This technique has been employed by our laboratory and others to photoregulate gene expression in cells and living organisms, typically using near UV-activated organic chromophores. To improve capabilities for in vivo studies, we harnessed the rich inorganic photochemistry of ruthenium bipyridyl complexes to synthesize Ru-caged morpholino antisense oligonucleotides that remain inactive in zebrafish embryos until uncaged with visible light. Expanding into new caged oligonucleotide applications, our lab has developed Transcriptome In Vivo Analysis (TIVA) technology, which provides the first noninvasive, unbiased method for isolating mRNA from single neurons in brain tissues. TIVA-isolated mRNA can be amplified and then analyzed using next-generation sequencing (RNA-seq).
Collapse
|
26
|
Guo H, Yan D, Wei Y, Han S, Qian H, Yang Y, Zhang Y, Liu X, Sun S. Inhibition of murine bladder cancer cell growth in vitro by photocontrollable siRNA based on upconversion fluorescent nanoparticles. PLoS One 2014; 9:e112713. [PMID: 25423032 PMCID: PMC4244081 DOI: 10.1371/journal.pone.0112713] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Accepted: 10/14/2014] [Indexed: 11/18/2022] Open
Abstract
This study provides a unique approach to activate caged small interfering RNAs (siRNAs) using indirect UV light emitted by the near-infrared (NIR)-to-UV upconversion process to achieve high spatial and temporal gene interference patterns. siRNA molecules against the anti-apoptotic gene survivin was caged by light-sensitive molecules (4,5-dimethoxy-2-nitroacetophenone, DMNPE), which rendered them temporarily non-functional. NIR-to-UV NaYF4:Yb,Tm upconversion nanoparticles (UCPs) served as delivery vehicles and activators of the caged siRNA molecules in murine bladder cancer cells (MB49 cell line). Upconverted UV light at 355 nm was emitted from the NIR-irradiated UCPs, which well coincided with the wavelength needed to uncage DMNPE. Consequently, UV light acted as a switch to uncage the delivered siRNA molecule, thereby rendering fully functional for exerting its therapeutic effect in the bladder cancer cells. To achieve the highest RNA interference efficiency, conditions such as time after cellular uptake, excitation time, UCPs concentration and laser power were optimized. Results showed that 200 µg/mL nanoparticle concentration combined with 12 h incubation with MB49 cells and excitation with NIR laser at 100 mW power for 15 min provided the ideal interference efficiency and strongest induction of MB49 cell death. Our findings demonstrate the potential biological application of UCPs in treating bladder cancer by a novel therapeutic approach.
Collapse
Affiliation(s)
- Huichen Guo
- State Key Laboratory of Veterinary Etiological Biology and Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujiaping 1, Lanzhou, Gansu, 730046, The People's Republic of China
| | - Dan Yan
- State Key Laboratory of Veterinary Etiological Biology and Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujiaping 1, Lanzhou, Gansu, 730046, The People's Republic of China
| | - Yanquan Wei
- State Key Laboratory of Veterinary Etiological Biology and Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujiaping 1, Lanzhou, Gansu, 730046, The People's Republic of China
| | - Shichong Han
- State Key Laboratory of Veterinary Etiological Biology and Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujiaping 1, Lanzhou, Gansu, 730046, The People's Republic of China
| | - Haisheng Qian
- School of Medical Engineering, Hefei University of Technology, Hefei 230009, The People's Republic of China
| | - Yunshang Yang
- School of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou 730050, The People's Republic of China
| | - Yingpeng Zhang
- School of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou 730050, The People's Republic of China
| | - Xiangtao Liu
- State Key Laboratory of Veterinary Etiological Biology and Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujiaping 1, Lanzhou, Gansu, 730046, The People's Republic of China
| | - Shiqi Sun
- State Key Laboratory of Veterinary Etiological Biology and Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujiaping 1, Lanzhou, Gansu, 730046, The People's Republic of China
- * E-mail:
| |
Collapse
|
27
|
Meyer A, Mokhir A. RNA Interference Controlled by Light of Variable Wavelength. Angew Chem Int Ed Engl 2014; 53:12840-3. [DOI: 10.1002/anie.201405885] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Revised: 08/05/2014] [Indexed: 11/09/2022]
|
28
|
Meyer A, Mokhir A. RNA Interference Controlled by Light of Variable Wavelength. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201405885] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
29
|
Wu L, Pei F, Zhang J, Wu J, Feng M, Wang Y, Jin H, Zhang L, Tang X. Synthesis of Site-Specifically Phosphate-Caged siRNAs and Evaluation of Their RNAi Activity and Stability. Chemistry 2014; 20:12114-22. [DOI: 10.1002/chem.201403430] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Indexed: 01/17/2023]
|
30
|
Hemphill J, Govan J, Uprety R, Tsang M, Deiters A. Site-specific promoter caging enables optochemical gene activation in cells and animals. J Am Chem Soc 2014; 136:7152-8. [PMID: 24802207 PMCID: PMC4333597 DOI: 10.1021/ja500327g] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
![]()
In
cell and molecular biology, double-stranded circular DNA constructs,
known as plasmids, are extensively used to express a gene of interest.
These gene expression systems rely on a specific promoter region to
drive the transcription of genes either constitutively (i.e., in a
continually “ON” state) or conditionally (i.e., in response
to a specific transcription initiator). However, controlling plasmid-based
expression with high spatial and temporal resolution in cellular environments
and in multicellular organisms remains challenging. To overcome this
limitation, we have site-specifically installed nucleobase-caging
groups within a plasmid promoter region to enable optochemical control
of transcription and, thus, gene expression, via photolysis of the
caging groups. Through the light-responsive modification of plasmid-based
gene expression systems, we have demonstrated optochemical activation
of an exogenous fluorescent reporter gene in both tissue culture and
a live animal model, as well as light-induced overexpression of an
endogenous signaling protein.
Collapse
Affiliation(s)
- James Hemphill
- Department of Chemistry, North Carolina State University , Raleigh, North Carolina 27695, United States
| | | | | | | | | |
Collapse
|
31
|
Huang X, Pallaoro A, Braun GB, Morales D, Ogunyankin MO, Zasadzinski J, Reich NO. Modular plasmonic nanocarriers for efficient and targeted delivery of cancer-therapeutic siRNA. NANO LETTERS 2014; 14:2046-51. [PMID: 24597503 PMCID: PMC3985716 DOI: 10.1021/nl500214e] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Revised: 03/01/2014] [Indexed: 05/23/2023]
Abstract
We have combined a versatile and powerful route to deliver nucleic acids with peptide-based cell-specific targeting. siRNA targeting the polo-like kinase gene is in clinical trials for cancer treatment, and here we deliver this RNA selectively to cancer cells displaying the neuropilin-1 epitope using gold nanoshells. Release of the siRNA from the nanoparticles results from irradiation with a pulsed near-infrared laser, which also provides efficient endosomal escape within the cell. As a result, our approach requires 10-fold less material than standard nucleic acid transduction materials and is significantly more efficient than other particle-based methods. We also describe a particle-nucleic acid design that does not rely on modified RNA, thereby making the preparation of these materials more efficient and much less expensive. These improvements, when combined with control over when and where the siRNA is released, could provide the basis for diverse cell biological studies.
Collapse
Affiliation(s)
- Xiao Huang
- Department
of Chemistry and Biochemistry, University
of California, Santa Barbara, California 93106, United States
| | - Alessia Pallaoro
- Department
of Chemistry and Biochemistry, University
of California, Santa Barbara, California 93106, United States
| | - Gary B. Braun
- Cancer
Research Center, Sanford-Burnham Medical
Research Institute, La Jolla, California 92037, United States
| | - Demosthenes
P. Morales
- Department
of Chemistry and Biochemistry, University
of California, Santa Barbara, California 93106, United States
| | - Maria O. Ogunyankin
- Department
of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Joseph Zasadzinski
- Department
of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Norbert O. Reich
- Department
of Chemistry and Biochemistry, University
of California, Santa Barbara, California 93106, United States
| |
Collapse
|
32
|
Abstract
RNA interference (RNAi) is an evolutionarily conserved, endogenous process for post-transcriptional regulation of gene expression. Although RNAi therapeutics have recently progressed through the pipeline toward clinical trials, the application of these as ideal, clinical therapeutics requires the development of safe and effective delivery systems. Inspired by the immense progress with nanotechnology in drug delivery, efforts have been dedicated to the development of nanoparticle-based RNAi delivery systems. For example, a precisely engineered, multifunctional nanocarrier with combined passive and active targeting capabilities may address the delivery challenges for the widespread use of RNAi as a therapy. Therefore, in this review, we introduce the major hurdles in achieving efficient RNAi delivery and discuss the current advances in applying nanotechnology-based delivery systems to overcome the delivery hurdles of RNAi therapeutics. In particular, some representative examples of nanoparticle-based delivery formulations for targeted RNAi therapeutics are highlighted.
Collapse
|
33
|
Griepenburg JC, Ruble BK, Dmochowski IJ. Caged oligonucleotides for bidirectional photomodulation of let-7 miRNA in zebrafish embryos. Bioorg Med Chem 2013; 21:6198-204. [PMID: 23721917 PMCID: PMC3789856 DOI: 10.1016/j.bmc.2013.04.082] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Revised: 04/20/2013] [Accepted: 04/30/2013] [Indexed: 12/17/2022]
Abstract
Many biological functions of microRNA (miRNA) have been identified in the past decade. However, a single miRNA can regulate multiple gene targets, thus it has been a challenge to elucidate the specific functions of each miRNA in different locations and times. New chemical tools make it possible to modulate miRNA activity with higher spatiotemporal resolution. Here, we describe light-activated (caged) constructs for switching let-7 miRNA 'on' or 'off' with 365 nm light in developing zebrafish embryos.
Collapse
Affiliation(s)
- Julianne C. Griepenburg
- Department of Chemistry, University of Pennsylvania, 231 S.34th Street, Philadelphia, PA 19104 USA
| | - Brittani K. Ruble
- Department of Chemistry, University of Pennsylvania, 231 S.34th Street, Philadelphia, PA 19104 USA
| | - Ivan J. Dmochowski
- Department of Chemistry, University of Pennsylvania, 231 S.34th Street, Philadelphia, PA 19104 USA
| |
Collapse
|
34
|
miR-148b–Nanoparticle conjugates for light mediated osteogenesis of human adipose stromal/stem cells. Biomaterials 2013; 34:7799-810. [DOI: 10.1016/j.biomaterials.2013.07.004] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Accepted: 07/01/2013] [Indexed: 02/04/2023]
|
35
|
Govan JM, Young DD, Lusic H, Liu Q, Lively MO, Deiters A. Optochemical control of RNA interference in mammalian cells. Nucleic Acids Res 2013; 41:10518-28. [PMID: 24021631 PMCID: PMC3905849 DOI: 10.1093/nar/gkt806] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Short interfering RNAs (siRNAs) and microRNAs (miRNAs) have been widely used in mammalian tissue culture and model organisms to selectively silence genes of interest. One limitation of this technology is the lack of precise external control over the gene-silencing event. The use of photocleavable protecting groups installed on nucleobases is a promising strategy to circumvent this limitation, providing high spatial and temporal control over siRNA or miRNA activation. Here, we have designed, synthesized and site-specifically incorporated new photocaged guanosine and uridine RNA phosphoramidites into short RNA duplexes. We demonstrated the applicability of these photocaged siRNAs in the light-regulation of the expression of an exogenous green fluorescent protein reporter gene and an endogenous target gene, the mitosis motor protein, Eg5. Two different approaches were investigated with the caged RNA molecules: the light-regulation of catalytic RNA cleavage by RISC and the light-regulation of seed region recognition. The ability to regulate both functions with light enables the application of this optochemical methodology to a wide range of small regulatory RNA molecules.
Collapse
Affiliation(s)
- Jeane M Govan
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695, USA, Department of Chemistry, College of William & Mary, Williamsburg, VA 32187, USA, Center for Structural Biology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA and Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | | | | | | | | | | |
Collapse
|
36
|
Hemphill J, Deiters A. DNA Computation in Mammalian Cells: MicroRNA Logic Operations. J Am Chem Soc 2013; 135:10512-8. [DOI: 10.1021/ja404350s] [Citation(s) in RCA: 172] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- James Hemphill
- Department
of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United
States
| | - Alexander Deiters
- Department
of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United
States
| |
Collapse
|
37
|
Baumann L, Beck-Sickinger AG. Photoactivatable Chemokines - Controlling Protein Activity by Light. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201302242] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
38
|
Baumann L, Beck-Sickinger AG. Photoactivatable Chemokines - Controlling Protein Activity by Light. Angew Chem Int Ed Engl 2013; 52:9550-3. [DOI: 10.1002/anie.201302242] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2013] [Indexed: 01/08/2023]
|
39
|
Brown PK, Qureshi AT, Moll AN, Hayes DJ, Monroe WT. Silver nanoscale antisense drug delivery system for photoactivated gene silencing. ACS NANO 2013; 7:2948-59. [PMID: 23473419 DOI: 10.1021/nn304868y] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The unique photophysical properties of noble metal nanoparticles contribute to their potential as photoactivated drug delivery vectors. Here we demonstrate the synthesis and characterization of 60-80 nm silver nanoparticles (SNPs) decorated with thiol-terminated photolabile DNA oligonucleotides. In vitro assays and fluorescent confocal microscopy of treated cell cultures show efficient UV-wavelength photoactivation of surface-tethered caged ISIS2302 antisense oligonucleotides possessing internal photocleavable linkers. As a demonstration of the advantages of these novel nanocarriers, we investigate properties including: enhanced stability to nucleases, increased hybridization activity upon photorelease, and efficient cellular uptake as compared to commercial transfection vectors. Their potential as multicomponent delivery agents for oligonucleotide therapeutics is shown through regulation of ICAM-1 (Intracellular Adhesion Molecule-1) silencing. Our results suggest a means to achieve light-triggered, spatiotemporally controlled gene silencing via nontoxic silver nanocarriers, which hold promise as tailorable platforms for nanomedicine, gene expression studies, and genetic therapies.
Collapse
Affiliation(s)
- Paige K Brown
- Biological and Agricultural Engineering, Louisiana State University and LSU AgCenter, Baton Rouge, Louisiana 70803, United States
| | | | | | | | | |
Collapse
|
40
|
Wang Y, Wu L, Wang P, Lv C, Yang Z, Tang X. Manipulation of gene expression in zebrafish using caged circular morpholino oligomers. Nucleic Acids Res 2012; 40:11155-62. [PMID: 23002141 PMCID: PMC3505977 DOI: 10.1093/nar/gks840] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Morpholino oligomers (MOs) have been widely used to knock down specific genes in zebrafish, but their constitutive activities limit their experimental applications for studying a gene with multiple functions or within a gene network. We report herein a new design and synthesis of caged circular MOs (caged cMOs) with two ends linked by a photocleavable moiety. These caged cMOs were successfully used to photomodulate β-catenin-2 and no tail expression in zebrafish embryos.
Collapse
Affiliation(s)
- Yuan Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, No. 38, Xueyuan Road, Beijing 100191, China
| | | | | | | | | | | |
Collapse
|
41
|
Brieke C, Rohrbach F, Gottschalk A, Mayer G, Heckel A. Light-controlled tools. Angew Chem Int Ed Engl 2012; 51:8446-76. [PMID: 22829531 DOI: 10.1002/anie.201202134] [Citation(s) in RCA: 750] [Impact Index Per Article: 62.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2012] [Indexed: 12/21/2022]
Abstract
Spatial and temporal control over chemical and biological processes plays a key role in life, where the whole is often much more than the sum of its parts. Quite trivially, the molecules of a cell do not form a living system if they are only arranged in a random fashion. If we want to understand these relationships and especially the problems arising from malfunction, tools are necessary that allow us to design sophisticated experiments that address these questions. Highly valuable in this respect are external triggers that enable us to precisely determine where, when, and to what extent a process is started or stopped. Light is an ideal external trigger: It is highly selective and if applied correctly also harmless. It can be generated and manipulated with well-established techniques, and many ways exist to apply light to living systems--from cells to higher organisms. This Review will focus on developments over the last six years and includes discussions on the underlying technologies as well as their applications.
Collapse
Affiliation(s)
- Clara Brieke
- Goethe University Frankfurt, Institute for Organic Chemistry and Chemical Biology Buchmann Institute for Molecular Life Sciences, Max-von-Laue-Strasse 9, 60438 Frankfurt/Main, Germany
| | | | | | | | | |
Collapse
|
42
|
Brieke C, Rohrbach F, Gottschalk A, Mayer G, Heckel A. Lichtgesteuerte Werkzeuge. Angew Chem Int Ed Engl 2012. [DOI: 10.1002/ange.201202134] [Citation(s) in RCA: 225] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Clara Brieke
- Goethe‐Universität Frankfurt, Institut für Organische Chemie und Chemische Biologie, Buchmann‐Institut für Molekulare Lebenswissenschaften, Max‐von‐Laue‐Straße 9, 60438 Frankfurt/Main (Deutschland)
| | - Falk Rohrbach
- Universität Bonn, LIMES‐Institut, Gerhard‐Domagk‐Straße 1, 53121 Bonn (Deutschland)
| | - Alexander Gottschalk
- Buchmann‐Institut für Molekulare Lebenswissenschaften, Institut für Biochemie, Max‐von‐Laue‐Straße 15, 60438 Frankfurt/Main (Deutschland)
| | - Günter Mayer
- Universität Bonn, LIMES‐Institut, Gerhard‐Domagk‐Straße 1, 53121 Bonn (Deutschland)
| | - Alexander Heckel
- Goethe‐Universität Frankfurt, Institut für Organische Chemie und Chemische Biologie, Buchmann‐Institut für Molekulare Lebenswissenschaften, Max‐von‐Laue‐Straße 9, 60438 Frankfurt/Main (Deutschland)
| |
Collapse
|
43
|
Gardner L, Deiters A. Light-controlled synthetic gene circuits. Curr Opin Chem Biol 2012; 16:292-9. [PMID: 22633822 DOI: 10.1016/j.cbpa.2012.04.010] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2012] [Revised: 04/10/2012] [Accepted: 04/15/2012] [Indexed: 01/09/2023]
Abstract
Highly complex synthetic gene circuits have been engineered in living organisms to develop systems with new biological properties. A precise trigger to activate or deactivate these complex systems is desired in order to tightly control different parts of a synthetic or natural network. Light represents an excellent tool to achieve this goal as it can be regulated in timing, location, intensity, and wavelength, which allows for precise spatiotemporal control over genetic circuits. Recently, light has been used as a trigger to control the biological function of small molecules, oligonucleotides, and proteins involved as parts in gene circuits. Light activation has enabled the construction of unique systems in living organisms such as band-pass filters and edge-detectors in bacterial cells. Additionally, light also allows for the regulation of intermediate steps of complex dynamic pathways in mammalian cells such as those involved in kinase networks. Herein we describe recent advancements in the area of light-controlled synthetic networks.
Collapse
Affiliation(s)
- Laura Gardner
- North Carolina State University, Department of Chemistry, Raleigh, NC 27695, United States
| | | |
Collapse
|
44
|
Remote activation of biomolecules in deep tissues using near-infrared-to-UV upconversion nanotransducers. Proc Natl Acad Sci U S A 2012; 109:8483-8. [PMID: 22582171 DOI: 10.1073/pnas.1114551109] [Citation(s) in RCA: 269] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Controlled activation or release of biomolecules is very crucial in various biological applications. Controlling the activity of biomolecules have been attempted by various means and controlling the activity by light has gained popularity in the past decade. The major hurdle in this process is that photoactivable compounds mostly respond to UV radiation and not to visible or near-infrared (NIR) light. The use of UV irradiation is limited by its toxicity and very low tissue penetration power. In this study, we report the exploitation of the potential of NIR-to-UV upconversion nanoparticles (UCNs), which act as nanotransducers to absorb NIR light having high tissue penetration power and negligible phototoxicity and emit UV light locally, for photoactivation of caged compounds and, in particular, used for photo-controlled gene expression. Both activation and knockdown of GFP was performed in both solution and cells, and patterned activation of GFP was achieved successfully by using upconverted UV light produced by NIR-to-UV UCNs. In-depth photoactivation through tissue phantoms and in vivo activation of caged nucleic acids were also accomplished. The success of this methodology has defined a unique level in the field of photo-controlled activation and delivery of molecules.
Collapse
|
45
|
Prokup A, Hemphill J, Deiters A. DNA computation: a photochemically controlled AND gate. J Am Chem Soc 2012; 134:3810-5. [PMID: 22239155 DOI: 10.1021/ja210050s] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
DNA computation is an emerging field that enables the assembly of complex circuits based on defined DNA logic gates. DNA-based logic gates have previously been operated through purely chemical means, controlling logic operations through DNA strands or other biomolecules. Although gates can operate through this manner, it limits temporal and spatial control of DNA-based logic operations. A photochemically controlled AND gate was developed through the incorporation of caged thymidine nucleotides into a DNA-based logic gate. By using light as the logic inputs, both spatial control and temporal control were achieved. In addition, design rules for light-regulated DNA logic gates were derived. A step-response, which can be found in a controller, was demonstrated. Photochemical inputs close the gap between DNA computation and silicon-based electrical circuitry, since light waves can be directly converted into electrical output signals and vice versa. This connection is important for the further development of an interface between DNA logic gates and electronic devices, enabling the connection of biological systems with electrical circuits.
Collapse
Affiliation(s)
- Alex Prokup
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, USA
| | | | | |
Collapse
|
46
|
Gardner L, Zou Y, Mara A, Cropp TA, Deiters A. Photochemical control of bacterial signal processing using a light-activated erythromycin. MOLECULAR BIOSYSTEMS 2011; 7:2554-7. [PMID: 21785768 DOI: 10.1039/c1mb05166k] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Bacterial cells control resistance to the macrolide antibiotic erythromycin using the MphR(A) repressor protein. Erythromycin binds to MphR(A), causing release of the PmphR promoter, activating expression of the 2'-phosphotransferase Mph(A). We engineered the MphR(A)/promoter system to, in conjunction with a light-activatable derivative of erythromycin, enable photochemical activation of gene expression in E. coli. We applied this photochemical gene switch to the construction of a light-triggered logic gate, a light-controlled band-pass filter, as well as spatial and temporal control of gene expression.
Collapse
Affiliation(s)
- Laura Gardner
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695, USA
| | | | | | | | | |
Collapse
|
47
|
Kala A, Friedman SH. Enhanced Light-Activated RNA Interference Using Phosphorothioate-Based dsRNA Precursors of siRNA. Pharm Res 2011; 28:3050-7. [DOI: 10.1007/s11095-011-0529-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2011] [Accepted: 06/29/2011] [Indexed: 10/18/2022]
|
48
|
Kelly A, Hurlstone AF. The use of RNAi technologies for gene knockdown in zebrafish. Brief Funct Genomics 2011; 10:189-96. [PMID: 21525144 DOI: 10.1093/bfgp/elr014] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Despite being a popular and versatile model organism in which to study development and model disease, the use of zebrafish has been hampered by the lack of a reliable, stable and cost-effective method of gene knockdown. It is therefore not surprising that the discovery of RNAi as an exploitable method of post-transcriptional gene regulation has created a lot of excitement within the zebrafish research community. However, despite concerted efforts in the field, progress in the use of RNAi technologies in zebrafish has been extremely slow and a reliable means of RNAi-mediated gene knockdown remains elusive. The following reviews progress in the field to date, highlights the major pitfalls identified and suggests possible future directions.
Collapse
Affiliation(s)
- Amanda Kelly
- Michael Smith Building, The University of Manchester, UK.
| | | |
Collapse
|
49
|
Photoregulation of protein plasmid expression in vitro and in vivo using BHQ caging group. CHINESE CHEM LETT 2011. [DOI: 10.1016/j.cclet.2010.10.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
50
|
Deiters A, Garner RA, Lusic H, Govan JM, Dush M, Nascone-Yoder NM, Yoder JA. Photocaged morpholino oligomers for the light-regulation of gene function in zebrafish and Xenopus embryos. J Am Chem Soc 2011; 132:15644-50. [PMID: 20961123 DOI: 10.1021/ja1053863] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Morpholino oligonucleotides, or morpholinos, have emerged as powerful antisense reagents for evaluating gene function in both in vitro and in vivo contexts. However, the constitutive activity of these reagents limits their utility for applications that require spatiotemporal control, such as tissue-specific gene disruptions in embryos. Here we report a novel and efficient synthetic route for incorporating photocaged monomeric building blocks directly into morpholino oligomers and demonstrate the utility of these caged morpholinos in the light-activated control of gene function in both cell culture and living embryos. We demonstrate that a caged morpholino that targets enhanced green fluorescent protein (EGFP) disrupts EGFP production only after exposure to UV light in both transfected cells and living zebrafish (Danio rerio) and Xenopus frog embryos. Finally, we show that a caged morpholino targeting chordin, a zebrafish gene that yields a distinct phenotype when functionally disrupted by conventional morpholinos, elicits a chordin phenotype in a UV-dependent manner. Our results suggest that photocaged morpholinos are readily synthesized and highly efficacious tools for light-activated spatiotemporal control of gene expression in multiple contexts.
Collapse
Affiliation(s)
- Alexander Deiters
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States.
| | | | | | | | | | | | | |
Collapse
|