1
|
Panda S, Phan H, Karlin KD. Heme-copper and Heme O 2-derived synthetic (bioinorganic) chemistry toward an understanding of cytochrome c oxidase dioxygen chemistry. J Inorg Biochem 2023; 249:112367. [PMID: 37742491 PMCID: PMC10615892 DOI: 10.1016/j.jinorgbio.2023.112367] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/22/2023] [Accepted: 09/07/2023] [Indexed: 09/26/2023]
Abstract
Cytochrome c oxidase (CcO), also widely known as mitochondrial electron-transport-chain complex IV, is a multi-subunit transmembrane protein responsible for catalyzing the last step of the electron transport chain, dioxygen reduction to water, which is essential to the establishment and maintenance of the membrane proton gradient that drives ATP synthesis. Although many intermediates in the CcO catalytic cycle have been spectroscopically and/or computationally authenticated, the specifics regarding the IP intermediate, hypothesized to be a heme-Cu (hydro)peroxo species whose O-O bond homolysis is supported by a hydrogen-bonding network of water molecules, are largely obscured by the fast kinetics of the A (FeIII-O2•-/CuI/Tyr) → PM (FeIV=O/CuII-OH/Tyr•) step. In this review, we have focused on the recent advancements in the design, development, and characterization of synthetic heme-peroxo‑copper model complexes, which can circumvent the abovementioned limitation, for the investigation of the formation of IP and its O-O cleavage chemistry. Novel findings regarding (a) proton and electron transfer (PT/ET) processes, together with their contributions to exogenous phenol induced O-O cleavage, (b) the stereo-electronic tunability of the secondary coordination sphere (especially hydrogen-bonding) on the geometric and spin state alteration of the heme-peroxo‑copper unit, and (c) a plausible mechanism for the Tyr-His cofactor biogenesis, are discussed in great detail. Additionally, since the ferric-superoxide and the ferryl-oxo (Compound II) species are critically involved in the CcO catalytic cycle, this review also highlights a few fundamental aspects of these heme-only (i.e., without copper) species, including the structural and reactivity influences of electron-donating trans-axial ligands and Lewis acid-promoted H-bonding.
Collapse
Affiliation(s)
- Sanjib Panda
- Department of Chemistry, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Hai Phan
- Department of Chemistry, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Kenneth D Karlin
- Department of Chemistry, Johns Hopkins University, Baltimore, MD 21218, USA.
| |
Collapse
|
2
|
Tretiakov S, Lutz M, Titus CJ, de Groot F, Nehrkorn J, Lohmiller T, Holldack K, Schnegg A, Tarrago MFX, Zhang P, Ye S, Aleshin D, Pavlov A, Novikov V, Moret ME. Homoleptic Fe(III) and Fe(IV) Complexes of a Dianionic C 3-Symmetric Scorpionate. Inorg Chem 2023. [PMID: 37369076 DOI: 10.1021/acs.inorgchem.3c00871] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
High-valent iron species have been implicated as key intermediates in catalytic oxidation reactions, both in biological and synthetic systems. Many heteroleptic Fe(IV) complexes have now been prepared and characterized, especially using strongly π-donating oxo, imido, or nitrido ligands. On the other hand, homoleptic examples are scarce. Herein, we investigate the redox chemistry of iron complexes of the dianonic tris-skatylmethylphosphonium (TSMP2-) scorpionate ligand. One-electron oxidation of the tetrahedral, bis-ligated [(TSMP)2FeII]2- leads to the octahedral [(TSMP)2FeIII]-. The latter undergoes thermal spin-cross-over both in the solid state and solution, which we characterize using superconducting quantum inference device (SQUID), Evans method, and paramagnetic nuclear magnetic resonance spectroscopy. Furthermore, [(TSMP)2FeIII]- can be reversibly oxidized to the stable high-valent [(TSMP)2FeIV]0 complex. We use a variety of electrochemical, spectroscopic, and computational techniques as well as SQUID magnetometry to establish a triplet (S = 1) ground state with a metal-centered oxidation and little spin delocalization on the ligand. The complex also has a fairly isotropic g-tensor (giso = 1.97) combined with a positive zero-field splitting (ZFS) parameter D (+19.1 cm-1) and very low rhombicity, in agreement with quantum chemical calculations. This thorough spectroscopic characterization contributes to a general understanding of octahedral Fe(IV) complexes.
Collapse
Affiliation(s)
- Serhii Tretiakov
- Organic Chemistry & Catalysis, Institute for Sustainable and Circular Chemistry, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Martin Lutz
- Structural Biochemistry, Bijvoet Centre for Biomolecular Research, Faculty of Science, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Charles James Titus
- Department of Physics, Stanford University, Stanford, California 94305, United States
| | - Frank de Groot
- Materials Chemistry & Catalysis, Debye Institute for Materials Science, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Joscha Nehrkorn
- Max-Planck-Institute for Chemical Energy Conversion, EPR Research Group, 45470 Mülheim/Ruhr, Germany
| | - Thomas Lohmiller
- Department Spins in Energy Conversion and Quantum Information Science, Helmholtz Zentrum Berlin für Materialien und Energie GmbH, EPR4 Energy Joint Lab, 12489 Berlin, Germany
| | - Karsten Holldack
- Department of Optics and Beamlines, Helmholtz Zentrum Berlin für Materialien und Energie GmbH, 12489 Berlin, Germany
| | - Alexander Schnegg
- Max-Planck-Institute for Chemical Energy Conversion, EPR Research Group, 45470 Mülheim/Ruhr, Germany
| | | | - Peng Zhang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
- University of Chinese Academy of Sciences, Beijing 10049, China
| | - Shengfa Ye
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
| | - Dmitry Aleshin
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilova Street 28, Moscow 119991, Russia
| | - Alexander Pavlov
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilova Street 28, Moscow 119991, Russia
- Moscow Institute of Physics and Technology, Institutskiy per., 9, Dolgoprudny, Moscow 119991, Russia
| | - Valentin Novikov
- Moscow Institute of Physics and Technology, Institutskiy per., 9, Dolgoprudny, Moscow 119991, Russia
| | - Marc-Etienne Moret
- Organic Chemistry & Catalysis, Institute for Sustainable and Circular Chemistry, Utrecht University, 3584 CG Utrecht, The Netherlands
| |
Collapse
|
3
|
Schulz C, Castillo RG, Pantazis DA, DeBeer S, Neese F. Structure-Spectroscopy Correlations for Intermediate Q of Soluble Methane Monooxygenase: Insights from QM/MM Calculations. J Am Chem Soc 2021; 143:6560-6577. [PMID: 33884874 PMCID: PMC8154522 DOI: 10.1021/jacs.1c01180] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Indexed: 12/22/2022]
Abstract
The determination of the diiron core intermediate structures involved in the catalytic cycle of soluble methane monooxygenase (sMMO), the enzyme that selectively catalyzes the conversion of methane to methanol, has been a subject of intense interest within the bioinorganic scientific community. Particularly, the specific geometry and electronic structure of the intermediate that precedes methane binding, known as intermediate Q (or MMOHQ), has been debated for over 30 years. Some reported studies support a bis-μ-oxo-bridged Fe(IV)2O2 closed-core conformation Fe(IV)2O2 core, whereas others favor an open-core geometry, with a longer Fe-Fe distance. The lack of consensus calls for a thorough re-examination and reinterpretation of the spectroscopic data available on the MMOHQ intermediate. Herein, we report extensive simulations based on a hybrid quantum mechanics/molecular mechanics approach (QM/MM) approach that takes into account the complete enzyme to explore possible conformations for intermediates MMOHox and MMOHQ of the sMMOH catalytic cycle. High-level quantum chemical approaches are used to correlate specific structural motifs with geometric parameters for comparison with crystallographic and EXAFS data, as well as with spectroscopic data from Mössbauer spectroscopy, Fe K-edge high-energy resolution X-ray absorption spectroscopy (HERFD XAS), and resonance Raman 16O-18O difference spectroscopy. The results provide strong support for an open-core-type configuration in MMOHQ, with the most likely topology involving mono-oxo-bridged Fe ions and alternate terminal Fe-oxo and Fe-hydroxo groups that interact via intramolecular hydrogen bonding. The implications of an open-core intermediate Q on the reaction mechanism of sMMO are discussed.
Collapse
Affiliation(s)
- Christine
E. Schulz
- Max-Planck-Institut
für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| | - Rebeca G. Castillo
- Max
Planck Institute for Chemical Energy Conversion, Stiftstr. 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Dimitrios A. Pantazis
- Max-Planck-Institut
für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| | - Serena DeBeer
- Max
Planck Institute for Chemical Energy Conversion, Stiftstr. 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Frank Neese
- Max-Planck-Institut
für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
4
|
Warm K, Paskin A, Kuhlmann U, Bill E, Swart M, Haumann M, Dau H, Hildebrandt P, Ray K. A Pseudotetrahedral Terminal Oxoiron(IV) Complex: Mechanistic Promiscuity in C-H Bond Oxidation Reactions. Angew Chem Int Ed Engl 2021; 60:6752-6756. [PMID: 33348460 PMCID: PMC7985879 DOI: 10.1002/anie.202015896] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Indexed: 11/12/2022]
Abstract
S=2 oxoiron(IV) species act as reactive intermediates in the catalytic cycle of nonheme iron oxygenases. The few available synthetic S=2 FeIV =O complexes known to date are often limited to trigonal bipyramidal and very rarely to octahedral geometries. Herein we describe the generation and characterization of an S=2 pseudotetrahedral FeIV =O complex 2 supported by the sterically demanding 1,4,7-tri-tert-butyl-1,4,7-triazacyclononane ligand. Complex 2 is a very potent oxidant in hydrogen atom abstraction (HAA) reactions with large non-classical deuterium kinetic isotope effects, suggesting hydrogen tunneling contributions. For sterically encumbered substrates, direct HAA is impeded and an alternative oxidative asynchronous proton-coupled electron transfer mechanism prevails, which is unique within the nonheme oxoiron community. The high reactivity and the similar spectroscopic parameters make 2 one of the best electronic and functional models for a biological oxoiron(IV) intermediate of taurine dioxygenase (TauD-J).
Collapse
Affiliation(s)
- Katrin Warm
- Institut für ChemieHumboldt-Universität zu BerlinBrook-Taylor-Str. 212489BerlinGermany
| | - Alice Paskin
- Institut für ChemieHumboldt-Universität zu BerlinBrook-Taylor-Str. 212489BerlinGermany
| | - Uwe Kuhlmann
- Institut für ChemieTechnische Universität Berlin, Fakultät IIStraße des 17. Juni 13510623BerlinGermany
| | - Eckhard Bill
- Max-Planck-Institut für Chemische Energiekonversion (CEC)Stiftstraße 34–3645470MülheimGermany
| | - Marcel Swart
- Institut de Química Computacional i CatàlisiUniversitat de GironaCampus Montilivi (Ciències)Maria Aurèlia Capmany i Farnés, 6917003GironaSpain
- ICREAPg. Lluís Companys 2308010BarcelonaSpain
| | - Michael Haumann
- Institut für PhysikFreie Universität BerlinArnimallee 1414195BerlinGermany
| | - Holger Dau
- Institut für PhysikFreie Universität BerlinArnimallee 1414195BerlinGermany
| | - Peter Hildebrandt
- Institut für ChemieTechnische Universität Berlin, Fakultät IIStraße des 17. Juni 13510623BerlinGermany
| | - Kallol Ray
- Institut für ChemieHumboldt-Universität zu BerlinBrook-Taylor-Str. 212489BerlinGermany
| |
Collapse
|
5
|
Warm K, Paskin A, Kuhlmann U, Bill E, Swart M, Haumann M, Dau H, Hildebrandt P, Ray K. A Pseudotetrahedral Terminal Oxoiron(IV) Complex: Mechanistic Promiscuity in C−H Bond Oxidation Reactions. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202015896] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Katrin Warm
- Institut für Chemie Humboldt-Universität zu Berlin Brook-Taylor-Str. 2 12489 Berlin Germany
| | - Alice Paskin
- Institut für Chemie Humboldt-Universität zu Berlin Brook-Taylor-Str. 2 12489 Berlin Germany
| | - Uwe Kuhlmann
- Institut für Chemie Technische Universität Berlin, Fakultät II Straße des 17. Juni 135 10623 Berlin Germany
| | - Eckhard Bill
- Max-Planck-Institut für Chemische Energiekonversion (CEC) Stiftstraße 34–36 45470 Mülheim Germany
| | - Marcel Swart
- Institut de Química Computacional i Catàlisi Universitat de Girona Campus Montilivi (Ciències) Maria Aurèlia Capmany i Farnés, 69 17003 Girona Spain
- ICREA Pg. Lluís Companys 23 08010 Barcelona Spain
| | - Michael Haumann
- Institut für Physik Freie Universität Berlin Arnimallee 14 14195 Berlin Germany
| | - Holger Dau
- Institut für Physik Freie Universität Berlin Arnimallee 14 14195 Berlin Germany
| | - Peter Hildebrandt
- Institut für Chemie Technische Universität Berlin, Fakultät II Straße des 17. Juni 135 10623 Berlin Germany
| | - Kallol Ray
- Institut für Chemie Humboldt-Universität zu Berlin Brook-Taylor-Str. 2 12489 Berlin Germany
| |
Collapse
|
6
|
Wang H, Wu L, Zheng B, Du L, To W, Ko C, Phillips DL, Che C. C−H Activation by an Iron‐Nitrido Bis‐Pocket Porphyrin Species. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202014191] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Hai‐Xu Wang
- State Key Laboratory of Synthetic Chemistry and Department of Chemistry The University of Hong Kong Pokfulam Road Hong Kong China
| | - Liangliang Wu
- State Key Laboratory of Synthetic Chemistry and Department of Chemistry The University of Hong Kong Pokfulam Road Hong Kong China
| | - Bin Zheng
- State Key Laboratory of Synthetic Chemistry and Department of Chemistry The University of Hong Kong Pokfulam Road Hong Kong China
| | - Lili Du
- State Key Laboratory of Synthetic Chemistry and Department of Chemistry The University of Hong Kong Pokfulam Road Hong Kong China
| | - Wai‐Pong To
- State Key Laboratory of Synthetic Chemistry and Department of Chemistry The University of Hong Kong Pokfulam Road Hong Kong China
| | - Cheng‐Hoi Ko
- State Key Laboratory of Synthetic Chemistry and Department of Chemistry The University of Hong Kong Pokfulam Road Hong Kong China
| | - David Lee Phillips
- State Key Laboratory of Synthetic Chemistry and Department of Chemistry The University of Hong Kong Pokfulam Road Hong Kong China
| | - Chi‐Ming Che
- State Key Laboratory of Synthetic Chemistry and Department of Chemistry The University of Hong Kong Pokfulam Road Hong Kong China
- HKU Shenzhen Institute of Research & Innovation Shenzhen China
| |
Collapse
|
7
|
Wang HX, Wu L, Zheng B, Du L, To WP, Ko CH, Phillips DL, Che CM. C-H Activation by an Iron-Nitrido Bis-Pocket Porphyrin Species. Angew Chem Int Ed Engl 2021; 60:4796-4803. [PMID: 33205509 DOI: 10.1002/anie.202014191] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/16/2020] [Indexed: 12/11/2022]
Abstract
High-valent iron-nitrido species are nitrogen analogues of iron-oxo species which are versatile reagents for C-H oxidation. Nonetheless, C-H activation by iron-nitrido species has been scarcely explored, as this is often hampered by their instability and short lifetime in solutions. Herein, the hydrogen atom transfer (HAT) reactivity of an Fe porphyrin nitrido species (2 c) toward C-H substrates was studied in solutions at room temperature, which was achieved by nanosecond laser flash photolysis (LFP) of its FeIII -azido precursor (1 c) supported by a bulky bis-pocket porphyrin ligand. C-H bonds with bond dissociation enthalpies (BDEs) of up to ≈84 kcal mol-1 could be activated, and the second-order rate constants (k2 ) are on the order of 102 -104 s-1 m-1 . The Fe-amido product formed after HAT could further release ammonia upon protonation.
Collapse
Affiliation(s)
- Hai-Xu Wang
- State Key Laboratory of Synthetic Chemistry and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Liangliang Wu
- State Key Laboratory of Synthetic Chemistry and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Bin Zheng
- State Key Laboratory of Synthetic Chemistry and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Lili Du
- State Key Laboratory of Synthetic Chemistry and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Wai-Pong To
- State Key Laboratory of Synthetic Chemistry and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Cheng-Hoi Ko
- State Key Laboratory of Synthetic Chemistry and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - David Lee Phillips
- State Key Laboratory of Synthetic Chemistry and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Chi-Ming Che
- State Key Laboratory of Synthetic Chemistry and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China.,HKU Shenzhen Institute of Research & Innovation, Shenzhen, China
| |
Collapse
|
8
|
Sabenya G, Gamba I, Gómez L, Clémancey M, Frisch JR, Klinker EJ, Blondin G, Torelli S, Que L, Martin-Diaconescu V, Latour JM, Lloret-Fillol J, Costas M. Octahedral iron(iv)-tosylimido complexes exhibiting single electron-oxidation reactivity. Chem Sci 2019; 10:9513-9529. [PMID: 32055323 PMCID: PMC6979323 DOI: 10.1039/c9sc02526j] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 08/17/2019] [Indexed: 11/28/2022] Open
Abstract
High valent iron species are very reactive molecules involved in oxidation reactions of relevance to biology and chemical synthesis. Herein we describe iron(iv)-tosylimido complexes [FeIV(NTs)(MePy2tacn)](OTf)2 (1(IV)[double bond, length as m-dash]NTs) and [FeIV(NTs)(Me2(CHPy2)tacn)](OTf)2 (2(IV)[double bond, length as m-dash]NTs), (MePy2tacn = N-methyl-N,N-bis(2-picolyl)-1,4,7-triazacyclononane, and Me2(CHPy2)tacn = 1-(di(2-pyridyl)methyl)-4,7-dimethyl-1,4,7-triazacyclononane, Ts = Tosyl). 1(IV)[double bond, length as m-dash]NTs and 2(IV)[double bond, length as m-dash]NTs are rare examples of octahedral iron(iv)-imido complexes and are isoelectronic analogues of the recently described iron(iv)-oxo complexes [FeIV(O)(L)]2+ (L = MePy2tacn and Me2(CHPy2)tacn, respectively). 1(IV)[double bond, length as m-dash]NTs and 2(IV)[double bond, length as m-dash]NTs are metastable and have been spectroscopically characterized by HR-MS, UV-vis, 1H-NMR, resonance Raman, Mössbauer, and X-ray absorption (XAS) spectroscopy as well as by DFT computational methods. Ferric complexes [FeIII(HNTs)(L)]2+, 1(III)-NHTs (L = MePy2tacn) and 2(III)-NHTs (L = Me2(CHPy2)tacn) have been isolated after the decay of 1(IV)[double bond, length as m-dash]NTs and 2(IV)[double bond, length as m-dash]NTs in solution, spectroscopically characterized, and the molecular structure of [FeIII(HNTs)(MePy2tacn)](SbF6)2 determined by single crystal X-ray diffraction. Reaction of 1(IV)[double bond, length as m-dash]NTs and 2(IV)[double bond, length as m-dash]NTs with different p-substituted thioanisoles results in the transfer of the tosylimido moiety to the sulphur atom producing sulfilimine products. In these reactions, 1(IV)[double bond, length as m-dash]NTs and 2(IV)[double bond, length as m-dash]NTs behave as single electron oxidants and Hammett analyses of reaction rates evidence that tosylimido transfer is more sensitive than oxo transfer to charge effects. In addition, reaction of 1(IV)[double bond, length as m-dash]NTs and 2(IV)[double bond, length as m-dash]NTs with hydrocarbons containing weak C-H bonds results in the formation of 1(III)-NHTs and 2(III)-NHTs respectively, along with the oxidized substrate. Kinetic analyses indicate that reactions proceed via a mechanistically unusual HAT reaction, where an association complex precedes hydrogen abstraction.
Collapse
Affiliation(s)
- Gerard Sabenya
- Institut de Química Computacional i Catàlisi (IQCC) , Departament de Química , Universitat de Girona , Campus Montilivi , E17071 Girona , Spain .
| | - Ilaria Gamba
- Institut de Química Computacional i Catàlisi (IQCC) , Departament de Química , Universitat de Girona , Campus Montilivi , E17071 Girona , Spain .
| | - Laura Gómez
- Institut de Química Computacional i Catàlisi (IQCC) , Departament de Química , Universitat de Girona , Campus Montilivi , E17071 Girona , Spain .
| | - Martin Clémancey
- Univ. Grenoble-Alpes , CNRS , CEA , IRIG , DIESE , CBM , Grenoble 38000 , France
| | - Jonathan R Frisch
- Department of Chemistry , University of Minnesota , Pleasant Str 207 , Minneapolis , Minnesota , USA
| | - Eric J Klinker
- Department of Chemistry , University of Minnesota , Pleasant Str 207 , Minneapolis , Minnesota , USA
| | - Geneviève Blondin
- Univ. Grenoble-Alpes , CNRS , CEA , IRIG , DIESE , CBM , Grenoble 38000 , France
| | - Stéphane Torelli
- Univ. Grenoble-Alpes , CNRS , CEA , IRIG , DIESE , CBM , Grenoble 38000 , France
| | - Lawrence Que
- Department of Chemistry , University of Minnesota , Pleasant Str 207 , Minneapolis , Minnesota , USA
| | - Vlad Martin-Diaconescu
- Institut de Química Computacional i Catàlisi (IQCC) , Departament de Química , Universitat de Girona , Campus Montilivi , E17071 Girona , Spain .
- Institute of Chemical Research of Catalonia (ICIQ) , The Barcelona Institute of Science and Technology , Avinguda Països Catalans 16 , 43007 Tarragona , Spain .
| | - Jean-Marc Latour
- Univ. Grenoble-Alpes , CNRS , CEA , IRIG , DIESE , CBM , Grenoble 38000 , France
| | - Julio Lloret-Fillol
- Institut de Química Computacional i Catàlisi (IQCC) , Departament de Química , Universitat de Girona , Campus Montilivi , E17071 Girona , Spain .
- Institute of Chemical Research of Catalonia (ICIQ) , The Barcelona Institute of Science and Technology , Avinguda Països Catalans 16 , 43007 Tarragona , Spain .
- Catalan Institution for Research and Advanced Studies (ICREA) , Passeig Lluïs Companys, 23 , 08010 , Barcelona , Spain
| | - Miquel Costas
- Institut de Química Computacional i Catàlisi (IQCC) , Departament de Química , Universitat de Girona , Campus Montilivi , E17071 Girona , Spain .
| |
Collapse
|
9
|
Chang HC, Mondal B, Fang H, Neese F, Bill E, Ye S. Electron Paramagnetic Resonance Signature of Tetragonal Low Spin Iron(V)-Nitrido and -Oxo Complexes Derived from the Electronic Structure Analysis of Heme and Non-Heme Archetypes. J Am Chem Soc 2019; 141:2421-2434. [PMID: 30620571 PMCID: PMC6728100 DOI: 10.1021/jacs.8b11429] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Iron(V)-nitrido and -oxo complexes
have been proposed as key intermediates
in a diverse array of chemical transformations. Herein we present
a detailed electronic-structure analysis of [FeV(N)(TPP)]
(1, TPP2– = tetraphenylporphyrinato),
and [FeV(N)(cyclam-ac)]+ (2, cyclam-ac
= 1,4,8,11-tetraazacyclotetradecane-1-acetato) using electron paramagnetic
resonance (EPR) and 57Fe Mössbauer spectroscopy
coupled with wave function based complete active-space self-consistent
field (CASSCF) calculations. The findings were compared with all other
well-characterized genuine iron(V)-nitrido and -oxo complexes, [FeV(N)(MePy2tacn)](PF6)2 (3, MePy2tacn = methyl-N′,N″-bis(2-picolyl)-1,4,7-triazacyclononane), [FeV(N){PhB(t-BuIm)3}]+ (4, PhB(tBuIm)3– = phenyltris(3-tert-butylimidazol-2-ylidene)borate),
and [FeV(O)(TAML)]− (5,
TAML4– = tetraamido macrocyclic ligand). Our results
revealed that complex 1 is an authenticated iron(V)-nitrido
species and contrasts with its oxo congener, compound I, which contains
a ferryl unit interacting with a porphyrin radical. More importantly,
tetragonal iron(V)-nitrido and -oxo complexes 1–3 and 5 all possess an orbitally nearly doubly
degenerate S = 1/2 ground state. Consequently, analogous
near-axial EPR spectra with g|| < g⊥ ≤ 2 were measured for them,
and their g|| and g⊥ values were found to obey a simple relation of g⊥2 + (2 – g∥)2 = 4. However, the bonding situation for trigonal iron(V)-nitrido
complex 4 is completely different as evidenced by its
distinct EPR spectrum with g|| < 2
< g⊥. Further in-depth analyses
suggested that tetragonal low spin iron(V)-nitrido and -oxo complexes
feature electronic structures akin to those found for complexes 1–3 and 5. Therefore, the
characteristic EPR signals determined for 1–3 and 5 can be used as a spectroscopic marker
to identify such highly reactive intermediates in catalytic processes.
Collapse
Affiliation(s)
- Hao-Ching Chang
- Max-Planck-Institut für Kohlenforschung , Kaiser-Wilhelm-Platz 1 , D-45470 Mülheim an der Ruhr , Germany
| | - Bhaskar Mondal
- Max-Planck-Institut für Chemische Energiekonversion , Stiftstr. 34-36 , D-45470 Mülheim an der Ruhr , Germany
| | - Huayi Fang
- Max-Planck-Institut für Chemische Energiekonversion , Stiftstr. 34-36 , D-45470 Mülheim an der Ruhr , Germany
| | - Frank Neese
- Max-Planck-Institut für Kohlenforschung , Kaiser-Wilhelm-Platz 1 , D-45470 Mülheim an der Ruhr , Germany
| | - Eckhard Bill
- Max-Planck-Institut für Chemische Energiekonversion , Stiftstr. 34-36 , D-45470 Mülheim an der Ruhr , Germany
| | - Shengfa Ye
- Max-Planck-Institut für Kohlenforschung , Kaiser-Wilhelm-Platz 1 , D-45470 Mülheim an der Ruhr , Germany
| |
Collapse
|
10
|
Cheng J, Wang L, Wang P, Deng L. High-Oxidation-State 3d Metal (Ti-Cu) Complexes with N-Heterocyclic Carbene Ligation. Chem Rev 2018; 118:9930-9987. [PMID: 30011189 DOI: 10.1021/acs.chemrev.8b00096] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
High-oxidation-state 3d metal species have found a wide range of applications in modern synthetic chemistry and materials science. They are also implicated as key reactive species in biological reactions. These applications have thus prompted explorations of their formation, structure, and properties. While the traditional wisdom regarding these species was gained mainly from complexes supported by nitrogen- and oxygen-donor ligands, recent studies with N-heterocyclic carbenes (NHCs), which are widely used for the preparation of low-oxidation-state transition metal complexes in organometallic chemistry, have led to the preparation of a large variety of isolable high-oxidation-state 3d metal complexes with NHC ligation. Since the first report in this area in the 1990s, isolable complexes of this type have been reported for titanium(IV), vanadium(IV,V), chromium(IV,V), manganese(IV,V), iron(III,IV,V), cobalt(III,IV,V), nickel(IV), and copper(II). With the aim of providing an overview of this intriguing field, this Review summarizes our current understanding of the synthetic methods, structure and spectroscopic features, reactivity, and catalytic applications of high-oxidation-state 3d metal NHC complexes of titanium to copper. In addition to this progress, factors affecting the stability and reactivity of high-oxidation-state 3d metal NHC species are also presented, as well as perspectives on future efforts.
Collapse
Affiliation(s)
- Jun Cheng
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry , University of Chinese Academy of Sciences, Chinese Academy of Sciences , 345 Lingling Road , Shanghai 200032 , People's Republic of China
| | - Lijun Wang
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry , University of Chinese Academy of Sciences, Chinese Academy of Sciences , 345 Lingling Road , Shanghai 200032 , People's Republic of China
| | - Peng Wang
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry , University of Chinese Academy of Sciences, Chinese Academy of Sciences , 345 Lingling Road , Shanghai 200032 , People's Republic of China
| | - Liang Deng
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry , University of Chinese Academy of Sciences, Chinese Academy of Sciences , 345 Lingling Road , Shanghai 200032 , People's Republic of China
| |
Collapse
|
11
|
Mukherjee A, Pattanayak S, Sen Gupta S, Vanka K. What drives the H-abstraction reaction in bio-mimetic oxoiron-bTAML complexes? A computational investigation. Phys Chem Chem Phys 2018; 20:13845-13850. [PMID: 29717729 DOI: 10.1039/c8cp01333k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Monomeric iron-oxo units have been confirmed as intermediates involved in the C-H bond activation in various metallo-enzymes. Biomimetic oxoiron complexes of the biuret modified tetra-amido macrocyclic ligand (bTAML) have been demonstrated to oxidize a wide variety of unactivated C-H bonds. In the current work, density functional theory (DFT) has been employed to investigate the hydrogen abstraction (HAT) reactivity differences across a series of bTAML complexes. The cause for the differences in the HAT energy barriers has been found to be the relative changes in the energy of the frontier molecular orbitals (FMOs) induced by electronic perturbation.
Collapse
Affiliation(s)
- Anagh Mukherjee
- Physical and Material Chemistry Division, CSIR-National Chemical Laboratory, Pune-411008, India.
| | | | | | | |
Collapse
|
12
|
Castillo RG, Banerjee R, Allpress CJ, Rohde GT, Bill E, Que L, Lipscomb JD, DeBeer S. High-Energy-Resolution Fluorescence-Detected X-ray Absorption of the Q Intermediate of Soluble Methane Monooxygenase. J Am Chem Soc 2017; 139:18024-18033. [PMID: 29136468 PMCID: PMC5729100 DOI: 10.1021/jacs.7b09560] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Kα high-energy-resolution fluorescence detected X-ray absorption spectroscopy (HERFD XAS) provides a powerful tool for overcoming the limitations of conventional XAS to identify the electronic structure and coordination environment of metalloprotein active sites. Herein, Fe Kα HERFD XAS is applied to the diiron active site of soluble methane monooxygenase (sMMO) and to a series of high-valent diiron model complexes, including diamond-core [FeIV2(μ-O)2(L)2](ClO4)4] (3) and open-core [(O═FeIV-O-FeIV(OH)(L)2](ClO4)3 (4) models (where, L = tris(3,5-dimethyl-4-methoxypyridyl-2-methyl)amine) (TPA*)). Pronounced differences in the HERFD XAS pre-edge energies and intensities are observed for the open versus closed Fe2O2 cores in the model compounds. These differences are reproduced by time-dependent density functional theory (TDDFT) calculations and allow for the pre-edge energies and intensity to be directly correlated with the local active site geometric and electronic structure. A comparison of the model complex HERFD XAS data to that of MMOHQ (the key intermediate in methane oxidation) is supportive of an open-core structure. Specifically, the large pre-edge area observed for MMOHQ may be rationalized by invoking an open-core structure with a terminal FeIV═O motif, though further modulations of the core structure due to the protein environment cannot be ruled out. The present study thus motivates the need for additional experimental and theoretical studies to unambiguously assess the active site conformation of MMOHQ.
Collapse
Affiliation(s)
- Rebeca G. Castillo
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34, D-45470 Mülheim an der Ruhr, Germany
| | - Rahul Banerjee
- Department of Biochemistry, Molecular Biology and Biophysics, 321 Church St. SE, Minneapolis, MN 55455
| | - Caleb J. Allpress
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, MN 55455
| | - Gregory T. Rohde
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, MN 55455
| | - Eckhard Bill
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34, D-45470 Mülheim an der Ruhr, Germany
| | - Lawrence Que
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, MN 55455
| | - John D. Lipscomb
- Department of Biochemistry, Molecular Biology and Biophysics, 321 Church St. SE, Minneapolis, MN 55455
| | - Serena DeBeer
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34, D-45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
13
|
Sabenya G, Lázaro L, Gamba I, Martin-Diaconescu V, Andris E, Weyhermüller T, Neese F, Roithova J, Bill E, Lloret-Fillol J, Costas M. Generation, Spectroscopic, and Chemical Characterization of an Octahedral Iron(V)-Nitrido Species with a Neutral Ligand Platform. J Am Chem Soc 2017; 139:9168-9177. [DOI: 10.1021/jacs.7b00429] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Gerard Sabenya
- Institut
de Química Computacional i Catàlisi (IQCC) and Departament
de Química, Universitat de Girona, Campus Montilivi, E17071 Girona, Catalonia, Spain
| | - Laura Lázaro
- Institut
de Química Computacional i Catàlisi (IQCC) and Departament
de Química, Universitat de Girona, Campus Montilivi, E17071 Girona, Catalonia, Spain
| | - Ilaria Gamba
- Institut
de Química Computacional i Catàlisi (IQCC) and Departament
de Química, Universitat de Girona, Campus Montilivi, E17071 Girona, Catalonia, Spain
| | - Vlad Martin-Diaconescu
- Institut
de Química Computacional i Catàlisi (IQCC) and Departament
de Química, Universitat de Girona, Campus Montilivi, E17071 Girona, Catalonia, Spain
| | - Erik Andris
- Department
of Organic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 2030/8, 12843 Prague 2, Czech Republic
| | - Thomas Weyhermüller
- Max Planck Institut für Chemische Energiekonversion, Stiftstraße 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Frank Neese
- Max Planck Institut für Chemische Energiekonversion, Stiftstraße 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Jana Roithova
- Department
of Organic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 2030/8, 12843 Prague 2, Czech Republic
| | - Eckhard Bill
- Max Planck Institut für Chemische Energiekonversion, Stiftstraße 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Julio Lloret-Fillol
- Institute
of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Avinguda Paisos Catalans 16, 43007 Tarragona, Catalonia, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Passeig Lluïs Companys 23, 08010 Barcelona, Spain
| | - Miquel Costas
- Institut
de Química Computacional i Catàlisi (IQCC) and Departament
de Química, Universitat de Girona, Campus Montilivi, E17071 Girona, Catalonia, Spain
| |
Collapse
|
14
|
Pattanayak S, Jasniewski AJ, Rana A, Draksharapu A, Singh KK, Weitz A, Hendrich M, Que L, Dey A, Sen Gupta S. Spectroscopic and Reactivity Comparisons of a Pair of bTAML Complexes with Fe V═O and Fe IV═O Units. Inorg Chem 2017; 56:6352-6361. [PMID: 28481521 DOI: 10.1021/acs.inorgchem.7b00448] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
In this report we compare the geometric and electronic structures and reactivities of [FeV(O)]- and [FeIV(O)]2- species supported by the same ancillary nonheme biuret tetraamido macrocyclic ligand (bTAML). Resonance Raman studies show that the Fe═O vibration of the [FeIV(O)]2- complex 2 is at 798 cm-1, compared to 862 cm-1 for the corresponding [FeV(O)]- species 3, a 64 cm-1 frequency difference reasonably reproduced by density functional theory calculations. These values are, respectively, the lowest and the highest frequencies observed thus far for nonheme high-valent Fe═O complexes. Extended X-ray absorption fine structure analysis of 3 reveals an Fe═O bond length of 1.59 Å, which is 0.05 Å shorter than that found in complex 2. The redox potentials of 2 and 3 are 0.44 V (measured at pH 12) and 1.19 V (measured at pH 7) versus normal hydrogen electrode, respectively, corresponding to the [FeIV(O)]2-/[FeIII(OH)]2- and [FeV(O)]-/[FeIV(O)]2- couples. Consistent with its higher potential (even after correcting for the pH difference), 3 oxidizes benzyl alcohol at pH 7 with a second-order rate constant that is 2500-fold bigger than that for 2 at pH 12. Furthermore, 2 exhibits a classical kinteic isotope effect (KIE) of 3 in the oxidation of benzyl alcohol to benzaldehyde versus a nonclassical KIE of 12 for 3, emphasizing the reactivity differences between 2 and 3.
Collapse
Affiliation(s)
- Santanu Pattanayak
- Chemical Engineering Division, CSIR-National Chemical Laboratory , Pune 411008, India
| | - Andrew J Jasniewski
- Department of Chemistry and Center for Metals in Biocatalysis, University of Minnesota , 207 Pleasant Street Southeast, Minneapolis, Minnesota 55455, United States
| | - Atanu Rana
- Department of Inorganic Chemistry, Indian Association for the Cultivation of Science , Kolkata 700032, India
| | - Apparao Draksharapu
- Department of Chemistry and Center for Metals in Biocatalysis, University of Minnesota , 207 Pleasant Street Southeast, Minneapolis, Minnesota 55455, United States
| | - Kundan K Singh
- Chemical Engineering Division, CSIR-National Chemical Laboratory , Pune 411008, India
| | - Andrew Weitz
- Department of Chemistry, Carnegie Mellon University , 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Michael Hendrich
- Department of Chemistry, Carnegie Mellon University , 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Lawrence Que
- Department of Chemistry and Center for Metals in Biocatalysis, University of Minnesota , 207 Pleasant Street Southeast, Minneapolis, Minnesota 55455, United States
| | - Abhishek Dey
- Department of Inorganic Chemistry, Indian Association for the Cultivation of Science , Kolkata 700032, India
| | - Sayam Sen Gupta
- Department of Chemical Sciences, Indian Institute of Science Education and Research-Kolkata , Mohanpur, West Bengal 741246, India
| |
Collapse
|
15
|
Casitas A, Rees JA, Goddard R, Bill E, DeBeer S, Fürstner A. Two Exceptional Homoleptic Iron(IV) Tetraalkyl Complexes. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201612299] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Alicia Casitas
- Max-Planck-Institut für Kohlenforschung; 45470 Mülheim/Ruhr Germany
| | - Julian A. Rees
- Max-Planck-Institut für Chemische Energiekonversion; 45470 Mülheim/Ruhr Germany
- Department of Chemistry; University of Washington; Box 351700 Seattle WA 98195-1700 USA
| | - Richard Goddard
- Max-Planck-Institut für Kohlenforschung; 45470 Mülheim/Ruhr Germany
| | - Eckhard Bill
- Max-Planck-Institut für Chemische Energiekonversion; 45470 Mülheim/Ruhr Germany
| | - Serena DeBeer
- Max-Planck-Institut für Chemische Energiekonversion; 45470 Mülheim/Ruhr Germany
- Department of Chemistry and Chemical Biology; Cornell University; Ithaca NY 14853 USA
| | - Alois Fürstner
- Max-Planck-Institut für Kohlenforschung; 45470 Mülheim/Ruhr Germany
| |
Collapse
|
16
|
Casitas A, Rees JA, Goddard R, Bill E, DeBeer S, Fürstner A. Two Exceptional Homoleptic Iron(IV) Tetraalkyl Complexes. Angew Chem Int Ed Engl 2017; 56:10108-10113. [PMID: 28251752 DOI: 10.1002/anie.201612299] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 01/30/2017] [Indexed: 12/21/2022]
Abstract
The formation of the high-valent iron complex [Fe(cyclohexyl)4 ] from FeII under reducing conditions is best explained by disproportionation of a transient organoiron intermediate which is driven by dispersive forces between the cyclohexyl ligands and the formation of short and strong Fe-C bonds. The (meta)stability of this diamagnetic complex (S=0) is striking if one considers that it has empty d-orbitals at its disposal and contains, at the same time, no less than twenty H-atoms available for either α- or β-hydride elimination.
Collapse
Affiliation(s)
- Alicia Casitas
- Max-Planck-Institut für Kohlenforschung, 45470, Mülheim/Ruhr, Germany
| | - Julian A Rees
- Max-Planck-Institut für Chemische Energiekonversion, 45470, Mülheim/Ruhr, Germany.,Department of Chemistry, University of Washington, Box 351700, Seattle, WA, 98195-1700, USA
| | - Richard Goddard
- Max-Planck-Institut für Kohlenforschung, 45470, Mülheim/Ruhr, Germany
| | - Eckhard Bill
- Max-Planck-Institut für Chemische Energiekonversion, 45470, Mülheim/Ruhr, Germany
| | - Serena DeBeer
- Max-Planck-Institut für Chemische Energiekonversion, 45470, Mülheim/Ruhr, Germany.,Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Alois Fürstner
- Max-Planck-Institut für Kohlenforschung, 45470, Mülheim/Ruhr, Germany
| |
Collapse
|
17
|
Verma P, Varga Z, Klein JEMN, Cramer CJ, Que L, Truhlar DG. Assessment of electronic structure methods for the determination of the ground spin states of Fe(ii), Fe(iii) and Fe(iv) complexes. Phys Chem Chem Phys 2017; 19:13049-13069. [DOI: 10.1039/c7cp01263b] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We studied spin states of Fe2+ ion, gaseous FeO, and 14 Fe(ii), Fe(iii) and Fe(iv) complexes using density functional theory.
Collapse
Affiliation(s)
- Pragya Verma
- Department of Chemistry
- University of Minnesota
- Minneapolis
- USA
- Chemical Theory Center and Minnesota Supercomputing Institute
| | - Zoltan Varga
- Department of Chemistry
- University of Minnesota
- Minneapolis
- USA
- Chemical Theory Center and Minnesota Supercomputing Institute
| | - Johannes E. M. N. Klein
- Department of Chemistry
- University of Minnesota
- Minneapolis
- USA
- Center for Metals in Biocatalysis
| | - Christopher J. Cramer
- Department of Chemistry
- University of Minnesota
- Minneapolis
- USA
- Chemical Theory Center and Minnesota Supercomputing Institute
| | - Lawrence Que
- Department of Chemistry
- University of Minnesota
- Minneapolis
- USA
- Center for Metals in Biocatalysis
| | - Donald G. Truhlar
- Department of Chemistry
- University of Minnesota
- Minneapolis
- USA
- Chemical Theory Center and Minnesota Supercomputing Institute
| |
Collapse
|
18
|
Engelmann X, Monte-Pérez I, Ray K. Oxidationsreaktionen mit bioinspirierten einkernigen Nicht-Häm-Oxidometallkomplexen. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201600507] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Xenia Engelmann
- Institut für Chemie; Humboldt-Universität zu Berlin; Brook-Taylor-Straße 2 12489 Berlin Deutschland
| | - Inés Monte-Pérez
- Institut für Chemie; Humboldt-Universität zu Berlin; Brook-Taylor-Straße 2 12489 Berlin Deutschland
| | - Kallol Ray
- Institut für Chemie; Humboldt-Universität zu Berlin; Brook-Taylor-Straße 2 12489 Berlin Deutschland
| |
Collapse
|
19
|
Engelmann X, Monte-Pérez I, Ray K. Oxidation Reactions with Bioinspired Mononuclear Non-Heme Metal-Oxo Complexes. Angew Chem Int Ed Engl 2016; 55:7632-49. [DOI: 10.1002/anie.201600507] [Citation(s) in RCA: 207] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2016] [Revised: 03/15/2016] [Indexed: 12/22/2022]
Affiliation(s)
- Xenia Engelmann
- Department of Chemistry; Humboldt-Universität zu Berlin; Brook-Taylor-Strasse 2 12489 Berlin Germany
| | - Inés Monte-Pérez
- Department of Chemistry; Humboldt-Universität zu Berlin; Brook-Taylor-Strasse 2 12489 Berlin Germany
| | - Kallol Ray
- Department of Chemistry; Humboldt-Universität zu Berlin; Brook-Taylor-Strasse 2 12489 Berlin Germany
| |
Collapse
|
20
|
First principles approach to the electronic structure, magnetic anisotropy and spin relaxation in mononuclear 3d-transition metal single molecule magnets. Coord Chem Rev 2015. [DOI: 10.1016/j.ccr.2014.10.015] [Citation(s) in RCA: 225] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
21
|
Geng C, Ye S, Neese F. Does a higher metal oxidation state necessarily imply higher reactivity toward H-atom transfer? A computational study of C-H bond oxidation by high-valent iron-oxo and -nitrido complexes. Dalton Trans 2014; 43:6079-86. [PMID: 24492533 DOI: 10.1039/c3dt53051e] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
In this work, the reactions of C-H bond activation by two series of iron-oxo ( (Fe(IV)), (Fe(V)), (Fe(VI))) and -nitrido model complexes ( (Fe(IV)), (Fe(V)), (Fe(VI))) with a nearly identical coordination geometry but varying iron oxidation states ranging from iv to vi were comprehensively investigated using density functional theory. We found that in a distorted octahedral coordination environment, the iron-oxo species and their isoelectronic nitrido analogues feature totally different intrinsic reactivities toward C-H bond cleavage. In the case of the iron-oxo complexes, the reaction barrier monotonically decreases as the iron oxidation state increases, consistent with the gradually enhanced electrophilicity across the series. The iron-nitrido complex is less reactive than its isoelectronic iron-oxo species, and more interestingly, a counterintuitive reactivity pattern was observed, i.e. the activation barriers essentially remain constant independent of the iron oxidation states. The detailed analysis using the Polanyi principle demonstrates that the different reactivities between these two series originate from the distinct thermodynamic driving forces, more specifically, the bond dissociation energies (BDEE-Hs, E = O, N) of the nascent E-H bonds in the FeE-H products. Further decomposition of the BDEE-Hs into the electron and proton affinity components shed light on how the oxidation states modulate the BDEE-Hs of the two series.
Collapse
Affiliation(s)
- Caiyun Geng
- Max-Planck Institute for Chemical Energy Conversion, Stiftstr. 34-36, D-45470 Mülheim an der Ruhr, Germany.
| | | | | |
Collapse
|
22
|
Colomban C, Kudrik EV, Briois V, Shwarbrick JC, Sorokin AB, Afanasiev P. X-ray Absorption and Emission Spectroscopies of X-Bridged Diiron Phthalocyanine Complexes (FePc)2X (X = C, N, O) Combined with DFT Study of (FePc)2X and Their High-Valent Diiron Oxo Complexes. Inorg Chem 2014; 53:11517-30. [DOI: 10.1021/ic501463q] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Cedric Colomban
- Institut de Recherches
sur la Catalyse et l’Environnement de Lyon, IRCELYON, UMR 5256, CNRS−Université Lyon 1, 2, Avenue Albert Einstein, 69626 Villeurbanne, France
| | - Evgenij V. Kudrik
- Institut de Recherches
sur la Catalyse et l’Environnement de Lyon, IRCELYON, UMR 5256, CNRS−Université Lyon 1, 2, Avenue Albert Einstein, 69626 Villeurbanne, France
- State University of Chemistry and Technology, Engels Street 7, 153000 Ivanovo, Russia
| | - Valerie Briois
- Synchrotron SOLEIL, L’Orme
des Merisiers, Saint Aubin BP48, Gif sur Yvette, FR 91192, France
| | | | - Alexander B. Sorokin
- Institut de Recherches
sur la Catalyse et l’Environnement de Lyon, IRCELYON, UMR 5256, CNRS−Université Lyon 1, 2, Avenue Albert Einstein, 69626 Villeurbanne, France
| | - Pavel Afanasiev
- Institut de Recherches
sur la Catalyse et l’Environnement de Lyon, IRCELYON, UMR 5256, CNRS−Université Lyon 1, 2, Avenue Albert Einstein, 69626 Villeurbanne, France
| |
Collapse
|
23
|
Leto DF, Jackson TA. Mn K-edge X-ray absorption studies of oxo- and hydroxo-manganese(IV) complexes: experimental and theoretical insights into pre-edge properties. Inorg Chem 2014; 53:6179-94. [PMID: 24901026 PMCID: PMC4066903 DOI: 10.1021/ic5006902] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
![]()
Mn K-edge X-ray absorption spectroscopy
(XAS) was used to gain insights into the geometric and electronic
structures of [MnII(Cl)2(Me2EBC)], [MnIV(OH)2(Me2EBC)]2+, and [MnIV(O)(OH)(Me2EBC)]+, which are all supported by the tetradentate, macrocyclic
Me2EBC ligand (Me2EBC = 4,11-dimethyl-1,4,8,11-tetraazabicyclo[6.6.2]hexadecane).
Analysis of extended X-ray absorption fine structure (EXAFS) data
for [MnIV(O)(OH)(Me2EBC)]+ revealed
Mn–O scatterers at 1.71 and 1.84 Å and Mn–N scatterers
at 2.11 Å, providing the first unambiguous support for the formulation
of this species as an oxohydroxomanganese(IV) adduct. EXAFS-determined
structural parameters for [MnII(Cl)2(Me2EBC)] and [MnIV(OH)2(Me2EBC)]2+ are consistent with previously reported crystal
structures. The Mn pre-edge energies and intensities of these complexes
were examined within the context of data for other oxo- and hydroxomanganese(IV)
adducts, and time-dependent density functional theory (TD-DFT) computations
were used to predict pre-edge properties for all compounds considered.
This combined experimental and computational analysis revealed a correlation
between the Mn–O(H) distances and pre-edge peak areas of MnIV=O and MnIV–OH complexes, but this
trend was strongly modulated by the MnIV coordination geometry.
Mn 3d-4p mixing, which primarily accounts for the pre-edge intensities,
is not solely a function of the Mn–O(H) bond length; the coordination
geometry also has a large effect on the distribution of pre-edge intensity.
For tetragonal MnIV=O centers, more than 90% of
the pre-edge intensity comes from excitations to the Mn=O σ*
MO. Trigonal bipyramidal oxomanganese(IV) centers likewise feature
excitations to the Mn=O σ* molecular orbital (MO) but
also show intense transitions to 3dx2–y2 and 3dxy MOs because of enhanced 3d-4px,y mixing. This gives rise to a broader pre-edge feature for trigonal
MnIV=O adducts. These results underscore the importance
of reporting experimental pre-edge areas rather than peak heights.
Finally, the TD-DFT method was applied to understand the pre-edge
properties of a recently reported S = 1 MnV=O adduct; these findings are discussed within the context
of previous examinations of oxomanganese(V) complexes. Experimental and theoretical studies were performed to correlate
the Mn pre-K-edge data for MnIV=O and MnIV−OH adducts with geometric and electronic structure. Mn 3d-4p
mixing, which primarily accounts for the pre-edge intensities, is
not solely a function of the Mn−O(H) bond length but is modulated
by the coordination geometry. Thus, depending on the specifics of
the ligand field, MnIV−OH, MnIV=O,
and even MnV=O species can show pre-edge peaks of
comparable area and height.
Collapse
Affiliation(s)
- Domenick F Leto
- Department of Chemistry and Center for Environmentally Beneficial Catalysis, University of Kansas , Lawrence, Kansas 66045, United States
| | | |
Collapse
|
24
|
Krewald V, Lassalle-Kaiser B, Boron TT, Pollock CJ, Kern J, Beckwith MA, Yachandra VK, Pecoraro VL, Yano J, Neese F, DeBeer S. The protonation states of oxo-bridged Mn(IV) dimers resolved by experimental and computational Mn K pre-edge X-ray absorption spectroscopy. Inorg Chem 2013; 52:12904-14. [PMID: 24161030 PMCID: PMC3911776 DOI: 10.1021/ic4008203] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
In nature, the protonation of oxo bridges is a commonly encountered mechanism for fine-tuning chemical properties and reaction pathways. Often, however, the protonation states are difficult to establish experimentally. This is of particular importance in the oxygen evolving complex of photosystem II, where identification of the bridging oxo protonation states is one of the essential requirements toward unraveling the mechanism. In order to establish a combined experimental and theoretical protocol for the determination of protonation states, we have systematically investigated a series of Mn model complexes by Mn K pre-edge X-ray absorption spectroscopy. An ideal test case for selective bis-μ-oxo-bridge protonation in a Mn dimer is represented by the system [Mn(IV)2(salpn)2(μ-OHn)2](n+). Although the three species [Mn(IV)2(salpn)2(μ-O)2], [Mn(IV)2(salpn)2(μ-O)(μ-OH)](+) and [Mn(IV)2(salpn)2(μ-OH)2](2+) differ only in the protonation of the oxo bridges, they exhibit distinct differences in the pre-edge region while maintaining the same edge energy. The experimental spectra are correlated in detail to theoretically calculated spectra. A time-dependent density functional theory approach for calculating the pre-edge spectra of molecules with multiple metal centers is presented, using both high spin (HS) and broken symmetry (BS) electronic structure solutions. The most intense pre-edge transitions correspond to an excitation of the Mn 1s core electrons into the unoccupied orbitals of local e(g) character (d(z)(2) and d(xy) based in the chosen coordinate system). The lowest energy experimental feature is dominated by excitations of 1s-α electrons, and the second observed feature is primarily attributed to 1s-β electron excitations. The observed energetic separation is due to spin polarization effects in spin-unrestricted density functional theory and models final state multiplet effects. The effects of spin polarization on the calculated Mn K pre-edge spectra, in both the HS and BS solutions, are discussed in terms of the strength of the antiferromagnetic coupling and associated changes in the covalency of Mn-O bonds. The information presented in this paper is complemented with the X-ray emission spectra of the same compounds published in an accompanying paper. Taken together, the two studies provide the foundation for a better understanding of the X-ray spectroscopic data of the oxygen evolving complex (OEC) in photosystem II.
Collapse
Affiliation(s)
- Vera Krewald
- Max-Planck-Institute for Chemical Energy Conversion, Stiftstr. 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Benedikt Lassalle-Kaiser
- Physical Bioscience Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Thaddeus T. Boron
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Christopher J. Pollock
- Max-Planck-Institute for Chemical Energy Conversion, Stiftstr. 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Jan Kern
- Physical Bioscience Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Martha A. Beckwith
- Max-Planck-Institute for Chemical Energy Conversion, Stiftstr. 34-36, 45470 Mülheim an der Ruhr, Germany
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, USA
| | - Vittal K. Yachandra
- Physical Bioscience Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Vincent L. Pecoraro
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Junko Yano
- Physical Bioscience Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Frank Neese
- Max-Planck-Institute for Chemical Energy Conversion, Stiftstr. 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Serena DeBeer
- Max-Planck-Institute for Chemical Energy Conversion, Stiftstr. 34-36, 45470 Mülheim an der Ruhr, Germany
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, USA
| |
Collapse
|
25
|
Ray K, Heims F, Pfaff FF. Terminal Oxo and Imido Transition-Metal Complexes of Groups 9-11. Eur J Inorg Chem 2013. [DOI: 10.1002/ejic.201300223] [Citation(s) in RCA: 151] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
26
|
Chandrasekaran P, Chiang KP, Nordlund D, Bergmann U, Holland PL, DeBeer S. Sensitivity of X-ray core spectroscopy to changes in metal ligation: a systematic study of low-coordinate, high-spin ferrous complexes. Inorg Chem 2013; 52:6286-98. [PMID: 23662855 DOI: 10.1021/ic3021723] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In order to assess the sensitivity and complementarity of X-ray absorption and emission spectroscopies for determining changes in the metal ligation sphere, a systematic experimental and theoretical study of iron model complexes has been carried out. A series of high-spin ferrous complexes, in which the ligation sphere has been varied from a three-coordinate complex, [L(tBu)Fe(SPh)] (1) (where L(tBu) = bulky β-diketiminate ligand; SPh = phenyl thiolate) to four-coordinate complexes [L(tBu)Fe(SPh)(X)] (where X = CN(t)Bu (2); 1-methylimidazole (3); or N,N-dimethylformamide (DMF) (4)), has been investigated using a combination of Fe K-edge X-ray absorption (XAS) and Kβ X-ray emission (XES) spectroscopies. The Fe K XAS pre-edge and edge of all four complexes are consistent with a high-spin ferrous assignment, with the largest differences in the pre-edge intensities attributed to changes in covalency of the fourth coordination site. The X-ray emission spectra show pronounced changes in the valence to core region (V2C) as the identity of the coordinated ligand is varied. The experimental results have been correlated to density functional theory (DFT) calculations, to understand key molecular orbital contributions to the observed absorption and emission features. The calculations also have been extended to a series of hypothetical high-spin iron complexes to understand the sensitivity of XAS and XES techniques to different ligand protonation states ([L(tBu)Fe(II)(SPh)(NHn)](3-n) (n = 3, 2, 1, 0)), metal oxidation states [L(tBu)Fe(SPh)(N)](n-) (n = 3, 2, 1), and changes in the ligand identity [L(tBu)Fe(IV)(SPh)(X)](n-) (X = C(4-), N(3-), O(2-); n = 2, 1, 0). This study demonstrates that XAS pre-edge data have greater sensitivity to changes in oxidation state, while valence to core (V2C) XES data provide a more sensitive probe of ligand identity and protonation state. The combination of multiple X-ray spectroscopic methods with DFT results thus has the potential to provide for detailed characterization of complex inorganic systems in both chemical and biological catalysis.
Collapse
Affiliation(s)
- P Chandrasekaran
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, USA
| | | | | | | | | | | |
Collapse
|
27
|
Bernadotte S, Atkins AJ, Jacob CR. Origin-independent calculation of quadrupole intensities in X-ray spectroscopy. J Chem Phys 2013. [PMID: 23205980 DOI: 10.1063/1.4766359] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
For electronic excitations in the ultraviolet and visible range of the electromagnetic spectrum, the intensities are usually calculated within the dipole approximation, which assumes that the oscillating electric field is constant over the length scale of the transition. For the short wavelengths used in hard X-ray spectroscopy, the dipole approximation may not be adequate. In particular, for metal K-edge X-ray absorption spectroscopy (XAS), it becomes necessary to include higher-order contributions. In quantum-chemical approaches to X-ray spectroscopy, these so-called quadrupole intensities have so far been calculated by including contributions depending on the square of the electric-quadrupole and magnetic-dipole transition moments. However, the resulting quadrupole intensities depend on the choice of the origin of the coordinate system. Here, we show that for obtaining an origin-independent theory, one has to include all contributions that are of the same order in the wave vector consistently. This leads to two additional contributions depending on products of the electric-dipole and electric-octupole and of the electric-dipole and magnetic-quadrupole transition moments, respectively. We have implemented such an origin-independent calculation of quadrupole intensities in XAS within time-dependent density-functional theory, and demonstrate its usefulness for the calculation of metal and ligand K-edge XAS spectra of transition metal complexes.
Collapse
Affiliation(s)
- Stephan Bernadotte
- Karlsruhe Institute of Technology (KIT), Center for Functional Nanostructures, Wolfgang-Gaede-Str. 1a, 76131 Karlsruhe, Germany
| | | | | |
Collapse
|
28
|
Tang H, Guan J, Liu H, Huang X. Comparative Insight into Electronic Properties and Reactivities toward C–H Bond Activation by Iron(IV)–Nitrido, Iron(IV)–Oxo, and Iron(IV)–Sulfido Complexes: A Theoretical Investigation. Inorg Chem 2013; 52:2684-96. [DOI: 10.1021/ic302766f] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Hao Tang
- Institute of Theoretical
Chemistry, State Key Laboratory of Theoretical and Computational Chemistry, Jilin University, Changchun 130023, People’s
Republic of China
| | - Jia Guan
- Institute of Theoretical
Chemistry, State Key Laboratory of Theoretical and Computational Chemistry, Jilin University, Changchun 130023, People’s
Republic of China
| | - Huiling Liu
- Institute of Theoretical
Chemistry, State Key Laboratory of Theoretical and Computational Chemistry, Jilin University, Changchun 130023, People’s
Republic of China
| | - Xuri Huang
- Institute of Theoretical
Chemistry, State Key Laboratory of Theoretical and Computational Chemistry, Jilin University, Changchun 130023, People’s
Republic of China
| |
Collapse
|
29
|
Maganas D, Krzystek J, Ferentinos E, Whyte AM, Robertson N, Psycharis V, Terzis A, Neese F, Kyritsis P. Investigating magnetostructural correlations in the pseudooctahedral trans-[Ni(II){(OPPh2)(EPPh2)N}2(sol)2] complexes (E = S, Se; sol = DMF, THF) by magnetometry, HFEPR, and ab initio quantum chemistry. Inorg Chem 2012; 51:7218-31. [PMID: 22697407 DOI: 10.1021/ic300453y] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
In this work, magnetometry and high-frequency and -field electron paramagnetic resonance spectroscopy (HFEPR) have been employed in order to determine the spin Hamiltonian (SH) parameters of the non-Kramers, S = 1, pseudooctahedral trans-[Ni(II){(OPPh(2))(EPPh(2))N}(2)(sol)(2)] (E = S, Se; sol = DMF, THF) complexes. X-ray crystallographic studies on these compounds revealed a highly anisotropic NiO(4)E(2) coordination environment, as well as subtle structural differences, owing to the nature of the Ni(II)-coordinated solvent molecule or ligand E atoms. The effects of these structural characteristics on the magnetic properties of the complexes were investigated. The accurately HFEPR-determined SH zero-field-splitting (zfs) D and E parameters, along with the structural data, provided the basis for a systematic density functional theory (DFT) and multiconfigurational ab initio computational analysis, aimed at further elucidating the electronic structure of the complexes. DFT methods yielded only qualitatively useful data. However, already entry level ab initio methods yielded good results for the investigated magnetic properties, provided that the property calculations are taken beyond a second-order treatment of the spin-orbit coupling (SOC) interaction. This was achieved by quasi-degenerate perturbation theory, in conjunction with state-averaged complete active space self-consistent-field calculations. The accuracy in the calculated D parameters improves upon recovering dynamic correlation with multiconfigurational ab initio methods, such as the second-order N-electron valence perturbation theory NEVPT2, the difference dedicated configuration interaction, and the spectroscopy-oriented configuration interaction. The calculations showed that the magnitude of D (∼3-7 cm(-1)) in these complexes is mainly dominated by multiple SOC contributions, the origin of which was analyzed in detail. In addition, the observed largely rhombic regime (E/D = 0.16-0.33) is attributed to the highly distorted metal coordination sphere. Of special importance is the insight by this work on the zfs effects of Se coordination to Ni(II). Overall, a combined experimental and theoretical methodology is provided, as a means to probe the electronic structure of octahedral Ni(II) complexes.
Collapse
Affiliation(s)
- Dimitrios Maganas
- Inorganic Chemistry Laboratory, Department of Chemistry, National and Kapodistrian University of Athens, 15771 Athens, Greece
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Scarborough CC, Sproules S, Doonan CJ, Hagen KS, Weyhermüller T, Wieghardt K. Scrutinizing Low-Spin Cr(II) Complexes. Inorg Chem 2012; 51:6969-82. [DOI: 10.1021/ic300882r] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Christopher C. Scarborough
- Max-Planck-Institut für Bioanorganische Chemie, Stiftstraße
34-36, D-45470 Mülheim an der Ruhr, Germany
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta Georgia
30322, United States
| | - Stephen Sproules
- EPSRC
National UK EPR Facility
and Service, Photon Science Institute, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K
| | - Christian J. Doonan
- School of Chemistry and Physics, The University of Adelaide, SA 5005, Australia
| | - Karl S. Hagen
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta Georgia
30322, United States
| | - Thomas Weyhermüller
- Max-Planck-Institut für Bioanorganische Chemie, Stiftstraße
34-36, D-45470 Mülheim an der Ruhr, Germany
| | - Karl Wieghardt
- Max-Planck-Institut für Bioanorganische Chemie, Stiftstraße
34-36, D-45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
31
|
Atkins AJ, Jacob CR, Bauer M. Probing the Electronic Structure of Substituted Ferrocenes with High-Resolution XANES Spectroscopy. Chemistry 2012; 18:7021-5. [PMID: 22555875 DOI: 10.1002/chem.201200649] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Indexed: 11/07/2022]
Affiliation(s)
- Andrew J Atkins
- Center for Functional Nanostructures, Karlsruhe Institute of Technology (KIT), Wolfgang-Gaede-Strasse 1a, 76131 Karlsruhe, Germany
| | | | | |
Collapse
|
32
|
Scarborough CC, Lancaster KM, DeBeer S, Weyhermüller T, Sproules S, Wieghardt K. Experimental Fingerprints for Redox-Active Terpyridine in [Cr(tpy)2](PF6)n (n = 3–0), and the Remarkable Electronic Structure of [Cr(tpy)2]1–. Inorg Chem 2012; 51:3718-32. [DOI: 10.1021/ic2027219] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Christopher C. Scarborough
- Max-Planck-Institut für Bioanorganische Chemie, Stiftstrasse 34-36,
D-45470 Mülheim an der Ruhr, Germany
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta Georgia
30322, United States
| | - Kyle M. Lancaster
- Department
of Chemistry and Chemical
Biology, Cornell University, Ithaca, New
York 14853, United States
| | - Serena DeBeer
- Max-Planck-Institut für Bioanorganische Chemie, Stiftstrasse 34-36,
D-45470 Mülheim an der Ruhr, Germany
- Department
of Chemistry and Chemical
Biology, Cornell University, Ithaca, New
York 14853, United States
| | - Thomas Weyhermüller
- Max-Planck-Institut für Bioanorganische Chemie, Stiftstrasse 34-36,
D-45470 Mülheim an der Ruhr, Germany
| | - Stephen Sproules
- Max-Planck-Institut für Bioanorganische Chemie, Stiftstrasse 34-36,
D-45470 Mülheim an der Ruhr, Germany
- EPSRC National UK EPR Facility
and Service, Photon Science Institute, The University of Manchester, Oxford Road, Manchester M13 9PL, United
Kingdom
| | - Karl Wieghardt
- Max-Planck-Institut für Bioanorganische Chemie, Stiftstrasse 34-36,
D-45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
33
|
Abstract
Selective functionalization of unactivated C-H bonds and ammonia production are extremely important industrial processes. A range of metalloenyzmes achieve these challenging tasks in biology by activating dioxygen and dinitrogen using cheap and abundant transition metals, such as iron, copper and manganese. High-valent iron-oxo and -nitrido complexes act as active intermediates in many of these processes. The generation of well-described model compounds can provide vital insights into the mechanism of such enzymatic reactions. Advances in the chemistry of model high-valent iron-oxo and -nitrido systems can be related to our understanding of the biological systems.
Collapse
|
34
|
Chen H, Cho KB, Lai W, Nam W, Shaik S. Dioxygen Activation by a Non-Heme Iron(II) Complex: Theoretical Study toward Understanding Ferric–Superoxo Complexes. J Chem Theory Comput 2012; 8:915-26. [DOI: 10.1021/ct300015y] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Hui Chen
- Beijing National Laboratory for Molecular
Sciences (BNLMS), CAS Key Laboratory of Photochemistry, Institute
of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- Institute of Chemistry and the Lise Meitner-Minerva Center for Computational
Quantum Chemistry, The Hebrew University of Jerusalem, Givat Ram Campus, 91904 Jerusalem, Israel
| | - Kyung-Bin Cho
- Department of Bioinspired Science, Department of Chemistry
and Nano Science, Ewha Womans University, Seoul, 120-750, Korea
| | - Wenzhen Lai
- Institute of Chemistry and the Lise Meitner-Minerva Center for Computational
Quantum Chemistry, The Hebrew University of Jerusalem, Givat Ram Campus, 91904 Jerusalem, Israel
- Department of Chemistry, Renmin University of China, Beijing, 100872, China
| | - Wonwoo Nam
- Department of Bioinspired Science, Department of Chemistry
and Nano Science, Ewha Womans University, Seoul, 120-750, Korea
| | - Sason Shaik
- Institute of Chemistry and the Lise Meitner-Minerva Center for Computational
Quantum Chemistry, The Hebrew University of Jerusalem, Givat Ram Campus, 91904 Jerusalem, Israel
| |
Collapse
|
35
|
Bigi JP, Harman WH, Lassalle-Kaiser B, Robles DM, Stich TA, Yano J, Britt RD, Chang CJ. A high-spin iron(IV)-oxo complex supported by a trigonal nonheme pyrrolide platform. J Am Chem Soc 2012; 134:1536-42. [PMID: 22214221 DOI: 10.1021/ja207048h] [Citation(s) in RCA: 113] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We report the generation and characterization of a new high-spin iron(IV)-oxo complex supported by a trigonal nonheme pyrrolide platform. Oxygen-atom transfer to [(tpa(Mes))Fe(II)](-) (tpa(Ar) = tris(5-arylpyrrol-2-ylmethyl)amine) in acetonitrile solution affords the Fe(III)-alkoxide product [(tpa(Mes2MesO))Fe(III)](-) resulting from intramolecular C-H oxidation with no observable ferryl intermediates. In contrast, treatment of the phenyl derivative [(tpa(Ph))Fe(II)](-) with trimethylamine N-oxide in acetonitrile solution produces the iron(IV)-oxo complex [(tpa(Ph))Fe(IV)(O)](-) that has been characterized by a suite of techniques, including mass spectrometry as well as UV-vis, FTIR, Mössbauer, XAS, and parallel-mode EPR spectroscopies. Mass spectral, FTIR, and optical absorption studies provide signatures for the iron-oxo chromophore, and Mössbauer and XAS measurements establish the presence of an Fe(IV) center. Moreover, the Fe(IV)-oxo species gives parallel-mode EPR features indicative of a high-spin, S = 2 system. Preliminary reactivity studies show that the high-spin ferryl tpa(Ph) complex is capable of mediating intermolecular C-H oxidation as well as oxygen-atom transfer chemistry.
Collapse
Affiliation(s)
- Julian P Bigi
- Department of Chemistry, University of California Berkeley, Berkeley, California 94720, USA
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Timmer GH, Berry JF. Electrophilic aryl C–H amination by dimetal nitrides: correlating electronic structure with reactivity. Chem Sci 2012. [DOI: 10.1039/c2sc20688a] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
37
|
Ertem MZ, Gagliardi L, Cramer CJ. Quantum chemical characterization of the mechanism of an iron-based water oxidation catalyst. Chem Sci 2012. [DOI: 10.1039/c2sc01030e] [Citation(s) in RCA: 114] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
38
|
Roemelt M, Beckwith MA, Duboc C, Collomb MN, Neese F, DeBeer S. Manganese K-Edge X-Ray Absorption Spectroscopy as a Probe of the Metal–Ligand Interactions in Coordination Compounds. Inorg Chem 2011; 51:680-7. [DOI: 10.1021/ic202229b] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Michael Roemelt
- Max-Planck-Institut für Bioanorganische Chemie, Stiftstrasse 34-36,
D-45470 Mülheim an der Ruhr, Germany
| | - Martha A. Beckwith
- Max-Planck-Institut für Bioanorganische Chemie, Stiftstrasse 34-36,
D-45470 Mülheim an der Ruhr, Germany
- Department of Chemistry and
Chemical Biology, Cornell University, Ithaca,
New York 14853, United States
| | - Carole Duboc
- Université Joseph Fourier Grenoble 1/CNRS, Département de
Chimie Moléculaire, UMR-5250, Laboratoire de Chimie Inorganique
Redox, Institut de Chimie Moléculaire de Grenoble FR- CNRS-2607,
BP-53, 38041 Grenoble Cedex 9, France
| | - Marie-Noëlle Collomb
- Université Joseph Fourier Grenoble 1/CNRS, Département de
Chimie Moléculaire, UMR-5250, Laboratoire de Chimie Inorganique
Redox, Institut de Chimie Moléculaire de Grenoble FR- CNRS-2607,
BP-53, 38041 Grenoble Cedex 9, France
| | - Frank Neese
- Max-Planck-Institut für Bioanorganische Chemie, Stiftstrasse 34-36,
D-45470 Mülheim an der Ruhr, Germany
| | - Serena DeBeer
- Max-Planck-Institut für Bioanorganische Chemie, Stiftstrasse 34-36,
D-45470 Mülheim an der Ruhr, Germany
- Department of Chemistry and
Chemical Biology, Cornell University, Ithaca,
New York 14853, United States
| |
Collapse
|
39
|
Scarborough CC, Sproules S, Weyhermüller T, DeBeer S, Wieghardt K. Electronic and Molecular Structures of the Members of the Electron Transfer Series [Cr(tbpy)3]n (n = 3+, 2+, 1+, 0): An X-ray Absorption Spectroscopic and Density Functional Theoretical Study. Inorg Chem 2011; 50:12446-62. [DOI: 10.1021/ic201123x] [Citation(s) in RCA: 127] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Christopher C. Scarborough
- Max-Planck-Institut für Bioanorganische Chemie, Stiftstrasse 34-36,
D-45470 Mülheim an der Ruhr, Germany
| | - Stephen Sproules
- Max-Planck-Institut für Bioanorganische Chemie, Stiftstrasse 34-36,
D-45470 Mülheim an der Ruhr, Germany
| | - Thomas Weyhermüller
- Max-Planck-Institut für Bioanorganische Chemie, Stiftstrasse 34-36,
D-45470 Mülheim an der Ruhr, Germany
| | - Serena DeBeer
- Max-Planck-Institut für Bioanorganische Chemie, Stiftstrasse 34-36,
D-45470 Mülheim an der Ruhr, Germany
- Department of Chemistry and
Chemical Biology, Cornell University, Ithaca,
New York 14853, United States
| | - Karl Wieghardt
- Max-Planck-Institut für Bioanorganische Chemie, Stiftstrasse 34-36,
D-45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
40
|
Bowman AC, Milsmann C, Bill E, Turner ZR, Lobkovsky E, DeBeer S, Wieghardt K, Chirik PJ. Synthesis and electronic structure determination of N-alkyl-substituted bis(imino)pyridine iron imides exhibiting spin crossover behavior. J Am Chem Soc 2011; 133:17353-69. [PMID: 21985461 DOI: 10.1021/ja205736m] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Three new N-alkyl substituted bis(imino)pyridine iron imide complexes, ((iPr)PDI)FeNR ((iPr)PDI = 2,6-(2,6-(i)Pr(2)-C(6)H(3)-N═CMe)(2)C(5)H(3)N; R = 1-adamantyl ((1)Ad), cyclooctyl ((Cy)Oct), and 2-adamantyl ((2)Ad)) were synthesized by addition of the appropriate alkyl azide to the iron bis(dinitrogen) complex, ((iPr)PDI)Fe(N(2))(2). SQUID magnetic measurements on the isomeric iron imides, ((iPr)PDI)FeN(1)Ad and ((iPr)PDI)FeN(2)Ad, established spin crossover behavior with the latter example having a more complete spin transition in the experimentally accessible temperature range. X-ray diffraction on all three alkyl-substituted bis(imino)pyridine iron imides established essentially planar compounds with relatively short Fe-N(imide) bond lengths and two-electron reduction of the redox-active bis(imino)pyridine chelate. Zero- and applied-field Mössbauer spectroscopic measurements indicate diamagnetic ground states at cryogenic temperatures and established low isomer shifts consistent with highly covalent molecules. For ((iPr)PDI)FeN(2)Ad, Mössbauer spectroscopy also supports spin crossover behavior and allowed extraction of thermodynamic parameters for the S = 0 to S = 1 transition. X-ray absorption spectroscopy and computational studies were also performed to explore the electronic structure of the bis(imino)pyridine alkyl-substituted imides. An electronic structure description with a low spin ferric center (S = 1/2) antiferromagnetically coupled to an imidyl radical (S(imide) = 1/2) and a closed-shell, dianionic bis(imino)pyridine chelate (S(PDI) = 0) is favored for the S = 0 state. An iron-centered spin transition to an intermediate spin ferric ion (S(Fe) = 3/2) accounts for the S = 1 state observed at higher temperatures. Other possibilities based on the computational and experimental data are also evaluated and compared to the electronic structure of the bis(imino)pyridine iron N-aryl imide counterparts.
Collapse
Affiliation(s)
- Amanda C Bowman
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853, USA
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Chandrasekaran P, Stieber SCE, Collins TJ, Que L, Neese F, DeBeer S. Prediction of high-valent iron K-edge absorption spectra by time-dependent density functional theory. Dalton Trans 2011; 40:11070-9. [PMID: 21956429 DOI: 10.1039/c1dt11331c] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In recent years, a number of high-valent iron intermediates have been identified as reactive species in iron-containing metalloproteins. Inspired by the interest in these highly reactive species, chemists have synthesized Fe(IV) and Fe(V) model complexes with terminal oxo or nitrido groups, as well as a rare example of an Fe(VI)-nitrido species. In all these cases, X-ray absorption spectroscopy has played a key role in the identification and characterization of these species, with both the energy and intensity of the pre-edge features providing spectroscopic signatures for both the oxidation state and the local site geometry. Here we build on a time-dependent DFT methodology for the prediction of Fe K- pre-edge features, previously applied to ferrous and ferric complexes, and extend it to a range of Fe(IV), Fe(V) and Fe(VI) complexes. The contributions of oxidation state, coordination environment and spin state to the spectral features are discussed. These methods are then extended to calculate the spectra of the heme active site of P450 Compound II and the non-heme active site of TauD. The potential for using these methods in a predictive manner is highlighted.
Collapse
Affiliation(s)
- P Chandrasekaran
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| | | | | | | | | | | |
Collapse
|
42
|
Delgado-Jaime MU, Dible BR, Chiang KP, Brennessel WW, Bergmann U, Holland PL, DeBeer S. Identification of a single light atom within a multinuclear metal cluster using valence-to-core X-ray emission spectroscopy. Inorg Chem 2011; 50:10709-17. [PMID: 21954894 DOI: 10.1021/ic201173j] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Iron valence-to-core Fe Kβ X-ray emission spectroscopy (V2C XES) is established as a means to identify light atoms (C, N, O) within complex multimetallic frameworks. The ability to distinguish light atoms, particularly in the presence of heavier atoms, is a well-known limitation of both crystallography and EXAFS. Using the sensitivity of V2C XES to the ionization potential of the bound ligand, energetic shifts of ~10 eV in the ligand 2s ionization energies of bound C, N, and O may be observed. As V2C XES is a high-energy X-ray method, it is readily applicable to samples in any physical form. This method thus has great potential for application to multimetallic inorganic frameworks involved in both small molecule storage and activation.
Collapse
|
43
|
Chen H, Lai W, Yao J, Shaik S. Perferryl FeV–Oxo Nonheme Complexes: Do They Have High-Spin or Low-Spin Ground States? J Chem Theory Comput 2011; 7:3049-53. [DOI: 10.1021/ct200614g] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Hui Chen
- Institute of Chemistry and the Lise Meitner-Minerva Center for Computational Quantum Chemistry, Hebrew University of Jerusalem, Givat Ram Campus, 91904 Jerusalem, Israel
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Wenzhen Lai
- Institute of Chemistry and the Lise Meitner-Minerva Center for Computational Quantum Chemistry, Hebrew University of Jerusalem, Givat Ram Campus, 91904 Jerusalem, Israel
| | - Jiannian Yao
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Sason Shaik
- Institute of Chemistry and the Lise Meitner-Minerva Center for Computational Quantum Chemistry, Hebrew University of Jerusalem, Givat Ram Campus, 91904 Jerusalem, Israel
| |
Collapse
|
44
|
Ariyoshi K, Suzuki T, Mayer JM, Kojima M. Reactivities of the N-Atom-inserted Ligands, NSC(NR 2)S 2−and SN=C(NR 2)S 2−, in Iridium(III) Complexes. CHEM LETT 2011. [DOI: 10.1246/cl.2011.831] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
45
|
England J, Guo Y, Van Heuvelen KM, Cranswick MA, Rohde GT, Bominaar EL, Münck E, Que L. A more reactive trigonal-bipyramidal high-spin oxoiron(IV) complex with a cis-labile site. J Am Chem Soc 2011; 133:11880-3. [PMID: 21739994 DOI: 10.1021/ja2040909] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The trigonal-bipyramidal high-spin (S = 2) oxoiron(IV) complex [Fe(IV)(O)(TMG(2)dien)(CH(3)CN)](2+) (7) was synthesized and spectroscopically characterized. Substitution of the CH(3)CN ligand by anions, demonstrated here for X = N(3)(-) and Cl(-), yielded additional S = 2 oxoiron(IV) complexes of general formulation [Fe(IV)(O)(TMG(2)dien)(X)](+) (7-X). The reduced steric bulk of 7 relative to the published S = 2 complex [Fe(IV)(O)(TMG(3)tren)](2+) (2) was reflected by enhanced rates of intermolecular substrate oxidation.
Collapse
Affiliation(s)
- Jason England
- Department of Chemistry and Center for Metals in Biocatalysis, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Saouma CT, Peters JC. M≡E and M=E Complexes of Iron and Cobalt that Emphasize Three-fold Symmetry (E = O, N, NR). Coord Chem Rev 2011; 255:920-937. [PMID: 21625302 PMCID: PMC3103469 DOI: 10.1016/j.ccr.2011.01.009] [Citation(s) in RCA: 181] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Mid-to-late transition metal complexes that feature terminal, multiply bonded ligands such as oxos, imides, and nitrides have been invoked as intermediates in several catalytic transformations of synthetic and biological significance. Until about ten years ago, isolable examples of such species were virtually unknown. Over the past decade or so, numerous chemically well-defined examples of such species have been discovered. In this context, the presentreview summarizes the development of 4- and 5-coordinate Fe(E) and Co(E) species under local three-fold symmetry.
Collapse
Affiliation(s)
- Caroline T. Saouma
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125
| | - Jonas C. Peters
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125
| |
Collapse
|
47
|
Pollock CJ, DeBeer S. Valence-to-core X-ray emission spectroscopy: a sensitive probe of the nature of a bound ligand. J Am Chem Soc 2011; 133:5594-601. [PMID: 21417349 DOI: 10.1021/ja200560z] [Citation(s) in RCA: 109] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The sensitivity of iron Kβ X-ray emission spectroscopy (XES) to the nature of the bound ligands (σ-donating, π-donating, and π-accepting) has been explored. A combination of experiment and theory has been employed, with a DFT approach being utilized to elucidate ligand effects on the spectra and to assign the spectral intensity mechanisms. Knowledge of the various contributions to the spectra allows for a deeper understanding of spectral features and demonstrates the sensitivity of this method to the identity of the interacting ligands. The potential of XES for identifying intermediate species in nonheme iron enzymes is highlighted.
Collapse
Affiliation(s)
- Christopher J Pollock
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, USA
| | | |
Collapse
|
48
|
Nonheme oxo-iron(IV) intermediates form an oxyl radical upon approaching the C-H bond activation transition state. Proc Natl Acad Sci U S A 2011; 108:1228-33. [PMID: 21220293 DOI: 10.1073/pnas.1008411108] [Citation(s) in RCA: 213] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Oxo-iron(IV) species are implicated as key intermediates in the catalytic cycles of heme and nonheme oxygen activating iron enzymes that selectively functionalize aliphatic C-H bonds. Ferryl complexes can exist in either quintet or triplet ground states. Density functional theory calculations predict that the quintet oxo-iron(IV) species is more reactive toward C-H bond activation than its corresponding triplet partner, however; the available experimental data on model complexes suggests that both spin multiplicities display comparable reactivities. To clarify this ambiguity, a detailed electronic structure analysis of alkane hydroxylation by an oxo-iron(IV) species on different spin-state potential energy surfaces is performed. According to our results, the lengthening of the Fe-oxo bond in ferryl reactants, which is the part of the reaction coordinate for H-atom abstraction, leads to the formation of oxyl-iron(III) species that then perform actual C-H bond activation. The differential reactivity stems from the fact that the two spin states have different requirements for the optimal angle at which the substrate should approach the (FeO)(2+) core because distinct electron acceptor orbitals are employed on the two surfaces. The H-atom abstraction on the quintet surface favors the "σ-pathway" that requires an essentially linear attack; by contrast a "π-channel" is operative on the triplet surface that leads to an ideal attack angle near 90°. However, the latter is not possible due to steric crowding; thus, the attenuated orbital interaction and the unavoidably increased Pauli repulsion result in the lower reactivity of the triplet oxo-iron(IV) complexes.
Collapse
|
49
|
Sproules S, Weyhermüller T, Debeer S, Wieghardt K. Six-membered electron transfer series [V(dithiolene)(3)](z) (z = 1+, 0, 1-, 2-, 3-, 4-). An X-ray absorption spectroscopic and density functional theoretical study. Inorg Chem 2010; 49:5241-61. [PMID: 20438108 DOI: 10.1021/ic100344f] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The electronic structures of vanadium centers coordinated by three dithiolene ligands have been elucidated by using a host of physical methods: X-ray crystallography, cyclic voltammetry, electronic absorption, electron paramagnetic resonance (EPR), and X-ray absorption spectroscopies, augmented by density functional theoretical (DFT) calculations. The consensus electronic structure derived from this approach is a V(IV) central ion for the neutral, monoanionic, and dianionic members of this electron transfer series, where the tris(dithiolene) ligand units are (L(3))(4-), (L(3))(5-*), and (L(3))(6-), respectively. The trigonal prismatic monoanions, [V(IV)(L(3)(5-*))](1-) (S = 0), are defined as singlet diradicals where the crystallographically observed dithiolene fold results from strong antiferromagnetic coupling between the metal- and ligand-based magnetic orbitals. These results are contrasted with the corresponding tris(dioxolene)vanadium electron transfer series toward establishing the factors that govern the molecular trigonal prismatic or octahedral geometries in systems with three redox noninnocent ligands.
Collapse
Affiliation(s)
- Stephen Sproules
- Max-Planck-Institut für Bioanorganische Chemie, Stiftstrasse 34-36, D-45470 Mülheim an der Ruhr, Germany.
| | | | | | | |
Collapse
|
50
|
Lewis RA, Wu G, Hayton TW. Synthesis and Characterization of an Iron(IV) Ketimide Complex. J Am Chem Soc 2010; 132:12814-6. [DOI: 10.1021/ja104934n] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Richard A. Lewis
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106
| | - Guang Wu
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106
| | - Trevor W. Hayton
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106
| |
Collapse
|