1
|
Delille F, Balloul E, Hajj B, Hanafi M, Morand C, Xu XZ, Dumas S, Coulon A, Lequeux N, Pons T. Sulfobetaine-Phosphonate Block Copolymer Coated Iron Oxide Nanoparticles for Genomic Locus Targeting and Magnetic Micromanipulation in the Nucleus of Living Cells. NANO LETTERS 2023. [PMID: 37390368 DOI: 10.1021/acs.nanolett.3c00688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2023]
Abstract
Exerting forces on biomolecules inside living cells would allow us to probe their dynamic interactions in their native environment. Magnetic iron oxide nanoparticles represent a unique tool capable of pulling on biomolecules with the application of an external magnetic field gradient; however, their use has been restricted to biomolecules accessible from the extracellular medium. Targeting intracellular biomolecules represents an additional challenge due to potential nonspecific interactions with cytoplasmic or nuclear components. We present the synthesis of sulfobetaine-phosphonate block copolymer ligands, which provide magnetic nanoparticles that are stealthy and targetable in living cells. We demonstrate, for the first time, their efficient targeting in the nucleus and their use for magnetic micromanipulation of a specific genomic locus in living cells. We believe that these stable and sensitive magnetic nanoprobes represent a promising tool to manipulate specific biomolecules in living cells and probe the mechanical properties of living matter at the molecular scale.
Collapse
Affiliation(s)
- Fanny Delille
- Laboratoire Physique et Etude des Matériaux, ESPCI-Paris, PSL Research University, CNRS, Sorbonne Université, UMR 8213, 10, rue Vauquelin, 75005 Paris, France
| | - Elie Balloul
- Laboratoire Physico Chimie Curie, Institut Curie, PSL Research University, Sorbonne Université, CNRS UMR168, 75005 Paris, France
| | - Bassam Hajj
- Laboratoire Physico Chimie Curie, Institut Curie, PSL Research University, Sorbonne Université, CNRS UMR168, 75005 Paris, France
| | - Mohamed Hanafi
- Sciences et Ingénierie de la Matière Molle, UMR 7615, ESPCI Paris PSL-CNRS-Sorbonne Université, 10 Rue Vauquelin, 75005 Paris, France
| | - Colin Morand
- Laboratoire Physico Chimie Curie, Institut Curie, PSL Research University, Sorbonne Université, CNRS UMR168, 75005 Paris, France
- Laboratoire Dynamique du Noyau, Institut Curie, PSL Research University, Sorbonne Université, CNRS UMR3664, 75005 Paris, France
| | - Xiang Zhen Xu
- Laboratoire Physique et Etude des Matériaux, ESPCI-Paris, PSL Research University, CNRS, Sorbonne Université, UMR 8213, 10, rue Vauquelin, 75005 Paris, France
| | - Simon Dumas
- Institut Pierre-Gilles de Gennes, Institut Curie, Sorbonne Université, PSL Research University, 6 rue Jean Calvin, 75005 Paris, France
| | - Antoine Coulon
- Laboratoire Physico Chimie Curie, Institut Curie, PSL Research University, Sorbonne Université, CNRS UMR168, 75005 Paris, France
- Laboratoire Dynamique du Noyau, Institut Curie, PSL Research University, Sorbonne Université, CNRS UMR3664, 75005 Paris, France
| | - Nicolas Lequeux
- Laboratoire Physique et Etude des Matériaux, ESPCI-Paris, PSL Research University, CNRS, Sorbonne Université, UMR 8213, 10, rue Vauquelin, 75005 Paris, France
| | - Thomas Pons
- Laboratoire Physique et Etude des Matériaux, ESPCI-Paris, PSL Research University, CNRS, Sorbonne Université, UMR 8213, 10, rue Vauquelin, 75005 Paris, France
| |
Collapse
|
2
|
Lisjak D, Arčon I, Poberžnik M, Herrero-Saboya G, Tufani A, Mavrič A, Valant M, Boštjančič PH, Mertelj A, Makovec D, Martin-Samos L. Saturation magnetisation as an indicator of the disintegration of barium hexaferrite nanoplatelets during the surface functionalisation. Sci Rep 2023; 13:1092. [PMID: 36658162 PMCID: PMC9852462 DOI: 10.1038/s41598-023-28431-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 01/18/2023] [Indexed: 01/20/2023] Open
Abstract
Barium hexaferrite nanoplatelets (BHF NPLs) are permanent nanomagnets with the magnetic easy axis aligned perpendicular to their basal plane. By combining this specific property with optimised surface chemistry, novel functional materials were developed, e.g., ferromagnetic ferrofluids and porous nanomagnets. We compared the interaction of chemically different phosphonic acids, hydrophobic and hydrophilic with 1-4 phosphonic groups, with BHF NPLs. A decrease in the saturation magnetisation after functionalising the BHF NPLs was correlated with the mass fraction of the nonmagnetic coating, whereas the saturation magnetisation of the NPLs coated with a tetraphosphonic acid at 80 °C was significantly lower than expected. We showed that such a substantial decrease in the saturation magnetisation originates from the disintegration of BHF NPLs, which was observed with atomic-resolution scanning transmission electron microscopy and confirmed by a computational study based on state-of-the-art first-principles calculations. Fe K-edge XANES (X-ray absorption near-edge structure) and EXAFS (Extended X-ray absorption fine structure) combined with Fourier-transformed infrared (FTIR) spectroscopy confirmed the formation of an Fe-phosphonate complex on the partly decomposed NPLs. Comparing our results with other functionalised magnetic nanoparticles confirmed that saturation magnetisation can be exploited to identify the disintegration of magnetic nanoparticles when insoluble disintegration products are formed.
Collapse
Affiliation(s)
- Darja Lisjak
- grid.11375.310000 0001 0706 0012Jožef Stefan Institute, 1000 Ljubljana, Slovenia
| | - Iztok Arčon
- grid.11375.310000 0001 0706 0012Jožef Stefan Institute, 1000 Ljubljana, Slovenia ,grid.438882.d0000 0001 0212 6916University of Nova Gorica, 5000 Nova Gorica, Slovenia
| | - Matic Poberžnik
- grid.472635.10000 0004 6476 9521CNR-IOM, Democritos National Simulation Center, Istituto Officina dei Materiali, c/o SiSSA, 34136 Trieste, Italy
| | - Gabriela Herrero-Saboya
- grid.472635.10000 0004 6476 9521CNR-IOM, Democritos National Simulation Center, Istituto Officina dei Materiali, c/o SiSSA, 34136 Trieste, Italy
| | - Ali Tufani
- grid.11375.310000 0001 0706 0012Jožef Stefan Institute, 1000 Ljubljana, Slovenia
| | - Andraž Mavrič
- grid.438882.d0000 0001 0212 6916University of Nova Gorica, 5000 Nova Gorica, Slovenia
| | - Matjaz Valant
- grid.438882.d0000 0001 0212 6916University of Nova Gorica, 5000 Nova Gorica, Slovenia
| | - Patricija Hribar Boštjančič
- grid.11375.310000 0001 0706 0012Jožef Stefan Institute, 1000 Ljubljana, Slovenia ,grid.445211.7Jožef Stefan International Postgraduate School, 1000 Ljubljana, Slovenia
| | - Alenka Mertelj
- grid.11375.310000 0001 0706 0012Jožef Stefan Institute, 1000 Ljubljana, Slovenia
| | - Darko Makovec
- grid.11375.310000 0001 0706 0012Jožef Stefan Institute, 1000 Ljubljana, Slovenia
| | - Layla Martin-Samos
- grid.472635.10000 0004 6476 9521CNR-IOM, Democritos National Simulation Center, Istituto Officina dei Materiali, c/o SiSSA, 34136 Trieste, Italy
| |
Collapse
|
3
|
New Insights into Amino-Functionalization of Magnetic Nanoplatelets with Silanes and Phosphonates. NANOMATERIALS 2022; 12:nano12122123. [PMID: 35745462 PMCID: PMC9229317 DOI: 10.3390/nano12122123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/17/2022] [Accepted: 06/17/2022] [Indexed: 02/01/2023]
Abstract
Magnetic nanoplatelets (NPLs) based on barium hexaferrite (BaFe12O19) are suitable for many applications because of their uniaxial magneto-crystalline anisotropy. Novel materials, such as ferroic liquids, magneto-optic composites, and contrast agents for medical diagnostics, were developed by specific surface functionalization of the barium hexaferrite NPLs. Our aim was to amino-functionalize the NPLs’ surfaces towards new materials and applications. The amino-functionalization of oxide surfaces is challenging and has not yet been reported for barium hexaferrite NPLs. We selected two amine ligands with two different anchoring groups: an amino-silane and an amino-phosphonate. We studied the effect of the anchoring group, backbone structure, and processing conditions on the formation of the respective surface coatings. The core and coated NPLs were examined with transmission electron microscopy, and their room-temperature magnetic properties were measured. The formation of coatings was followed by electrokinetic measurements, infrared and mass spectroscopies, and thermogravimetric analysis. The most efficient amino-functionalization was enabled by (i) amino-silanization of the NPLs precoated with amorphous silica with (3-aminopropyl)triethoxysilane and (ii) slow addition of amino-phosphonate (i.e., sodium alendronate) to the acidified NPL suspension at 80 °C.
Collapse
|
4
|
Delille F, Pu Y, Lequeux N, Pons T. Designing the Surface Chemistry of Inorganic Nanocrystals for Cancer Imaging and Therapy. Cancers (Basel) 2022; 14:2456. [PMID: 35626059 PMCID: PMC9139368 DOI: 10.3390/cancers14102456] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/10/2022] [Accepted: 05/12/2022] [Indexed: 12/27/2022] Open
Abstract
Inorganic nanocrystals, such as gold, iron oxide and semiconductor quantum dots, offer promising prospects for cancer diagnostics, imaging and therapy, due to their specific plasmonic, magnetic or fluorescent properties. The organic coating, or surface ligands, of these nanoparticles ensures their colloidal stability in complex biological fluids and enables their functionalization with targeting functions. It also controls the interactions of the nanoparticle with biomolecules in their environment. It therefore plays a crucial role in determining nanoparticle biodistribution and, ultimately, the imaging or therapeutic efficiency. This review summarizes the various strategies used to develop optimal surface chemistries for the in vivo preclinical and clinical application of inorganic nanocrystals. It discusses the current understanding of the influence of the nanoparticle surface chemistry on its colloidal stability, interaction with proteins, biodistribution and tumor uptake, and the requirements to develop an optimal surface chemistry.
Collapse
Affiliation(s)
- Fanny Delille
- Laboratoire de Physique et d’Etude des Matériaux, Ecole Supérieure de Physique et Chimie Industrielle, Université PSL (Paris Sciences & Lettres), Centre National de Recherche Scientifique, 75005 Paris, France; (F.D.); (Y.P.); (N.L.)
- Laboratoire de Physique et d’Etude des Matériaux, Centre National de Recherche Scientifique, Sorbonne Université, 75005 Paris, France
| | - Yuzhou Pu
- Laboratoire de Physique et d’Etude des Matériaux, Ecole Supérieure de Physique et Chimie Industrielle, Université PSL (Paris Sciences & Lettres), Centre National de Recherche Scientifique, 75005 Paris, France; (F.D.); (Y.P.); (N.L.)
- Laboratoire de Physique et d’Etude des Matériaux, Centre National de Recherche Scientifique, Sorbonne Université, 75005 Paris, France
| | - Nicolas Lequeux
- Laboratoire de Physique et d’Etude des Matériaux, Ecole Supérieure de Physique et Chimie Industrielle, Université PSL (Paris Sciences & Lettres), Centre National de Recherche Scientifique, 75005 Paris, France; (F.D.); (Y.P.); (N.L.)
- Laboratoire de Physique et d’Etude des Matériaux, Centre National de Recherche Scientifique, Sorbonne Université, 75005 Paris, France
| | - Thomas Pons
- Laboratoire de Physique et d’Etude des Matériaux, Ecole Supérieure de Physique et Chimie Industrielle, Université PSL (Paris Sciences & Lettres), Centre National de Recherche Scientifique, 75005 Paris, France; (F.D.); (Y.P.); (N.L.)
- Laboratoire de Physique et d’Etude des Matériaux, Centre National de Recherche Scientifique, Sorbonne Université, 75005 Paris, France
| |
Collapse
|
5
|
Copper Dithiocarbamates: Coordination Chemistry and Applications in Materials Science, Biosciences and Beyond. INORGANICS 2021. [DOI: 10.3390/inorganics9090070] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Copper dithiocarbamate complexes have been known for ca. 120 years and find relevance in biology and medicine, especially as anticancer agents and applications in materials science as a single-source precursor (SSPs) to nanoscale copper sulfides. Dithiocarbamates support Cu(I), Cu(II) and Cu(III) and show a rich and diverse coordination chemistry. Homoleptic [Cu(S2CNR2)2] are most common, being known for hundreds of substituents. All contain a Cu(II) centre, being either monomeric (distorted square planar) or dimeric (distorted trigonal bipyramidal) in the solid state, the latter being held together by intermolecular C···S interactions. Their d9 electronic configuration renders them paramagnetic and thus readily detected by electron paramagnetic resonance (EPR) spectroscopy. Reaction with a range of oxidants affords d8 Cu(III) complexes, [Cu(S2CNR2)2][X], in which copper remains in a square-planar geometry, but Cu–S bonds shorten by ca. 0.1 Å. These show a wide range of different structural motifs in the solid-state, varying with changes in anion and dithiocarbamate substituents. Cu(I) complexes, [Cu(S2CNR2)2]−, are (briefly) accessible in an electrochemical cell, and the only stable example is recently reported [Cu(S2CNH2)2][NH4]·H2O. Others readily lose a dithiocarbamate and the d10 centres can either be trapped with other coordinating ligands, especially phosphines, or form clusters with tetrahedral [Cu(μ3-S2CNR2)]4 being most common. Over the past decade, a wide range of Cu(I) dithiocarbamate clusters have been prepared and structurally characterised with nuclearities of 3–28, especially exciting being those with interstitial hydride and/or acetylide co-ligands. A range of mixed-valence Cu(I)–Cu(II) and Cu(II)–Cu(III) complexes are known, many of which show novel physical properties, and one Cu(I)–Cu(II)–Cu(III) species has been reported. Copper dithiocarbamates have been widely used as SSPs to nanoscale copper sulfides, allowing control over the phase, particle size and morphology of nanomaterials, and thus giving access to materials with tuneable physical properties. The identification of copper in a range of neurological diseases and the use of disulfiram as a drug for over 50 years makes understanding of the biological formation and action of [Cu(S2CNEt2)2] especially important. Furthermore, the finding that it and related Cu(II) dithiocarbamates are active anticancer agents has pushed them to the fore in studies of metal-based biomedicines.
Collapse
|
6
|
A Sustainable Improvement of ω-Bromoalkylphosphonates Synthesis to Access Novel KuQuinones. ORGANICS 2021. [DOI: 10.3390/org2020010] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Owing to the attractiveness of organic phosphonic acids and esters in the pharmacological field and in the functionalization of conductive metal-oxides, the research of effective synthetic protocols is pivotal. Among the others, ω-bromoalkylphosphonates are gaining particular attention because they are useful building blocks for the tailored functionalization of complex organic molecules. Hence, in this work, the optimization of Michaelis–Arbuzov reaction conditions for ω-bromoalkylphosphonates has been performed, to improve process sustainability while maintaining good yields. Synthesized ω-bromoalkylphosphonates have been successfully adopted for the synthesis of new KuQuinone phosphonate esters and, by hydrolysis, phosphonic acid KuQuinone derivatives have been obtained for the first time. Considering the high affinity with metal-oxides, KuQuinones bearing phosphonic acid terminal groups are promising candidates for biomedical and photo(electro)chemical applications.
Collapse
|
7
|
Cao H, Li J, Zhang F, Cahard D, Ma J. Asymmetric Synthesis of Chiral Amino Carboxylic‐Phosphonic Acid Derivatives. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202001345] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Hao‐Qiang Cao
- Department of Chemistry Tianjin Key Laboratory of Molecular Optoelectronic Sciences Frontiers Science Center for Synthetic Biology (Ministry of Education) and Tianjin Collaborative Innovation Center of Chemical Science & Engineering Tianjin University Tianjin 300072 People's Republic of China
| | - Jun‐Kuan Li
- Department of Chemistry Tianjin Key Laboratory of Molecular Optoelectronic Sciences Frontiers Science Center for Synthetic Biology (Ministry of Education) and Tianjin Collaborative Innovation Center of Chemical Science & Engineering Tianjin University Tianjin 300072 People's Republic of China
| | - Fa‐Guang Zhang
- Department of Chemistry Tianjin Key Laboratory of Molecular Optoelectronic Sciences Frontiers Science Center for Synthetic Biology (Ministry of Education) and Tianjin Collaborative Innovation Center of Chemical Science & Engineering Tianjin University Tianjin 300072 People's Republic of China
- Joint School of National University of Singapore and Tianjin University International Campus of Tianjin University, Binhai New City Fuzhou 350207 People's Republic of China
| | - Dominique Cahard
- CNRS UMR 6014 COBRA Normandie Université 76821 Mont Saint Aignan France
| | - Jun‐An Ma
- Department of Chemistry Tianjin Key Laboratory of Molecular Optoelectronic Sciences Frontiers Science Center for Synthetic Biology (Ministry of Education) and Tianjin Collaborative Innovation Center of Chemical Science & Engineering Tianjin University Tianjin 300072 People's Republic of China
- Joint School of National University of Singapore and Tianjin University International Campus of Tianjin University, Binhai New City Fuzhou 350207 People's Republic of China
| |
Collapse
|
8
|
Dussart-Gautheret J, Deschamp J, Monteil M, Gager O, Legigan T, Migianu-Griffoni E, Lecouvey M. Formation of 1-Hydroxymethylene-1,1-bisphosphinates through the Addition of a Silylated Phosphonite on Various Trivalent Derivatives. J Org Chem 2020; 85:14559-14569. [PMID: 32597178 DOI: 10.1021/acs.joc.0c01182] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
An easily handled one-pot synthetic procedure was previously developed for the synthesis of bisphosphinates starting from acyl chlorides. Herein, other trivalent derivatives as acid anhydrides and activated esters were tested to form various bisphosphinates. This modulation of the reactivity can be controlled according to the nature of the acid derivative for the use of sensitive and functionalized substrates.
Collapse
Affiliation(s)
| | - Julia Deschamp
- Université Sorbonne Paris Nord, CSPBAT, CNRS, UMR 7244, F-93017 Bobigny Cedex, France
| | - Maelle Monteil
- Université Sorbonne Paris Nord, CSPBAT, CNRS, UMR 7244, F-93017 Bobigny Cedex, France
| | - Olivier Gager
- Université Sorbonne Paris Nord, CSPBAT, CNRS, UMR 7244, F-93017 Bobigny Cedex, France
| | - Thibaut Legigan
- Université Sorbonne Paris Nord, CSPBAT, CNRS, UMR 7244, F-93017 Bobigny Cedex, France
| | | | - Marc Lecouvey
- Université Sorbonne Paris Nord, CSPBAT, CNRS, UMR 7244, F-93017 Bobigny Cedex, France
| |
Collapse
|
9
|
Hou Z, Liu Y, Xu J, Zhu J. Surface engineering of magnetic iron oxide nanoparticles by polymer grafting: synthesis progress and biomedical applications. NANOSCALE 2020; 12:14957-14975. [PMID: 32648868 DOI: 10.1039/d0nr03346d] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Magnetic iron oxide nanoparticles (IONPs) have wide applications in magnetic resonance imaging (MRI), biomedicine, drug delivery, hyperthermia therapy, catalysis, magnetic separation, and others. However, these applications are usually limited by irreversible agglomeration of IONPs in aqueous media because of their dipole-dipole interactions, and their poor stability. A protecting polymeric shell provides IONPs with not only enhanced long-term stability, but also the functionality of polymer shells. Therefore, polymer-grafted IONPs have recently attracted much attention of scientists. In this tutorial review, we will present the current strategies for grafting polymers onto the surface of IONPs, basically including "grafting from" and "grafting to" methods. Available functional groups and chemical reactions, which could be employed to bind polymers onto the IONP surface, are comprehensively summarized. Moreover, the applications of polymer-grafted IONPs will be briefly discussed. Finally, future challenges and perspectives in the synthesis and application of polymer-grafted IONPs will also be discussed.
Collapse
Affiliation(s)
- Zaiyan Hou
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage of Ministry of Education (HUST), School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China.
| | - Yijing Liu
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage of Ministry of Education (HUST), School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China.
| | - Jiangping Xu
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage of Ministry of Education (HUST), School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China.
| | - Jintao Zhu
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage of Ministry of Education (HUST), School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China.
| |
Collapse
|
10
|
Lisjak D, Hribar Boštjančič P, Mertelj A, Mavrič A, Valant M, Kovač J, Hudelja H, Kocjan A, Makovec D. Formation of Fe(III)-phosphonate Coatings on Barium Hexaferrite Nanoplatelets for Porous Nanomagnets. ACS OMEGA 2020; 5:14086-14095. [PMID: 32566875 PMCID: PMC7301540 DOI: 10.1021/acsomega.0c01597] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 05/19/2020] [Indexed: 06/11/2023]
Abstract
Amorphous coatings formed with mono-, di-, and tetra-phosphonic acids on barium hexaferrite (BHF) nanoplatelets using various synthesis conditions. The coatings, synthesized in water with di- or tetra-phosphonic acids, were thicker than that could be expected from the ligand size and the surface coverage, as determined by thermogravimetric analysis. Here, we propose a mechanism for coating formation based on direct evidence of the surface dissolution/precipitation of the BHF nanoplatelets. The partial dissolution of the nanoplatelets was observed with atomic-resolution scanning transmission electron microscopy, and the released Fe(III) ions were detected with energy-dispersive X-ray spectroscopy and electron energy loss spectroscopy in amorphous coating. The strong chemical interaction between the surface Fe(III) ions with phosphonic ligands induces the dissolution of BHF nanoplatelets and the consequent precipitation of the Fe(III)-phosphonates that assemble into a porous coating. The so-obtained porous nanomagnets are highly responsive to a very weak magnetic field (in the order of Earth's magnetic field) at room temperature, which is a major advantage over the classic mesoporous nanomaterials and metal-organo-phosphonic frameworks with only a weak magnetic response at a few kelvins. The combination of porosity with the intrinsic magneto-crystalline anisotropy of BHF can be exploited, for example, as sorbents for heavy metals from contaminated water.
Collapse
Affiliation(s)
- Darja Lisjak
- Jožef
Stefan Institute, Jamova
39, 1000 Ljubljana, Slovenia
| | - Patricija Hribar Boštjančič
- Jožef
Stefan Institute, Jamova
39, 1000 Ljubljana, Slovenia
- Jožef
Stefan International Postgraduate School, Jamova 39, 1000 Ljubljana, Slovenia
| | - Alenka Mertelj
- Jožef
Stefan Institute, Jamova
39, 1000 Ljubljana, Slovenia
| | - Andraž Mavrič
- University
of Nova Gorica, Vipavska 13, 5000 Nova Gorica, Slovenia
- Institute
of Fundamental and Frontier Sciences, University
of Electronic Science and Technology of China, Chengdu 610054, China
| | - Matjaz Valant
- University
of Nova Gorica, Vipavska 13, 5000 Nova Gorica, Slovenia
- Institute
of Fundamental and Frontier Sciences, University
of Electronic Science and Technology of China, Chengdu 610054, China
| | - Janez Kovač
- Jožef
Stefan Institute, Jamova
39, 1000 Ljubljana, Slovenia
| | - Hermina Hudelja
- Jožef
Stefan Institute, Jamova
39, 1000 Ljubljana, Slovenia
- Jožef
Stefan International Postgraduate School, Jamova 39, 1000 Ljubljana, Slovenia
| | - Andraž Kocjan
- Jožef
Stefan Institute, Jamova
39, 1000 Ljubljana, Slovenia
| | - Darko Makovec
- Jožef
Stefan Institute, Jamova
39, 1000 Ljubljana, Slovenia
| |
Collapse
|
11
|
Direct Enamido C(sp2)−H Diphosphorylation Enabled by a PCET‐Triggered Double Radical Relay: Access togem‐Bisphosphonates. Chemistry 2020; 26:5515-5521. [DOI: 10.1002/chem.202000517] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 03/06/2020] [Indexed: 12/25/2022]
|
12
|
Dussart J, Deschamp J, Migianu-Griffoni E, Lecouvey M. From Industrial Method to the Use of Silylated P(III) Reagents for the Synthesis of Relevant Phosphonylated Molecules. Org Process Res Dev 2020. [DOI: 10.1021/acs.oprd.9b00490] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Jade Dussart
- Université Sorbonne Paris Nord, CSPBAT, CNRS UMR 7244, UFR SMBH, 1 Rue de Chablis, F-93000 Bobigny, France
| | - Julia Deschamp
- Université Sorbonne Paris Nord, CSPBAT, CNRS UMR 7244, UFR SMBH, 1 Rue de Chablis, F-93000 Bobigny, France
| | - Evelyne Migianu-Griffoni
- Université Sorbonne Paris Nord, CSPBAT, CNRS UMR 7244, UFR SMBH, 1 Rue de Chablis, F-93000 Bobigny, France
| | - Marc Lecouvey
- Université Sorbonne Paris Nord, CSPBAT, CNRS UMR 7244, UFR SMBH, 1 Rue de Chablis, F-93000 Bobigny, France
| |
Collapse
|
13
|
Barosi A, Dunkel P, Guénin E, Lalatonne Y, Zeitoun P, Fitton I, Journé C, Bravin A, Maruani A, Dhimane H, Motte L, Dalko PI. Synthesis and activation of an iron oxide immobilized drug-mimicking reporter under conventional and pulsed X-ray irradiation conditions. RSC Adv 2020; 10:3366-3370. [PMID: 35497736 PMCID: PMC9048766 DOI: 10.1039/c9ra09828c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Accepted: 01/02/2020] [Indexed: 12/15/2022] Open
Abstract
An efficient nano-sized delivery system is presented here allowing the immobilized, picolinium-tethered organic ligand to be released by X-ray irradiation. A marked difference was observed in the fragmentation efficiency by using conventional Cs-137 vs. pulsed sources. The nano-sized delivery system allowed releasing complex organic ligands by X-ray irradiation. Marked difference was observed in the release efficiency by using conventional Cs-137 vs. pulsed sources.![]()
Collapse
|
14
|
Shi L, Zeng Y, Zhao Y, Yang B, Ossipov D, Tai CW, Dai J, Xu C. Biocompatible Injectable Magnetic Hydrogel Formed by Dynamic Coordination Network. ACS APPLIED MATERIALS & INTERFACES 2019; 11:46233-46240. [PMID: 31718134 DOI: 10.1021/acsami.9b17627] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Magnetic hydrogel that can respond to a magnetic stimulus is a promising biomaterial for tissue regeneration and cancer treatment. In this study, a novel magnetic hydrogel is formed by simply mixing bisphosphonate (BP)-modified hyaluronic acid (i.e., HA-BP) polymeric solution and iron oxide (Fe3O4) nanoparticle dispersion, in which the hydrogel networks are cross-linked by BP groups and iron atoms on the surface of particle. The iron-BP coordination chemistry affords a dynamic network, characterized by self-healing, shear-thinning, and smoothly injectable properties. Moreover, the HA-BP·Fe3O4 magnetic hydrogel demonstrates heat-generation characterization under an alternating magnetic field. The animal experiments confirm the biocompatibilities of HA-BP·Fe3O4 hydrogel, which presents the hydrogels potential for tissue regeneration and anticancer treatment applications.
Collapse
Affiliation(s)
- Liyang Shi
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology , Hunan University , Changsha 410082 , P. R. China
| | - Yuqin Zeng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology , Hunan University , Changsha 410082 , P. R. China
| | - Yannan Zhao
- Center for Regenerative Medicine, State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology , Chinese Academy of Sciences , Beijing 100101 , P. R. China
| | - Bin Yang
- Center for Regenerative Medicine, State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology , Chinese Academy of Sciences , Beijing 100101 , P. R. China
| | - Dmitri Ossipov
- Department of Biosciences and Nutrition , Karolinska Institute , Häsovägen 7c , Huddinge 14157 , Sweden
| | - Cheuk-Wai Tai
- Department of Materials and Environmental Chemistry , Stockholm University , Stockholm 10691 , Sweden
| | - Jianwu Dai
- Center for Regenerative Medicine, State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology , Chinese Academy of Sciences , Beijing 100101 , P. R. China
| | - Changgang Xu
- School of Materials Science and Engineering , Xi'an University of Science and Technology , Xi'an 710054 , P. R. China
| |
Collapse
|
15
|
Bisphosphoric modified amino functional [
x
Fe
3
O
4
–2
x
Al(OH)
3
]/waterborne polyurethane nanocomposite with superparamagnetism and flame retardancy. POLYM ADVAN TECHNOL 2019. [DOI: 10.1002/pat.4774] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
16
|
Patsula V, Horák D, Kučka J, Macková H, Lobaz V, Francová P, Herynek V, Heizer T, Páral P, Šefc L. Synthesis and modification of uniform PEG-neridronate-modified magnetic nanoparticles determines prolonged blood circulation and biodistribution in a mouse preclinical model. Sci Rep 2019; 9:10765. [PMID: 31341232 PMCID: PMC6656745 DOI: 10.1038/s41598-019-47262-w] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 07/05/2019] [Indexed: 12/19/2022] Open
Abstract
Magnetite (Fe3O4) nanoparticles with uniform sizes of 10, 20, and 31 nm were prepared by thermal decomposition of Fe(III) oleate or mandelate in a high-boiling point solvent (>320 °C). To render the particles with hydrophilic and antifouling properties, their surface was coated with a PEG-containing bisphosphonate anchoring group. The PEGylated particles were characterized by a range of physicochemical methods, including dynamic light scattering, transmission electron microscopy, thermogravimetric analysis, Fourier transform infrared spectroscopy, and magnetization measurements. As the particle size increased from 10 to 31 nm, the amount of PEG coating decreased from 28.5 to 9 wt.%. The PEG formed a dense brush-like shell on the particle surface, which prevented particles from aggregating in water and PBS (pH 7.4) and maximized the circulation time in vivo. Magnetic resonance relaxometry confirmed that the PEG-modified Fe3O4 nanoparticles had high relaxivity, which increased with increasing particle size. In the in vivo experiments in a mouse model, the particles provided visible contrast enhancement in the magnetic resonance images. Almost 70% of administrated 20-nm magnetic nanoparticles still circulated in the blood stream after four hours; however, their retention in the tumor was rather low, which was likely due to the antifouling properties of PEG.
Collapse
Affiliation(s)
- Vitalii Patsula
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, 162 06, Prague 6, Czech Republic
| | - Daniel Horák
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, 162 06, Prague 6, Czech Republic.
| | - Jan Kučka
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, 162 06, Prague 6, Czech Republic
| | - Hana Macková
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, 162 06, Prague 6, Czech Republic
| | - Volodymyr Lobaz
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, 162 06, Prague 6, Czech Republic
| | - Pavla Francová
- Center of Advanced Preclinical Imaging, First Faculty of Medicine, Charles University, Salmovská 3, 120 00, Prague 2, Czech Republic
| | - Vít Herynek
- Center of Advanced Preclinical Imaging, First Faculty of Medicine, Charles University, Salmovská 3, 120 00, Prague 2, Czech Republic
| | - Tomáš Heizer
- Center of Advanced Preclinical Imaging, First Faculty of Medicine, Charles University, Salmovská 3, 120 00, Prague 2, Czech Republic
| | - Petr Páral
- Center of Advanced Preclinical Imaging, First Faculty of Medicine, Charles University, Salmovská 3, 120 00, Prague 2, Czech Republic
| | - Luděk Šefc
- Center of Advanced Preclinical Imaging, First Faculty of Medicine, Charles University, Salmovská 3, 120 00, Prague 2, Czech Republic
| |
Collapse
|
17
|
Plan Sangnier A, Aufaure R, Cheong S, Motte L, Palpant B, Tilley RD, Guenin E, Wilhelm C, Lalatonne Y. Raspberry-like small multicore gold nanostructures for efficient photothermal conversion in the first and second near-infrared windows. Chem Commun (Camb) 2019; 55:4055-4058. [PMID: 30875417 DOI: 10.1039/c8cc09476d] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Gold nanoraspberries were synthesized by a seed-mediated synthesis with polyethylene glycol-functionalized bisphosphonates. The original structure shifted the optical absorption to infrared, revealing very efficient photothermal properties within the 2nd biological transparency window and leading to cancer cell necrosis at moderate intracellular doses and low (safe) laser power.
Collapse
|
18
|
Falah S, Xue Y, Taleb A, Beji M. Electrochemical sensors performance: The role of specific surface and recognition receptors footprint. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2018.08.123] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
19
|
Bemetz J, Wegemann A, Saatchi K, Haase A, Häfeli UO, Niessner R, Gleich B, Seidel M. Microfluidic-Based Synthesis of Magnetic Nanoparticles Coupled with Miniaturized NMR for Online Relaxation Studies. Anal Chem 2018; 90:9975-9982. [DOI: 10.1021/acs.analchem.8b02374] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Jonas Bemetz
- Institute of Hydrochemistry, Chair of Analytical Chemistry and Water Chemistry, Technical University of Munich, Marchioninistrasse 17, 81377 München, Germany
| | - Andreas Wegemann
- Munich School of BioEngineering, Technical University of Munich, Boltzmannstrasse 11, 85748 Garching, Germany
| | - Katayoun Saatchi
- Faculty of Pharmaceutical Sciences, University of British Columbia, 2405 Wesbrook Mall, Vancouver, BC V6T 1Z3, Canada
| | - Axel Haase
- Munich School of BioEngineering, Technical University of Munich, Boltzmannstrasse 11, 85748 Garching, Germany
| | - Urs O. Häfeli
- Faculty of Pharmaceutical Sciences, University of British Columbia, 2405 Wesbrook Mall, Vancouver, BC V6T 1Z3, Canada
| | - Reinhard Niessner
- Institute of Hydrochemistry, Chair of Analytical Chemistry and Water Chemistry, Technical University of Munich, Marchioninistrasse 17, 81377 München, Germany
| | - Bernhard Gleich
- Munich School of BioEngineering, Technical University of Munich, Boltzmannstrasse 11, 85748 Garching, Germany
| | - Michael Seidel
- Institute of Hydrochemistry, Chair of Analytical Chemistry and Water Chemistry, Technical University of Munich, Marchioninistrasse 17, 81377 München, Germany
| |
Collapse
|
20
|
Mpambani F, Åslund AK, Lerouge F, Nyström S, Reitan N, Huuse EM, Widerøe M, Chaput F, Monnereau C, Andraud C, Lecouvey M, Handrick S, Prokop S, Heppner FL, Nilsson P, Hammarström P, Lindgren M, Parola S. Two-Photon Fluorescence and Magnetic Resonance Specific Imaging of Aβ Amyloid Using Hybrid Nano-GdF3 Contrast Media. ACS APPLIED BIO MATERIALS 2018; 1:462-472. [DOI: 10.1021/acsabm.8b00191] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Francis Mpambani
- Laboratoire de Chimie ENS Lyon, Université de Lyon, Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5182, 46 allée d’Italie, 69364 Lyon, France
| | - Andreas K.O. Åslund
- Department of Physics, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway
- IFM-kemi, Linköpings Universitet, 581 83 Linköping, Sweden
| | - Frederic Lerouge
- Laboratoire de Chimie ENS Lyon, Université de Lyon, Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5182, 46 allée d’Italie, 69364 Lyon, France
| | - Sofie Nyström
- IFM-kemi, Linköpings Universitet, 581 83 Linköping, Sweden
| | - Nina Reitan
- Department of Physics, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway
| | - Else Marie Huuse
- Department of Circulation and Medical Imaging, NTNU, 7491 Trondheim, Norway
| | - Marius Widerøe
- Department of Circulation and Medical Imaging, NTNU, 7491 Trondheim, Norway
| | - Frederic Chaput
- Laboratoire de Chimie ENS Lyon, Université de Lyon, Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5182, 46 allée d’Italie, 69364 Lyon, France
| | - Cyrille Monnereau
- Laboratoire de Chimie ENS Lyon, Université de Lyon, Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5182, 46 allée d’Italie, 69364 Lyon, France
| | - Chantal Andraud
- Laboratoire de Chimie ENS Lyon, Université de Lyon, Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5182, 46 allée d’Italie, 69364 Lyon, France
| | - Marc Lecouvey
- Laboratoire CSPBAT, UMR 7244, CNRS, Université Paris 13, 74 Rue Marcel Cachin, 93017 Bobigny, France
| | - Susann Handrick
- Department of Neuropathology, Charité−Universitätsmedizin Berlin, Charitéplatz 1, Virchowweg 21, 10117 Berlin, Germany
| | - Stefan Prokop
- Department of Neuropathology, Charité−Universitätsmedizin Berlin, Charitéplatz 1, Virchowweg 21, 10117 Berlin, Germany
| | - Frank L. Heppner
- Department of Neuropathology, Charité−Universitätsmedizin Berlin, Charitéplatz 1, Virchowweg 21, 10117 Berlin, Germany
| | - Peter Nilsson
- IFM-kemi, Linköpings Universitet, 581 83 Linköping, Sweden
| | | | - Mikael Lindgren
- Department of Physics, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway
| | - Stephane Parola
- Laboratoire de Chimie ENS Lyon, Université de Lyon, Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5182, 46 allée d’Italie, 69364 Lyon, France
| |
Collapse
|
21
|
Ostadhossein F, Benig L, Tripathi I, Misra SK, Pan D. Fluorescence Detection of Bone Microcracks Using Monophosphonated Carbon Dots. ACS APPLIED MATERIALS & INTERFACES 2018; 10:19408-19415. [PMID: 29757601 DOI: 10.1021/acsami.8b03727] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Phosphonated compounds, in particular, bisanalogs are widely applied in clinical settings for the treatment of severe bone turnovers and recently as imaging probes when conjugated with organic fluorophores. Herein, we introduce a bone seeking luminescent probe that shows a high binding affinity toward bone minerals based on monophosphonated carbon dots (CDs). Spheroidal CDs tethered with PEG monophosphates are synthesized in a one-pot hydrothermal method and are physicochemically characterized, where the retention of phosphonates is confirmed by 13P NMR and X-ray photoelectron spectroscopy. Interestingly, the high abundance of multiple monodentate phosphonates exhibited strong binding to hydroxyapatite, the main bone mineral constituent. The remarkable optophysical properties of monophosphonated CDs were confirmed in an ex vivo model of the bovine cortical bone where the imaging feasibility of microcracks, which are calcium-rich regions, was demonstrated. The in vivo studies specified the potential application of monophosphonated CDs for imaging when injected intramuscularly. The biodigestible nature and cytocompatibility of the probe presented here obviate the demand for a secondary fluorophore, while offering a nanoscale strategy for bone targeting and can eventually be employed for potential bone therapy in the future.
Collapse
Affiliation(s)
- Fatemeh Ostadhossein
- Department of Bioengineering , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States
| | - Lily Benig
- Department of Bioengineering , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States
| | - Indu Tripathi
- Department of Bioengineering , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States
| | - Santosh K Misra
- Department of Bioengineering , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States
| | - Dipanjan Pan
- Department of Bioengineering , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States
| |
Collapse
|
22
|
Demin AM, Pershina AG, Minin AS, Mekhaev AV, Ivanov VV, Lezhava SP, Zakharova AA, Byzov IV, Uimin MA, Krasnov VP, Ogorodova LM. PMIDA-Modified Fe 3O 4 Magnetic Nanoparticles: Synthesis and Application for Liver MRI. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:3449-3458. [PMID: 29478322 DOI: 10.1021/acs.langmuir.7b04023] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The surface modification of Fe3O4-based magnetic nanoparticles (MNPs) with N-(phosphonomethyl)iminodiacetic acid (PMIDA) was studied, and the possibility of their use as magnetic resonance imaging contrast agents was shown. The effect of the added PMIDA amount, the reaction temperature and time on the degree of immobilization of this reagent on MNPs, and the hydrodynamic characteristics of their aqueous colloidal solutions have been systematically investigated for the first time. It has been shown that the optimum condition for the modification of MNPs is the reaction at 40 °C with an equimolar amount of PMIDA for 3.5 h. The modified MNPs were characterized by X-ray diffraction, transmission electron microscopy, Fourier transform infrared spectroscopy, thermogravimetric, and CHN elemental analyses. The dependence of the hydrodynamic characteristics of the MNP colloidal solutions on the concentration and pH of the medium was studied by the dynamic light scattering method. On the basis of the obtained data, we can assume that the PMIDA molecules are fixed on the surface of the MNPs as a monomolecular layer. The modified MNPs had good colloidal stability and high magnetic properties. The calculated relaxivities r2 and r1 were 341 and 102 mmol-1 s-1, respectively. The possibility of using colloidal solutions of PMIDA-modified MNPs as a T2 contrast agent for liver studies in vivo (at a dose of 0.6 mg kg-1) was demonstrated for the first time.
Collapse
Affiliation(s)
- Alexander M Demin
- Postovsky Institute of Organic Synthesis of RAS (Ural Branch) , 22 S. Kovalevskoy Street , 620990 Yekaterinburg , Russia
| | - Alexandra G Pershina
- Siberian State Medical University , 2 Moskovsky Trakt , 634050 Tomsk , Russia
- National Research Tomsk Polytechnic University , 30 Lenina Avenue , Tomsk 634050 , Russia
| | - Artem S Minin
- Miheev Institute of Metal Physics of RAS (Ural Branch) , 18 S. Kovalevskoy Street , 620990 Yekaterinburg , Russia
| | - Alexander V Mekhaev
- Postovsky Institute of Organic Synthesis of RAS (Ural Branch) , 22 S. Kovalevskoy Street , 620990 Yekaterinburg , Russia
| | - Vladimir V Ivanov
- Siberian State Medical University , 2 Moskovsky Trakt , 634050 Tomsk , Russia
| | - Sofiya P Lezhava
- Siberian State Medical University , 2 Moskovsky Trakt , 634050 Tomsk , Russia
| | - Alexandra A Zakharova
- National Research Tomsk Polytechnic University , 30 Lenina Avenue , Tomsk 634050 , Russia
| | - Iliya V Byzov
- Miheev Institute of Metal Physics of RAS (Ural Branch) , 18 S. Kovalevskoy Street , 620990 Yekaterinburg , Russia
| | - Mikhail A Uimin
- Miheev Institute of Metal Physics of RAS (Ural Branch) , 18 S. Kovalevskoy Street , 620990 Yekaterinburg , Russia
| | - Victor P Krasnov
- Postovsky Institute of Organic Synthesis of RAS (Ural Branch) , 22 S. Kovalevskoy Street , 620990 Yekaterinburg , Russia
| | - Ludmila M Ogorodova
- Siberian State Medical University , 2 Moskovsky Trakt , 634050 Tomsk , Russia
| |
Collapse
|
23
|
Fracasso G, Ghigna P, Nodari L, Agnoli S, Badocco D, Pastore P, Nicolato E, Marzola P, Mihajlović D, Markovic M, Čolić M, Amendola V. Nanoaggregates of iron poly-oxo-clusters obtained by laser ablation in aqueous solution of phosphonates. J Colloid Interface Sci 2018; 522:208-216. [PMID: 29604440 DOI: 10.1016/j.jcis.2018.03.065] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 02/20/2018] [Accepted: 03/19/2018] [Indexed: 10/17/2022]
Abstract
Laser ablation in liquid (LAL) emerged as a versatile technique for the synthesis of nanoparticles with various structures and compositions, although the control over products remains challenging in most cases. For instance, it is still difficult to drive the size of metal oxide crystalline domains down to the level of few atom clusters with LAL. Here we demonstrate that laser ablation of a bulk iron target in aqueous solution of phosphonates gives phosphonate-grafted iron oxo-clusters polymerized into nanoaggregates with Fe:ligand ratio of 2:1, instead of the usual nanocrystalline iron oxides. We attribute this result to the strong ability of phosphonate groups to bind iron oxide clusters and prevent their further growth into crystalline iron oxide. These laser generated poly-oxo-clusters are biocompatible and trackable by magnetic resonance imaging, providing interesting features for use in biological environments, such as nano-vehicles for iron administration. Besides, this method is promising for the generation of atom-scale metal-oxide clusters, which are ubiquitary in chemistry and of interest in biochemistry, catalysis, molecular magnetism and materials science.
Collapse
Affiliation(s)
- Giulio Fracasso
- Department of Medicine, Immunology Section, University of Verona, Verona, Italy
| | - Paolo Ghigna
- Department of Chemistry, University of Pavia, Pavia, Italy
| | | | - Stefano Agnoli
- Department of Chemical Sciences, University of Padova, Padova, Italy
| | - Denis Badocco
- Department of Chemical Sciences, University of Padova, Padova, Italy
| | - Paolo Pastore
- Department of Chemical Sciences, University of Padova, Padova, Italy
| | - Elena Nicolato
- Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Pasquina Marzola
- Department of Computer Sciences, University of Verona, Verona, Italy
| | - Dušan Mihajlović
- University of Belgrade, Institute for Application of Nuclear Energy, Zemun, Serbia
| | - Milan Markovic
- University of Belgrade, Institute for Application of Nuclear Energy, Zemun, Serbia
| | - Miodrag Čolić
- University of Belgrade, Institute for Application of Nuclear Energy, Zemun, Serbia; University of Defence in Belgrade, Medical Faculty of the Military Medical Academy, Belgrade, Serbia
| | - Vincenzo Amendola
- Department of Chemical Sciences, University of Padova, Padova, Italy.
| |
Collapse
|
24
|
Thomas G, Demoisson F, Boudon J, Millot N. Efficient functionalization of magnetite nanoparticles with phosphonate using a one-step continuous hydrothermal process. Dalton Trans 2018; 45:10821-9. [PMID: 27295502 DOI: 10.1039/c6dt01050d] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
For the first time, phosphonate-functionalized magnetite nanoparticles (Fe3O4 NPs) were synthesized using a one-step continuous hydrothermal process. The NP surface was modified using a hydrophilic organic molecule, namely 6-phosphonohexanoic acid (PHA). NPs were fully characterized (TEM, XRD, DLS, ζ-potential, TGA, FTIR, XPS and specific surface area measurements) in order to investigate PHA effect on size, oxidation state, anchoring and colloidal stability. PHA reduced the crystallite size and size distribution and improved greatly colloidal stability when compared with bare Fe3O4 NPs. Moreover, PHA was grafted on the NP surface according to three different conformations: as mononuclear monodendates, as binuclear bidentates or as lying-down complexes. This report is very promising regarding the stabilization and functionalization of Fe3O4 NPs by phosphonate molecules under continuous hydrothermal conditions. The post-grafting of polymers such as polyethylene glycol can be considered owing to the presence of free carboxyl groups (-COOH) on the surface of Fe3O4 NPs.
Collapse
Affiliation(s)
- Guillaume Thomas
- Laboratoire Interdisciplinaire Carnot de Bourgogne UMR 6303 CNRS-Université Bourgogne Franche-Comté, 9 Av. A. Savary, BP 47870 F-21078 DIJON Cedex, France.
| | - Frédéric Demoisson
- Laboratoire Interdisciplinaire Carnot de Bourgogne UMR 6303 CNRS-Université Bourgogne Franche-Comté, 9 Av. A. Savary, BP 47870 F-21078 DIJON Cedex, France.
| | - Julien Boudon
- Laboratoire Interdisciplinaire Carnot de Bourgogne UMR 6303 CNRS-Université Bourgogne Franche-Comté, 9 Av. A. Savary, BP 47870 F-21078 DIJON Cedex, France.
| | - Nadine Millot
- Laboratoire Interdisciplinaire Carnot de Bourgogne UMR 6303 CNRS-Université Bourgogne Franche-Comté, 9 Av. A. Savary, BP 47870 F-21078 DIJON Cedex, France.
| |
Collapse
|
25
|
Plan Sangnier A, Aufaure R, Motte L, Wilhelm C, Guenin E, Lalatonne Y. Hybrid Au@alendronate nanoparticles as dual chemo-photothermal agent for combined cancer treatment. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2018; 9:2947-2952. [PMID: 30546991 PMCID: PMC6278761 DOI: 10.3762/bjnano.9.273] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 10/26/2018] [Indexed: 05/03/2023]
Abstract
A gold therapeutic nanoplatform with the same molecule used as reductant, coating and therapeutic agent has been developed in a one-pot, one-phase process using alendronate, a drug from the bisphosphonate family known for its antitumor effects. In addition, the core made of gold nanoparticles (NPs) brings thermal functionalities under irradiation within the first biological window (650-900 nm). The Au@alendronate nanoplatform thus provided a combined antitumor activity through drug delivery and photothermal therapy. Au@alendronate NPs inhibited in vitro the proliferation of prostate cancer cells (PC3) in a dose-dependent manner, with an IC50 value of 100 µM. Under NIR irradiation a temperature increase was observed leading to a reduction of the IC50 value to 1 µM, with total tumor cell death at 100 µM.
Collapse
Affiliation(s)
- Anouchka Plan Sangnier
- Inserm U1148, LVTS, Université Paris 13, Sorbonne Paris Cité, Bobigny, France
- Laboratoire Matière et Systèmes Complexes, CNRS and University Paris Diderot, Paris, France
| | - Romain Aufaure
- Inserm U1148, LVTS, Université Paris 13, Sorbonne Paris Cité, Bobigny, France
| | - Laurence Motte
- Inserm U1148, LVTS, Université Paris 13, Sorbonne Paris Cité, Bobigny, France
| | - Claire Wilhelm
- Laboratoire Matière et Systèmes Complexes, CNRS and University Paris Diderot, Paris, France
| | - Erwann Guenin
- Inserm U1148, LVTS, Université Paris 13, Sorbonne Paris Cité, Bobigny, France
- Sorbonne Universités, Université de Technologie de Compiègne, Integrated Transformations of Renewable Matter Laboratory (EA TIMR 4297 UTC-ESCOM), Compiègne, France
| | - Yoann Lalatonne
- Inserm U1148, LVTS, Université Paris 13, Sorbonne Paris Cité, Bobigny, France
- Service de Médecine Nucléaire, Hôpital Avicenne Assistance Publique-Hôpitaux de Paris, Bobigny, France
| |
Collapse
|
26
|
Hamdous Y, Chebbi I, Mandawala C, Le Fèvre R, Guyot F, Seksek O, Alphandéry E. Biocompatible coated magnetosome minerals with various organization and cellular interaction properties induce cytotoxicity towards RG-2 and GL-261 glioma cells in the presence of an alternating magnetic field. J Nanobiotechnology 2017; 15:74. [PMID: 29041937 PMCID: PMC5646109 DOI: 10.1186/s12951-017-0293-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Accepted: 08/10/2017] [Indexed: 12/23/2022] Open
Abstract
Background Biologics magnetics nanoparticles, magnetosomes, attract attention because of their magnetic characteristics and potential applications. The aim of the present study was to develop and characterize novel magnetosomes, which were extracted from magnetotactic bacteria, purified to produce apyrogen magnetosome minerals, and then coated with Chitosan, Neridronate, or Polyethyleneimine. It yielded stable magnetosomes designated as M-Chi, M-Neri, and M-PEI, respectively. Nanoparticle biocompatibility was evaluated on mouse fibroblast cells (3T3), mouse glioblastoma cells (GL-261) and rat glioblastoma cells (RG-2). We also tested these nanoparticles for magnetic hyperthermia treatment of tumor in vitro on two tumor cell lines GL-261 and RG-2 under the application of an alternating magnetic field. Heating, efficacy and internalization properties were then evaluated. Results Nanoparticles coated with chitosan, polyethyleneimine and neridronate are apyrogen, biocompatible and stable in aqueous suspension. The presence of a thin coating in M-Chi and M-PEI favors an arrangement in chains of the magnetosomes, similar to that observed in magnetosomes directly extracted from magnetotactic bacteria, while the thick matrix embedding M-Neri leads to structures with an average thickness of 3.5 µm2 per magnetosome mineral. In the presence of GL-261 cells and upon the application of an alternating magnetic field, M-PEI and M-Chi lead to the highest specific absorption rates of 120–125 W/gFe. Furthermore, while M-Chi lead to rather low rates of cellular internalization, M-PEI strongly associate to cells, a property modulated by the application of an alternating magnetic field. Conclusions Coating of purified magnetosome minerals can therefore be chosen to control the interactions of nanoparticles with cells, organization of the minerals, as well as heating and cytotoxicity properties, which are important parameters to be considered in the design of a magnetic hyperthermia treatment of tumor. Electronic supplementary material The online version of this article (doi:10.1186/s12951-017-0293-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yasmina Hamdous
- Nanobacterie, 36 boulevard Flandrin, 75116, Paris, France.,Laboratoire d'Imagerie et Modélisation en Neurobiologie et Cancérologie (IMNC), Campus Universitaire, Bât. 440, 15 rue Georges Clemenceau, 91406, Orsay Cedex, France
| | - Imène Chebbi
- Nanobacterie, 36 boulevard Flandrin, 75116, Paris, France
| | - Chalani Mandawala
- Nanobacterie, 36 boulevard Flandrin, 75116, Paris, France.,Institut de Minéralogie de Physique des Matériaux et de Cosmochimie, UMR 7590, CNRS, Université Pierre et Marie Curie, Muséum National d'Histoire Naturelle, Sorbonne Université, 4 Place Jussieu, 75005, Paris, France
| | - Raphael Le Fèvre
- Nanobacterie, 36 boulevard Flandrin, 75116, Paris, France.,Institut de Physique du Globe de Paris, Sorbonne Paris Cité, UMR 7154, CNRS, Université Paris Diderot, 1 rue Jussieu, 75005, Paris, France
| | - François Guyot
- Institut de Minéralogie de Physique des Matériaux et de Cosmochimie, UMR 7590, CNRS, Université Pierre et Marie Curie, Muséum National d'Histoire Naturelle, Sorbonne Université, 4 Place Jussieu, 75005, Paris, France
| | - Olivier Seksek
- Laboratoire d'Imagerie et Modélisation en Neurobiologie et Cancérologie (IMNC), Campus Universitaire, Bât. 440, 15 rue Georges Clemenceau, 91406, Orsay Cedex, France
| | - Edouard Alphandéry
- Nanobacterie, 36 boulevard Flandrin, 75116, Paris, France. .,Institut de Minéralogie de Physique des Matériaux et de Cosmochimie, UMR 7590, CNRS, Université Pierre et Marie Curie, Muséum National d'Histoire Naturelle, Sorbonne Université, 4 Place Jussieu, 75005, Paris, France.
| |
Collapse
|
27
|
Walter A, Garofalo A, Bonazza P, Meyer F, Martinez H, Fleutot S, Billotey C, Taleb J, Felder-Flesch D, Begin-Colin S. Effect of the Functionalization Process on the Colloidal, Magnetic Resonance Imaging, and Bioelimination Properties of Mono- or Bisphosphonate-Anchored Dendronized Iron Oxide Nanoparticles. Chempluschem 2017; 82:647-659. [DOI: 10.1002/cplu.201700049] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 03/27/2017] [Indexed: 01/09/2023]
Affiliation(s)
- Aurélie Walter
- Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS), UMR 7504, CNRS; Université de Strasbourg; 23, rue du Loess, BP 43 67034 Strasbourg Cedex 2 France
| | - Antonio Garofalo
- Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS), UMR 7504, CNRS; Université de Strasbourg; 23, rue du Loess, BP 43 67034 Strasbourg Cedex 2 France
| | - Pauline Bonazza
- Université de Lyon; Université Jean Monnet; Equipe Mixte de Recherche 3738 “Ciblage Thérapeutique en Oncologie”, Bâtiment 10- Locaux IMTHERNAT, Hôpital Edouard Herriot, 5 place d'Arsonval; 69437 Lyon cedex 03 France
| | - Florent Meyer
- Université de Strasbourg, Inserm UMR 1121 Biomatériaux et Bioingénierie); Université de Strasbourg; 11, rue Humann 67000 Strasbourg Cedex France
| | - Hervé Martinez
- IPREM-UMR CNRS 5254; Université de Pau et des Pays de l'Adour; Hélioparc Pau-Pyrénées, 2 Av du Président Angot 64053 Pau Cedex 9 France
| | - Solenne Fleutot
- Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS), UMR 7504, CNRS; Université de Strasbourg; 23, rue du Loess, BP 43 67034 Strasbourg Cedex 2 France
| | - Claire Billotey
- Université de Lyon; Université Jean Monnet; Equipe Mixte de Recherche 3738 “Ciblage Thérapeutique en Oncologie”, Bâtiment 10- Locaux IMTHERNAT, Hôpital Edouard Herriot, 5 place d'Arsonval; 69437 Lyon cedex 03 France
| | - Jacqueline Taleb
- Université de Lyon; Université Jean Monnet; Equipe Mixte de Recherche 3738 “Ciblage Thérapeutique en Oncologie”, Bâtiment 10- Locaux IMTHERNAT, Hôpital Edouard Herriot, 5 place d'Arsonval; 69437 Lyon cedex 03 France
| | - Delphine Felder-Flesch
- Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS), UMR 7504, CNRS; Université de Strasbourg; 23, rue du Loess, BP 43 67034 Strasbourg Cedex 2 France
| | - Sylvie Begin-Colin
- Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS), UMR 7504, CNRS; Université de Strasbourg; 23, rue du Loess, BP 43 67034 Strasbourg Cedex 2 France
| |
Collapse
|
28
|
Richard S, Boucher M, Saric A, Herbet A, Lalatonne Y, Petit PX, Mériaux S, Boquet D, Motte L. Optimization of pegylated iron oxide nanoplatforms for antibody coupling and bio-targeting. J Mater Chem B 2017; 5:2896-2907. [PMID: 32263983 DOI: 10.1039/c6tb03080g] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
PEGylation has been established as a valuable strategy to minimize nanoparticle clearance by the reticulo-endothelial system due to hydrophilicity and steric repulsion of PEG chains. In this study we functionalized superparamagnetic iron oxide nanoparticle surface with two PEG differing in their length (n = 23 and 44) and terminal functionality, COOH and CH3. By varying the ratio of the two different PEG, we optimized the molecular architecture of the nanoplatform to obtain maximum stability and low toxicity under physiological conditions. The best nanoplatform was evaluated as MRI contrast for mouse brain vascularization imaging at 7 T. The carboxylic acid functions of the nanoplatform were used to covalently bind an antibody, Ab. This antibody, labeled with a fluorophore, targets the ETA receptor, a G-protein-coupled receptor involved in the endothelin axis and overexpressed in various solid tumours, including ovarian, prostate, colon, breast, bladder and lung cancers. In vitro studies, performed by flow cytometry and magnetic quantification, showed the targeting efficiency of the Ab-nanoplatforms. Clearly, an imaging tracer for cancer diagnosis from a bimodal contrast agent (fluorescence and MRI) was thus obtained.
Collapse
Affiliation(s)
- S Richard
- Laboratoire Matière et Systèmes Complexes (MSC), UMR 7057, CNRS and Université Paris Diderot, 75205 Paris Cedex 05, France
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Bañobre-López M, Bran C, Rodríguez-Abreu C, Gallo J, Vázquez M, Rivas J. A colloidally stable water dispersion of Ni nanowires as an efficient T2-MRI contrast agent. J Mater Chem B 2017; 5:3338-3347. [DOI: 10.1039/c7tb00574a] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A colloidally stable dispersion of anisotropic Ni nanowires in water has been achieved showing good performance as a T2-contrast agent in MRI.
Collapse
Affiliation(s)
- Manuel Bañobre-López
- International Iberian Nanotechnology Laboratory
- Av. Mestre José Veiga s/n
- 4715-330 Braga
- Portugal
| | - Cristina Bran
- Institute of Materials Science of Madrid
- CSIC
- 28049 Madrid
- Spain
| | - Carlos Rodríguez-Abreu
- International Iberian Nanotechnology Laboratory
- Av. Mestre José Veiga s/n
- 4715-330 Braga
- Portugal
- Instituto de Química Avanzada de Cataluña
| | - Juan Gallo
- International Iberian Nanotechnology Laboratory
- Av. Mestre José Veiga s/n
- 4715-330 Braga
- Portugal
| | - Manuel Vázquez
- Institute of Materials Science of Madrid
- CSIC
- 28049 Madrid
- Spain
| | - José Rivas
- Department of Applied Physics
- Technological Research Institute
- Nanotechnology and Magnetism Lab
- Universidade de Santiago de Compostela
- Spain
| |
Collapse
|
30
|
Aufaure R, Buendia R, Motte L, Hardouin J, Lalatonne Y, Guénin E. Versatile “click” synthesis of 1-hydroxy-1,1-methylenebisphosphonic acids with thioalkoxy substituents for the preparation of stable gold nanoparticles. NEW J CHEM 2017. [DOI: 10.1039/c7nj02773g] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Click synthesis of pegylated bisphosphonates for one pot preparation of stable gold nanoparticles.
Collapse
Affiliation(s)
- R. Aufaure
- Université Paris 13
- Sorbonne Paris Cité
- Laboratoire LVTS
- 93017 Bobigny
- France
| | - R. Buendia
- Université Paris 13
- Sorbonne Paris Cité
- Laboratoire LVTS
- 93017 Bobigny
- France
| | - L. Motte
- Université Paris 13
- Sorbonne Paris Cité
- Laboratoire LVTS
- 93017 Bobigny
- France
| | - J. Hardouin
- Université de Rouen Laboratoire PBS
- CNRS (UMR 6270)
- 76821 Mont Saint Aignan Cedex
- France
| | - Y. Lalatonne
- Université Paris 13
- Sorbonne Paris Cité
- Laboratoire LVTS
- 93017 Bobigny
- France
| | - E. Guénin
- Université Paris 13
- Sorbonne Paris Cité
- Laboratoire LVTS
- 93017 Bobigny
- France
| |
Collapse
|
31
|
|
32
|
Davis K, Cole B, Ghelardini M, Powell BA, Mefford OT. Quantitative Measurement of Ligand Exchange with Small-Molecule Ligands on Iron Oxide Nanoparticles via Radioanalytical Techniques. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:13716-13727. [PMID: 27966977 DOI: 10.1021/acs.langmuir.6b03644] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Ligand exchange on the surface of hydrophobic iron oxide nanoparticles is a common method for controlling surface chemistry for a desired application. Furthermore, ligand exchange with small-molecule ligands may be necessary to obtain particles with a specific size or functionality. Understanding to what extent ligand exchange occurs and what factors affect it is important for the optimization of this critical procedure. However, quantifying the amount of exchange may be difficult because of the limitations of commonly used characterization techniques. Therefore, we utilized a radiotracer technique to track the exchange of a radiolabeled 14C-oleic acid ligand with hydrophilic small-molecule ligands on the surface of iron oxide nanoparticles. Iron oxide nanoparticles functionalized with 14C-oleic acid were modified with small-molecule ligands with terminal functional groups including catechols, phosphonates, sulfonates, thiols, carboxylic acids, and silanes. These moieties were selected because they represent the most commonly used ligands for this procedure. The effectiveness of these molecules was compared using both procedures widely found in the literature and using a standardized procedure. After ligand exchange, the nanoparticles were analyzed using liquid scintillation counting (LSC) and inductively coupled plasma-mass spectrometry. The labeled and unlabeled particles were further characterized by transmission electron microscopy (TEM) and dynamic light scattering (DLS) to determine the particle size, hydrodynamic diameter, and zeta potential. The unlabeled particles were characterized via attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR) and vibrating sample magnetometry (VSM) to confirm the presence of the small molecules on the particles and verify the magnetic properties, respectively. Radioanalytical determination of 14C-oleic acid was used to calculate the total amount of oleic acid remaining on the surface of the particles after ligand exchange. The results revealed that the ligand-exchange reactions performed using widely cited procedures did not go to completion. Residual oleic acid remained on the particles after these reactions and the reactions using a standardized protocol. A comparison of the ligand-exchange procedures indicated that the binding moiety, multidenticity, reaction time, temperature, and presence of a catalyst impacted the extent of exchange. Quantification of the oleic acid remaining after ligand exchange revealed a binding hierarchy in which catechol-derived anchor groups displace the most oleic acid on the surface of the nanoparticles and the thiol group displaces the least amount of oleic acid. Thorough characterization of ligand exchange is required to develop nanoparticles suitable for their intended application.
Collapse
Affiliation(s)
| | - Brian Cole
- Department of Chemistry, Henderson State University , Arkadelphia, Arkansas 71999, United States
| | | | | | | |
Collapse
|
33
|
Girard P, Hémez J, Silvestre V, Labrugère C, Lartigue L, Duvail JL, Ishow E. Strong Color Tuning of Self-Assembled Azo-Derived Phosphonic Acids upon Hydrogen Bonding. CHEMPHOTOCHEM 2016. [DOI: 10.1002/cptc.201600014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Pauline Girard
- CEISAM-UMR CNRS 6230; Université de Nantes; 2 rue de la Houssinière 44322 Nantes France
- IMN-UMR CNRS 6502; Université de Nantes; 44322 Nantes France
| | - Julie Hémez
- CEISAM-UMR CNRS 6230; Université de Nantes; 2 rue de la Houssinière 44322 Nantes France
| | - Virginie Silvestre
- CEISAM-UMR CNRS 6230; Université de Nantes; 2 rue de la Houssinière 44322 Nantes France
| | - Christine Labrugère
- PLACAMAT-UMS 3626; CNRS-Université de Bordeaux; 87 avenue Albert Schweitzer 33608 Pessac France
| | - Lénaïc Lartigue
- CEISAM-UMR CNRS 6230; Université de Nantes; 2 rue de la Houssinière 44322 Nantes France
| | - Jean-Luc Duvail
- IMN-UMR CNRS 6502; Université de Nantes; 44322 Nantes France
| | - Eléna Ishow
- CEISAM-UMR CNRS 6230; Université de Nantes; 2 rue de la Houssinière 44322 Nantes France
| |
Collapse
|
34
|
Richard S, Eder V, Caputo G, Journé C, Ou P, Bolley J, Louedec L, Guenin E, Motte L, Pinna N, Lalatonne Y. USPIO size control through microwave nonaqueous sol-gel method for neoangiogenesis T2MRI contrast agent. Nanomedicine (Lond) 2016; 11:2769-2779. [DOI: 10.2217/nnm-2016-0177] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
35
|
Liu XL, Ng CT, Chandrasekharan P, Yang HT, Zhao LY, Peng E, Lv YB, Xiao W, Fang J, Yi JB, Zhang H, Chuang KH, Bay BH, Ding J, Fan HM. Synthesis of Ferromagnetic Fe0.6 Mn0.4 O Nanoflowers as a New Class of Magnetic Theranostic Platform for In Vivo T1 -T2 Dual-Mode Magnetic Resonance Imaging and Magnetic Hyperthermia Therapy. Adv Healthc Mater 2016; 5:2092-104. [PMID: 27297640 DOI: 10.1002/adhm.201600357] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 05/05/2016] [Indexed: 01/17/2023]
Abstract
Uniform wüstite Fe0.6 Mn0.4 O nanoflowers have been successfully developed as an innovative theranostic agent with T1 -T2 dual-mode magnetic resonance imaging (MRI), for diagnostic applications and therapeutic interventions via magnetic hyperthermia. Unlike their antiferromagnetic bulk counterpart, the obtained Fe0.6 Mn0.4 O nanoflowers show unique room-temperature ferromagnetic behavior, probably due to the presence of an exchange coupling effect. Combined with the flower-like morphology, ferromagnetic Fe0.6 Mn0.4 O nanoflowers are demonstrated to possess dual-modal MRI sensitivity, with longitudinal relaxivity r1 and transverse relaxivity r2 as high as 4.9 and 61.2 mm(-1) s(-1) [Fe]+[Mn], respectively. Further in vivo MRI carried out on the mouse orthotopic glioma model revealed gliomas are clearly delineated in both T1 - and T2 -weighted MR images, after administration of the Fe0.6 Mn0.4 O nanoflowers. In addition, the Fe0.6 Mn0.4 O nanoflowers also exhibit excellent magnetic induction heating effects. Both in vitro and in vivo magnetic hyperthermia experimentation has demonstrated that magnetic hyperthermia by using the innovative Fe0.6 Mn0.4 O nanoflowers can induce MCF-7 breast cancer cell apoptosis and a complete tumor regression without appreciable side effects. The results have demonstrated that the innovative Fe0.6 Mn0.4 O nanoflowers can be a new magnetic theranostic platform for in vivo T1 -T2 dual-mode MRI and magnetic thermotherapy, thereby achieving a one-stop diagnosis cum effective therapeutic modality in cancer management.
Collapse
Affiliation(s)
- Xiao Li Liu
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education; College of Chemistry and Materials Science; Northwest University; Xi'an 710069 China
- Department of Materials Science and Engineering; Faculty of Engineering; National University of Singapore; 7 Engineering Drive 1 117574 Singapore
| | - Cheng Teng Ng
- Department of Anatomy; Yong Loo Lin School of Medicine; National University of Singapore 4 Medical Drive; MD10 117597 Singapore
| | - Prashant Chandrasekharan
- Magnetic Resonance Imaging Group; Singapore Bioimaging Consortium; Agency for Science Technology and Research (A*STAR); 11 Biopolis Way, #02-02 Helios 138667 Singapore
| | - Hai Tao Yang
- State Key Laboratory of Magnetism and Beijing National Laboratory for Condensed Matter Physics; Chinese Academy of Sciences; Beijing 100190 China
| | - Ling Yun Zhao
- Key Laboratory of Advanced Materials; Ministry of Education; School of Material Science and Engineering; Tsinghua University; Beijing 100084 China
| | - Erwin Peng
- Department of Materials Science and Engineering; Faculty of Engineering; National University of Singapore; 7 Engineering Drive 1 117574 Singapore
| | - Yun Bo Lv
- Department of Materials Science and Engineering; Faculty of Engineering; National University of Singapore; 7 Engineering Drive 1 117574 Singapore
- NUS Graduate School for Integrative Sciences and Engineering; National University of Singapore; 28 Medical Drive 117456 Singapore
| | - Wen Xiao
- Department of Materials Science and Engineering; Faculty of Engineering; National University of Singapore; 7 Engineering Drive 1 117574 Singapore
| | - Jie Fang
- Department of Materials Science and Engineering; Faculty of Engineering; National University of Singapore; 7 Engineering Drive 1 117574 Singapore
| | - Jia Bao Yi
- School of Materials Science and Engineering; University of New South Wales; Kensington NSW 2052 Australia
| | - Huan Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education; College of Chemistry and Materials Science; Northwest University; Xi'an 710069 China
| | - Kai-Hsiang Chuang
- Magnetic Resonance Imaging Group; Singapore Bioimaging Consortium; Agency for Science Technology and Research (A*STAR); 11 Biopolis Way, #02-02 Helios 138667 Singapore
| | - Boon Huat Bay
- Department of Anatomy; Yong Loo Lin School of Medicine; National University of Singapore 4 Medical Drive; MD10 117597 Singapore
| | - Jun Ding
- Department of Materials Science and Engineering; Faculty of Engineering; National University of Singapore; 7 Engineering Drive 1 117574 Singapore
| | - Hai Ming Fan
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education; College of Chemistry and Materials Science; Northwest University; Xi'an 710069 China
| |
Collapse
|
36
|
Kachbi-Khelfallah S, Monteil M, Cortes-Clerget M, Migianu-Griffoni E, Pirat JL, Gager O, Deschamp J, Lecouvey M. Towards potential nanoparticle contrast agents: Synthesis of new functionalized PEG bisphosphonates. Beilstein J Org Chem 2016; 12:1366-71. [PMID: 27559386 PMCID: PMC4979661 DOI: 10.3762/bjoc.12.130] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 06/14/2016] [Indexed: 12/21/2022] Open
Abstract
The use of nanotechnologies for biomedical applications took a real development during these last years. To allow an effective targeting for biomedical imaging applications, the adsorption of plasmatic proteins on the surface of nanoparticles must be prevented to reduce the hepatic capture and increase the plasmatic time life. In biologic media, metal oxide nanoparticles are not stable and must be coated by biocompatible organic ligands. The use of phosphonate ligands to modify the nanoparticle surface drew a lot of attention in the last years for the design of highly functional hybrid materials. Here, we report a methodology to synthesize bisphosphonates having functionalized PEG side chains with different lengths. The key step is a procedure developed in our laboratory to introduce the bisphosphonate from acyl chloride and tris(trimethylsilyl)phosphite in one step.
Collapse
Affiliation(s)
- Souad Kachbi-Khelfallah
- Université Paris 13, Sorbonne Paris Cité, Laboratoire de Chimie, Structure, Propriétés de Biomatériaux et d'Agents Thérapeutiques (CSPBAT), CNRS UMR 7244, F-93017 Bobigny, France
| | - Maelle Monteil
- Université Paris 13, Sorbonne Paris Cité, Laboratoire de Chimie, Structure, Propriétés de Biomatériaux et d'Agents Thérapeutiques (CSPBAT), CNRS UMR 7244, F-93017 Bobigny, France
| | - Margery Cortes-Clerget
- Université Paris 13, Sorbonne Paris Cité, Laboratoire de Chimie, Structure, Propriétés de Biomatériaux et d'Agents Thérapeutiques (CSPBAT), CNRS UMR 7244, F-93017 Bobigny, France
| | - Evelyne Migianu-Griffoni
- Université Paris 13, Sorbonne Paris Cité, Laboratoire de Chimie, Structure, Propriétés de Biomatériaux et d'Agents Thérapeutiques (CSPBAT), CNRS UMR 7244, F-93017 Bobigny, France
| | - Jean-Luc Pirat
- ICG Montpellier-UMR 5253, Equipe AM2N, ENSCM, 8, Rue de l'Ecole Normale, F-34296 Montpellier Cedex 5, France
| | - Olivier Gager
- Université Paris 13, Sorbonne Paris Cité, Laboratoire de Chimie, Structure, Propriétés de Biomatériaux et d'Agents Thérapeutiques (CSPBAT), CNRS UMR 7244, F-93017 Bobigny, France
| | - Julia Deschamp
- Université Paris 13, Sorbonne Paris Cité, Laboratoire de Chimie, Structure, Propriétés de Biomatériaux et d'Agents Thérapeutiques (CSPBAT), CNRS UMR 7244, F-93017 Bobigny, France
| | - Marc Lecouvey
- Université Paris 13, Sorbonne Paris Cité, Laboratoire de Chimie, Structure, Propriétés de Biomatériaux et d'Agents Thérapeutiques (CSPBAT), CNRS UMR 7244, F-93017 Bobigny, France
| |
Collapse
|
37
|
Paniagua SA, Giordano AJ, Smith OL, Barlow S, Li H, Armstrong NR, Pemberton JE, Brédas JL, Ginger D, Marder SR. Phosphonic Acids for Interfacial Engineering of Transparent Conductive Oxides. Chem Rev 2016; 116:7117-58. [DOI: 10.1021/acs.chemrev.6b00061] [Citation(s) in RCA: 142] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Sergio A. Paniagua
- School
of Chemistry and Biochemistry and Center for Organic Photonics and
Electronics, Georgia Institute of Technology, Atlanta, Georgia 30332-0400, United States
| | - Anthony J. Giordano
- School
of Chemistry and Biochemistry and Center for Organic Photonics and
Electronics, Georgia Institute of Technology, Atlanta, Georgia 30332-0400, United States
| | - O’Neil L. Smith
- School
of Chemistry and Biochemistry and Center for Organic Photonics and
Electronics, Georgia Institute of Technology, Atlanta, Georgia 30332-0400, United States
| | - Stephen Barlow
- School
of Chemistry and Biochemistry and Center for Organic Photonics and
Electronics, Georgia Institute of Technology, Atlanta, Georgia 30332-0400, United States
| | - Hong Li
- School
of Chemistry and Biochemistry and Center for Organic Photonics and
Electronics, Georgia Institute of Technology, Atlanta, Georgia 30332-0400, United States
- Division
of Physical Sciences and Engineering, King Abdullah University of Science and Technology, KAUST, Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Neal R. Armstrong
- Department
of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, United States
| | - Jeanne E. Pemberton
- Department
of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, United States
| | - Jean-Luc Brédas
- School
of Chemistry and Biochemistry and Center for Organic Photonics and
Electronics, Georgia Institute of Technology, Atlanta, Georgia 30332-0400, United States
- Division
of Physical Sciences and Engineering, King Abdullah University of Science and Technology, KAUST, Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - David Ginger
- Department
of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Seth R. Marder
- School
of Chemistry and Biochemistry and Center for Organic Photonics and
Electronics, Georgia Institute of Technology, Atlanta, Georgia 30332-0400, United States
| |
Collapse
|
38
|
Effects of coating spherical iron oxide nanoparticles. Biochim Biophys Acta Gen Subj 2016; 1861:3621-3626. [PMID: 27217073 DOI: 10.1016/j.bbagen.2016.05.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2016] [Revised: 05/05/2016] [Accepted: 05/07/2016] [Indexed: 01/13/2023]
Abstract
We investigate the effect of several coatings applied in biomedical applications to iron oxide nanoparticles on the size, structure and composition of the particles. The four structural techniques employed - TEM, DLS, VSM, SAXS and EXAFS - show no significant effects of the coatings on the spherical shape of the bare nanoparticles, the average sizes or the local order around the Fe atoms. The NPs coated with hydroxylmethylene bisphosphonate or catechol have a lower proportion of magnetite than the bare and citrated ones, raising the question whether the former are responsible for increasing the valence state of the oxide on the NP surfaces and lowering the overall proportion of magnetite in the particles. VSM measurements show that these two coatings lead to a slightly higher saturation magnetization than the citrate. This article is part of a Special Issue entitled "Science for Life" Guest Editor: Dr. Austen Angell, Dr. Salvatore Magazù and Dr. Federica Migliardo.
Collapse
|
39
|
Hachani R, Lowdell M, Birchall M, Hervault A, Mertz D, Begin-Colin S, Thanh NTK. Polyol synthesis, functionalisation, and biocompatibility studies of superparamagnetic iron oxide nanoparticles as potential MRI contrast agents. NANOSCALE 2016; 8:3278-3287. [PMID: 26460932 DOI: 10.1039/c5nr03867g] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Iron oxide nanoparticles (IONPs) of low polydispersity were obtained through a simple polyol synthesis in high pressure and high temperature conditions. The control of the size and morphology of the nanoparticles was studied by varying the solvent used, the amount of iron precursor and the reaction time. Compared with conventional synthesis methods such as thermal decomposition or co-precipitation, this process yields nanoparticles with a narrow particle size distribution in a simple, reproducible and cost effective manner without the need for an inert atmosphere. For example, IONPs with a diameter of ca. 8 nm could be made in a reproducible manner and with good crystallinity as evidenced by X-ray diffraction analysis and high saturation magnetization value (84.5 emu g(-1)). The surface of the IONPs could be tailored post synthesis with two different ligands which provided functionality and stability in water and phosphate buffer saline (PBS). Their potential as a magnetic resonance imaging (MRI) contrast agent was confirmed as they exhibited high r1 and r2 relaxivities of 7.95 mM(-1) s(-1) and 185.58 mM(-1) s(-1) respectively at 1.4 T. Biocompatibility and viability of IONPs in primary human mesenchymal stem cells (hMSCs) was studied and confirmed.
Collapse
Affiliation(s)
- Roxanne Hachani
- Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT, UK
| | | | | | | | | | | | | |
Collapse
|
40
|
Heering C, Francis B, Nateghi B, Makhloufi G, Lüdeke S, Janiak C. Syntheses, structures and properties of group 12 element (Zn, Cd, Hg) coordination polymers with a mixed-functional phosphonate-biphenyl-carboxylate linker. CrystEngComm 2016. [DOI: 10.1039/c6ce00587j] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
41
|
Kachbi Khelfallah S, Monteil M, Deschamp J, Gager O, Migianu-Griffoni E, Lecouvey M. Synthesis of novel polymerizable molecules bearing bisphosphonate. Org Biomol Chem 2015; 13:11382-92. [PMID: 26443553 DOI: 10.1039/c5ob01967b] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In recent years, bisphosphonate chemistry has undergone an exponential growth due to the potential applications of these compounds in medicine and nanobiomaterial research. In this paper we describe the synthesis methods of different families of methacrylic monomers bearing a bisphosphonate with varying lengths of the chain, PEG linkers and more or less hydrolysable functions such as ester, carbamate or amide.
Collapse
Affiliation(s)
- S Kachbi Khelfallah
- Université Paris 13, Sorbonne Paris Cité, Laboratoire de Chimie, Structure, Propriétés de Biomatériaux et d'Agents Thérapeutiques (CSPBAT), CNRS UMR 7244, F-93017 Bobigny, France.
| | - M Monteil
- Université Paris 13, Sorbonne Paris Cité, Laboratoire de Chimie, Structure, Propriétés de Biomatériaux et d'Agents Thérapeutiques (CSPBAT), CNRS UMR 7244, F-93017 Bobigny, France.
| | - J Deschamp
- Université Paris 13, Sorbonne Paris Cité, Laboratoire de Chimie, Structure, Propriétés de Biomatériaux et d'Agents Thérapeutiques (CSPBAT), CNRS UMR 7244, F-93017 Bobigny, France.
| | - O Gager
- Université Paris 13, Sorbonne Paris Cité, Laboratoire de Chimie, Structure, Propriétés de Biomatériaux et d'Agents Thérapeutiques (CSPBAT), CNRS UMR 7244, F-93017 Bobigny, France.
| | - E Migianu-Griffoni
- Université Paris 13, Sorbonne Paris Cité, Laboratoire de Chimie, Structure, Propriétés de Biomatériaux et d'Agents Thérapeutiques (CSPBAT), CNRS UMR 7244, F-93017 Bobigny, France.
| | - M Lecouvey
- Université Paris 13, Sorbonne Paris Cité, Laboratoire de Chimie, Structure, Propriétés de Biomatériaux et d'Agents Thérapeutiques (CSPBAT), CNRS UMR 7244, F-93017 Bobigny, France.
| |
Collapse
|
42
|
Iron Oxide Nanoparticles Coated with a Phosphorothioate Oligonucleotide and a Cationic Peptide: Exploring Four Different Ways of Surface Functionalization. NANOMATERIALS 2015; 5:1588-1609. [PMID: 28347083 PMCID: PMC5304778 DOI: 10.3390/nano5041588] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 09/22/2015] [Accepted: 09/23/2015] [Indexed: 01/31/2023]
Abstract
The superparamagnetic iron oxide nanoparticles (SPIONs) have great potential in therapeutic and diagnostic applications. Due to their superparamagnetic behavior, they are used clinically as a Magnetic Resonance Imaging (MRI) contrast agent. Iron oxide nanoparticles are also recognized todays as smart drug-delivery systems. However, to increase their specificity, it is essential to functionalize them with a molecule that effectively targets a specific area of the body. Among the molecules that can fulfill this role, peptides are excellent candidates. Oligonucleotides are recognized as potential drugs for various diseases but suffer from poor uptake and intracellular degradation. In this work, we explore four different strategies, based on the electrostatic interactions between the different partners, to functionalize the surface of SPIONs with a phosphorothioate oligonucleotide (ODN) and a cationic peptide labeled with a fluorophore. The internalization of the nanoparticles has been evaluated in vitro on RAW 264.7 cells. Among these strategies, the "«one-step assembly»", i.e., the direct complexation of oligonucleotides and peptides on iron oxide nanoparticles, provides the best way of coating for the internalization of the nanocomplexes.
Collapse
|
43
|
Teston E, Richard S, Maldiney T, Lièvre N, Wang GY, Motte L, Richard C, Lalatonne Y. Non-aqueous sol-gel synthesis of ultra small persistent luminescence nanoparticles for near-infrared in vivo imaging. Chemistry 2015; 21:7350-4. [PMID: 25801438 DOI: 10.1002/chem.201406599] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Indexed: 11/08/2022]
Abstract
Ultra-small ZnGa2 O4 :Cr(3+) nanoparticles (6 nm) that exhibit near-infrared (NIR) persistent luminescence properties are synthesized by using a non-aqueous sol-gel method assisted by microwave irradiation. The nanoparticles are pegylated, leading to highly stable dispersions under physiological conditions. Preliminary in vivo studies show the high potential for these ultra-small ZnGa2 O4 :Cr(3+) nanoparticles to be used as in vivo optical nanotools as they emit without the need for in situ excitation and, thus, avoid the autofluorescence of tissues.
Collapse
Affiliation(s)
- Eliott Teston
- Unité de Technologies Chimiques et Biologiques pour la Santé, CNRS, UMR 8258, Paris, 75270 cedex (France), Inserm, U1022, Paris, 75270 cedex (France), Université Paris Descartes, Sorbonne Paris Cité, Faculté des Sciences Pharmaceutiques et Biologiques, Paris, 75270 cedex (France), ENSCP, Paris, 75231 cedex France, Chimie Paristech (France)
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Ossipov DA. Bisphosphonate-modified biomaterials for drug delivery and bone tissue engineering. Expert Opin Drug Deliv 2015; 12:1443-58. [PMID: 25739860 DOI: 10.1517/17425247.2015.1021679] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Bisphosphonates (BPs) were introduced 45 years ago as anti-osteoporotic drugs and during the last decade have been utilized as bone-targeting groups in systemic treatment of bone diseases. Very recently, strategies of chemical immobilization of BPs in hydrogels and nanocomposites for bone tissue engineering emerged. These strategies opened new applications of BPs in bone tissue engineering. AREAS COVERED Conjugates of BPs to different drug molecules, imaging agents, proteins and polymers are discussed in terms of specific targeting to bone and therapeutic affect induced by the resulting prodrugs in comparison with the parent drugs. Conversion of these conjugates into hydrogel scaffolds is also presented along with the application of the resulting materials for bone tissue engineering. EXPERT OPINION Calcium-binding properties of BPs can be successfully extended via different conjugation strategies not only for purposes of bone targeting, but also in supramolecular assembly affording either new nanocarriers or bulk nanocomposite scaffolds. Interaction between carrier-linked BPs and drug molecules should also be considered for the control of release of these molecules and their optimized delivery. Bone-targeting properties of BP-functionalized nanomaterials should correspond to bone adhesive properties of their bulk analogs.
Collapse
Affiliation(s)
- Dmitri A Ossipov
- Uppsala University, Division of Polymer Chemistry, Department of Chemistry-Ångström, Science for Life Laboratory , Uppsala, SE 751 21 , Sweden +46 18 417 7335 ;
| |
Collapse
|
45
|
Pellico J, Lechuga-Vieco AV, Benito M, García-Segura JM, Fuster V, Ruiz-Cabello J, Herranz F. Microwave-driven synthesis of bisphosphonate nanoparticles allows in vivo visualisation of atherosclerotic plaque. RSC Adv 2015. [DOI: 10.1039/c4ra13824d] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
From flask to plaque characterisation in less than 4 hours. Extremely fast detection of atherosclerosis plaque by nanoparticle-based MRI.
Collapse
Affiliation(s)
- J. Pellico
- Advanced Imaging Unit
- Department of Atherothrombosis Imaging and Epidemiology
- Fundación Centro Nacional de Investigaciones Cardiovasculares (CNIC)
- CIBER de Enfermedades Respiratorias (CIBERES)
- 28029 Madrid
| | - A. V. Lechuga-Vieco
- Advanced Imaging Unit
- Department of Atherothrombosis Imaging and Epidemiology
- Fundación Centro Nacional de Investigaciones Cardiovasculares (CNIC)
- CIBER de Enfermedades Respiratorias (CIBERES)
- 28029 Madrid
| | - M. Benito
- Advanced Imaging Unit
- Department of Atherothrombosis Imaging and Epidemiology
- Fundación Centro Nacional de Investigaciones Cardiovasculares (CNIC)
- CIBER de Enfermedades Respiratorias (CIBERES)
- 28029 Madrid
| | - J. M. García-Segura
- Universidad Complutense de Madrid (UCM)
- Plaza Ramón y Cajal s/n Ciudad Universitaria
- 8040 Madrid
- Spain
| | - V. Fuster
- The Zena and Michael A. Wiener Cardiovascular Institute
- Mount Sinai School of Medicine
- New York
- USA
| | - J. Ruiz-Cabello
- Advanced Imaging Unit
- Department of Atherothrombosis Imaging and Epidemiology
- Fundación Centro Nacional de Investigaciones Cardiovasculares (CNIC)
- CIBER de Enfermedades Respiratorias (CIBERES)
- 28029 Madrid
| | - F. Herranz
- Advanced Imaging Unit
- Department of Atherothrombosis Imaging and Epidemiology
- Fundación Centro Nacional de Investigaciones Cardiovasculares (CNIC)
- CIBER de Enfermedades Respiratorias (CIBERES)
- 28029 Madrid
| |
Collapse
|
46
|
Benyettou F, Rezgui R, Ravaux F, Jaber T, Blumer K, Jouiad M, Motte L, Olsen JC, Platas-Iglesias C, Magzoub M, Trabolsi A. Synthesis of silver nanoparticles for the dual delivery of doxorubicin and alendronate to cancer cells. J Mater Chem B 2015; 3:7237-7245. [DOI: 10.1039/c5tb00994d] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We present the synthesis of a silver nanoparticle (AgNP) based drug-delivery system that achieves the simultaneous intracellular delivery of doxorubicin (Dox) and alendronate (Ald) and improves the anticancer therapeutic indices of both drugs.
Collapse
Affiliation(s)
- F. Benyettou
- New York University Abu Dhabi
- Abu Dhabi
- United Arab Emirates
| | - R. Rezgui
- New York University Abu Dhabi
- Abu Dhabi
- United Arab Emirates
| | - F. Ravaux
- Masdar Institute of Science and Technology
- Department of Mechanical and Materials Engineering
- Abu Dhabi
- United Arab Emirates
| | - T. Jaber
- New York University Abu Dhabi
- Abu Dhabi
- United Arab Emirates
| | - K. Blumer
- New York University Abu Dhabi
- Abu Dhabi
- United Arab Emirates
| | - M. Jouiad
- Masdar Institute of Science and Technology
- Department of Mechanical and Materials Engineering
- Abu Dhabi
- United Arab Emirates
| | - L. Motte
- Université Paris 13
- Sorbonne Paris Cité
- Laboratoire CSPBAT
- CNRS
- (UMR 7244)
| | - J.-C. Olsen
- School of Sciences
- Indiana University Kokomo
- Kokomo
- USA
| | - C. Platas-Iglesias
- Departamento de Química Fundamental
- Universidade da Coruña
- 15008 A Coruna
- Spain
| | - M. Magzoub
- New York University Abu Dhabi
- Abu Dhabi
- United Arab Emirates
| | - A. Trabolsi
- New York University Abu Dhabi
- Abu Dhabi
- United Arab Emirates
| |
Collapse
|
47
|
Nehlig E, Motte L, Guénin E. Magnetic nano-organocatalysts: impact of surface functionalization on catalytic activity. RSC Adv 2015. [DOI: 10.1039/c5ra20644h] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Nano-organocatalysts were synthesized using controlled click chemistry and studied in aldolization and Michael addition reactions. It was shown that small modifications of the nanosurface can have a drastic effect on the catalysis.
Collapse
Affiliation(s)
- E. Nehlig
- UFR SMBH
- Université Paris 13
- Sorbonne Paris Cité
- 93017 Bobigny Cedex
- France
| | - L. Motte
- UFR SMBH
- Université Paris 13
- Sorbonne Paris Cité
- 93017 Bobigny Cedex
- France
| | - E. Guénin
- UFR SMBH
- Université Paris 13
- Sorbonne Paris Cité
- 93017 Bobigny Cedex
- France
| |
Collapse
|
48
|
Nehlig E, Waggeh B, Millot N, Lalatonne Y, Motte L, Guénin E. Immobilized Pd on magnetic nanoparticles bearing proline as a highly efficient and retrievable Suzuki–Miyaura catalyst in aqueous media. Dalton Trans 2015; 44:501-5. [DOI: 10.1039/c4dt02899f] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Immobilized Pd on magnetic nanoparticles bearing proline as a highly efficient and retrievable Suzuki–Miyaura catalyst in aqueous media.
Collapse
Affiliation(s)
- E. Nehlig
- Université Paris 13
- Sorbonne Paris Cité
- Laboratoire CSPBAT
- CNRS (UMR 7244)
- 93017 Bobigny Cedex
| | - B. Waggeh
- Université Paris 13
- Sorbonne Paris Cité
- Laboratoire CSPBAT
- CNRS (UMR 7244)
- 93017 Bobigny Cedex
| | - N. Millot
- Laboratoire Interdisciplinaire Carnot de Bourgogne (ICB)
- UMR 6303 CNRS-Université de Bourgogne
- Dijon Cedex
- France
| | - Y. Lalatonne
- Université Paris 13
- Sorbonne Paris Cité
- Laboratoire CSPBAT
- CNRS (UMR 7244)
- 93017 Bobigny Cedex
| | - L. Motte
- Université Paris 13
- Sorbonne Paris Cité
- Laboratoire CSPBAT
- CNRS (UMR 7244)
- 93017 Bobigny Cedex
| | - E. Guénin
- Université Paris 13
- Sorbonne Paris Cité
- Laboratoire CSPBAT
- CNRS (UMR 7244)
- 93017 Bobigny Cedex
| |
Collapse
|
49
|
Saboural P, Chaubet F, Rouzet F, Al-Shoukr F, Ben Azzouna R, Bouchemal N, Picton L, Louedec L, Maire M, Rolland L, Potier G, Le Guludec D, Letourneur D, Chauvierre C. Purification of a low molecular weight fucoidan for SPECT molecular imaging of myocardial infarction. Mar Drugs 2014; 12:4851-67. [PMID: 25251032 PMCID: PMC4178488 DOI: 10.3390/md12094851] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 09/05/2014] [Accepted: 09/09/2014] [Indexed: 12/19/2022] Open
Abstract
Fucoidans constitute a large family of sulfated polysaccharides with several biochemical properties. A commercial fucoidan from brown algae, containing low molecular weight polysaccharidic species constituted of l-fucose, uronic acids and sulfate groups, was simply treated here with calcium acetate solution. This treatment led to a purified fraction with a yield of 45%. The physicochemical characterizations of the purified fucoidan using colorimetric assay, MALLS, dRI, FT-IR, NMR, exhibited molecular weight distributions and chemical profiles similar for both fucoidans whereas the sulfate and l-fucose contents increased by 16% and 71%, respectively. The biodistribution study in rat of both compounds labeled with 99mTc evidenced a predominant renal elimination of the purified fucoidan, but the crude fucoidan was mainly retained in liver and spleen. In rat myocardial ischemia-reperfusion, we then demonstrated the better efficiency of the purified fucoidan. This purified sulfated polysaccharide appears promising for the development of molecular imaging in acute coronary syndrome.
Collapse
Affiliation(s)
- Pierre Saboural
- Inserm, U1148, LVTS, Paris Diderot University, Bichat-Claude Bernard Hospital, F-75877, Paris, France; E-Mails: (P.S.); (F.C.); (F.R.); (F.A.-S.); (R.B.A.); (L.L.); (M.M.); (D.L.G.); (D.L.)
- Galilée Institute, Paris 13 University, Sorbonne Paris Cité, F-93430, Villetaneuse, France
| | - Frédéric Chaubet
- Inserm, U1148, LVTS, Paris Diderot University, Bichat-Claude Bernard Hospital, F-75877, Paris, France; E-Mails: (P.S.); (F.C.); (F.R.); (F.A.-S.); (R.B.A.); (L.L.); (M.M.); (D.L.G.); (D.L.)
- Galilée Institute, Paris 13 University, Sorbonne Paris Cité, F-93430, Villetaneuse, France
| | - Francois Rouzet
- Inserm, U1148, LVTS, Paris Diderot University, Bichat-Claude Bernard Hospital, F-75877, Paris, France; E-Mails: (P.S.); (F.C.); (F.R.); (F.A.-S.); (R.B.A.); (L.L.); (M.M.); (D.L.G.); (D.L.)
- Multimodal Imaging Research Federation (FRIM), Paris Diderot University, F-75877, Paris, France
- Nuclear Medicine Department, Bichat-Claude Bernard Hospital, AP-HP, F-75877, Paris, France
| | - Faisal Al-Shoukr
- Inserm, U1148, LVTS, Paris Diderot University, Bichat-Claude Bernard Hospital, F-75877, Paris, France; E-Mails: (P.S.); (F.C.); (F.R.); (F.A.-S.); (R.B.A.); (L.L.); (M.M.); (D.L.G.); (D.L.)
- Multimodal Imaging Research Federation (FRIM), Paris Diderot University, F-75877, Paris, France
- Nuclear Medicine Department, Bichat-Claude Bernard Hospital, AP-HP, F-75877, Paris, France
| | - Rana Ben Azzouna
- Inserm, U1148, LVTS, Paris Diderot University, Bichat-Claude Bernard Hospital, F-75877, Paris, France; E-Mails: (P.S.); (F.C.); (F.R.); (F.A.-S.); (R.B.A.); (L.L.); (M.M.); (D.L.G.); (D.L.)
- Galilée Institute, Paris 13 University, Sorbonne Paris Cité, F-93430, Villetaneuse, France
- Multimodal Imaging Research Federation (FRIM), Paris Diderot University, F-75877, Paris, France
- Nuclear Medicine Department, Bichat-Claude Bernard Hospital, AP-HP, F-75877, Paris, France
| | - Nadia Bouchemal
- Laboratory CSPBAT, Paris 13 University, Sorbonne Paris Cité, CNRS UMR 7244, SBMB team, F-93017, Bobigny, France; E-Mail:
| | - Luc Picton
- Laboratory of Polymers Biopolymers Surfaces, Normandie University, Rouen University, F-76821, Mont Saint Aignan, France; E-Mail:
- Laboratory of Polymers Biopolymers Surfaces, CNRS, UMR 6270 and FR3038, F-76821, Mont Saint Aignan, France
| | - Liliane Louedec
- Inserm, U1148, LVTS, Paris Diderot University, Bichat-Claude Bernard Hospital, F-75877, Paris, France; E-Mails: (P.S.); (F.C.); (F.R.); (F.A.-S.); (R.B.A.); (L.L.); (M.M.); (D.L.G.); (D.L.)
| | - Murielle Maire
- Inserm, U1148, LVTS, Paris Diderot University, Bichat-Claude Bernard Hospital, F-75877, Paris, France; E-Mails: (P.S.); (F.C.); (F.R.); (F.A.-S.); (R.B.A.); (L.L.); (M.M.); (D.L.G.); (D.L.)
- Galilée Institute, Paris 13 University, Sorbonne Paris Cité, F-93430, Villetaneuse, France
| | - Lydia Rolland
- Algues & Mer, Kernigou, F-29242, Ouessant, France; E-Mails: (L.R.); (G.P.)
| | - Guy Potier
- Algues & Mer, Kernigou, F-29242, Ouessant, France; E-Mails: (L.R.); (G.P.)
| | - Dominique Le Guludec
- Inserm, U1148, LVTS, Paris Diderot University, Bichat-Claude Bernard Hospital, F-75877, Paris, France; E-Mails: (P.S.); (F.C.); (F.R.); (F.A.-S.); (R.B.A.); (L.L.); (M.M.); (D.L.G.); (D.L.)
- Multimodal Imaging Research Federation (FRIM), Paris Diderot University, F-75877, Paris, France
- Nuclear Medicine Department, Bichat-Claude Bernard Hospital, AP-HP, F-75877, Paris, France
| | - Didier Letourneur
- Inserm, U1148, LVTS, Paris Diderot University, Bichat-Claude Bernard Hospital, F-75877, Paris, France; E-Mails: (P.S.); (F.C.); (F.R.); (F.A.-S.); (R.B.A.); (L.L.); (M.M.); (D.L.G.); (D.L.)
- Galilée Institute, Paris 13 University, Sorbonne Paris Cité, F-93430, Villetaneuse, France
| | - Cédric Chauvierre
- Inserm, U1148, LVTS, Paris Diderot University, Bichat-Claude Bernard Hospital, F-75877, Paris, France; E-Mails: (P.S.); (F.C.); (F.R.); (F.A.-S.); (R.B.A.); (L.L.); (M.M.); (D.L.G.); (D.L.)
- Galilée Institute, Paris 13 University, Sorbonne Paris Cité, F-93430, Villetaneuse, France
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +33-1-4025-7538; Fax: +33-1-4025-8602
| |
Collapse
|
50
|
David T, Procházková S, Kotek J, Kubíček V, Hermann P, Lukeš I. Aminoalkyl-1,1-bis(phosphinic acids): Stability, Acid-Base, and Coordination Properties. Eur J Inorg Chem 2014. [DOI: 10.1002/ejic.201402420] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|