1
|
Hinderink EB, Meinders MB, Miller R, Sagis L, Schroën K, Berton-Carabin CC. Interfacial protein-protein displacement at fluid interfaces. Adv Colloid Interface Sci 2022; 305:102691. [PMID: 35533557 DOI: 10.1016/j.cis.2022.102691] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/24/2022] [Accepted: 04/30/2022] [Indexed: 11/01/2022]
Abstract
Protein blends are used to stabilise many traditional and emerging emulsion products, resulting in complex, non-equilibrated interfacial structures. The interface composition just after emulsification is dependent on the competitive adsorption between proteins. Over time, non-adsorbed proteins are capable of displacing the initially adsorbed ones. Such rearrangements are important to consider, since the integrity of the interfacial film could be compromised after partial displacement, which may result in the physical destabilisation of emulsions. In the present review, we critically describe various experimental techniques to assess the interfacial composition, properties and mechanisms of protein displacement. The type of information that can be obtained from the different techniques is described, from which we comment on their suitability for displacement studies. Comparative studies between model interfaces and emulsions allow for evaluating the impact of minor components and the different fluid dynamics during interface formation. We extensively discuss available mechanistic physical models that describe interfacial properties and the dynamics of complex mixed systems, with a focus on protein in-plane and bulk-interface interactions. The potential of Brownian dynamic simulations to describe the parameters that govern interfacial displacement is also addressed. This review thus provides ample information for characterising the interfacial properties over time in protein blend-stabilised emulsions, based on both experimental and modelling approaches.
Collapse
|
2
|
pH-dependent micellar properties of edible biosurfactant steviol glycosides and their oil-water interfacial interactions with soy proteins. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
3
|
Shi R, Liu Y, Ma Y, Zhao P, Jiang Z, Hou J. pH-Dependent Binding Behavior of the α-Lactalbumin/Glycyrrhizic Acid Complex in Relation to Their Foaming Characteristics in Bulk. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:3252-3262. [PMID: 35174703 DOI: 10.1021/acs.jafc.1c04882] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
This work aimed to understand the relationships of the interaction mechanism and foaming characteristics of α-lactalbumin (α-La) and glycyrrhizic acid (GA) after acidic (pH 2.5) and neutral (pH 7.0) treatment. The critical aggregation concentration (CAC) of GA in the presence of α-La was 0.6 mM at pH 7.0, while it was 1.0 mM at pH 2.5. Also, in the presence of a GA concentration of 0-15.00 mM, more GA molecules combined onto the α-La surface at pH 2.5 than at pH 7.0, as evident from the binding isotherms. The turbidity and particle size of α-La/GA were greater in acidic solution than those under neutral conditions. This result could be interpreted by the formation of aggregates under higher GA concentration at pH 2.5. Meanwhile, the viscosity of the complex was higher at pH 2.5 than at pH 7.0 in the presence of 3.00-15.00 mM GA, as analyzed from the rheological properties. The foaming ability (FA) of α-La was significantly enhanced in the presence of 10.00 mM GA. Simultaneously, acidic solution could generate a more stable foaming system with a thicker film layer stabilized by the complex compared with neutral solution. These findings could be beneficial for developing a kind of acidic food-grade foaming agent.
Collapse
Affiliation(s)
- Ruijie Shi
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Yue Liu
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Yue Ma
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Panpan Zhao
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Zhanmei Jiang
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Juncai Hou
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, P. R. China
| |
Collapse
|
4
|
Zhu JP, Liang MY, Ma YR, White LV, Banwell MG, Teng Y, Lan P. Enzymatic synthesis of an homologous series of long- and very long-chain sucrose esters and evaluation of their emulsifying and biological properties. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107149] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
5
|
Characterization of the binding behavior, structure and foaming properties of bovine α-lactalbumin combined with saponin by the multi-spectroscopic and silico approaches. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107259] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
6
|
Zhang J, Wang C, Zhang F, Lin W. Anionic surfactant sulfate dodecyl sodium (SDS)-induced thermodynamics and conformational changes of collagen by ultrasensitive microcalorimetry. JOURNAL OF LEATHER SCIENCE AND ENGINEERING 2021. [DOI: 10.1186/s42825-021-00063-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Abstract
In this communication, sulfate dodecyl sodium (SDS)-induced thermodynamics and conformational changes of collagen were studied. We used ultrasensitive differential scanning calorimetry (US-DSC) to directly monitor the thermal transition of collagen in the presence of SDS. The results show that SDS affects the conformation and thermal stability of collagen very differently depending on its concentrations. At CSDS ≤ 0.05 mM, the enhanced thermal stability of collagen indicates the stabilizing effect by SDS. However, a further increase of SDS leads to the denaturation of collagen, verifying the well-known ability of SDS to unfold proteins. This striking difference in thermodynamics and conformational changes of collagen caused by SDS concentrations can be explained in terms of their interactions. With increasing SDS, the binding of SDS to collagen can be dominated by electrostatic interaction shifting to hydrophobic interaction, and the latter plays a key role in loosening and unfolding the triple-helix structure of collagen. The important finding in the present study is the stabilizing effect of SDS on collagen molecules at extreme low concentration.
Graphical abstract
Collapse
|
7
|
Kotenko AA, Khil’ko SL. The Surface Properties of Solutions of Dicationic Imidazolium Surfactants with Short Bridge Fragments. COLLOID JOURNAL 2021. [DOI: 10.1134/s1061933x21020058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
8
|
Zhu L, Xu Q, Liu X, Xu Y, Yang L, Wang S, Li J, He Y, Liu H. Soy glycinin-soyasaponin mixtures at oil-water interface: Interfacial behavior and O/W emulsion stability. Food Chem 2020; 327:127062. [PMID: 32454279 DOI: 10.1016/j.foodchem.2020.127062] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 04/21/2020] [Accepted: 05/12/2020] [Indexed: 12/30/2022]
Abstract
Soy glycinin (11S) was mixed with soyasaponin (Ssa) to elucidate the mechanism(s) involved in the stabilization of emulsions by mixed systems based on dynamic interfacial tension and dilatational rheology at the oil-water interface. The short/long-term properties of oil-in-water emulsions stabilized by 11S-Ssa mixtures included droplet-size distribution, droplet ζ-potential, microstructure, and Turbiscan stability index. The combination of Ssa (0.05%) with 11S significantly affected the interfacial dilatational and emulsion properties although the interfacial properties were still dominated by the protein. Higher concentrations (0.1% and 0.2%) of Ssa combined with 11S synergistically decreased the interfacial tension, which was attributed to the interaction between 11S and Ssa. Using high Ssa concentrations (0.25%-0.5%) enhanced the long-term stability of emulsions (in response to external deformations) after 42 d. These results will aid the basic understanding of protein-Ssa interfacial adsorption during emulsion formation and can help prepare natural food additives for designing emulsions.
Collapse
Affiliation(s)
- Lijie Zhu
- College of Food Science and Technology, Bohai University, Food Safety Key Lab of Liaoning Province, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, Liaoning 121013, China
| | - Qingying Xu
- College of Food Science and Technology, Bohai University, Food Safety Key Lab of Liaoning Province, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, Liaoning 121013, China
| | - Xiuying Liu
- College of Food Science and Technology, Bohai University, Food Safety Key Lab of Liaoning Province, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, Liaoning 121013, China.
| | - Yangyang Xu
- College of Food Science and Technology, Bohai University, Food Safety Key Lab of Liaoning Province, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, Liaoning 121013, China
| | - Lina Yang
- College of Food Science and Technology, Bohai University, Food Safety Key Lab of Liaoning Province, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, Liaoning 121013, China
| | - Shengnan Wang
- College of Food Science and Technology, Bohai University, Food Safety Key Lab of Liaoning Province, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, Liaoning 121013, China
| | - Jun Li
- College of Food Science and Technology, Bohai University, Food Safety Key Lab of Liaoning Province, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, Liaoning 121013, China
| | - Yutang He
- College of Food Science and Technology, Bohai University, Food Safety Key Lab of Liaoning Province, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, Liaoning 121013, China
| | - He Liu
- College of Food Science and Technology, Bohai University, Food Safety Key Lab of Liaoning Province, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, Liaoning 121013, China.
| |
Collapse
|
9
|
Loeffler M, Schwab V, Terjung N, Weiss J, McClements DJ. Influence of Protein Type on the Antimicrobial Activity of LAE Alone or in Combination with Methylparaben. Foods 2020; 9:E270. [PMID: 32131440 PMCID: PMC7143257 DOI: 10.3390/foods9030270] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 02/21/2020] [Accepted: 02/21/2020] [Indexed: 11/25/2022] Open
Abstract
The cationic surfactant Lauric arginate (LAE) has gained approval for utilization in meat products (limit: 200 mg/kg). However, as for other antimicrobials, its activity is reduced when applied to complex food matrices. The current study therefore aims to better understand protein-antimicrobial agent-interactions and their influence on the antimicrobial activity of (i) LAE and (ii) methylparaben against Listeria innocua and Pseudomonas fluorescens in defined model systems (pH 6). Antimicrobials were utilized alone or in combination with nutrient broth containing either no protein or 2% bovine serum albumin, whey protein isolate, or soy protein hydrolysate. LAE was found to form complexes with all proteins due to electrostatic attraction, determined using microelectrophoretic and turbidity measurements. Minimal lethal concentrations of LAE were remarkably increased (4-13 fold) in the presence of proteins, with globular proteins having the strongest impact. Combinations of LAE (0-200 µg/mL) with the less structure-sensitive component methylparaben (approved concentration 0.1%) remarkably decreased the concentrations of LAE needed to strongly inhibit or even kill both, L. innocua and P. fluorescens in the presence of proteins. The study highlights the importance of ingredient interactions impacting microbial activity that are often not taken into account when examining antimicrobial components having different structure sensitivities.
Collapse
Affiliation(s)
- Myriam Loeffler
- Department of Food Physics and Meat Science, Institute of Food Science and Biotechnology, University of Hohenheim, Garbenstrasse 21/25, 70599 Stuttgart, Germany; (M.L.); (V.S.); (N.T.); (J.W.)
| | - Verena Schwab
- Department of Food Physics and Meat Science, Institute of Food Science and Biotechnology, University of Hohenheim, Garbenstrasse 21/25, 70599 Stuttgart, Germany; (M.L.); (V.S.); (N.T.); (J.W.)
| | - Nino Terjung
- Department of Food Physics and Meat Science, Institute of Food Science and Biotechnology, University of Hohenheim, Garbenstrasse 21/25, 70599 Stuttgart, Germany; (M.L.); (V.S.); (N.T.); (J.W.)
| | - Jochen Weiss
- Department of Food Physics and Meat Science, Institute of Food Science and Biotechnology, University of Hohenheim, Garbenstrasse 21/25, 70599 Stuttgart, Germany; (M.L.); (V.S.); (N.T.); (J.W.)
| | | |
Collapse
|
10
|
Srivastava R, Alam MS. Influence of micelles on protein's denaturation. Int J Biol Macromol 2020; 145:252-261. [PMID: 31874269 DOI: 10.1016/j.ijbiomac.2019.12.154] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 10/05/2019] [Accepted: 12/17/2019] [Indexed: 11/15/2022]
Abstract
To evaluate the role of micelles for protein-surfactant interaction, we have studied the binding modes of serum albumin proteins (human (HSA) and rabbit (RSA)) with anionic-surfactant, sodium dodecyl sulfate (SDS) by using UV-visible, fluorescence, circular dichroism, fluorescence lifetime, atomic force microscopy (AFM) techniques. The study performed with three different pHs (below (4.0), at (4.7), and above (7.0) isoelectric point). Hydrocarbon chain of the surfactant, dominant role of hydrophobic forces and electrostatic interactions helped in polar interaction on protein on binding surfaces. The change above and below the critical micelle concentration (CMC) in fluorescence spectra was due to polarity of the microenvironment. The CD spectra different binding aspects as below CMC and above CMC, explain about folding and unfolding in secondary structure. Surfactant's binding induces fluctuations in the microenvironment of aromatic amino acid's residues of both proteins at different pHs. AFM images clarify the structural changes in both proteins (HSA & RSA). AFM images also indicate some different interesting conformational and structural changes in both proteins below/above the CMC of the surfactant. The molecular docking studies indicate the binding energy -4.8 kcal mol-1 and -4.7 kcal mol-1 for HSA-SDS and RSA-SDS, respectively. Structural changes can be seen above and below the CMC.
Collapse
Affiliation(s)
- Rachana Srivastava
- Council of Scientific and Industrial Research (CSIR) - Central Leather Research Institute (CLRI), Polymer Science &Technology Laboratory, Chennai 600020, India
| | - Md Sayem Alam
- Council of Scientific and Industrial Research (CSIR) - Central Leather Research Institute (CLRI), Polymer Science &Technology Laboratory, Chennai 600020, India; Chemical Science, Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India.
| |
Collapse
|
11
|
Penfold J, Thomas R. Adsorption properties of plant based bio-surfactants: Insights from neutron scattering techniques. Adv Colloid Interface Sci 2019; 274:102041. [PMID: 31655367 DOI: 10.1016/j.cis.2019.102041] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 09/30/2019] [Accepted: 09/30/2019] [Indexed: 01/16/2023]
Abstract
There is an increasing interest in biosustainable surfactants and surface active proteins for a range of applications, in home and personal care products, cosmetics, pharmaceuticals, and food and drink formulations. This review focuses on two plant derived biosurfactants, the surface active glycoside, saponin, and the surface active globular protein, hydrophobin. A particular emphasis in the review is on the role of neutron reflectivity in probing the adsorption, structure of the adsorbed layer, and their mixing at the interface with a range of more conventional surfactants and proteins.
Collapse
|
12
|
Srivastava R, Alam MS. Role of (single/double chain surfactant) micelles on the protein aggregation. Int J Biol Macromol 2019; 122:72-81. [DOI: 10.1016/j.ijbiomac.2018.10.145] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 10/16/2018] [Accepted: 10/18/2018] [Indexed: 11/16/2022]
|
13
|
Fainerman VB, Trukhin DV, Zinkovych II, Miller R. Interfacial tensiometry and dilational surface visco-elasticity of biological liquids in medicine. Adv Colloid Interface Sci 2018; 255:34-46. [PMID: 28851489 DOI: 10.1016/j.cis.2017.08.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 07/31/2017] [Accepted: 08/07/2017] [Indexed: 01/02/2023]
Abstract
Dynamic surface tensions and dilational visco-elasticity are easy accessible parameters of liquids. For human body liquids, such as urine, blood serum, amniotic fluid, gastric juice, saliva and others, these parameters are very characteristic for the health status of people. In case of a disease the composition of certain liquids specifically changes and the measured characteristics of dynamic surface tension of the dilational surface elasticity and viscosity reflect these changes in a clear way. Thus, this kind of physico-chemical measurements represent sensitive tools for evaluating the severity of a disease and can serve as control tool for the efficiency of applied therapies. The overview summarises the results of a successful work over about 25years on this subject and gives specific insight into a number of diseases for which the diagnostics as well as the therapy control have been significantly improved by the application of physico-chemical experimental techniques.
Collapse
Affiliation(s)
| | - D V Trukhin
- Odessa National Medical University, Odessa, Ukraine
| | | | - R Miller
- Max-Planck-Institut für Kolloid- und Grenzflächenforschung, Potsdam, Germany.
| |
Collapse
|
14
|
Chernysheva MG, Badun GA, Shnitko AV, Petrova VI, Ksenofontov AL. Lysozyme-surfactant adsorption at the aqueous-air and aqueous-organic liquid interfaces as studied by tritium probe. Colloids Surf A Physicochem Eng Asp 2018. [DOI: 10.1016/j.colsurfa.2017.10.048] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
15
|
Chernysheva MG, Shnitko AV, Soboleva OA, Badun GA. Competitive adsorption of lysozyme and non-ionic surfactants (Brij-35 and pluronic P123) from a mixed solution at water-air and water-xylene interfaces. Colloid Polym Sci 2017. [DOI: 10.1007/s00396-017-4240-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
16
|
Noskov BA, Krycki MM. Formation of protein/surfactant adsorption layer as studied by dilational surface rheology. Adv Colloid Interface Sci 2017; 247:81-99. [PMID: 28716186 DOI: 10.1016/j.cis.2017.07.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 06/19/2017] [Accepted: 07/02/2017] [Indexed: 12/25/2022]
Abstract
The review discusses the mechanism of formation of protein/surfactant adsorption layers at the liquid - gas interface. The complexes of globular proteins usually preserve their compact structure a low surfactant concentrations. Therefore a simple kinetic model of the adsorption of charged compact nanoparticles is discussed first and compared with experimental data. The increase of surfactant concentrations results in various conformational transitions in the surface layer. One can obtain information on the changes of the adsorption layer structure using the dilational surface rheology. The kinetic dependencies of the dynamic surface elasticity are strongly different for the adsorption of unfolded macromolecules and compact globules, and have local maxima in the former case corresponding to different steps of the adsorption. These distinctions allow tracing the changes of the tertiary structure of protein/surfactant complexes in the surface layer. The adsorption from mixed solutions of ionic surfactants with β-casein, β-lactoglobulin, bovine serum albumin and myoglobin is discussed with some details.
Collapse
|
17
|
Garakani TM, Richter MJ, Böker A. Controlling the bio-inspired synthesis of silica. J Colloid Interface Sci 2017; 488:322-334. [PMID: 27838557 DOI: 10.1016/j.jcis.2016.10.069] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 10/20/2016] [Accepted: 10/25/2016] [Indexed: 11/24/2022]
Abstract
The influence of different parameters on the silicification procedure using lysozyme is reported. When polyethoxysiloxane (PEOS), an internally crosslinked silica reservoir, is used, regular structures with a narrow size distribution could be obtained only via introducing the silica precursor in two steps including initial dropping and subsequent addition of residual oil phase in one portion. We found that mixing sequence of mineralizing agents in the presence of a positively charged surfactant plays a key role in terms of silica precipitation when tetraethoxyorthosilicate (TEOS) is the oil phase. In contrast, well-mineralized crumpled features with high specific surface area could be synthesized in the presence of PEOS as a silica precursor polymer, regardless of mixing sequence. Moreover, introducing sodium dodecyl sulfate (SDS) as a negatively charged surfactant resulted in regular silica sphere formation only in combination with hexylene glycol (MPD) as a specific co-solvent. Finally, it is demonstrated that by inclusion of different nanoparticles even more sophisticated hybrid materials can be generated.
Collapse
Affiliation(s)
- Tayebeh Mirzaei Garakani
- DWI - Leibniz-Institut für Interaktive Materialien e.V., Lehrstuhl für Makromolekulare Materialien und Oberflächen, RWTH Aachen University, Forckenbeckstr. 50, D-52062 Aachen, Germany
| | - Marina Juliane Richter
- DWI - Leibniz-Institut für Interaktive Materialien e.V., Lehrstuhl für Makromolekulare Materialien und Oberflächen, RWTH Aachen University, Forckenbeckstr. 50, D-52062 Aachen, Germany
| | - Alexander Böker
- Fraunhofer Institute for Applied Polymer Research (IAP), Geiselbergstr. 69, 14476 Potsdam-Golm, Germany; Lehrstuhl für Polymermaterialien und Polymertechnologie, Universität Potsdam, 14476 Potsdam-Golm, Germany.
| |
Collapse
|
18
|
Thermodynamics, interfacial pressure isotherms and dilational rheology of mixed protein-surfactant adsorption layers. Adv Colloid Interface Sci 2016. [PMID: 26198014 DOI: 10.1016/j.cis.2015.06.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Proteins and their mixtures with surfactants are widely used in many applications. The knowledge of their solution bulk behavior and its impact on the properties of interfacial layers made great progress in the recent years. Different mechanisms apply to the formation process of protein/surfactant complexes for ionic and non-ionic surfactants, which are governed mainly by electrostatic and hydrophobic interactions. The surface activity of these complexes is often remarkably different from that of the individual protein and has to be considered in respective theoretical models. At very low protein concentration, small amounts of added surfactants can change the surface activity of proteins remarkably, even though no strongly interfacial active complexes are observed. Also small added amounts of non-ionic surfactants change the surface activity of proteins in the range of small bulk concentrations or surface coverages. The modeling of the equilibrium adsorption behavior of proteins and their mixtures with surfactants has reached a rather high level. These models are suitable also to describe the high frequency limits of the dilational viscoelasticity of the interfacial layers. Depending on the nature of the protein/surfactant interactions and the changes in the interfacial layer composition rather complex dilational viscoelasticities can be observed and described by the available models. The differences in the interfacial behavior, often observed in literature for studies using different experimental methods, are at least partially explained by a depletion of proteins, surfactants and their complexes in the range of low concentrations. A correction of these depletion effects typically provides good agreement between the data obtained with different methods, such as drop and bubble profile tensiometry.
Collapse
|
19
|
Miller R, Aksenenko EV, Zinkovych II, Fainerman VB. Adsorption of proteins at the aqueous solution/alkane interface: Co-adsorption of protein and alkane. Adv Colloid Interface Sci 2015; 222:509-16. [PMID: 25813359 DOI: 10.1016/j.cis.2015.01.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Revised: 09/14/2014] [Accepted: 01/16/2015] [Indexed: 11/19/2022]
Abstract
The equations of state, adsorption isotherms and functions of the distribution of protein molecules in liquid interfacial layers with respect to molar area and the equations for their viscoelastic behavior are presented. This theory was used to determine the adsorption characteristics of β-casein and β-lactoglobulin at water/oil interfaces. The experimental results are shown to be describable quite adequately by the proposed theory with consistent model parameters. The data analysis demonstrated that the β-casein molecule adsorbed at equilibrium conditions is more unfolded as compared with dynamic conditions, and this fact causes the significant increase of the adsorption equilibrium constant. The theory assumes the adsorption of protein molecules from the aqueous solution and a competitive adsorption of alkane molecules from the alkane phase. The comparison of the experimental equilibrium interfacial tension isotherms for β-lactoglobulin at the solution/hexane interface with data calculated using the proposed theoretical model demonstrates that the assumption of a competitive adsorption is essential, and the influence of the hexane molecules on the shape of the adsorption isotherm does in fact exist.
Collapse
Affiliation(s)
- R Miller
- Max-Planck-Institut für Kolloid- und Grenzflächenforschung, 14424 Potsdam, Germany
| | - E V Aksenenko
- Institute of Colloid Chemistry and Chemistry of Water, Kiev 03680, Ukraine
| | | | | |
Collapse
|
20
|
Fainerman VB. In honour of the 65th birthday of Reinhard Miller. Adv Colloid Interface Sci 2015; 222:1-8. [PMID: 26111457 DOI: 10.1016/j.cis.2015.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
21
|
Saad SM, Neumann AW. Laplacian drop shapes and effect of random perturbations on accuracy of surface tension measurement for different drop constellations. Adv Colloid Interface Sci 2015; 222:622-38. [PMID: 25466689 DOI: 10.1016/j.cis.2014.10.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Revised: 10/29/2014] [Accepted: 10/30/2014] [Indexed: 10/24/2022]
Abstract
Theoretical drop shapes are calculated for three drop constellations: pendant drops, constrained sessile drops, and unconstrained sessile drops. Based on total Gaussian curvature, shape parameter and critical shape parameter are discussed as a function of different drop sizes and surface tensions. The shape parameter is linked to physical parameters for every drop constellation. The as yet unavailable detailed dimensional analysis for the unconstrained sessile drop is presented. Results show that the unconstrained sessile drop shape depends on a dimensionless volume term and the contact angle. Random perturbations are introduced and the accuracy of surface tension measurement is assessed for precise and perturbed profiles of the three drop constellations. It is concluded that pendant drops are the best method for accurate surface tension measurement, followed by constrained sessile drops. The unconstrained sessile drops come last because they tend to be more spherical at low and moderate contact angles. Of course, unconstrained sessile drops are the only option if contact angles are to be measured.
Collapse
|
22
|
Lotfi M, Javadi A, Lylyk S, Bastani D, Fainerman V, Miller R. Adsorption of proteins at the solution/air interface influenced by added non-ionic surfactants at very low concentrations for both components. 1. Dodecyl dimethyl phospine oxide. Colloids Surf A Physicochem Eng Asp 2015. [DOI: 10.1016/j.colsurfa.2014.12.065] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
23
|
Maas M, Hess U, Rezwan K. The contribution of rheology for designing hydroxyapatite biomaterials. Curr Opin Colloid Interface Sci 2014. [DOI: 10.1016/j.cocis.2014.09.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
24
|
Lech FJ, Steltenpool P, Meinders MB, Sforza S, Gruppen H, Wierenga PA. Identifying changes in chemical, interfacial and foam properties of β-lactoglobulin–sodium dodecyl sulphate mixtures. Colloids Surf A Physicochem Eng Asp 2014. [DOI: 10.1016/j.colsurfa.2014.08.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
25
|
van der Sman R, Meinders M. Mesoscale models of dispersions stabilized by surfactants and colloids. Adv Colloid Interface Sci 2014; 211:63-76. [PMID: 24980050 DOI: 10.1016/j.cis.2014.06.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Revised: 06/04/2014] [Accepted: 06/05/2014] [Indexed: 10/25/2022]
Abstract
In this paper we discuss and give an outlook on numerical models describing dispersions, stabilized by surfactants and colloidal particles. Examples of these dispersions are foams and emulsions. In particular, we focus on the potential of the diffuse interface models based on a free energy approach, which describe dispersions with the surface-active agent soluble in one of the bulk phases. The free energy approach renders thermodynamic consistent models with realistic sorption isotherms and adsorption kinetics. The free energy approach is attractive because of its ability to describe highly complex dispersions, such as emulsions stabilized by ionic surfactants, or surfactant mixtures and dispersions with surfactant micelles. We have classified existing numerical methods into classes, using either a Eulerian or a Lagrangian representation for fluid and for the surfactant/colloid. A Eulerian representation gives a more coarse-grained, mean field description of the surface-active agent, while a Lagrangian representation can deal with steric effects and larger complexity concerning geometry and (amphiphilic) wetting properties of colloids and surfactants. However, the similarity between the description of wetting properties of both Eulerian and Lagrangian models allows for the development of hybrid Eulerian/Lagrangian models having advantages of both representations.
Collapse
|
26
|
Lallbeeharry P, Tian Y, Fu N, Wu W, Woo M, Selomulya C, Chen X. Effects of ionic and nonionic surfactants on milk shell wettability during co-spray-drying of whole milk particles. J Dairy Sci 2014; 97:5303-14. [DOI: 10.3168/jds.2013-7772] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Accepted: 06/01/2014] [Indexed: 11/19/2022]
|
27
|
Synergistic interfacial properties of soy protein–stevioside mixtures: Relationship to emulsion stability. Food Hydrocoll 2014. [DOI: 10.1016/j.foodhyd.2014.01.007] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
28
|
Xu L, Xu G, Gong H, Dong M, Li Y, Zhou Y. Foam properties and stabilizing mechanism of sodium fatty alcohol polyoxyethylene ether sulfate-welan gum composite systems. Colloids Surf A Physicochem Eng Asp 2014. [DOI: 10.1016/j.colsurfa.2014.05.031] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
29
|
Wan ZL, Wang LY, Wang JM, Yuan Y, Yang XQ. Synergistic foaming and surface properties of a weakly interacting mixture of soy glycinin and biosurfactant stevioside. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:6834-43. [PMID: 24955775 DOI: 10.1021/jf502027u] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The adsorption of the mixtures of soy glycinin (11S) with a biosurfactant stevioside (STE) at the air-water interface was studied to understand its relation with foaming properties. A combination of several techniques such as dynamic surface tension, dilatational rheology, fluorescence spectroscopy, and isothermal titration calorimetry (ITC) was used. In the presence of intermediate STE concentrations (0.25-0.5%), the weak binding of STE with 11S in bulk occurred by hydrophobic interactions, which could induce conformational changes of 11S, as evidenced by fluorescence and ITC. Accordingly, the strong synergy in reducing surface tension and the plateau in surface elasticity for mixed 11S-STE layers formed from the weakly interacting mixtures were clearly observed. This effect could be explained by the complexation with STE, which might facilitate the partial dissociation and further unfolding of 11S upon adsorption, thus enhancing the protein-protein and protein-STE interfacial interactions. These surface properties were positively reflected in foams produced by the weakly interacting system, which exhibited good foaming capacity and considerable stability probably due to better response to external stresses. However, at high STE concentrations (1-2%), as a consequence of the interface dominated by STE due to the preferential adsorption of STE molecules, the surface elasticity of layers dramatically decreased, and the resultant foams became less stable.
Collapse
Affiliation(s)
- Zhi-Li Wan
- Research and Development Center of Food Proteins, Department of Food Science and Technology, South China University of Technology , Guangzhou 510640, People's Republic of China
| | | | | | | | | |
Collapse
|
30
|
Interaction of Quillaja bark saponins with food-relevant proteins. Adv Colloid Interface Sci 2014; 209:185-95. [PMID: 24802169 DOI: 10.1016/j.cis.2014.04.005] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Revised: 04/09/2014] [Accepted: 04/10/2014] [Indexed: 11/22/2022]
Abstract
The surface activity and aggregation behaviour of two Quillaja bark saponins (QBS) are compared using surface tension, conductometry and light scattering. Despite formally of the same origin (bark of the Quillaja saponaria Molina tree), the two QBS show markedly different ionic characters and critical micelle concentrations (7.7·10(-6) mol·dm(-3) and 1.2·10(-4) mol·dm(-3)). The new interpretation of the surface tension isotherms for both QBS allowed us to propose an explanation for the previous discrepancy concerning the orientation of the saponin molecules in the adsorbed layer. The effect of three food-related proteins (hen egg lysozyme, bovine β-lactoglobulin and β-casein) on surface tension of the saponins is also described. Dynamic surface tension was measured at fixed protein concentrations and QBS concentrations varying in the range 5·10(-7)-1·10(-3) mol·dm(-3). Both dynamic and extrapolated equilibrium surface tensions of the protein/QBS mixtures depend not only on the protein, but also on the QBS source. In general, the surface tension for mixtures of the QBS with lower CMC and less ionic character shows less pronounced synergistic effects. This is especially well visible for β-casein/QBS mixtures, where a characteristic maximum in the surface tension isotherm around the molar ratio of one can be noticed for one saponin product, but not for the other.
Collapse
|
31
|
Engelhardt K, Weichsel U, Kraft E, Segets D, Peukert W, Braunschweig B. Mixed Layers of β-Lactoglobulin and SDS at Air–Water Interfaces with Tunable Intermolecular Interactions. J Phys Chem B 2014; 118:4098-105. [DOI: 10.1021/jp501541q] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Kathrin Engelhardt
- Institute of Particle Technology
(LFG), University of Erlangen-Nuremberg, Cauerstrasse 4, 91058 Erlangen, Germany
| | - Ulrike Weichsel
- Institute of Particle Technology
(LFG), University of Erlangen-Nuremberg, Cauerstrasse 4, 91058 Erlangen, Germany
| | - Elena Kraft
- Institute of Particle Technology
(LFG), University of Erlangen-Nuremberg, Cauerstrasse 4, 91058 Erlangen, Germany
| | - Doris Segets
- Institute of Particle Technology
(LFG), University of Erlangen-Nuremberg, Cauerstrasse 4, 91058 Erlangen, Germany
| | - Wolfgang Peukert
- Institute of Particle Technology
(LFG), University of Erlangen-Nuremberg, Cauerstrasse 4, 91058 Erlangen, Germany
| | - Björn Braunschweig
- Institute of Particle Technology
(LFG), University of Erlangen-Nuremberg, Cauerstrasse 4, 91058 Erlangen, Germany
| |
Collapse
|
32
|
|
33
|
Zhang H, Xu G, Liu T, Xu L, Zhou Y. Foam and interfacial properties of Tween 20–bovine serum albumin systems. Colloids Surf A Physicochem Eng Asp 2013. [DOI: 10.1016/j.colsurfa.2012.10.028] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
34
|
Surface dilational rheological and lamella properties of branched alkyl benzene sulfonate solutions. Colloids Surf A Physicochem Eng Asp 2012. [DOI: 10.1016/j.colsurfa.2012.07.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
35
|
|
36
|
The influence of size, structure and hydrophilicity of model surfactants on the adsorption of lysozyme to oil–water interface—Interfacial shear measurements. Colloids Surf B Biointerfaces 2011; 87:96-102. [DOI: 10.1016/j.colsurfb.2011.05.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2011] [Revised: 04/04/2011] [Accepted: 05/03/2011] [Indexed: 11/18/2022]
|
37
|
Zhang XL, Penfold J, Thomas RK, Tucker IM, Petkov JT, Bent J, Cox A, Campbell RA. Adsorption behavior of hydrophobin and hydrophobin/surfactant mixtures at the air-water interface. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2011; 27:11316-11323. [PMID: 21774529 DOI: 10.1021/la201706p] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The adsorption of the surface-active protein hydrophobin, HFBII, and the competitive adsorption of HFBII with the cationic, anionic, and nonionic surfactants hexadecyltrimethylammonium bromide, CTAB, sodium dodecyl sulfate, SDS, and hexaethylene monododecyl ether, C(12)E(6), has been studied using neutron reflectivity, NR. HFBII adsorbs strongly at the air-water interface to form a dense monolayer ∼30 Å thick, with a mean area per molecule of ∼400 Å(2) and a volume fraction of ∼0.7, for concentrations greater than 0.01 g/L, and the adsorption is independent of the solution pH. In competition with the conventional surfactants CTAB, SDS, and C(12)E(6) at pH 7, the HFBII adsorption totally dominates the surface for surfactant concentrations less than the critical micellar concentration, cmc. Above the cmc of the conventional surfactants, HFBII is displaced by the surfactant (CTAB, SDS, or C(12)E(6)). For C(12)E(6) this displacement is only partial, and some HFBII remains at the surface for concentrations greater than the C(12)E(6) cmc. At low pH (pH 3) the patterns of adsorption for HFBII/SDS and HFBII/C(12)E(6) are different. At concentrations just below the surfactant cmc there is now mixed HFBII/surfactant adsorption for both SDS and C(12)E(6). For the HFBII/SDS mixture the structure of the adsorbed layer is more complex in the region immediately below the SDS cmc, resulting from the HFBII/SDS complex formation at the interface.
Collapse
Affiliation(s)
- Xiaoli L Zhang
- Physical and Theoretical Chemistry Laboratory, Oxford University, South Parks Road, Oxford, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
38
|
|
39
|
|
40
|
Ravera F, Loglio G, Kovalchuk VI. Interfacial dilational rheology by oscillating bubble/drop methods. Curr Opin Colloid Interface Sci 2010. [DOI: 10.1016/j.cocis.2010.04.001] [Citation(s) in RCA: 155] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
41
|
|
42
|
Lozano N, Pinazo A, Pérez L, Pons R. Dynamic properties of cationic diacyl-glycerol-arginine-based surfactant/phospholipid mixtures at the air/water interface. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2010; 26:2559-2566. [PMID: 19891445 DOI: 10.1021/la902850j] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
In this Article, we study the binary surface interactions of 1,2-dimyristoyl-rac-glycero-3-O-(N(alpha)-acetyl-L-arginine) hydrochloride (1414RAc) with 1,2-dipalmitoyl-sn-glycero-3-phosphatidylcholine (DPPC) on 0.1 M sodium chloride solutions. 1414RAc is a novel monocationic surfactant that has potential applications as an antimicrobial agent, is biodegradable, and shows a toxicity activity smaller than that of other commercial cationic surfactants. DPPC phospholipid was used as a model membrane component. The dynamic surface tension of 1414RAc/DPPC aqueous dispersions injected into the saline subphase was followed by tensiometry. The layer formation for the mixtures is always accelerated with respect to DPPC, and surprisingly, the surface tension reduction is faster and reaches lower surface tension values at surfactant concentration below its critical micellar concentration (cmc). Interfacial dilational rheology properties of mixed films spread on the air/water interface were determined by the dynamic oscillation method using a Langmuir trough. The effect of surfactant mole fraction on the rheological parameters of 1414RAc/DPPC mixed monolayers was studied at a relative amplitude of area deformation of 5% and a frequency of 50 mHz. The monolayer viscoelasticity shows a nonideal mixing behavior with predominance of the surfactant properties. This nonideal behavior has been attributed to the prevalence of electrostatic interactions.
Collapse
Affiliation(s)
- Neus Lozano
- Departament de Tecnologia Química i de Tensioactius, Institut de Química Avançada de Catalunya, CSIC, Jordi Girona 18-26, E-08034 Barcelona, Spain
| | | | | | | |
Collapse
|
43
|
Equilibrium and dynamics of adsorption of mixed β-casein/surfactant solutions at the water/hexane interface. Colloids Surf A Physicochem Eng Asp 2010. [DOI: 10.1016/j.colsurfa.2009.04.025] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
44
|
Thermodynamics, adsorption kinetics and rheology of mixed protein-surfactant interfacial layers. Adv Colloid Interface Sci 2009; 150:41-54. [PMID: 19493522 DOI: 10.1016/j.cis.2009.05.002] [Citation(s) in RCA: 153] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Depending on the bulk composition, adsorption layers formed from mixed protein/surfactant solutions contain different amounts of protein. Clearly, increasing amounts of surfactant should decrease the amount of adsorbed proteins successively. However, due to the much larger adsorption energy, proteins are rather strongly bound to the interface and via competitive adsorption surfactants cannot easily displace proteins. A thermodynamic theory was developed recently which describes the composition of mixed protein/surfactant adsorption layers. This theory is based on models for the single compounds and allows a prognosis of the resulting mixed layers by using the characteristic parameters of the involved components. This thermodynamic theory serves also as the respective boundary condition for the dynamics of adsorption layers formed from mixed solutions and their dilational rheological behaviour. Based on experimental studies with milk proteins (beta-casein and beta-lactoglobulin) mixed with non-ionic (decyl and dodecyl dimethyl phosphine oxide) and ionic (sodium dodecyl sulphate and dodecyl trimethyl ammonium bromide) surfactants at the water/air and water/hexane interfaces, the potential of the theoretical tools is demonstrated. The displacement of pre-adsorbed proteins by subsequently added surfactant can be successfully studied by a special experimental technique based on a drop volume exchange. In this way the drop profile analysis can provide tensiometry and dilational rheology data (via drop oscillation experiments) for two adsorption routes--sequential adsorption of the single compounds in addition to the traditional simultaneous adsorption from a mixed solution. Complementary measurements of the surface shear rheology and the adsorption layer thickness via ellipsometry are added in order to support the proposed mechanisms drawn from tensiometry and dilational rheology, i.e. to show that the formation of mixed adsorption layer is based on a modification of the protein molecules via electrostatic (ionic) and/or hydrophobic interactions by the surfactant molecules and a competitive adsorption of the resulting complexes with the free, unbound surfactant. Under certain conditions, the properties of the sequentially formed layers differ from those formed simultaneously, which can be explained by the different locations of complex formation.
Collapse
|
45
|
Kotsmar C, Grigoriev DO, Xu F, Aksenenko EV, Fainerman VB, Leser ME, Miller R. Equilibrium of adsorption of mixed milk protein/surfactant solutions at the water/air interface. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2008; 24:13977-13984. [PMID: 19053640 DOI: 10.1021/la802335g] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Ellipsometry and surface profile analysis tensiometry were used to study and compare the adsorption behavior of beta-lactoglobulin (BLG)/C10DMPO, beta-casein (BCS)/C10DMPO and BCS/C12DMPO mixtures at the air/solution interface. The adsorption from protein/surfactant mixed solutions is of competitive nature. The obtained adsorption isotherms suggest a gradual replacement of the protein molecules at the interface with increasing surfactant concentration for all studied mixed systems. The thickness, refractive index, and the adsorbed amount of the respective adsorption layers, determined by ellipsometry, decrease monotonically and reach values close to those for a surface covered only by surfactant molecules, indicating the absence of proteins from a certain surfactant concentration on. These results correlate with the surface tension data. A continuous increase of adsorption layer thickness was observed up to this concentration, caused by the desorption of segments of the protein and transforming the thin surface layer into a rather diffuse and thick one. Replacement and structural changes of the protein molecules are discussed in terms of protein structure and surface activity of surfactant molecules. Theoretical models derived recently were used for the quantitative description of the equilibrium state of the mixed surface layers.
Collapse
Affiliation(s)
- C Kotsmar
- Max Planck Institute of Colloids and Interfaces, 14476 Potsdam-Golm, Germany.
| | | | | | | | | | | | | |
Collapse
|
46
|
Kotsmar C, Krägel J, Kovalchuk VI, Aksenenko EV, Fainerman VB, Miller R. Dilation and Shear Rheology of Mixed β-Casein/Surfactant Adsorption Layers. J Phys Chem B 2008; 113:103-113. [DOI: 10.1021/jp807197s] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Cs. Kotsmar
- Max Planck Institute of Colloids and Interfaces, 14424 Potsdam-Golm, Germany, Institute of Biocolloid Chemistry, Vernadsky Av., 42, 03142 Kiev, Ukraine, Institute of Colloid Chemistry and Chemistry of Water, 42 Vernadsky Av., 03680 Kiev, Ukraine, and Medical University Donetsk, 16 Ilych Avenue, 83003 Donetsk, Ukraine
| | - J. Krägel
- Max Planck Institute of Colloids and Interfaces, 14424 Potsdam-Golm, Germany, Institute of Biocolloid Chemistry, Vernadsky Av., 42, 03142 Kiev, Ukraine, Institute of Colloid Chemistry and Chemistry of Water, 42 Vernadsky Av., 03680 Kiev, Ukraine, and Medical University Donetsk, 16 Ilych Avenue, 83003 Donetsk, Ukraine
| | - V. I. Kovalchuk
- Max Planck Institute of Colloids and Interfaces, 14424 Potsdam-Golm, Germany, Institute of Biocolloid Chemistry, Vernadsky Av., 42, 03142 Kiev, Ukraine, Institute of Colloid Chemistry and Chemistry of Water, 42 Vernadsky Av., 03680 Kiev, Ukraine, and Medical University Donetsk, 16 Ilych Avenue, 83003 Donetsk, Ukraine
| | - E. V. Aksenenko
- Max Planck Institute of Colloids and Interfaces, 14424 Potsdam-Golm, Germany, Institute of Biocolloid Chemistry, Vernadsky Av., 42, 03142 Kiev, Ukraine, Institute of Colloid Chemistry and Chemistry of Water, 42 Vernadsky Av., 03680 Kiev, Ukraine, and Medical University Donetsk, 16 Ilych Avenue, 83003 Donetsk, Ukraine
| | - V. B. Fainerman
- Max Planck Institute of Colloids and Interfaces, 14424 Potsdam-Golm, Germany, Institute of Biocolloid Chemistry, Vernadsky Av., 42, 03142 Kiev, Ukraine, Institute of Colloid Chemistry and Chemistry of Water, 42 Vernadsky Av., 03680 Kiev, Ukraine, and Medical University Donetsk, 16 Ilych Avenue, 83003 Donetsk, Ukraine
| | - R. Miller
- Max Planck Institute of Colloids and Interfaces, 14424 Potsdam-Golm, Germany, Institute of Biocolloid Chemistry, Vernadsky Av., 42, 03142 Kiev, Ukraine, Institute of Colloid Chemistry and Chemistry of Water, 42 Vernadsky Av., 03680 Kiev, Ukraine, and Medical University Donetsk, 16 Ilych Avenue, 83003 Donetsk, Ukraine
| |
Collapse
|