1
|
Sakata S, Li J, Yasuno Y, Shinada T, Shin-Ya K, Katsuyama Y, Ohnishi Y. Identification of the Cirratiomycin Biosynthesis Gene Cluster in Streptomyces Cirratus: Elucidation of the Biosynthetic Pathways for 2,3-Diaminobutyric Acid and Hydroxymethylserine. Chemistry 2024; 30:e202400271. [PMID: 38456538 DOI: 10.1002/chem.202400271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/08/2024] [Accepted: 03/08/2024] [Indexed: 03/09/2024]
Abstract
Cirratiomycin, a heptapeptide with antibacterial activity, was isolated and characterized in 1981; however, its biosynthetic pathway has not been elucidated. It contains several interesting nonproteinogenic amino acids, such as (2S,3S)-2,3-diaminobutyric acid ((2S,3S)-DABA) and α-(hydroxymethyl)serine, as building blocks. Here, we report the identification of a cirratiomycin biosynthetic gene cluster in Streptomyces cirratus. Bioinformatic analysis revealed that several Streptomyces viridifaciens and Kitasatospora aureofaciens strains also have this cluster. One S. viridifaciens strain was confirmed to produce cirratiomycin. The biosynthetic gene cluster was shown to be responsible for cirratiomycin biosynthesis in S. cirratus in a gene inactivation experiment using CRISPR-cBEST. Interestingly, this cluster encodes a nonribosomal peptide synthetase (NRPS) composed of 12 proteins, including those with an unusual domain organization: a stand-alone adenylation domain, two stand-alone condensation domains, two type II thioesterases, and two NRPS modules that have no adenylation domain. Using heterologous expression and in vitro analysis of recombinant enzymes, we revealed the biosynthetic pathway of (2S,3S)-DABA: (2S,3S)-DABA is synthesized from l-threonine by four enzymes, CirR, CirS, CirQ, and CirB. In addition, CirH, a glycine/serine hydroxymethyltransferase homolog, was shown to synthesize α-(hydroxymethyl)serine from d-serine in vitro. These findings broaden our knowledge of nonproteinogenic amino acid biosynthesis.
Collapse
Affiliation(s)
- Shunki Sakata
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Jiafeng Li
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Yoko Yasuno
- Graduate School of Science, Osaka City University, Sugimoto, Sumiyoshi, Osaka, 558-8585, Japan
| | - Tetsuro Shinada
- Graduate School of Science, Osaka City University, Sugimoto, Sumiyoshi, Osaka, 558-8585, Japan
| | - Kazuo Shin-Ya
- National Institute of Advanced Industrial Science and Technology (AIST), 2-4-7 Aomi, Koto-ku, Tokyo, 135-0064, Japan
| | - Yohei Katsuyama
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Yasuo Ohnishi
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Bunkyo-ku, Tokyo, 113-8657, Japan
| |
Collapse
|
2
|
Li R, Lichstrahl MS, Zandi TA, Kahlert L, Townsend CA. The dabABC operon is a marker of C4-alkylated monobactam biosynthesis and responsible for ( 2S, 3R)-diaminobutyrate production. iScience 2024; 27:109202. [PMID: 38433893 PMCID: PMC10906522 DOI: 10.1016/j.isci.2024.109202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/12/2024] [Accepted: 02/07/2024] [Indexed: 03/05/2024] Open
Abstract
Non-ribosomal peptide synthetases (NRPSs) assemble metabolites of medicinal and commercial value. Both serine and threonine figure prominently in these processes and separately can be converted to the additional NRPS building blocks 2,3-diaminopropionate (Dap) and 2,3-diaminobutyrate (Dab). Here we bring extensive bioinformatics, in vivo and in vitro experimentation to compose a unified view of the biosynthesis of these widely distributed non-canonical amino acids that both derive by pyridoxal-mediated β-elimination of the activated O-phosphorylated substrates followed by β-addition of an amine donor. By examining monobactam biosynthesis in Pseudomonas and in Burkholderia species where it is silent, we show that (2S,3R)-Dab synthesis depends on an l-threonine kinase (DabA), a β-replacement reaction with l-aspartate (DabB) and an argininosuccinate lyase-like protein (DabC). The growing clinical importance of monobactams to both withstand Ambler Class B metallo-β-lactamases and retain their antibiotic activity make reprogrammed precursor and NRPS synthesis of modified monobactams a feasible and attractive goal.
Collapse
Affiliation(s)
- Rongfeng Li
- Department of Chemistry, The Johns Hopkins University, 3400 N Charles St, Baltimore, MD, USA
| | - Michael S. Lichstrahl
- Department of Chemistry, The Johns Hopkins University, 3400 N Charles St, Baltimore, MD, USA
| | - Trevor A. Zandi
- T. C. Jenkins Department of Biophysics, The Johns Hopkins University, Baltimore, MD, USA
| | - Lukas Kahlert
- Department of Chemistry, The Johns Hopkins University, 3400 N Charles St, Baltimore, MD, USA
| | - Craig A. Townsend
- Department of Chemistry, The Johns Hopkins University, 3400 N Charles St, Baltimore, MD, USA
| |
Collapse
|
3
|
McErlean M, Liu X, Cui Z, Gust B, Van Lanen SG. Identification and characterization of enzymes involved in the biosynthesis of pyrimidine nucleoside antibiotics. Nat Prod Rep 2021; 38:1362-1407. [PMID: 33404015 DOI: 10.1039/d0np00064g] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Covering: up to September 2020 Hundreds of nucleoside-based natural products have been isolated from various microorganisms, several of which have been utilized in agriculture as pesticides and herbicides, in medicine as therapeutics for cancer and infectious disease, and as molecular probes to study biological processes. Natural products consisting of structural modifications of each of the canonical nucleosides have been discovered, ranging from simple modifications such as single-step alkylations or acylations to highly elaborate modifications that dramatically alter the nucleoside scaffold and require multiple enzyme-catalyzed reactions. A vast amount of genomic information has been uncovered the past two decades, which has subsequently allowed the first opportunity to interrogate the chemically intriguing enzymatic transformations for the latter type of modifications. This review highlights (i) the discovery and potential applications of structurally complex pyrimidine nucleoside antibiotics for which genetic information is known, (ii) the established reactions that convert the canonical pyrimidine into a new nucleoside scaffold, and (iii) the important tailoring reactions that impart further structural complexity to these molecules.
Collapse
Affiliation(s)
- M McErlean
- Department of Pharmaceutical Science, College of Pharmacy, University of Kentucky, USA.
| | - X Liu
- Department of Pharmaceutical Science, College of Pharmacy, University of Kentucky, USA.
| | - Z Cui
- Department of Pharmaceutical Science, College of Pharmacy, University of Kentucky, USA.
| | - B Gust
- Pharmaceutical Institute, Department of Pharmaceutical Biology, University of Tübingen, Germany
| | - S G Van Lanen
- Department of Pharmaceutical Science, College of Pharmacy, University of Kentucky, USA.
| |
Collapse
|
4
|
Mechanism of action of nucleoside antibacterial natural product antibiotics. J Antibiot (Tokyo) 2019; 72:865-876. [DOI: 10.1038/s41429-019-0227-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 07/02/2019] [Accepted: 07/31/2019] [Indexed: 01/09/2023]
|
5
|
Luo RS, Cheng G, Wei Y, Deng R, Huang M, Liao J. Enantioselective Iridium-Catalyzed Ring Opening of Low-Activity Azabenzonorbornadienes with Amines. Organometallics 2018. [DOI: 10.1021/acs.organomet.8b00239] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ren shi Luo
- School of Pharmaceutical Sciences, Gannan Medical University, 1 Yi Xue Yuan Road, Ganzhou, Jiangxi 341000, People’s Republic of China
| | - Gengjinsheng Cheng
- School of Pharmaceutical Sciences, Gannan Medical University, 1 Yi Xue Yuan Road, Ganzhou, Jiangxi 341000, People’s Republic of China
| | - Yifei Wei
- School of Pharmaceutical Sciences, Gannan Medical University, 1 Yi Xue Yuan Road, Ganzhou, Jiangxi 341000, People’s Republic of China
| | - Rinuan Deng
- School of Pharmaceutical Sciences, Gannan Medical University, 1 Yi Xue Yuan Road, Ganzhou, Jiangxi 341000, People’s Republic of China
| | - Miao Huang
- School of Pharmaceutical Sciences, Gannan Medical University, 1 Yi Xue Yuan Road, Ganzhou, Jiangxi 341000, People’s Republic of China
| | - Jianhua Liao
- School of Pharmaceutical Sciences, Gannan Medical University, 1 Yi Xue Yuan Road, Ganzhou, Jiangxi 341000, People’s Republic of China
| |
Collapse
|
6
|
Nunn PB, Codd GA. Metabolic solutions to the biosynthesis of some diaminomonocarboxylic acids in nature: Formation in cyanobacteria of the neurotoxins 3-N-methyl-2,3-diaminopropanoic acid (BMAA) and 2,4-diaminobutanoic acid (2,4-DAB). PHYTOCHEMISTRY 2017; 144:253-270. [PMID: 29059579 DOI: 10.1016/j.phytochem.2017.09.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2017] [Revised: 09/18/2017] [Accepted: 09/20/2017] [Indexed: 06/07/2023]
Abstract
The non-encoded diaminomonocarboxylic acids, 3-N-methyl-2,3-diaminopropanoic acid (syn: α-amino-β-methylaminopropionic acid, MeDAP; β-N-methylaminoalanine, BMAA) and 2,4-diaminobutanoic acid (2,4-DAB), are distributed widely in cyanobacterial species in free and bound forms. Both amino acids are neurotoxic in whole animal and cell-based bioassays. The biosynthetic pathway to 2,4-DAB is well documented in bacteria and in one higher plant species, but has not been confirmed in cyanobacteria. The biosynthetic pathway to BMAA is unknown. This review considers possible metabolic routes, by analogy with reactions used in other species, by which these amino acids might be biosynthesised by cyanobacteria, which are a widespread potential environmental source of these neurotoxins. Where possible, the gene expression that might be implicated in these biosyntheses is discussed.
Collapse
Affiliation(s)
- Peter B Nunn
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, PO1 2DT, UK.
| | - Geoffrey A Codd
- School of Life Sciences, University of Dundee, DD1 5EH, UK; School of Natural Sciences, University of Stirling, FK9 4LA, UK.
| |
Collapse
|
7
|
Chen R, Zhang Q, Tan B, Zheng L, Li H, Zhu Y, Zhang C. Genome Mining and Activation of a Silent PKS/NRPS Gene Cluster Direct the Production of Totopotensamides. Org Lett 2017; 19:5697-5700. [PMID: 29019409 DOI: 10.1021/acs.orglett.7b02878] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A 92 kb silent hybrid polyketide and nonribosomal peptide gene cluster in marine-derived Streptomyces pactum SCSIO 02999 was activated by genetically manipulating the regulatory genes, including the knockout of two negative regulators (totR5 and totR3) and overexpression of a positive regulator totR1, to direct the production of the known totopotensamides (TPMs) A (1) and B (3) and a novel sulfonate-containing analogue TPM C (2). Inactivation of totG led to accumulation of TPM B (3) lacking the glycosyl moiety, which indicated TotG as a dedicated glycosyltransferase in the biosynthesis of 1 and 2.
Collapse
Affiliation(s)
- Ruidong Chen
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences , 164 West Xingang Road, Guangzhou 510301, China
| | - Qingbo Zhang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences , 164 West Xingang Road, Guangzhou 510301, China
| | - Bin Tan
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences , 164 West Xingang Road, Guangzhou 510301, China
| | - Liujuan Zheng
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences , 164 West Xingang Road, Guangzhou 510301, China
| | - Huixian Li
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences , 164 West Xingang Road, Guangzhou 510301, China
| | - Yiguang Zhu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences , 164 West Xingang Road, Guangzhou 510301, China
| | - Changsheng Zhang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences , 164 West Xingang Road, Guangzhou 510301, China
| |
Collapse
|
8
|
Singjunla Y, Baudoux J, Rouden J. Straightforward and Stereoselective Synthesis of α,β-Diamino Acid Derivatives by Means of an Organocatalyzed Decarboxylative Mannich Reaction. European J Org Chem 2017. [DOI: 10.1002/ejoc.201700468] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Yuttapong Singjunla
- Normandie Univ.; LCMT, ENSICAEN, UNICAEN, CNRS; 6 Boulevard du Maréchal Juin 14000 Caen France
| | - Jérôme Baudoux
- Normandie Univ.; LCMT, ENSICAEN, UNICAEN, CNRS; 6 Boulevard du Maréchal Juin 14000 Caen France
| | - Jacques Rouden
- Normandie Univ.; LCMT, ENSICAEN, UNICAEN, CNRS; 6 Boulevard du Maréchal Juin 14000 Caen France
| |
Collapse
|
9
|
Bugg TDH. Nucleoside Natural Product Antibiotics Targetting Microbial Cell Wall Biosynthesis. ACTA ACUST UNITED AC 2017. [DOI: 10.1007/7355_2017_4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
|
10
|
Zeng C, Yang F, Chen J, Wang J, Fan B. Iridium/copper-cocatalyzed asymmetric ring opening reaction of azabenzonorbornadienes with amines. Org Biomol Chem 2015; 13:8425-8. [PMID: 26177882 DOI: 10.1039/c5ob01243k] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A combination of iridium/copper associated with (R)-Difluorphos catalyst for the asymmetric ring opening reaction of azabenzonorbornadienes with amines was developed, which afforded chiral trans-vicinal diamines in 80-97% yields with 93-95% enantioselectivities.
Collapse
Affiliation(s)
- Chaoyuan Zeng
- YMU-HKBU Joint Laboratory of Traditional Natural Medicine, Yunnan Minzu University, Kunming 650500, China.
| | | | | | | | | |
Collapse
|
11
|
Fernández J, Marín L, Alvarez-Alonso R, Redondo S, Carvajal J, Villamizar G, Villar CJ, Lombó F. Biosynthetic modularity rules in the bisintercalator family of antitumor compounds. Mar Drugs 2014; 12:2668-99. [PMID: 24821625 PMCID: PMC4052310 DOI: 10.3390/md12052668] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Revised: 04/09/2014] [Accepted: 04/11/2014] [Indexed: 12/05/2022] Open
Abstract
Diverse actinomycetes produce a family of structurally and biosynthetically related non-ribosomal peptide compounds which belong to the chromodepsipeptide family. These compounds act as bisintercalators into the DNA helix. They give rise to antitumor, antiparasitic, antibacterial and antiviral bioactivities. These compounds show a high degree of conserved modularity (chromophores, number and type of amino acids). This modularity and their high sequence similarities at the genetic level imply a common biosynthetic origin for these pathways. Here, we describe insights about rules governing this modular biosynthesis, taking advantage of the fact that nowadays five of these gene clusters have been made public (thiocoraline, triostin, SW-163 and echinomycin/quinomycin). This modularity has potential application for designing and producing novel genetic engineered derivatives, as well as for developing new chemical synthesis strategies. These would facilitate their clinical development.
Collapse
Affiliation(s)
- Javier Fernández
- Research Group BITTEN, Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Universidad de Oviedo, C/Julián Clavería 7, Facultad de Medicina, Oviedo 33006, Spain.
| | - Laura Marín
- Research Group BITTEN, Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Universidad de Oviedo, C/Julián Clavería 7, Facultad de Medicina, Oviedo 33006, Spain.
| | - Raquel Alvarez-Alonso
- Research Group BITTEN, Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Universidad de Oviedo, C/Julián Clavería 7, Facultad de Medicina, Oviedo 33006, Spain.
| | - Saúl Redondo
- Research Group BITTEN, Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Universidad de Oviedo, C/Julián Clavería 7, Facultad de Medicina, Oviedo 33006, Spain.
| | - Juan Carvajal
- Research Group BITTEN, Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Universidad de Oviedo, C/Julián Clavería 7, Facultad de Medicina, Oviedo 33006, Spain.
| | - Germán Villamizar
- Research Group BITTEN, Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Universidad de Oviedo, C/Julián Clavería 7, Facultad de Medicina, Oviedo 33006, Spain.
| | - Claudio J Villar
- Research Group BITTEN, Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Universidad de Oviedo, C/Julián Clavería 7, Facultad de Medicina, Oviedo 33006, Spain.
| | - Felipe Lombó
- Research Group BITTEN, Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Universidad de Oviedo, C/Julián Clavería 7, Facultad de Medicina, Oviedo 33006, Spain.
| |
Collapse
|
12
|
Kudo F, Miyanaga A, Eguchi T. Biosynthesis of natural products containing β-amino acids. Nat Prod Rep 2014; 31:1056-73. [DOI: 10.1039/c4np00007b] [Citation(s) in RCA: 155] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
β-Amino acids are unique components involved in a wide variety of natural products such as anticancer agents taxol, bleomycin, cytotoxic microcystin, enediyne compound C-1027 chromophore, nucleoside antibiotic blasticidin S, and macrolactam antibiotic vicenistatin. The biosynthesis and incorporation mechanisms are reviewed.
Collapse
Affiliation(s)
- Fumitaka Kudo
- Department of Chemistry
- Tokyo Institute of Technology
- Tokyo 152-8551, Japan
| | - Akimasa Miyanaga
- Department of Chemistry
- Tokyo Institute of Technology
- Tokyo 152-8551, Japan
| | - Tadashi Eguchi
- Department of Chemistry and Materials Science
- Tokyo Institute of Technology
- Tokyo 152-8551, Japan
| |
Collapse
|
13
|
Beasley FC, Cheung J, Heinrichs DE. Mutation of L-2,3-diaminopropionic acid synthase genes blocks staphyloferrin B synthesis in Staphylococcus aureus. BMC Microbiol 2011; 11:199. [PMID: 21906287 PMCID: PMC3179956 DOI: 10.1186/1471-2180-11-199] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2011] [Accepted: 09/09/2011] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Staphylococcus aureus synthesizes two siderophores, staphyloferrin A and staphyloferrin B, that promote iron-restricted growth. Previous work on the biosynthesis of staphyloferrin B has focused on the role of the synthetase enzymes, encoded from within the sbnA-I operon, which build the siderophore from the precursor molecules citrate, alpha-ketoglutarate and L-2,3-diaminopropionic acid. However, no information yet exists on several other enzymes, expressed from the biosynthetic cluster, that are thought to be involved in the synthesis of the precursors (or synthetase substrates) themselves. RESULTS Using mutants carrying insertions in sbnA and sbnB, we show that these two genes are essential for the synthesis of staphyloferrin B, and that supplementation of the growth medium with L-2,3-diaminopropionic acid can bypass the block in staphyloferrin B synthesis displayed by the mutants. Several mechanisms are proposed for how the enzymes SbnA, with similarity to cysteine synthase enzymes, and SbnB, with similarity to amino acid dehydrogenases and ornithine cyclodeaminases, function together in the synthesis of this unusual nonproteinogenic amino acid L-2,3-diaminopropionic acid. CONCLUSIONS Mutation of either sbnA or sbnB result in abrogation of synthesis of staphyloferrin B, a siderophore that contributes to iron-restricted growth of S. aureus. The loss of staphyloferrin B synthesis is due to an inability to synthesize the unusual amino acid L-2,3-diaminopropionic acid which is an important, iron-liganding component of the siderophore structure. It is proposed that SbnA and SbnB function together as an L-Dap synthase in the S. aureus cell.
Collapse
Affiliation(s)
- Federico C Beasley
- Department of Microbiology & Immunology, University of Western Ontario, 1151 Richmond Street, London, Ontario, N6A 5C1, Canada
| | | | | |
Collapse
|
14
|
Rackham EJ, Grüschow S, Goss RJM. Revealing the first uridyl peptide antibiotic biosynthetic gene cluster and probing pacidamycin biosynthesis. Bioeng Bugs 2011; 2:218-21. [PMID: 21829097 DOI: 10.4161/bbug.2.4.15877] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
There is an urgent need for new antibiotics with resistance continuing to emerge toward existing classes. The pacidamycin antibiotics possess a novel scaffold and exhibit unexploited bioactivity rendering them attractive research targets. We recently reported the first identification of a biosynthetic cluster encoding uridyl peptide antibiotic assembly and the engineering of pacidamycin biosynthesis into a heterologous host. We report here our methods toward identifying the biosynthetic cluster. Our initial experiments employed conventional methods of probing a cosmid library using PCR and Southern blotting, however it became necessary to adopt a state-of-the-art genome scanning and in silico hybridization approach to pin point the cluster. Here we describe our "real" and "virtual" probing methods and contrast the benefits and pitfalls of each approach.
Collapse
Affiliation(s)
- Emma J Rackham
- School of Chemistry, University of East Anglia, Norwich, UK
| | | | | |
Collapse
|
15
|
Wang J, Ji X, Shi J, Sun H, Jiang H, Liu H. Diastereoselective Michael reaction of chiral nickel(II) glycinate with nitroalkenes for asymmetric synthesis of β-substituted α,γ-diaminobutyric acid derivatives in water. Amino Acids 2011; 42:1685-94. [PMID: 21384130 DOI: 10.1007/s00726-011-0870-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2010] [Accepted: 02/22/2011] [Indexed: 10/18/2022]
|
16
|
Viso A, Fernández de la Pradilla R, Tortosa M, García A, Flores A. Update 1 of: α,β-Diamino Acids: Biological Significance and Synthetic Approaches. Chem Rev 2011; 111:PR1-42. [DOI: 10.1021/cr100127y] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Alma Viso
- Instituto de Química Orgánica, CSIC, Juan de la Cierva 3, E-28006 Madrid, Spain
| | | | - Mariola Tortosa
- Instituto de Química Orgánica, CSIC, Juan de la Cierva 3, E-28006 Madrid, Spain
| | - Ana García
- Instituto de Química Orgánica, CSIC, Juan de la Cierva 3, E-28006 Madrid, Spain
| | - Aida Flores
- Instituto de Química Orgánica, CSIC, Juan de la Cierva 3, E-28006 Madrid, Spain
| |
Collapse
|
17
|
Kaysser L, Tang X, Wemakor E, Sedding K, Hennig S, Siebenberg S, Gust B. Identification of a Napsamycin Biosynthesis Gene Cluster by Genome Mining. Chembiochem 2010; 12:477-87. [PMID: 21290549 DOI: 10.1002/cbic.201000460] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2010] [Indexed: 11/11/2022]
Affiliation(s)
- Leonard Kaysser
- Eberhard-Karls-Universität Tübingen, Pharmazeutische Biologie, Auf der Morgenstelle 8, 72076 Tübingen, Germany
| | | | | | | | | | | | | |
Collapse
|
18
|
Rackham EJ, Grüschow S, Ragab AE, Dickens S, Goss RJM. Pacidamycin biosynthesis: identification and heterologous expression of the first uridyl peptide antibiotic gene cluster. Chembiochem 2010; 11:1700-9. [PMID: 20665770 DOI: 10.1002/cbic.201000200] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The pacidamycins are antimicrobial nucleoside antibiotics produced by Streptomyces coeruleorubidus that inhibit translocase I, an essential bacterial enzyme yet to be clinically targeted. The novel pacidamycin scaffold is composed of a pseudopeptide backbone linked by a unique exocyclic enamide to an atypical 3'-deoxyuridine nucleoside. In addition, the peptidyl chain undergoes a double inversion caused by the incorporation of a diamino acid residue and a rare internal ureido moiety. The pacidamycin gene cluster was identified and sequenced, thereby providing the first example of a biosynthetic cluster for a member of the uridyl peptide family of antibiotics. Analysis of the 22 ORFs provided an insight into the biosynthesis of the unique structural features of the pacidamycins. Heterologous expression in Streptomyces lividans resulted in the production of pacidamycin D and the newly identified pacidamycin S, thus confirming the identity of the pacidamycin biosynthetic gene cluster. Identification of this cluster will enable the generation of new uridyl peptide antibiotics through combinatorial biosynthesis. The concise cluster will provide a useful model system through which to gain a fundamental understanding of the way in which nonribosomal peptide synthetases interact.
Collapse
Affiliation(s)
- Emma J Rackham
- School of Chemistry, University of East Anglia, Earlham Road, Norwich NR4 7TJ, UK
| | | | | | | | | |
Collapse
|
19
|
Identification of the biosynthetic gene cluster for the pacidamycin group of peptidyl nucleoside antibiotics. Proc Natl Acad Sci U S A 2010; 107:16828-33. [PMID: 20826445 DOI: 10.1073/pnas.1011557107] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Pacidamycins are a family of uridyl tetra/pentapeptide antibiotics that act on the translocase MraY to block bacterial cell wall assembly. To elucidate the biosynthetic logic of pacidamcyins, a putative gene cluster was identified by 454 shotgun genome sequencing of the producer Streptomyces coeruleorubidus NRRL 18370. The 31-kb gene cluster encodes 22 proteins (PacA-V), including highly dissociated nonribosomal peptide synthetase (NRPS) modules and a variety of tailoring enzymes. Gene deletions confirmed that two NRPSs, PacP and PacO, are required for the biosynthesis of pacidamycins. Heterologous expression and in vitro assays of PacL, PacO, and PacP established reversible formation of m-Tyr-AMP, l-Ala-AMP, and diaminopropionyl-AMP, respectively, consistent with the amino acids found in pacidamycin scaffolds. The unusual Ala(4)-Phe(5) dipeptidyl ureido linkage was formed during in vitro assays containing purified PacL, PacJ, PacN, and PacO. Both the genetic and enzymatic studies validate identification of the biosynthetic genes for this subclass of uridyl peptide antibiotics and provide the basis for future mechanistic study of their biosynthesis.
Collapse
|
20
|
Winn M, Goss RJM, Kimura KI, Bugg TDH. Antimicrobial nucleoside antibiotics targeting cell wall assembly: recent advances in structure-function studies and nucleoside biosynthesis. Nat Prod Rep 2009; 27:279-304. [PMID: 20111805 DOI: 10.1039/b816215h] [Citation(s) in RCA: 221] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The quest for new antibiotics, especially those with activity against Gram-negative bacteria, is urgent; however, very few new antibiotics have been marketed in the last 40 years, with this limited number falling into only four new structural classes. Several nucleoside natural product antibiotics target bacterial translocase MraY, involved in the lipid-linked cycle of peptidoglycan biosynthesis, and fungal chitin synthase. Biosynthetic studies on the nikkomycin, caprazamycin and pacidamycin/mureidomycin families are also reviewed.
Collapse
Affiliation(s)
- Michael Winn
- School of Chemistry, University of East Anglia, Norwich, NR4 7TJ, UK
| | | | | | | |
Collapse
|