1
|
Lee LCC, Lo KKW. Shining New Light on Biological Systems: Luminescent Transition Metal Complexes for Bioimaging and Biosensing Applications. Chem Rev 2024; 124:8825-9014. [PMID: 39052606 PMCID: PMC11328004 DOI: 10.1021/acs.chemrev.3c00629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Luminescence imaging is a powerful and versatile technique for investigating cell physiology and pathology in living systems, making significant contributions to life science research and clinical diagnosis. In recent years, luminescent transition metal complexes have gained significant attention for diagnostic and therapeutic applications due to their unique photophysical and photochemical properties. In this Review, we provide a comprehensive overview of the recent development of luminescent transition metal complexes for bioimaging and biosensing applications, with a focus on transition metal centers with a d6, d8, and d10 electronic configuration. We elucidate the structure-property relationships of luminescent transition metal complexes, exploring how their structural characteristics can be manipulated to control their biological behavior such as cellular uptake, localization, biocompatibility, pharmacokinetics, and biodistribution. Furthermore, we introduce the various design strategies that leverage the interesting photophysical properties of luminescent transition metal complexes for a wide variety of biological applications, including autofluorescence-free imaging, multimodal imaging, organelle imaging, biological sensing, microenvironment monitoring, bioorthogonal labeling, bacterial imaging, and cell viability assessment. Finally, we provide insights into the challenges and perspectives of luminescent transition metal complexes for bioimaging and biosensing applications, as well as their use in disease diagnosis and treatment evaluation.
Collapse
Affiliation(s)
- Lawrence Cho-Cheung Lee
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, P. R. China
- Laboratory for Synthetic Chemistry and Chemical Biology Limited, Units 1503-1511, 15/F, Building 17W, Hong Kong Science Park, New Territories, Hong Kong, P. R. China
| | - Kenneth Kam-Wing Lo
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, P. R. China
- State Key Laboratory of Terahertz and Millimeter Waves, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, P. R. China
| |
Collapse
|
2
|
Gao Y, Zhang W, Song B, Meng X, Yuan J. A novel iridium(III) complex-based ratiometric luminescence probe for monitoring hydrogen sulfide in living cells and zebrafish. Talanta 2024; 274:125982. [PMID: 38554483 DOI: 10.1016/j.talanta.2024.125982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/12/2024] [Accepted: 03/20/2024] [Indexed: 04/01/2024]
Abstract
Hydrogen sulfide exhibits crucial functions in many biological and physiological processes. The abnormal levels of H2S have been revealed to be associated with numerous human diseases. The majority of existing fluorescent probes toward H2S may still need to be improved in terms of single output signal, water solubility, biotoxicity and photostability. The construction of a ratiometric fluorescent probe based on metal complex is one effective strategy for avoiding the mentioned problems for precisely detecting H2S. Herein, we report an iridium(III) complex-based ratiometric luminescence probe (Ir-PNBD), which is designed by coupling the 7-nitro-2,1,3-benzoxadiazoles (NBD) to one of the bipyridine ligands of Ir (III) complex luminophore through a piperazition moiety. Ir-PNBD owns high selectivity and sensitivity toward H2S, and an excellent ability to target mitochondria. Moreover, Ir-PNBD was further successfully utilized to visualize exogenous and endogenous H2S in HeLa cells and zebrafish. Our work offers new opportunities to gain deeper insights into the construction of transition metal complex-based ratiometric luminescent probes and expands their applications in biomedical imaging and disease diagnosis.
Collapse
Affiliation(s)
- Yetong Gao
- School of Chemistry, Dalian University of Technology, Dalian, 116024, China
| | - Wenzhu Zhang
- School of Chemistry, Dalian University of Technology, Dalian, 116024, China.
| | - Bo Song
- School of Chemistry, Dalian University of Technology, Dalian, 116024, China
| | - Xiangyu Meng
- School of Chemistry, Dalian University of Technology, Dalian, 116024, China
| | - Jingli Yuan
- College of Life Science, Dalian Minzu University, 18 Liaohe West Road, Jinzhou New District, Dalian, 116600, China.
| |
Collapse
|
3
|
Queffélec C, Pati PB, Pellegrin Y. Fifty Shades of Phenanthroline: Synthesis Strategies to Functionalize 1,10-Phenanthroline in All Positions. Chem Rev 2024; 124:6700-6902. [PMID: 38747613 DOI: 10.1021/acs.chemrev.3c00543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
1,10-Phenanthroline (phen) is one of the most popular ligands ever used in coordination chemistry due to its strong affinity for a wide range of metals with various oxidation states. Its polyaromatic structure provides robustness and rigidity, leading to intriguing features in numerous fields (luminescent coordination scaffolds, catalysis, supramolecular chemistry, sensors, theranostics, etc.). Importantly, phen offers eight distinct positions for functional groups to be attached, showcasing remarkable versatility for such a simple ligand. As a result, phen has become a landmark molecule for coordination chemists, serving as a must-use ligand and a versatile platform for designing polyfunctional arrays. The extensive use of substituted phenanthroline ligands with different metal ions has resulted in a diverse array of complexes tailored for numerous applications. For instance, these complexes have been utilized as sensitizers in dye-sensitized solar cells, as luminescent probes modified with antibodies for biomaterials, and in the creation of elegant supramolecular architectures like rotaxanes and catenanes, exemplified by Sauvage's Nobel Prize-winning work in 2016. In summary, phen has found applications in almost every facet of chemistry. An intriguing aspect of phen is the specific reactivity of each pair of carbon atoms ([2,9], [3,8], [4,7], and [5,6]), enabling the functionalization of each pair with different groups and leading to polyfunctional arrays. Furthermore, it is possible to differentiate each position in these pairs, resulting in non-symmetrical systems with tremendous versatility. In this Review, the authors aim to compile and categorize existing synthetic strategies for the stepwise polyfunctionalization of phen in various positions. This comprehensive toolbox will aid coordination chemists in designing virtually any polyfunctional ligand. The survey will encompass seminal work from the 1950s to the present day. The scope of the Review will be limited to 1,10-phenanthroline, excluding ligands with more intracyclic heteroatoms or fused aromatic cycles. Overall, the primary goal of this Review is to highlight both old and recent synthetic strategies that find applicability in the mentioned applications. By doing so, the authors hope to establish a first reference for phenanthroline synthesis, covering all possible positions on the backbone, and hope to inspire all concerned chemists to devise new strategies that have not yet been explored.
Collapse
Affiliation(s)
| | | | - Yann Pellegrin
- Nantes Université, CEISAM UMR 6230, F-44000 Nantes, France
| |
Collapse
|
4
|
Huang L, Lee LCC, Shum J, Xu GX, Lo KKW. Construction of photofunctional peptide conjugates through selective modification of N-terminal cysteine with cyclometallated iridium(III) 2-formylphenylboronic acid complexes for organelle-specific imaging, enzyme activity sensing and photodynamic therapy. Chem Commun (Camb) 2024; 60:6186-6189. [PMID: 38805236 DOI: 10.1039/d4cc01824a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Luminescent cyclometallated iridium(III) complexes bearing a 2-formylphenylboronic acid moiety were designed; one of the complexes was utilised to modify peptides containing an N-terminal cysteine to afford luminescent conjugates with selective organelle-targeting or furin-responsive properties.
Collapse
Affiliation(s)
- Lili Huang
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, P. R. China.
| | - Lawrence Cho-Cheung Lee
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, P. R. China.
- Laboratory for Synthetic Chemistry and Chemical Biology Limited, Units 1503-1511, 15/F, Building 17 W, Hong Kong Science Park, New Territories, Hong Kong, P. R. China
| | - Justin Shum
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, P. R. China.
| | - Guang-Xi Xu
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, P. R. China.
| | - Kenneth Kam-Wing Lo
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, P. R. China.
- State Key Laboratory of Terahertz and Millimetre Waves, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, P. R. China
| |
Collapse
|
5
|
Sun X, Luo S, Zhang L, Miao Y, Yan G. Photodynamic antibacterial activity of oxidase-like nanozyme based on long-lived room-temperature phosphorescent carbon dots. Food Chem 2024; 434:137541. [PMID: 37757701 DOI: 10.1016/j.foodchem.2023.137541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 09/16/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023]
Abstract
In this study, a novel long-lived room-temperature phosphorescent (RTP) carbon dots (P-CDs) with the properties of ultraviolet/visible (UV/Vis) light photoresponsive oxidase-like nanozyme were synthesized from diethylenetriaminepentaacetic acid and through a one-step hydrothermal method. P-CDs were used as a light-driven oxidative-like enzyme for antimicrobial studies. The results showed that under UV/Vis light irradiation, P-CDs could efficiently convert O2 into 1O2, and the strong oxidizing property of 1O2 greatly enhanced the growth inhibition of P-CDs on Gram-positive Staphylococcus aureus (S. aureus) and Gram-negative Escherichia coli (E. coli). Meanwhile, P-CDs exhibited good photodynamic antifungal properties against Botrytis cinerea (B. cinerea). Then the P-CDs were made into P-CDs/PVA films, which effectively prolonged the preservation period of fruits under photodynamic antibacterial action. The good biocompatibility and efficient photosensitive oxygen activation can make P-CDs a more practically useful oxidase-like nanozyme.
Collapse
Affiliation(s)
- Xiaojie Sun
- School of Chemistry and Materials Science, Shanxi Normal University, Taiyuan 030006, China
| | - Shiqing Luo
- School of Chemistry and Materials Science, Shanxi Normal University, Taiyuan 030006, China
| | - Lifang Zhang
- School of Chemistry and Materials Science, Shanxi Normal University, Taiyuan 030006, China; Research Institute of Materials Science of Shanxi Normal University & Collaborative Innovation Center for Shanxi Advanced Permanent Magnetic Materials and Technology, Taiyuan 030006, China.
| | - Yanming Miao
- School of Life Science, Shanxi Normal University, Taiyuan 030006, China.
| | - Guiqin Yan
- School of Life Science, Shanxi Normal University, Taiyuan 030006, China
| |
Collapse
|
6
|
Zanetti C, Li L, Gaspar RDL, Santovito E, Elisseeva S, Collins SG, Maguire AR, Papkovsky DB. Susceptibility of the Different Oxygen-Sensing Probes to Interferences in Respirometric Bacterial Assays with Complex Media. SENSORS (BASEL, SWITZERLAND) 2024; 24:267. [PMID: 38203132 PMCID: PMC10781214 DOI: 10.3390/s24010267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/20/2023] [Accepted: 12/30/2023] [Indexed: 01/12/2024]
Abstract
Respirometric microbial assays are gaining popularity, but their uptake is limited by the availability of optimal O2 sensing materials and the challenge of validating assays with complex real samples. We conducted a comparative evaluation of four different O2-sensing probes based on Pt-porphyrin phosphors in respirometric bacterial assays performed on standard time-resolved fluorescence reader. The macromolecular MitoXpress, nanoparticle NanO2 and small molecule PtGlc4 and PtPEG4 probes were assessed with E. coli cells in five growth media: nutrient broth (NB), McConkey (MC), Rapid Coliform ChromoSelect (RCC), M-Lauryl lauryl sulfate (MLS), and Minerals-Modified Glutamate (MMG) media. Respiration profiles of the cells were recorded and analyzed, along with densitometry profiles and quenching studies of individual media components. This revealed several limiting factors and interferences impacting assay performance, which include probe quenched lifetime, instrument temporal resolution, inner filter effects (mainly by indicator dyes), probe binding to lipophilic components, and dynamic and static quenching by media components. The study allowed for the ranking of the probes based on their ruggedness, resilience to interferences and overall performance in respirometric bacterial assays. The 'shielded' probe NanO2 outperformed the established MitoXpress probe and the small molecule probes PtGlc4 and PtPEG4.
Collapse
Affiliation(s)
- Chiara Zanetti
- School of Biochemistry and Cell Biology, University College Cork, Pharmacy Building, College Road, T12 K8AF Cork, Ireland; (C.Z.); (L.L.)
| | - Liang Li
- School of Biochemistry and Cell Biology, University College Cork, Pharmacy Building, College Road, T12 K8AF Cork, Ireland; (C.Z.); (L.L.)
| | | | - Elisa Santovito
- National Research Council of Italy, Institute of Sciences of Food Production, Via Amendola 122/O, 70126 Bari, Italy;
| | - Sophia Elisseeva
- School of Biochemistry and Cell Biology, University College Cork, Pharmacy Building, College Road, T12 K8AF Cork, Ireland; (C.Z.); (L.L.)
| | - Stuart G. Collins
- School of Chemistry, University College Cork, Pharmacy Building, College Road, T12 YN60 Cork, Ireland; (S.G.C.); (A.R.M.)
| | - Anita R. Maguire
- School of Chemistry, University College Cork, Pharmacy Building, College Road, T12 YN60 Cork, Ireland; (S.G.C.); (A.R.M.)
| | - Dmitri B. Papkovsky
- School of Biochemistry and Cell Biology, University College Cork, Pharmacy Building, College Road, T12 K8AF Cork, Ireland; (C.Z.); (L.L.)
| |
Collapse
|
7
|
Gottwald E, Grün C, Nies C, Liebsch G. Physiological oxygen measurements in vitro-Schrödinger's cat in 3D cell biology. Front Bioeng Biotechnol 2023; 11:1218957. [PMID: 37885450 PMCID: PMC10598749 DOI: 10.3389/fbioe.2023.1218957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 09/29/2023] [Indexed: 10/28/2023] Open
Abstract
After the development of 3D cell culture methods in the middle of the last century and the plethora of data generated with this culture configuration up to date, it could be shown that a three-dimensional arrangement of cells in most of the cases leads to a more physiological behavior of the generated tissue. However, a major determinant for an organotypic function, namely, the dissolved oxygen concentration in the used in vitro-system, has been neglected in most of the studies. This is due to the fact that the oxygen measurement in the beginning was simply not feasible and, if so, disturbed the measurement and/or the in vitro-system itself. This is especially true for the meanwhile more widespread use of 3D culture systems. Therefore, the tissues analyzed by these techniques can be considered as the Schrödinger's cat in 3D cell biology. In this perspective paper we will outline how the measurement and, moreover, the regulation of the dissolved oxygen concentration in vitro-3D culture systems could be established at all and how it may be possible to determine the oxygen concentration in organoid cultures and the respiratory capacity via mito stress tests, especially in spheroids in the size range of a few hundred micrometers, under physiological culture conditions, without disturbances or stress induction in the system and in a high-throughput fashion. By this, such systems will help to more efficiently translate tissue engineering approaches into new in vitro-platforms for fundamental and applied research as well as preclinical safety testing and clinical applications.
Collapse
Affiliation(s)
- Eric Gottwald
- Institute of Functional Interfaces, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Christoph Grün
- Institute of Functional Interfaces, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Cordula Nies
- Institute of Functional Interfaces, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | | |
Collapse
|
8
|
Soundaram Jeevarathinam A, Saleem W, Martin N, Hu C, McShane MJ. NIR Luminescent Oxygen-Sensing Nanoparticles for Continuous Glucose and Lactate Monitoring. BIOSENSORS 2023; 13:bios13010141. [PMID: 36671976 PMCID: PMC9855917 DOI: 10.3390/bios13010141] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 01/06/2023] [Accepted: 01/09/2023] [Indexed: 05/09/2023]
Abstract
A highly sensitive, biocompatible, and scalable phosphorescent oxygen sensor formulation is designed and evaluated for use in continuous metabolite sensors for biological systems. Ethyl cellulose (EC) and polystyrene (PS) nanoparticles (NPs) stabilized with Pluronic F68 (PF 68), Polydimethylsiloxane-b-polyethyleneglycol methyl ether (PDMS-PEG), sodium dodecylsulfate (SDS), and cetyltimethylammonium bromide (CTAB) were prepared and studied. The resulting NPs with eight different surfactant−polymer matrix combinations were evaluated for physical properties, oxygen sensitivity, effect of changes in dispersion matrix, and cytotoxicity. The EC NPs exhibited a narrower size distribution and 40% higher sensitivity than PS, with Stern−Volmer constants (Ksv) 0.041−0.052 µM−1 for EC, compared to 0.029−0.034 µM−1 for PS. Notably, ethyl cellulose NPs protected with PF68 were selected as the preferred formulation, as they were not cytotoxic towards 3T3 fibroblasts and exhibited a wide phosphorescence lifetime response of >211.1 µs over 258−0 µM and ~100 µs over 2.58−0 µM oxygen, with a limit of detection (LoD) of oxygen in aqueous phase of 0.0016 µM. The EC-PF68 NPs were then efficiently encapsulated in alginate microparticles along with glucose oxidase (GOx) and catalase (CAT) to form phosphorescent nanoparticles-in-microparticle (NIMs) glucose sensing microdomains. The fabricated glucose sensors showed a sensitivity of 0.40 µs dL mg−1 with a dynamic phosphorescence lifetime range of 46.6−197.1 µs over 0−150 mg dL−1 glucose, with a glucose LoD of 18.3 mg dL−1 and maximum distinguishable concentration of 111.1 mg dL−1. Similarly, lactate sensors were prepared with NIMs microdomains containing lactate oxidase (LOx) and found to have a detection range of 0−14 mg dL−1 with LoD of 1.8 mg dL−1 and maximum concentration of 13.7 mg dL−1 with lactate sensitivity of 10.7 µs dL mg−1. Owing to its versatility, the proposed NIMs-based design can be extended to a wide range of metabolites and different oxygen-sensing dyes with different excitation wavelengths based on specific application.
Collapse
Affiliation(s)
| | - Waqas Saleem
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Nya Martin
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Connie Hu
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Michael J. McShane
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, USA
- Materials Science and Engineering, Texas A&M University, College Station, TX 77845, USA
- Correspondence: (M.J.M.)
| |
Collapse
|
9
|
Metal Peptide Conjugates in Cell and Tissue Imaging and Biosensing. Top Curr Chem (Cham) 2022; 380:30. [PMID: 35701677 PMCID: PMC9197911 DOI: 10.1007/s41061-022-00384-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 05/10/2022] [Indexed: 11/05/2022]
Abstract
Metal complex luminophores have seen dramatic expansion in application as imaging probes over the past decade. This has been enabled by growing understanding of methods to promote their cell permeation and intracellular targeting. Amongst the successful approaches that have been applied in this regard is peptide-facilitated delivery. Cell-permeating or signal peptides can be readily conjugated to metal complex luminophores and have shown excellent response in carrying such cargo through the cell membrane. In this article, we describe the rationale behind applying metal complexes as probes and sensors in cell imaging and outline the advantages to be gained by applying peptides as the carrier for complex luminophores. We describe some of the progress that has been made in applying peptides in metal complex peptide-driven conjugates as a strategy for cell permeation and targeting of transition metal luminophores. Finally, we provide key examples of their application and outline areas for future progress.
Collapse
|
10
|
Synthesis, Characterization and Biological Properties of Ruthenium(II) Polypyridyl Complexes Containing 2(1H)-quinolinone-3(1H-imidazo[4,5f][1,10]phenanthrolin-2-yl. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
11
|
Obitz D, Miller RG, Metzler-Nolte N. Synthesis and DNA interaction studies of Ru(II) cell penetrating peptide (CPP) bioconjugates. Dalton Trans 2021; 50:13768-13777. [PMID: 34549219 DOI: 10.1039/d1dt01776d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The synthesis of the first bioconjugates of a set of ruthenium(II) dipyridophenazine complexes with two different cell penetrating peptides (CPPs) is described. The CPPs, an arginine rich TAT-9 (RKKRRQRRR) sequence and the Xentry peptide (LCLRPVG), were synthesized using standard SPPS protocols, and the bioconjugates were obtained by the microwave-assisted coupling of the HOBt/TBTU preactivated metal complexes with the respective peptides on Wang resin. The racemic metal complexes were obtained by modified literature procedures. The bioconjugates were cleaved from the resin, purified by semi-preparative HPLC and characterized by analytical HPLC, high resolution mass spectrometry (HR-MS), and NMR spectroscopy. Despite the bioconjugation of the peptides to the dppz ligand, DNA intercalation was observed by CD spectroscopy, viscometry and the characteristic switch-on fluorescence of this class of compounds. Furthermore, the cellular uptake of the Xentry bioconjugates was confirmed by live cell imaging. Like the parent metal complexes, the bioconjugates show low in vitro cytotoxicity (IC50 > 80 μM), which is similar to the respective metal complexes alone.
Collapse
Affiliation(s)
- Daniel Obitz
- Inorganic Chemistry I - Bioinorganic Chemistry, Ruhr-University Bochum, Universitaetsstrasse 150, 44780 Bochum, Germany.
| | - Reece G Miller
- Inorganic Chemistry I - Bioinorganic Chemistry, Ruhr-University Bochum, Universitaetsstrasse 150, 44780 Bochum, Germany.
| | - Nils Metzler-Nolte
- Inorganic Chemistry I - Bioinorganic Chemistry, Ruhr-University Bochum, Universitaetsstrasse 150, 44780 Bochum, Germany.
| |
Collapse
|
12
|
Shen J, Rees TW, Ji L, Chao H. Recent advances in ruthenium(II) and iridium(III) complexes containing nanosystems for cancer treatment and bioimaging. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214016] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
13
|
Holden L, Burke CS, Cullinane D, Keyes TE. Strategies to promote permeation and vectorization, and reduce cytotoxicity of metal complex luminophores for bioimaging and intracellular sensing. RSC Chem Biol 2021; 2:1021-1049. [PMID: 34458823 PMCID: PMC8341117 DOI: 10.1039/d1cb00049g] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 04/30/2021] [Indexed: 12/19/2022] Open
Abstract
Transition metal luminophores are emerging as important tools for intracellular imaging and sensing. Their putative suitability for such applications has long been recognised but poor membrane permeability and cytotoxicity were significant barriers that impeded early progress. In recent years, numerous effective routes to overcoming these issues have been reported, inspired in part, by advances and insights from the pharmaceutical and drug delivery domains. In particular, the conjugation of biomolecules but also other less natural synthetic species, from a repertoire of functional motifs have granted membrane permeability and cellular targeting. Such motifs can also reduce cytotoxicity of transition metal complexes and offer a valuable avenue to circumvent such problems leading to promising metal complex candidates for application in bioimaging, sensing and diagnostics. The advances in metal complex probes permeability/targeting are timely, as, in parallel, over the past two decades significant technological advances in luminescence imaging have occurred. In particular, super-resolution imaging is enormously powerful but makes substantial demands of its imaging contrast agents and metal complex luminophores frequently possess the photophysical characteristics to meet these demands. Here, we review some of the key vectors that have been conjugated to transition metal complex luminophores to promote their use in intra-cellular imaging applications. We evaluate some of the most effective strategies in terms of membrane permeability, intracellular targeting and what impact these approaches have on toxicity and phototoxicity which are important considerations in a luminescent contrast or sensing agent.
Collapse
Affiliation(s)
- Lorcan Holden
- School of Chemical Sciences, and National Centre for Sensor Research Dublin City University Dublin 9 Ireland
| | - Christopher S Burke
- School of Chemical Sciences, and National Centre for Sensor Research Dublin City University Dublin 9 Ireland
| | - David Cullinane
- School of Chemical Sciences, and National Centre for Sensor Research Dublin City University Dublin 9 Ireland
| | - Tia E Keyes
- School of Chemical Sciences, and National Centre for Sensor Research Dublin City University Dublin 9 Ireland
| |
Collapse
|
14
|
Kougioumtzi A, Chatziathanasiadou MV, Vrettos EI, Sayyad N, Sakka M, Stathopoulos P, Mantzaris MD, Ganai AM, Karpoormath R, Vartholomatos G, Tsikaris V, Lazarides T, Murphy C, Tzakos AG. Development of novel GnRH and Tat 48-60 based luminescent probes with enhanced cellular uptake and bioimaging profile. Dalton Trans 2021; 50:9215-9224. [PMID: 34125130 DOI: 10.1039/d1dt00060h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
There is a clear need to develop photostable chromophores for bioimaging with respect to the classically utilized green fluorescent dye fluorescein. Along these lines, we utilized a phosphorescent carboxy-substituted ruthenium(ii) polypyridyl [Ru(bipy)2(mcb)]2+ (bipy = 2,2'-bipyridyl and mcb = 4-carboxy-4'-methyl-2,2'-bipyridyl) complex. We developed two luminescent peptide conjugates of the cell-penetrating peptide Tat48-60 consisting of either [Ru(bipy)2(mcb)]2+ or 5(6)-carboxyfluorescein (5(6)-FAM) tethered on the Lys50 of the peptide through amide bond. We confirmed the efficient cellular uptake of both bioconjugates in HeLa cells by confocal microscopy and flow cytometry and proved that the ruthenium-based chromophore possesses enhanced photostability compared to a 5(6)-FAM-based peptide, after continuous laser scanning. Furthermore, we designed and developed a luminescent agent with high photostability, based on the ruthenium core, that could be selectively localized in cancer cells overexpressing the GnRH receptor (GnRH-R). To achieve this, we took advantage of the tumor-homing character of d-Lys6-GnRH which selectively recognizes the GnRH-R. The [Ru(bipy)2(mcb)]2+-d-Lys6-GnRH peptide conjugate was synthesized, and its cellular uptake was evaluated through flow cytometric analysis and live-cell imaging in HeLa and T24 bladder cancer cells as negative and positive controls of GnRH-R, respectively. Besides the selective targeting that the specific conjugate could offer, we also recorded high internalization levels in T24 bladder cancer cells. The ruthenium(ii) polypyridyl peptide-based conjugates we developed is an intriguing approach that offers targeted cell imaging in the Near Infrared region, and simultaneously paves the way for further advancements in the dynamic studies on cellular imaging.
Collapse
Affiliation(s)
- Anastasia Kougioumtzi
- Institute of Molecular Biology & Biotechnology, Foundation of Research and Technology-Hellas, Department of Biomedical Research, University Campus, 45110 Ioannina, Greece
| | - Maria V Chatziathanasiadou
- University of Ioannina, Department of Chemistry, Section of Organic Chemistry and Biochemistry, 45110, Ioannina, Greece.
| | - Eirinaios I Vrettos
- University of Ioannina, Department of Chemistry, Section of Organic Chemistry and Biochemistry, 45110, Ioannina, Greece.
| | - Nisar Sayyad
- University of Ioannina, Department of Chemistry, Section of Organic Chemistry and Biochemistry, 45110, Ioannina, Greece.
| | - Mariana Sakka
- University of Ioannina, Department of Chemistry, Section of Organic Chemistry and Biochemistry, 45110, Ioannina, Greece.
| | - Panagiotis Stathopoulos
- University of Ioannina, Department of Chemistry, Section of Organic Chemistry and Biochemistry, 45110, Ioannina, Greece.
| | - Michalis D Mantzaris
- Institute of Molecular Biology & Biotechnology, Foundation of Research and Technology-Hellas, Department of Biomedical Research, University Campus, 45110 Ioannina, Greece
| | - Ab Majeed Ganai
- Department of Pharmaceutical Chemistry, Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal (Westville), Durban 4000, South Africa
| | - Rajshekhar Karpoormath
- Department of Pharmaceutical Chemistry, Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal (Westville), Durban 4000, South Africa
| | - Georgios Vartholomatos
- Hematology Laboratory, Unit of Molecular Biology, University Hospital of Ioannina, Ioannina, 45110 Greece
| | - Vassilios Tsikaris
- University of Ioannina, Department of Chemistry, Section of Organic Chemistry and Biochemistry, 45110, Ioannina, Greece.
| | - Theodore Lazarides
- Laboratory of Inorganic Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Carol Murphy
- Institute of Molecular Biology & Biotechnology, Foundation of Research and Technology-Hellas, Department of Biomedical Research, University Campus, 45110 Ioannina, Greece
| | - Andreas G Tzakos
- University of Ioannina, Department of Chemistry, Section of Organic Chemistry and Biochemistry, 45110, Ioannina, Greece. and University Research Center of Ioannina (URCI), Institute of Materials Science and Computing, Ioannina, Greece
| |
Collapse
|
15
|
Gkika K, Noorani S, Walsh N, Keyes TE. Os(II)-Bridged Polyarginine Conjugates: The Additive Effects of Peptides in Promoting or Preventing Permeation in Cells and Multicellular Tumor Spheroids. Inorg Chem 2021; 60:8123-8134. [PMID: 33978399 PMCID: PMC8277133 DOI: 10.1021/acs.inorgchem.1c00769] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Indexed: 12/05/2022]
Abstract
The preparation of two polyarginine conjugates of the complex Os(II) [bis-(4'-(4-carboxyphenyl)-2,2':6',2″-terpyridine)] [Os-(Rn)2]x+ (n = 4 and 8; x = 10 and 18) is reported, to explore whether the R8 peptide sequence that promotes cell uptake requires a contiguous amino acid sequence for membrane permeation or if this can be accomplished in a linearly bridged structure with the additive effect of shorter peptide sequences. The conjugates exhibit NIR emission centered at 754 nm and essentially oxygen-insensitive emission with a lifetime of 89 ns in phosphate-buffered saline. The uptake, distribution, and cytotoxicity of the parent complex and peptide derivatives were compared in 2D cell monolayers and a three-dimensional (3D) multicellular tumor spheroid (MCTS) model. Whereas, the bis-octaarginine sequences were impermeable to cells and spheroids, and the bis-tetraarginine conjugate showed excellent cellular uptake and accumulation in two 2D monolayer cell lines and remarkable in-depth penetration of 3D MCTSs of pancreatic cancer cells. Overall, the data indicates that cell permeability can be promoted via non-contiguous sequences of arginine residues bridged across the metal centre.
Collapse
Affiliation(s)
- Karmel
S. Gkika
- School
of Chemical Sciences, National Centre for Sensor Research, Dublin City University, Dublin 9, Ireland
| | - Sara Noorani
- School
of Biotechnology, National Institute for Cellular Biotechnology, Dublin City University, Dublin 9, Ireland
| | - Naomi Walsh
- School
of Biotechnology, National Institute for Cellular Biotechnology, Dublin City University, Dublin 9, Ireland
| | - Tia E. Keyes
- School
of Chemical Sciences, National Centre for Sensor Research, Dublin City University, Dublin 9, Ireland
| |
Collapse
|
16
|
Wei F, Bai C, Hu HM, He S, Wang X, Xue G. Novel luminescent europium-centered hybrid material covalently grafted with organically modified titania via 2-substituted imidazophenanthroline for fluorescence sensing. J RARE EARTH 2021. [DOI: 10.1016/j.jre.2020.04.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
17
|
Machado JF, Correia JDG, Morais TS. Emerging Molecular Receptors for the Specific-Target Delivery of Ruthenium and Gold Complexes into Cancer Cells. Molecules 2021; 26:3153. [PMID: 34070457 PMCID: PMC8197480 DOI: 10.3390/molecules26113153] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 05/21/2021] [Accepted: 05/24/2021] [Indexed: 12/19/2022] Open
Abstract
Cisplatin and derivatives are highly effective in the treatment of a wide range of cancer types; however, these metallodrugs display low selectivity, leading to severe side effects. Additionally, their administration often results in the development of chemoresistance, which ultimately results in therapeutic failure. This scenario triggered the study of other transition metals with innovative pharmacological profiles as alternatives to platinum, ruthenium- (e.g., KP1339 and NAMI-A) and gold-based (e.g., Auranofin) complexes being among the most advanced in terms of clinical evaluation. Concerning the importance of improving the in vivo selectivity of metal complexes and the current relevance of ruthenium and gold metals, this review article aims to survey the main research efforts made in the past few years toward the design and biological evaluation of target-specific ruthenium and gold complexes. Herein, we give an overview of the inorganic and organometallic molecules conjugated to different biomolecules for targeting membrane proteins, namely cell adhesion molecules, G-protein coupled receptors, and growth factor receptors. Complexes that recognize the progesterone receptors or other targets involved in metabolic pathways such as glucose transporters are discussed as well. Finally, we describe some complexes aimed at recognizing cell organelles or compartments, mitochondria being the most explored. The few complexes addressing targeted gene therapy are also presented and discussed.
Collapse
Affiliation(s)
- João Franco Machado
- Centro de Química Estrutural and Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisbon, Portugal;
- Centro de Ciências e Tecnologias Nucleares and Departamento de Engenharia e Ciências Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10 (km 139, 7), 2695-066 Bobadela LRS, Portugal
| | - João D. G. Correia
- Centro de Ciências e Tecnologias Nucleares and Departamento de Engenharia e Ciências Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10 (km 139, 7), 2695-066 Bobadela LRS, Portugal
| | - Tânia S. Morais
- Centro de Química Estrutural and Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisbon, Portugal;
| |
Collapse
|
18
|
|
19
|
Ricciardi L, La Deda M. Recent advances in cancer photo-theranostics: the synergistic combination of transition metal complexes and gold nanostructures. SN APPLIED SCIENCES 2021. [DOI: 10.1007/s42452-021-04329-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
AbstractIn this mini review, we highlight advances in the last five years in light-activated cancer theranostics by using hybrid systems consisting of transition metal complexes (TMCs) and plasmonic gold nanostructures (AuNPs). TMCs are molecules with attractive properties and high potential in biomedical application. Due to their antiproliferative abilities, platinum-based compounds are currently first-choice drugs for the treatment of several solid tumors. Moreover, ruthenium, iridium and platinum complexes are well-known for their ability to photogenerate singlet oxygen, a highly cytotoxic reactive species with a key role in photodynamic therapy. Their potential is further extended by the unique photophysical properties, which make TMCs particularly suitable for bioimaging. Recently, gold nanoparticles (AuNPs) have been widely investigated as one of the leading nanomaterials in cancer theranostics. AuNPs—being an inert and highly biocompatible material—represent excellent drug delivery systems, overcoming most of the side effects associated with the systemic administration of anticancer drugs. Furthermore, due to the thermoplasmonic properties, AuNPs proved to be efficient nano-sources of heat for photothermal therapy application. Therefore, the hybrid combination TMC/AuNPs could represent a synergistic merger of multiple functionalities for combinatorial cancer therapy strategies. Herein, we report the most recent examples of TMC/AuNPs systems in in-vitro in-vivo cancer tharanostics application whose effects are triggered by light-exposure in the Vis–NIR region, leading to a spatial and temporal control of the TMC/AuNPs activation for light-mediated precision therapeutics.
Collapse
|
20
|
Liu C, Liu J, Zhang W, Wang YL, Gao X, Song B, Yuan J, Zhang R. A Ruthenium(II) complex-based probe for colorimetric and luminescent detection and imaging of hydrogen sulfide in living cells and organisms. Anal Chim Acta 2021; 1145:114-123. [PMID: 33453872 DOI: 10.1016/j.aca.2020.11.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 10/10/2020] [Accepted: 11/08/2020] [Indexed: 02/07/2023]
Abstract
The development of reliable bioanalytical probes for sensitive and specific detection of hydrogen sulfide (H2S) plays important role for better understanding the roles of this biomolecule in living cells and organisms. Taking advantages of unique photophysical properties of ruthenium(II) (Ru(II)) complex, this work presents the development of a responsive Ru(II) complex probe, Ru-PNBD, for colorimetric and luminescent analysis of H2S in living cells and organisms. In aqueous solution, Ru-PNBD is yellow color and non-luminescent because of the photoinduced electron transfer (PET) process from Ru(II) complex luminophore to NBD moiety. The H2S-triggered specific nucleophilic substitution reaction with Ru-PNBD cleaves the NBD moiety to form pink NBD-SH and highly luminescent Ru-PH. The color of the solution thus changes from yellow to pink for colorimetric analysis and the emission intensity is about 65-fold increased for luminescent analysis. Ru-PNBD has high sensitivity and selectivity for H2S detection, low cytotoxicity and good permeability to cell membrane, which allow the application of this probe for H2S imaging in living cells, Daphnia magna, and larval zebrafish. Collectively, this work provides a useful tool for H2S analysis and expands the scope of transition metal complex probes.
Collapse
Affiliation(s)
- Chaolong Liu
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Jianping Liu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, Queensland, 4072, Australia
| | - Wenzhu Zhang
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Yong-Lei Wang
- Department of Materials and Environmental Chemistry, Stockholm University, Stockholm, 10691, Sweden
| | - Xiaona Gao
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Bo Song
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Jingli Yuan
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China.
| | - Run Zhang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, Queensland, 4072, Australia.
| |
Collapse
|
21
|
Finn S, Byrne A, Gkika KS, Keyes TE. Photophysics and Cell Uptake of Self-Assembled Ru(II)Polypyridyl Vesicles. Front Chem 2020; 8:638. [PMID: 32850654 PMCID: PMC7406788 DOI: 10.3389/fchem.2020.00638] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 05/19/2020] [Indexed: 12/04/2022] Open
Abstract
Effective delivery of luminescent probes for cell imaging requires both cell membrane permeation and directing to discrete target organelles. Combined, these requirements can present a significant challenge for metal complex luminophores, that have excellent properties as imaging probes but typically show poor membrane permeability. Here, we report on highly luminescent Ruthenium polypyridyl complexes based on the parent; [Ru(dpp)2(x-ATAP)](PF6)2 structure, where dpp is 4,7-diphenyl-1,10-phenanthroline and x-ATAP is 5-amino-1,10-phenanthroline with pendant alkyl-acetylthio chains of varying length; where x is 6; 5-Amido-1,10-phenanthroline-(6-acetylthio-hexanyl). 8; 5-Amido-1,10-phenanthroline-(8-acetylthio-octanyl). 11; 5-Amido-1,10-phenanthroline-(11-acetylthio-undecanyl); and 16; 5-Amido-1,10-phenanthroline-(16-acetylthio-hexadecanyl). Soluble in organic media, the alkyl-acetylthiolated complexes form nanoaggregates of low polydispersity in aqueous solution. From dynamic light scattering the nanoaggregate diameter was measured as 189 nm and 135 nm for 5 × 10-6 M aqueous solutions of [Ru(dpp)2(N∧N)](PF6)2 with the hexadecanoyl and hexanyl tails respectivly. The nanoaggregate exhibited dual exponential emission decays with kinetics that matched closely those of the [Ru(dpp)2(16-ATAP)]2+ incorporated into the membrane of a DPPC liposome. Cell permeability and distribution of [Ru(dpp)2(11-ATAP)]2+ or [Ru(dpp)2(16-ATAP)]2+ were evaluated in detail in live HeLa and CHO cell lines and it was found from aqueous media, that the nanoaggregate complexes spontaneously cross the membrane of mammalian cells. This process seems, on the basis of temperature dependent studies to be activated. Fluorescence imaging of live cells reveal that the complexes localize highly specifically within organelles and that organelle localization changes dramatically in switching the pendent alkyl chains from C16 to C11 as well as on cell line identity. Our data suggests that building metal complexes capable of self-assembling into nano-dimensional vesicles in this way may be a useful means of promoting cell membrane permeability and driving selective targeting that is facile and relatively low cost compared to use of biomolecular vectors.
Collapse
Affiliation(s)
| | | | | | - Tia E. Keyes
- School of Chemical Sciences and National Centre for Sensor Research, Dublin City University, Dublin, Ireland
| |
Collapse
|
22
|
Lee LCC, Tsang AWY, Liu HW, Lo KKW. Photofunctional Cyclometalated Iridium(III) Polypyridine Complexes Bearing a Perfluorobiphenyl Moiety for Bioconjugation, Bioimaging, and Phototherapeutic Applications. Inorg Chem 2020; 59:14796-14806. [DOI: 10.1021/acs.inorgchem.0c01343] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Lawrence Cho-Cheung Lee
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Hong Kong, P. R. China
| | - Ada Wun-Yu Tsang
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Hong Kong, P. R. China
| | - Hua-Wei Liu
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Hong Kong, P. R. China
| | - Kenneth Kam-Wing Lo
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Hong Kong, P. R. China
- State Key Laboratory of Terahertz and Millimeter Waves, City University of Hong Kong, Tat Chee Avenue, Hong Kong, P. R. China
- Center of Functional Photonics, City University of Hong Kong, Tat Chee Avenue, Hong Kong, P. R. China
| |
Collapse
|
23
|
Teixeira RI, da Silva RB, Gaspar CS, de Lucas NC, Garden SJ. Photophysical Properties of Fluorescent 2-(Phenylamino)-1,10-phenanthroline Derivatives †. Photochem Photobiol 2020; 97:47-60. [PMID: 32654158 DOI: 10.1111/php.13303] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/14/2020] [Accepted: 06/21/2020] [Indexed: 01/13/2023]
Abstract
The present study details the experimental and theoretical characterization of the photophysical properties of 14 examples of 2-(phenylamino)-1,10-phenanthrolines (1). The absorption spectra of 1 are substituent-dependent but in a general manner present absorption bands at wavelengths of ~230; ~300; ~335 and a shoulder at ~380 nm. Electron-donating groups (EDG) and electron-withdrawing groups (EWG), respectively, result in bathochromic and hypsochromic shifts. Compounds 1 are highly luminescent, in contrast to phenanthroline, and emit in the region between 350 and 500 nm with substituent-dependent λmax emission. The emission spectra show a redshift for EDG (4-OMe 62 nm; 4-Me 19 nm) and a blueshift for EWG (4-CN 41 nm; 4-CF3 38 nm) relative to the emission of the unsubstituted parent compound 1a. Plotting the λ max EM against Hammett σ+ constants gave an excellent linear correlation demonstrating the electron-deficient nature of the excited state and how the substituents (de)stabilize S1 . Theoretical calculations revealed a HOMO-LUMO π-π* electronic transition to S1 which in combination with difference (S1 -S0 ) in electron density maps revealed charge-transfer character. Strongly electron-withdrawing substituents switch off the charge transfer to give rise to a local excitation.
Collapse
Affiliation(s)
- Rodolfo I Teixeira
- Instituto de Química, Centro de Tecnologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Ramon B da Silva
- Instituto de Química, Centro de Tecnologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Caio S Gaspar
- Instituto de Química, Centro de Tecnologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Nanci C de Lucas
- Instituto de Química, Centro de Tecnologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Simon J Garden
- Instituto de Química, Centro de Tecnologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
24
|
Wang Y, Qin W, Shi H, Chen H, Chai X, Liu J, Zhang P, Li Z, Zhang Q. A HCBP1 peptide conjugated ruthenium complex for targeted therapy of hepatoma. Dalton Trans 2020; 49:972-976. [PMID: 31894797 DOI: 10.1039/c9dt03856f] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
An HCBP1 peptide-ruthenium conjugate (Ru-β-Ala-FQHPSFI) as a potential candidate for targeted therapy of hepatoma was synthesized. Ru-β-Ala-FQHPSFI shows drastically enhanced cytotoxicity and high selectivity for hepatoma cells versus noncancer liver cells. Raman imaging shows that this peptide-based drug can be taken up well by the hepatoma cells compared with the bare ruthenium complex (Ru) and the opposite sequence peptide-ruthenium conjugate (Ru-β-Ala-IFSPHQF). This study presents a new strategy for the construction of tumor-targeting metal-based anticancer therapeutics.
Collapse
Affiliation(s)
- Yi Wang
- Key Laboratory for Advanced Materials of MOE, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China.
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Gkika KS, Byrne A, Keyes TE. Mitochondrial targeted osmium polypyridyl probe shows concentration dependent uptake, localisation and mechanism of cell death. Dalton Trans 2020; 48:17461-17471. [PMID: 31513202 DOI: 10.1039/c9dt02967b] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A symmetric osmium(ii) [bis-(4'-(4-carboxyphenyl)-2,2':6',2''-terpyridine)] was prepared and conjugated to two mitochondrial-targeting peptide sequences; FrFKFrFK (r = d-arginine). The parent and conjugate complexes showed strong near infra-red emission centred at λmax 745 nm that was modestly oxygen dependent in the case of the parent and oxygen independent in the case of the conjugate, attributed in the latter case, surprisingly, to a shorter emission lifetime of the conjugate compared to the parent. Confocal fluorescence imaging of sub-live HeLa and MCF 7 cells showed the parent complex was cell impermeable whereas the conjugate was rapidly internalised into the cell and distributed in a concentration dependent manner. At concentrations below approximately 30 μmol, the conjugate localised to the mitochondria of both cell types where it was observed to trigger apoptosis induced by the collapse of the mitochondrial membrane potential (MPP). At concentrations exceeding 30 μmol the conjugate was similarly internalised rapidly but distributed throughout the cell, including to the nucleus and nucleolus. At these concentrations, it was observed to precipitate a caspase-dependent apoptotic pathway. The combination of concentration dependent organelle targeting, NIR emission coincident with the biological window, and distribution dependent cytotoxicity offers an interesting approach to theranostics with the possibility of eliciting site dependent therapeutic effect whilst monitoring the therapeutic effect with luminescence imaging.
Collapse
Affiliation(s)
- Karmel Sofia Gkika
- School of Chemical Sciences, National Centre for Sensor Research, Dublin City University, Glasnevin, Dublin 9, Ireland.
| | | | | |
Collapse
|
26
|
Day AH, Übler MH, Best HL, Lloyd-Evans E, Mart RJ, Fallis IA, Allemann RK, Al-Wattar EAH, Keymer NI, Buurma NJ, Pope SJA. Targeted cell imaging properties of a deep red luminescent iridium(iii) complex conjugated with a c-Myc signal peptide. Chem Sci 2020; 11:1599-1606. [PMID: 32206278 PMCID: PMC7069228 DOI: 10.1039/c9sc05568a] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 12/14/2019] [Indexed: 12/05/2022] Open
Abstract
A nuclear localisation sequence (NLS) peptide, PAAKRVKLD, derived from the human c-Myc regulator gene, has been functionalised with a long wavelength (λ ex = 550 nm; λ em = 677 nm) cyclometalated organometallic iridium(iii) complex to give the conjugate Ir-CMYC. Confocal fluorescence microscopy studies on human fibroblast cells imaged after 18-24 h incubation show that Ir-CMYC concentrations of 80-100 μM promote good cell uptake and nuclear localisation, which was confirmed though co-localisation studies using Hoechst 33342. In comparison, a structurally related, photophysically analogous iridium(iii) complex lacking the peptide sequence, Ir-PYR, showed very different biological behaviour, with no evidence of nuclear, lysosomal or autophagic vesicle localisation and significantly increased toxicity to the cells at concentrations >10 μM that induced mitochondrial dysfunction. Supporting UV-visible and circular dichroism spectroscopic studies show that Ir-PYR and Ir-CMYC display similarly low affinities for DNA (ca. 103 M-1), consistent with electrostatic binding. Therefore the translocation and nuclear uptake properties of Ir-CMYC are attributed to the presence of the PAAKRVKLD nuclear localisation sequence in this complex.
Collapse
Affiliation(s)
- Adam H Day
- School of Chemistry , Cardiff University , Main Building , Cardiff , CF10 3AT , UK .
| | - Martin H Übler
- School of Chemistry , Cardiff University , Main Building , Cardiff , CF10 3AT , UK .
| | - Hannah L Best
- School of Biosciences , Cardiff University , Sir Martin Evans Building , Cardiff , UK
| | - Emyr Lloyd-Evans
- School of Biosciences , Cardiff University , Sir Martin Evans Building , Cardiff , UK
| | - Robert J Mart
- School of Chemistry , Cardiff University , Main Building , Cardiff , CF10 3AT , UK .
| | - Ian A Fallis
- School of Chemistry , Cardiff University , Main Building , Cardiff , CF10 3AT , UK .
| | - Rudolf K Allemann
- School of Chemistry , Cardiff University , Main Building , Cardiff , CF10 3AT , UK .
| | - Eman A H Al-Wattar
- School of Chemistry , Cardiff University , Main Building , Cardiff , CF10 3AT , UK .
| | - Nathaniel I Keymer
- School of Chemistry , Cardiff University , Main Building , Cardiff , CF10 3AT , UK .
| | - Niklaas J Buurma
- School of Chemistry , Cardiff University , Main Building , Cardiff , CF10 3AT , UK .
| | - Simon J A Pope
- School of Chemistry , Cardiff University , Main Building , Cardiff , CF10 3AT , UK .
| |
Collapse
|
27
|
Li G, Zhu D, Wang X, Su Z, Bryce MR. Dinuclear metal complexes: multifunctional properties and applications. Chem Soc Rev 2020; 49:765-838. [DOI: 10.1039/c8cs00660a] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Dinuclear metal complexes have enabled breakthroughs in OLEDs, photocatalytic water splitting and CO2reduction, DSPEC, chemosensors, biosensors, PDT and smart materials.
Collapse
Affiliation(s)
- Guangfu Li
- Department of Chemistry
- Northeast Normal University
- Changchun
- P. R. China
| | - Dongxia Zhu
- Department of Chemistry
- Northeast Normal University
- Changchun
- P. R. China
| | - Xinlong Wang
- Department of Chemistry
- Northeast Normal University
- Changchun
- P. R. China
| | - Zhongmin Su
- Department of Chemistry
- Northeast Normal University
- Changchun
- P. R. China
- School of Chemistry and Environmental Engineering
| | | |
Collapse
|
28
|
Chao XJ, Tang M, Huang R, Huang CH, Shao J, Yan ZY, Zhu BZ. Targeted live-cell nuclear delivery of the DNA 'light-switching' Ru(II) complex via ion-pairing with chlorophenolate counter-anions: the critical role of binding stability and lipophilicity of the ion-pairing complexes. Nucleic Acids Res 2019; 47:10520-10528. [PMID: 31584083 PMCID: PMC6847114 DOI: 10.1093/nar/gkz152] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 02/18/2019] [Accepted: 10/02/2019] [Indexed: 01/03/2023] Open
Abstract
We have found recently that nuclear uptake of the cell-impermeable DNA light-switching Ru(II)-polypyridyl cationic complexes such as [Ru(bpy)2(dppz)]Cl2 was remarkably enhanced by pentachlorophenol (PCP), by forming ion-pairing complexes via a passive diffusion mechanism. However, it is not clear whether the enhanced nuclear uptake of [Ru(bpy)2(dppz)]2+ is only limited to PCP, or it is a general phenomenon for other highly chlorinated phenols (HCPs); and if so, what are the major physicochemical factors in determining nuclear uptake? Here, we found that the nuclear uptake of [Ru(bpy)2(dppz)]2+ can also be facilitated by other two groups of HCPs including three tetrachlorophenol (TeCP) and six trichlorophenol (TCP) isomers. Interestingly and unexpectedly, 2,3,4,5-TeCP was found to be the most effective one for nuclear delivery of [Ru(bpy)2(dppz)]2+, which is even better than the most-highly chlorinated PCP, and much better than its two other TeCP isomers. Further studies showed that the nuclear uptake of [Ru(bpy)2(dppz)]2+ was positively correlated with the binding stability, but to our surprise, inversely correlated with the lipophilicity of the ion-pairing complexes formed between [Ru(bpy)2(dppz)]Cl2 and HCPs. These findings should provide new perspectives for future investigations on using ion-pairing as an effective method for delivering other bio-active metal complexes into their intended cellular targets.
Collapse
Affiliation(s)
- Xi-Juan Chao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, and University of Chinese Academy of Sciences, The Chinese Academy of Sciences, Beijing 100085, P. R. China
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P. R. China
| | - Miao Tang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, and University of Chinese Academy of Sciences, The Chinese Academy of Sciences, Beijing 100085, P. R. China
| | - Rong Huang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, and University of Chinese Academy of Sciences, The Chinese Academy of Sciences, Beijing 100085, P. R. China
| | - Chun-Hua Huang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, and University of Chinese Academy of Sciences, The Chinese Academy of Sciences, Beijing 100085, P. R. China
| | - Jie Shao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, and University of Chinese Academy of Sciences, The Chinese Academy of Sciences, Beijing 100085, P. R. China
| | - Zhu-Ying Yan
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, and University of Chinese Academy of Sciences, The Chinese Academy of Sciences, Beijing 100085, P. R. China
| | - Ben-Zhan Zhu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, and University of Chinese Academy of Sciences, The Chinese Academy of Sciences, Beijing 100085, P. R. China
- Linus Pauling Institute, Oregon State University, Corvallis, OR 97331, USA
- Joint Institute for Environmental Science, Research Center for Eco-Environmental Sciences and Hong Kong Baptist University, Hong Kong
| |
Collapse
|
29
|
Tris-heteroleptic ruthenium(II) polypyridyl complexes: Synthesis, structural characterization, photophysical, electrochemistry and biological properties. J Inorg Biochem 2019; 203:110903. [PMID: 31683124 DOI: 10.1016/j.jinorgbio.2019.110903] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 10/14/2019] [Accepted: 10/18/2019] [Indexed: 01/13/2023]
Abstract
Three water-soluble tris-heteroleptic ruthenium(II) polypyridyl complexes [Ru(bpy)(phen)(bpg)]2+ (1), [Ru(bpy)(dppz)(bpg)]2+ (2), and [Ru(phen)(dppz)(bpg)]2+ (3) (where bpy = 2,2'-bipyridine, phen = 1,10-phenanthroline, dppz = dipyrido[3,2-a:2',3'-c] phenazine, bpg = 4b,5,7,7a-tetrahydro-4b,7a-epiminomethanoimino-6H-imidazo[4,5-f] [1,10] phenanthroline-6,13-dione) have been synthesized and characterized. Molecular structures of complexes 1 and 3 are confirmed by single crystal X-ray structure determination. Interaction of complexes 1-3 with DNA is explored by various spectroscopic techniques. The complexes 1-3 show solvent dependent photophysical properties. Complexes 2 and 3 show extensive "molecular light switch" effect for DNA. The complexes 1-3 are low toxic towards HeLa (human cervical cancer) and HL-60 (human promyelocytic leukemia) cell lines. Further, the cellular uptake of complexes 2 and 3 by cells shows that complexes mainly localised on the nucleus of the cells.
Collapse
|
30
|
Yasukagawa M, Yamada K, Tobita S, Yoshihara T. Ratiometric oxygen probes with a cell-penetrating peptide for imaging oxygen levels in living cells. J Photochem Photobiol A Chem 2019. [DOI: 10.1016/j.jphotochem.2019.111983] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
31
|
Huang R, Tang M, Huang CH, Chao XJ, Yan ZY, Shao J, Zhu BZ. What Are the Major Physicochemical Factors in Determining the Preferential Nuclear Uptake of the DNA "Light-Switching" Ru(II)-Polypyridyl Complex in Live Cells via Ion-Pairing with Chlorophenolate Counter-Anions? J Phys Chem Lett 2019; 10:4123-4128. [PMID: 31287699 DOI: 10.1021/acs.jpclett.9b01225] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Delivering potential theranostic metal complexes into preferential cellular targets is becoming of increasing interest. Here we report that nuclear uptake of a cell-impermeable DNA "light-switching" Ru(II)-polypyridyl complex can be significantly facilitated by chlorophenolate counter-anions, which was found, unexpectedly, to be correlated positively with the binding stability but inversely with the lipophilicity of the formed ion pairs.
Collapse
Affiliation(s)
- Rong Huang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology , Research Center for Eco-Environmental Sciences, and University of Chinese Academy of Sciences, Chinese Academy of Sciences , Beijing 100085 , People's Republic of China
| | - Miao Tang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology , Research Center for Eco-Environmental Sciences, and University of Chinese Academy of Sciences, Chinese Academy of Sciences , Beijing 100085 , People's Republic of China
| | - Chun-Hua Huang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology , Research Center for Eco-Environmental Sciences, and University of Chinese Academy of Sciences, Chinese Academy of Sciences , Beijing 100085 , People's Republic of China
| | - Xi-Juan Chao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology , Research Center for Eco-Environmental Sciences, and University of Chinese Academy of Sciences, Chinese Academy of Sciences , Beijing 100085 , People's Republic of China
- School of Life Sciences , Lanzhou University , Lanzhou 730000 , People's Republic of China
| | - Zhu-Ying Yan
- State Key Laboratory of Environmental Chemistry and Ecotoxicology , Research Center for Eco-Environmental Sciences, and University of Chinese Academy of Sciences, Chinese Academy of Sciences , Beijing 100085 , People's Republic of China
| | - Jie Shao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology , Research Center for Eco-Environmental Sciences, and University of Chinese Academy of Sciences, Chinese Academy of Sciences , Beijing 100085 , People's Republic of China
| | - Ben-Zhan Zhu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology , Research Center for Eco-Environmental Sciences, and University of Chinese Academy of Sciences, Chinese Academy of Sciences , Beijing 100085 , People's Republic of China
- Linus Pauling Institute , Oregon State University , Corvallis , Oregon 97331 , United States
| |
Collapse
|
32
|
Wang Y, Shang W, Niu M, Tian J, Xu K. Hypoxia-active nanoparticles used in tumor theranostic. Int J Nanomedicine 2019; 14:3705-3722. [PMID: 31190820 PMCID: PMC6535445 DOI: 10.2147/ijn.s196959] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 04/04/2019] [Indexed: 12/17/2022] Open
Abstract
Hypoxia is a hallmark of malignant tumors and often correlates with increasing tumor aggressiveness and poor treatment outcomes. Therefore, early diagnosis and effective killing of hypoxic tumor cells are crucial for successful tumor control. There has been a surge of interdisciplinary research aimed at developing functional molecules and nanomaterials that can be used to noninvasively image and efficiently treat hypoxic tumors. These mainly include hypoxia-active nanoparticles, anti-hypoxia agents, and agents that target biomarkers of tumor hypoxia. Hypoxia-active nanoparticles have been intensively investigated and have demonstrated advanced effects on targeting tumor hypoxia. In this review, we present an overview of the reports published to date on hypoxia-activated prodrugs and their nanoparticle forms used in tumor-targeted therapy. Hypoxia-responsive nanoparticles are inactive during blood circulation and normal physiological conditions but are activated by hypoxia once they extravasate into the hypoxic tumor microenvironment. Their use can enhance the efficiency of tumor chemotherapy, radiotherapy, fluorescence and photoacoustic intensity, and other imaging and therapeutic strategies. By targeting the broad habitats of tumors, rather than tumor-specific receptors, this strategy has the potential to overcome the problem of tumor heterogeneity and could be used to design diagnostic and therapeutic nanoparticles for a broad range of solid tumors.
Collapse
Affiliation(s)
- Yaqin Wang
- Department of Interventional Radiology, The First Affiliated Hospital of China Medical University, Shenyang, People's Republic of China.,Chinese Academy of Sciences Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Wenting Shang
- Chinese Academy of Sciences Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Meng Niu
- Department of Interventional Radiology, The First Affiliated Hospital of China Medical University, Shenyang, People's Republic of China
| | - Jie Tian
- Chinese Academy of Sciences Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, People's Republic of China.,Institute of Medical Interdisciplinary Innovation, Beihang University, Beijing, 100080, People's Republic of China
| | - Ke Xu
- Department of Interventional Radiology, The First Affiliated Hospital of China Medical University, Shenyang, People's Republic of China
| |
Collapse
|
33
|
Shum J, Leung PKK, Lo KKW. Luminescent Ruthenium(II) Polypyridine Complexes for a Wide Variety of Biomolecular and Cellular Applications. Inorg Chem 2019; 58:2231-2247. [DOI: 10.1021/acs.inorgchem.8b02979] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
34
|
Bright lights down under: Metal ion complexes turning the spotlight on metabolic processes at the cellular level. Coord Chem Rev 2018. [DOI: 10.1016/j.ccr.2017.11.026] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
35
|
Burke CS, Byrne A, Keyes TE. Targeting Photoinduced DNA Destruction by Ru(II) Tetraazaphenanthrene in Live Cells by Signal Peptide. J Am Chem Soc 2018; 140:6945-6955. [PMID: 29767962 DOI: 10.1021/jacs.8b02711] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Exploiting NF-κB transcription factor peptide conjugation, a Ru(II)-bis-tap complex (tap = 1,4,5,8-tetraazaphenanthrene) was targeted specifically to the nuclei of live HeLa and CHO cells for the first time. DNA binding of the complex within the nucleus of live cells was evident from gradual extinction of the metal complex luminescence after it had crossed the nuclear envelope, attributed to guanine quenching of the ruthenium emission via photoinduced electron transfer. Resonance Raman imaging confirmed that the complex remained in the nucleus after emission is extinguished. In the dark and under imaging conditions the cells remain viable, but efficient cellular destruction was induced with precise spatiotemporal control by applying higher irradiation intensities to selected cells. Solution studies indicate that the peptide conjugated complex associates strongly with calf thymus DNA ex-cellulo and gel electrophoresis confirmed that the peptide conjugate is capable of singlet oxygen independent photodamage to plasmid DNA. This indicates that the observed efficient cellular destruction likely operates via direct DNA oxidation by photoinduced electron transfer between guanine and the precision targeted Ru(II)-tap probe. The discrete targeting of polyazaaromatic complexes to the cell nucleus and confirmation that they are photocytotoxic after nuclear delivery is an important step toward their application in cellular phototherapy.
Collapse
Affiliation(s)
- Christopher S Burke
- School of Chemical Sciences and National Centre for Sensor Research , Dublin City University , Glasnevin , Dublin 9 , Ireland
| | - Aisling Byrne
- School of Chemical Sciences and National Centre for Sensor Research , Dublin City University , Glasnevin , Dublin 9 , Ireland
| | - Tia E Keyes
- School of Chemical Sciences and National Centre for Sensor Research , Dublin City University , Glasnevin , Dublin 9 , Ireland
| |
Collapse
|
36
|
Poynton FE, Bright SA, Blasco S, Williams DC, Kelly JM, Gunnlaugsson T. The development of ruthenium(ii) polypyridyl complexes and conjugates for in vitro cellular and in vivo applications. Chem Soc Rev 2018; 46:7706-7756. [PMID: 29177281 DOI: 10.1039/c7cs00680b] [Citation(s) in RCA: 311] [Impact Index Per Article: 44.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Ruthenium(ii) [Ru(ii)] polypyridyl complexes have been the focus of intense investigations since work began exploring their supramolecular interactions with DNA. In recent years, there have been considerable efforts to translate this solution-based research into a biological environment with the intention of developing new classes of probes, luminescent imaging agents, therapeutics and theranostics. In only 10 years the field has expanded with diverse applications for these complexes as imaging agents and promising candidates for therapeutics. In light of these efforts this review exclusively focuses on the developments of these complexes in biological systems, both in cells and in vivo, and hopes to communicate to readers the diversity of applications within which these complexes have found use, as well as new insights gained along the way and challenges that researchers in this field still face.
Collapse
Affiliation(s)
- Fergus E Poynton
- School of Chemistry and Trinity Biomedical Sciences Institute (TBSI), Trinity College Dublin, The University of Dublin, Dublin 2, Ireland.
| | | | | | | | | | | |
Collapse
|
37
|
Ypsilantis K, Plakatouras JC, Manos MJ, Kourtellaris A, Markopoulos G, Kolettas E, Garoufis A. Stepwise synthesis, characterization, DNA binding properties and cytotoxicity of diruthenium oligopyridine compounds conjugated with peptides. Dalton Trans 2018; 47:3549-3567. [PMID: 29436543 DOI: 10.1039/c7dt04639a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Although the interactions of oligopyridine ruthenium complexes with DNA have been widely studied, the biological activity of similar diruthenium oligopyridine complexes conjugated with peptides has not been investigated. Herein, we report the stepwise synthesis and characterization of diruthenium complexes with the general formula [(La)Ru(tppz)Ru(Lb)]n+ (tppz = 2,3,5,6-tetra(2-pyridyl)pyrazine, La = 2,2':6',2''-terpyridine or 4-phenyl-2,2':6',2''-terpyridine and Lb = 2,2':6',2''-terpyridine-4'-CO(Gly1-Gly2-Gly3-LysCONH2) (5), (6), n = 5; 2,2':6',2''-terpyridine-4'-CO(Gly1-Gly2-Lys1-Lys2CONH2) (7), (8), n = 6; 2,2':6',2''-terpyridine-4'-CO(Ahx-Lys1Lys2CONH2) (9), (10), n = 5, Ahx = 6-aminohexanoic acid). The compounds [(trpy)Ru(tppz)Ru(trpy-CO2H)](PF6)4, (2)(PF6)4, [(ptrpy)Ru(tppz)Ru(trpy-CO2H)](PF6)4, (3)(PF6)4 and [(ptrpy)Ru(tppz)Ru(trpy)](PF6)4, (4)(PF6)4 were also characterized by single crystal X-ray methods. Moreover, the interactions of the chloride salts (5), (6) and (4) with the self-complementary dodecanucleotide duplex d(5'-CGCGAATTCGCG-3')2 were studied by NMR spectroscopic techniques. The results show that complex (4) binds in the central part of the oligonucleotide, from the minor groove through the ligand ptrpy, while the ligand trpy, which was located on the other side of the diruthenium core, does not contribute to the binding. Complex (5) binds similarly, through the ligand ptrpy. However, the induced upfield shifts of the ptrpy proton signals are significantly lower than the corresponding ones in the case of (4), indicating much lower binding affinity. This is clear evidence that the tethered peptide Gly1-Gly2-Gly3-Lys1CONH2 hinders the complex binding, even though it contains groups that are able to assist it (e.g., the positively charged amino group of lysine, the peptidic backbone, the terminal amide). Complex (6) shows a non-specific binding, interacting through electrostatic forces. The chloride salts of (4), (5) and (6) had insignificant effects on the cell cycle distribution and marginal cytotoxicity (IC50 > 750 μM) against human lung cancer cell lines H1299 and H1437, indicating that their binding to the oligonucleotide is not a sufficient condition for their cytotoxicity.
Collapse
Affiliation(s)
- Konstantinos Ypsilantis
- Laboratory of Inorganic Chemistry, Department of Chemistry, University of Ioannina, Ioannina 45110, Greece.
| | | | | | | | | | | | | |
Collapse
|
38
|
Zhang KY, Yu Q, Wei H, Liu S, Zhao Q, Huang W. Long-Lived Emissive Probes for Time-Resolved Photoluminescence Bioimaging and Biosensing. Chem Rev 2018; 118:1770-1839. [DOI: 10.1021/acs.chemrev.7b00425] [Citation(s) in RCA: 479] [Impact Index Per Article: 68.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Kenneth Yin Zhang
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, P. R. China
| | - Qi Yu
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, P. R. China
| | - Huanjie Wei
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, P. R. China
| | - Shujuan Liu
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, P. R. China
| | - Qiang Zhao
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, P. R. China
| | - Wei Huang
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, P. R. China
- Shaanxi
Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU), Xi’an 710072, P. R. China
- Key
Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced
Materials (IAM), Jiangsu National Synergetic Innovation Center for
Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), Nanjing 211800, P. R. China
| |
Collapse
|
39
|
Stumper A, Lämmle M, Mengele AK, Sorsche D, Rau S. One Scaffold, Many Possibilities - Copper(I)-Catalyzed Azide-Alkyne Cycloadditions, Strain-Promoted Azide-Alkyne Cycloadditions, and Maleimide-Thiol Coupling of Ruthenium(II) Polypyridyl Complexes. Eur J Inorg Chem 2018. [DOI: 10.1002/ejic.201701126] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Anne Stumper
- Institute of Inorganic Chemistry, Materials and Catalysis; Ulm University; Albert-Einstein-Allee 11 89081 Ulm Germany
| | - Martin Lämmle
- Institute of Inorganic Chemistry, Materials and Catalysis; Ulm University; Albert-Einstein-Allee 11 89081 Ulm Germany
| | - Alexander K. Mengele
- Institute of Inorganic Chemistry, Materials and Catalysis; Ulm University; Albert-Einstein-Allee 11 89081 Ulm Germany
| | - Dieter Sorsche
- Institute of Inorganic Chemistry, Materials and Catalysis; Ulm University; Albert-Einstein-Allee 11 89081 Ulm Germany
| | - Sven Rau
- Institute of Inorganic Chemistry, Materials and Catalysis; Ulm University; Albert-Einstein-Allee 11 89081 Ulm Germany
| |
Collapse
|
40
|
Abhervé A, Benmansour S, Gómez-García CJ, Avarvari N. Iron( ii) and cobalt( ii) complexes based on anionic phenanthroline-imidazolate ligands: reversible single-crystal-to-single-crystal transformations. CrystEngComm 2018. [DOI: 10.1039/c8ce00561c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Among the series of FeIIand CoIIcomplexes based on phenanthroline-imidazolate ligands, the FeIIcomplex (H9O4)[Fe(PIMP)3]·(C4H10O)2(H2O) (1a) exhibits reversible single-crystal-to-single-crystal transformations by solvent uptake/release.
Collapse
Affiliation(s)
- Alexandre Abhervé
- Laboratoire MOLTECH-Anjou UMR 6200
- UFR Sciences
- CNRS
- Université d'Angers
- 49045 Angers
| | - Samia Benmansour
- Departamento de Química Inorgánica
- Instituto de Ciencia Molecular (ICMol)
- Parque Científico
- Universidad de Valencia
- 46980 Paterna
| | - Carlos José Gómez-García
- Departamento de Química Inorgánica
- Instituto de Ciencia Molecular (ICMol)
- Parque Científico
- Universidad de Valencia
- 46980 Paterna
| | - Narcis Avarvari
- Laboratoire MOLTECH-Anjou UMR 6200
- UFR Sciences
- CNRS
- Université d'Angers
- 49045 Angers
| |
Collapse
|
41
|
Yu GN, Huang JC, Li L, Liu RT, Cao JQ, Wu Q, Zhang SY, Wang CX, Mei WJ, Zheng WJ. Preparation of Ru(ii)@oligonucleotide nanosized polymers as potential tumor-imaging luminescent probes. RSC Adv 2018; 8:30573-30581. [PMID: 35546841 PMCID: PMC9085494 DOI: 10.1039/c8ra05454a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 08/15/2018] [Indexed: 01/05/2023] Open
Abstract
The development of Ru(ii) complexes as luminescent probes has attracted increasing attention in recent decades. In this study, the nanosized polymers of two Ru(ii) complexes [Ru(phen)2(dppz)](ClO4)2 (1, phen = 1,10-phenanthrolin; dppz = dipyrido[3,2-a:2′,3′-c]phenazine) and [Ru(phen)2(Br-dppz)](ClO4)2 (2, Br-dppz = 11-bromodipyrido[3,2-a:2′,3′-c]phenazine) with oligonucleotides were prepared and investigated as potential tumor-imaging probes. The formation of the nanosized polymers, which had an average width of 125–438 nm and an average height of 3–6 nm, for 1 and 2@oligonucleotides were observed through atomic force microscopy. The emission spectra indicated that the luminescence of 1 and 2 markedly increased after binding to oligonucleotides and double-strand DNA (calf thymus DNA), respectively. Moreover, further studies indicated that 1@oligonucleotides and 2@oligonucleotides can easily enter into tumor cells and selectively highlight the tumor area in the zebrafish bear xenograft tumor (MDA-MB-231). In summary, this study demonstrated that 1@oligonucleotides and 2@oligonucleotides could be developed as potential tumor-imaging luminescent probes for clinical diagnosis and therapy. Ru(ii)@oligonucleotide nanoparticles can be developed as potential tumor selective tracker and have potential applications of tumor targeting imaging.![]()
Collapse
Affiliation(s)
- Geng-Nan Yu
- School of Pharmacy
- Guangdong Pharmaceutical University
- Guangzhou
- China
| | - Jun-Chao Huang
- Traditional Chinese Medicine College
- Guangdong Pharmaceutical University
- Guangzhou
- China
| | - Li Li
- School of Pharmacy
- Guangdong Pharmaceutical University
- Guangzhou
- China
| | - Ruo-Tong Liu
- School of Pharmacy
- Guangdong Pharmaceutical University
- Guangzhou
- China
| | | | - Qiong Wu
- School of Pharmacy
- Guangdong Pharmaceutical University
- Guangzhou
- China
- School of Chemistry
| | - Shuang-Yan Zhang
- School of Pharmacy
- Guangdong Pharmaceutical University
- Guangzhou
- China
| | - Cheng-Xi Wang
- School of Pharmacy
- Guangdong Pharmaceutical University
- Guangzhou
- China
| | - Wen-Jie Mei
- School of Pharmacy
- Guangdong Pharmaceutical University
- Guangzhou
- China
- Guangdong Province Engineering Technology Centre for Molecular Probe and Biomedicine Imaging
| | | |
Collapse
|
42
|
Oxygen imaging of living cells and tissues using luminescent molecular probes. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C-PHOTOCHEMISTRY REVIEWS 2017. [DOI: 10.1016/j.jphotochemrev.2017.01.001] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
43
|
Zhang Q, Tian X, Zhou H, Wu J, Tian Y. Lighting the Way to See Inside Two-Photon Absorption Materials: Structure-Property Relationship and Biological Imaging. MATERIALS (BASEL, SWITZERLAND) 2017; 10:E223. [PMID: 28772584 PMCID: PMC5503390 DOI: 10.3390/ma10030223] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 02/16/2017] [Indexed: 12/11/2022]
Abstract
The application of two-photon absorption (2PA) materials is a classical research field and has recently attracted increasing interest. It has generated a demand for new dyes with high 2PA cross-sections. In this short review, we briefly cover the structure-2PA property relationships of organic fluorophores, organic-inorganic nanohybrids and metal complexes explored by our group. (1) The two-photon absorption cross-section (δ) of organic fluorophores increases with the extent of charge transfer, which is important to optimize the core, donor-acceptor pair, and conjugation-bridge to obtain a large δ value. Among the various cores, triphenylamine appears to be an efficient core. Lengthening of the conjugation with styryl groups in the D-π-D quadrupoles and D-π-A dipoles increased δ over a long wavelength range than when vinylene groups were used. Large values of δ were observed for extended conjugation length and moderate donor-acceptors in the near-IR wavelengths. The δ value of the three-arm octupole is larger than that of the individual arm, if the core has electron accepting groups that allow significant electronic coupling between the arms; (2) Optical functional organic/inorganic hybrid materials usually show high thermal stability and excellent optical activity; therefore the design of functional organic molecules to build functional organic-inorganic hybrids and optimize the 2PA properties are significant. Advances have been made in the design of organic-inorganic nanohybrid materials of different sizes and shapes for 2PA property, which provide useful examples to illustrate the new features of the 2PA response in comparison to the more thoroughly investigated donor-acceptor based organic compounds and inorganic components; (3) Metal complexes are of particular interest for the design of new materials with large 2PA ability. They offer a wide range of metals with different ligands, which can give rise to tunable electronic and 2PA properties. The metal ions, including transition metals and lanthanides, can serve as an important part of the structure to control the intramolecular charge-transfer process that drives the 2PA process. As templates, transition metal ions can assemble simple to more sophisticated ligands in a variety of multipolar arrangements resulting in interesting and tailorable electronic and optical properties, depending on the nature of the metal center and the energetics of the metal-ligand interactions, such as intraligand charge-transfer (ILCT) and metal-ligand charge-transfer (MLCT) processes. Lanthanide complexes are attractive for a number of reasons: (i) their visible emissions are quite long-lived; (ii) their absorption and emission can be tuned with the aid of appropriate photoactive ligands; (iii) the accessible energy-transfer path between the photo-active ligands and the lanthanide ion can facilitate efficient lanthanide-based 2PA properties. Thus, the above materials with excellent 2PA properties should be applied in two-photon applications, especially two-photon fluorescence microscopy (TPFM) and related emission-based applications. Furthermore, the progress of research into the use of those new 2PA materials with moderate 2PA cross section in the near-infrared region, good Materials 2017, 10, 223 2 of 37 biocompatibility, and enhanced two-photon excited fluorescence for two-photon bio-imaging is summarized. In addition, several possible future directions in this field are also discussed (146 references).
Collapse
Affiliation(s)
- Qiong Zhang
- Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province, Department of Chemistry, Anhui University, Hefei 230039, China.
| | - Xiaohe Tian
- School of Life Science, Anhui University, Hefei 230039, China.
| | - Hongping Zhou
- Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province, Department of Chemistry, Anhui University, Hefei 230039, China.
| | - Jieying Wu
- Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province, Department of Chemistry, Anhui University, Hefei 230039, China.
| | - Yupeng Tian
- Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province, Department of Chemistry, Anhui University, Hefei 230039, China.
| |
Collapse
|
44
|
Chakrabortty S, Agrawalla BK, Stumper A, Vegi NM, Fischer S, Reichardt C, Kögler M, Dietzek B, Feuring-Buske M, Buske C, Rau S, Weil T. Mitochondria Targeted Protein-Ruthenium Photosensitizer for Efficient Photodynamic Applications. J Am Chem Soc 2017; 139:2512-2519. [PMID: 28097863 PMCID: PMC5588099 DOI: 10.1021/jacs.6b13399] [Citation(s) in RCA: 225] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
![]()
Organelle-targeted
photosensitization represents a promising approach
in photodynamic therapy where the design of the active photosensitizer
(PS) is very crucial. In this work, we developed a macromolecular
PS with multiple copies of mitochondria-targeting groups and ruthenium
complexes that displays highest phototoxicity toward several cancerous
cell lines. In particular, enhanced anticancer activity was demonstrated
in acute myeloid leukemia cell lines, where significant impairment
of proliferation and clonogenicity occurs. Finally, attractive two-photon
absorbing properties further underlined the great significance of
this PS for mitochondria targeted PDT applications in deep tissue
cancer therapy.
Collapse
Affiliation(s)
| | | | | | | | | | - Christian Reichardt
- Department of Functional Interfaces, Leibniz Institute of Photonic Technology (IPHT) Jena , Albert-Einstein-Straße 9, 07745 Jena, Germany
| | | | - Benjamin Dietzek
- Department of Functional Interfaces, Leibniz Institute of Photonic Technology (IPHT) Jena , Albert-Einstein-Straße 9, 07745 Jena, Germany
| | - Michaela Feuring-Buske
- Department of Internal Medicine III, University Hospital Ulm , Albert-Einstein Allee 23, 89081, Ulm, Germany
| | | | | | - Tanja Weil
- Max-Planck-Institute for Polymer Research , Ackermannweg 10, 55128 Mainz, Germany
| |
Collapse
|
45
|
Byrne A, Jacobs J, Burke CS, Martin A, Heise A, Keyes TE. Rational design of polymeric core shell ratiometric oxygen-sensing nanostructures. Analyst 2017; 142:3400-3406. [DOI: 10.1039/c7an00753a] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A new approach for the fabrication of luminescent ratiometric sensing nanosensors is described using core–shell nanoparticles in which the probe and reference are spatially separated into the shell and core of the nanostructure respectively.
Collapse
Affiliation(s)
- Aisling Byrne
- School of Chemical Sciences
- National Centre for Sensor Research Dublin City University
- Dublin 9
- Ireland
| | - Jaco Jacobs
- School of Chemical Sciences
- National Centre for Sensor Research Dublin City University
- Dublin 9
- Ireland
- Department of Pharmaceutical and Medicinal Chemistry
| | - Christopher S. Burke
- School of Chemical Sciences
- National Centre for Sensor Research Dublin City University
- Dublin 9
- Ireland
| | - Aaron Martin
- School of Chemical Sciences
- National Centre for Sensor Research Dublin City University
- Dublin 9
- Ireland
| | - Andreas Heise
- Department of Pharmaceutical and Medicinal Chemistry
- Royal College of Surgeons in Ireland
- Dublin 2
- Ireland
| | - Tia E. Keyes
- School of Chemical Sciences
- National Centre for Sensor Research Dublin City University
- Dublin 9
- Ireland
| |
Collapse
|
46
|
Byrne A, Burke CS, Keyes TE. Precision targeted ruthenium(ii) luminophores; highly effective probes for cell imaging by stimulated emission depletion (STED) microscopy. Chem Sci 2016; 7:6551-6562. [PMID: 28042459 PMCID: PMC5131359 DOI: 10.1039/c6sc02588a] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 06/29/2016] [Indexed: 12/18/2022] Open
Abstract
Fluorescence microscopy has undergone a dramatic evolution over the past two decades with development of super-resolution far-field microscopy methods that break the light diffraction limited resolution of conventional microscopy, offering unprecedented opportunity to interrogate cellular processes at the nanoscale. However, these methods make special demands of the luminescent agents used for contrast and development of probes suited to super-resolution fluorescent methods is still relatively in its infancy. In spite of their many photophysical advantages, metal complex luminophores have not yet been considered as probes in this regard, where to date, only organic fluorophores have been applied. Here, we report the first examples of metal complex luminophores applied as probes for use in stimulated emission depletion (STED) microscopy. Exemplified with endoplasmic reticulum and nuclear targeting complexes we demonstrate that luminescent Ru(ii) polypyridyl complexes can, through signal peptide targeting, be precisely and selectively delivered to key cell organelles without the need for membrane permeabilization, to give high quality STED images of these organelles. Detailed features of the tubular ER structure are revealed and in the case of the nuclear targeting probe we exploit the molecular light switch properties of a dipyrido[3,2-a:2',3'-c]phenazine containing complex which emits only on DNA/RNA binding to give outstanding STED contrast and resolution of the chromosomes within the nucleus. Comparing performance with a member of the AlexaFluor family commonly recommended for STED, we find that the performance of the ruthenium complexes is superior across both CW and gated STED microscopy methods in terms of image resolution and photostability. The large Stokes shifts of the Ru probes permit excellent matching of the stimulating depletion laser with their emission whilst avoiding anti-Stokes excitation. Their long lifetimes make them particularly amenable to gated STED, giving a much wider window for gating than traditional probes. Our findings indicate that ruthenium polypyridyl peptide targeted probes are a powerful new partner to STED microscopy, opening up new approaches to probe design for STED microscopy.
Collapse
Affiliation(s)
- Aisling Byrne
- School of Chemical Sciences , National Centre for Sensor Research , Dublin City University , Dublin 9 , Ireland . ; National Biophotonics and Imaging Platform , DCU , Ireland
| | - Christopher S Burke
- School of Chemical Sciences , National Centre for Sensor Research , Dublin City University , Dublin 9 , Ireland . ; National Biophotonics and Imaging Platform , DCU , Ireland
| | - Tia E Keyes
- School of Chemical Sciences , National Centre for Sensor Research , Dublin City University , Dublin 9 , Ireland . ; National Biophotonics and Imaging Platform , DCU , Ireland
| |
Collapse
|
47
|
Ultrafast in cellulo photoinduced dynamics processes of the paradigm molecular light switch [Ru(bpy)2dppz](2.). Sci Rep 2016; 6:33547. [PMID: 27644587 PMCID: PMC5028833 DOI: 10.1038/srep33547] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 08/30/2016] [Indexed: 01/22/2023] Open
Abstract
An in cellulo study of the ultrafast excited state processes in the paradigm molecular light switch [Ru(bpy)2dppz]2+ by localized pump-probe spectroscopy is reported for the first time. The localization of [Ru(bpy)2dppz]2+ in HepG2 cells is verified by emission microscopy and the characteristic photoinduced picosecond dynamics of the molecular light switch is observed in cellulo. The observation of the typical phosphorescence stemming from a 3MLCT state suggests that the [Ru(bpy)2dppz]2+ complex intercalates with the DNA in the nucleus. The results presented for this benchmark coordination compound reveal the necessity to study the photoinduced processes in coordination compounds for intracellular use, e.g. as sensors or as photodrugs, in the actual biological target environment in order to derive a detailed molecular mechanistic understanding of the excited-state properties of the systems in the actual biological target environment.
Collapse
|
48
|
Reichardt C, Sainuddin T, Wächtler M, Monro S, Kupfer S, Guthmuller J, Gräfe S, McFarland S, Dietzek B. Influence of Protonation State on the Excited State Dynamics of a Photobiologically Active Ru(II) Dyad. J Phys Chem A 2016; 120:6379-88. [PMID: 27459188 DOI: 10.1021/acs.jpca.6b05957] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The influence of ligand protonation on the photophysics of a ruthenium (Ru) dyad bearing the 2-(1-pyrenyl)-1H-imidazo[4,5-f][1,10]-phenanthroline (ippy) ligand was investigated by time-resolved transient absorption spectroscopy. It was found that changes in the protonation state of the imidazole group led to changes in the electronic configuration of the lowest lying excited state. Formation of the fully deprotonated imidazole anion resulted in excited state signatures that were consistent with a low-lying intraligand (IL) triplet state. This assignment was supported by time-dependent density functional theory (TDDFT) calculations. IL triplet states have been suggested to be potent mediators of photodynamic effects. Thus, these results are of interest in the design of Ru metal complexes as photosensitizers (PSs) for photodynamic therapy (PDT).
Collapse
Affiliation(s)
- Christian Reichardt
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich-Schiller-University Jena , Helmholtzweg 4, 07743 Jena, Germany.,Leibniz Institute of Photonic Technology (IPHT) , Albert-Einstein-Straße 9, 07745 Jena, Germany
| | - Tariq Sainuddin
- Department of Chemistry, Acadia University , Wolfville NS B4P 2R6, Canada
| | - Maria Wächtler
- Leibniz Institute of Photonic Technology (IPHT) , Albert-Einstein-Straße 9, 07745 Jena, Germany
| | - Susan Monro
- Department of Chemistry, Acadia University , Wolfville NS B4P 2R6, Canada
| | - Stephan Kupfer
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich-Schiller-University Jena , Helmholtzweg 4, 07743 Jena, Germany
| | - Julien Guthmuller
- Gdansk University of Technology , Narutowicza 11/12, 80-233 Gdansk, Poland
| | - Stefanie Gräfe
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich-Schiller-University Jena , Helmholtzweg 4, 07743 Jena, Germany
| | - Sherri McFarland
- Department of Chemistry, Acadia University , Wolfville NS B4P 2R6, Canada.,Department of Chemistry & Biochemistry, University of North Carolina at Greensboro , Greensboro, North Carolina 27402, United States
| | - Benjamin Dietzek
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich-Schiller-University Jena , Helmholtzweg 4, 07743 Jena, Germany.,Leibniz Institute of Photonic Technology (IPHT) , Albert-Einstein-Straße 9, 07745 Jena, Germany
| |
Collapse
|
49
|
Byrne A, Dolan C, Moriarty RD, Martin A, Neugebauer U, Forster RJ, Davies A, Volkov Y, Keyes TE. Osmium(II) polypyridyl polyarginine conjugate as a probe for live cell imaging; a comparison of uptake, localization and cytotoxicity with its ruthenium(II) analogue. Dalton Trans 2016. [PMID: 26197944 DOI: 10.1039/c5dt01833a] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A first investigation into the application of a luminescent osmium(ii) bipyridine complex to live cell imaging is presented. Osmium(ii) (bis-2,2-bipyridyl)-2(4-carboxylphenyl) imidazo[4,5f][1,10]phenanthroline was prepared and conjugated to octaarginine, a cell penetrating peptide. The photophysics, cell uptake and cytotoxicity of this osmium complex conjugate were performed and compared with its ruthenium analogue. Cell uptake and distribution of both ruthenium and osmium conjugates were very similar with rapid transmembrane transport of the osmium probe (complete within approx. 20 min) and dispersion throughout the cytoplasm and organelles. The near-infrared (NIR) emission of the osmium complex (λmax 726 nm) coincides well with the biological optical window and this facilitated luminescent and luminescence lifetime imaging of the cell which was well resolved from cell autofluorescence. The large Stokes shift of the emission also permitted resonance Raman mapping of the dye within CHO cells. Rather surprisingly, the osmium conjugate exhibited very low cytotoxicity when incubated both in the dark and under visible irradiation. This was attributed to the remarkable stability of this complex which was reflected by the complete absence of photo-bleaching of the complex even under extended continuous irradiation. In addition, when compared to its ruthenium analogue its luminescence was short-lived in water therefore rendering it insensitive to O2.
Collapse
Affiliation(s)
- Aisling Byrne
- School of Chemical Sciences, National Centre for Sensor Research, Dublin City University, Glasnevin, Dublin 9, Ireland.
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Marcélis L, Kajouj S, Ghesquière J, Fettweis G, Coupienne I, Lartia R, Surin M, Defrancq E, Piette J, Moucheron C, Kirsch-De Mesmaeker A. Highly DNA-Photoreactive Ruthenium 1,4,5,8-Tetraazaphenanthrene Complex Conjugated to the TAT Peptide: Efficient Vectorization inside HeLa Cells without Phototoxicity - The Importance of Cellular Distribution. Eur J Inorg Chem 2016. [DOI: 10.1002/ejic.201600278] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Lionel Marcélis
- Organic Chemistry and Photochemistry; Université libre de Bruxelles (U.L.B.); 50 Av. F. D. Roosevelt, CP160/08 1050 Bruxelles Belgium
| | - Sofia Kajouj
- Organic Chemistry and Photochemistry; Université libre de Bruxelles (U.L.B.); 50 Av. F. D. Roosevelt, CP160/08 1050 Bruxelles Belgium
| | - Jonathan Ghesquière
- Organic Chemistry and Photochemistry; Université libre de Bruxelles (U.L.B.); 50 Av. F. D. Roosevelt, CP160/08 1050 Bruxelles Belgium
| | - Gregory Fettweis
- Laboratory of Virology and Immunology; GIGA-Research; University of Liège; B34 Av. de l'Hôpital 1 4000 Liège Belgium
| | - Isabelle Coupienne
- Laboratory of Virology and Immunology; GIGA-Research; University of Liège; B34 Av. de l'Hôpital 1 4000 Liège Belgium
| | - Rémy Lartia
- Département de Chimie Moléculaire; UMR CNRS; Université Grenoble Alpes; 38000 Grenoble France
| | - Mathieu Surin
- Laboratory for Chemistry of Novel Materials; UMR CNRS; University of Mons - UMons; 20 Place du Parc 7000 Mons Belgium
| | - Eric Defrancq
- Département de Chimie Moléculaire; UMR CNRS; Université Grenoble Alpes; 38000 Grenoble France
| | - Jacques Piette
- Laboratory of Virology and Immunology; GIGA-Research; University of Liège; B34 Av. de l'Hôpital 1 4000 Liège Belgium
| | - Cécile Moucheron
- Organic Chemistry and Photochemistry; Université libre de Bruxelles (U.L.B.); 50 Av. F. D. Roosevelt, CP160/08 1050 Bruxelles Belgium
| | - Andrée Kirsch-De Mesmaeker
- Organic Chemistry and Photochemistry; Université libre de Bruxelles (U.L.B.); 50 Av. F. D. Roosevelt, CP160/08 1050 Bruxelles Belgium
| |
Collapse
|