1
|
Wang Y, Sadeghi S, Velayati A, Paul R, Hetzler Z, Danilov E, Ligler FS, Wei Q. Low-rate smartphone videoscopy for microsecond luminescence lifetime imaging with machine learning. PNAS NEXUS 2023; 2:pgad313. [PMID: 37829844 PMCID: PMC10566544 DOI: 10.1093/pnasnexus/pgad313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 09/12/2023] [Indexed: 10/14/2023]
Abstract
Time-resolved techniques have been widely used in time-gated and luminescence lifetime imaging. However, traditional time-resolved systems require expensive lab equipment such as high-speed excitation sources and detectors or complicated mechanical choppers to achieve high repetition rates. Here, we present a cost-effective and miniaturized smartphone lifetime imaging system integrated with a pulsed ultraviolet (UV) light-emitting diode (LED) for 2D luminescence lifetime imaging using a videoscopy-based virtual chopper (V-chopper) mechanism combined with machine learning. The V-chopper method generates a series of time-delayed images between excitation pulses and smartphone gating so that the luminescence lifetime can be measured at each pixel using a relatively low acquisition frame rate (e.g. 30 frames per second [fps]) without the need for excitation synchronization. Europium (Eu) complex dyes with different luminescent lifetimes ranging from microseconds to seconds were used to demonstrate and evaluate the principle of V-chopper on a 3D-printed smartphone microscopy platform. A convolutional neural network (CNN) model was developed to automatically distinguish the gated images in different decay cycles with an accuracy of >99.5%. The current smartphone V-chopper system can detect lifetime down to ∼75 µs utilizing the default phase shift between the smartphone video rate and excitation pulses and in principle can detect much shorter lifetimes by accurately programming the time delay. This V-chopper methodology has eliminated the need for the expensive and complicated instruments used in traditional time-resolved detection and can greatly expand the applications of time-resolved lifetime technologies.
Collapse
Affiliation(s)
- Yan Wang
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, USA
| | - Sina Sadeghi
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, USA
| | - Alireza Velayati
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, USA
| | - Rajesh Paul
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, USA
| | - Zach Hetzler
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, USA
| | - Evgeny Danilov
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695, USA
| | - Frances S Ligler
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Qingshan Wei
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, USA
| |
Collapse
|
2
|
Ambiliraj DB, Francis B, MLP R. Lysosome-targeting luminescent lanthanide complexes: From molecular design to bioimaging. Dalton Trans 2022; 51:7748-7762. [DOI: 10.1039/d2dt00128d] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Lysosomes are essential acidic cytoplasmic membrane-bound organelles in human cells that play a critical role in many cellular events. A comprehensive understanding of lysosome-specific imaging can ultimately help us to...
Collapse
|
3
|
Hamon N, Roux A, Beyler M, Mulatier JC, Andraud C, Nguyen C, Maynadier M, Bettache N, Duperray A, Grichine A, Brasselet S, Gary-Bobo M, Maury O, Tripier R. Pyclen-Based Ln(III) Complexes as Highly Luminescent Bioprobes for In Vitro and In Vivo One- and Two-Photon Bioimaging Applications. J Am Chem Soc 2020; 142:10184-10197. [PMID: 32368907 DOI: 10.1021/jacs.0c03496] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
In addition to the already described ligand L4a, two pyclen-based lanthanide chelators, L4b and L4c, bearing two specific picolinate two-photon antennas (tailor-made for each targeted metal) and one acetate arm arranged in a dissymmetrical manner, have been synthesized, to form a complete family of lanthanide luminescent bioprobes: [EuL4a], [SmL4a], [YbL4b], [TbL4c], and [DyL4c]. Additionally, the symmetrically arranged regioisomer L4a' was also synthesized as well as its [EuL4a'] complex to highlight the astonishing positive impact of the dissymmetrical N-distribution of the functional chelating arms. The investigation clearly shows the high performance of each bioprobe, which, depending on the complexed lanthanide, could be used in various applications. Each presents high brightness, quantum yields, and lifetimes. Staining of the complexes into living human breast cancer cells was observed. In addition, in vivo two-photon microscopy was performed for the first time on a living zebrafish model with [EuL4a]. No apparent toxicity was detected on the growth of the zebrafish, and images of high quality were obtained.
Collapse
Affiliation(s)
- Nadège Hamon
- Univ Brest, UMR CNRS 6521 CEMCA, 6 Avenue Victor le Gorgeu, 29200 Brest, France
| | - Amandine Roux
- Univ Lyon ENS de Lyon, CNRS Laboratoire de Chimie UMR 5182, Université Claude Bernard Lyon 1, F-69342 Lyon, France
| | - Maryline Beyler
- Univ Brest, UMR CNRS 6521 CEMCA, 6 Avenue Victor le Gorgeu, 29200 Brest, France
| | - Jean-Christophe Mulatier
- Univ Lyon ENS de Lyon, CNRS Laboratoire de Chimie UMR 5182, Université Claude Bernard Lyon 1, F-69342 Lyon, France
| | - Chantal Andraud
- Univ Lyon ENS de Lyon, CNRS Laboratoire de Chimie UMR 5182, Université Claude Bernard Lyon 1, F-69342 Lyon, France
| | | | - Marie Maynadier
- NanoMedSyn, 15 Avenue Charles Flahault, F-34093 Montpellier Cedex 05, France
| | - Nadir Bettache
- IBMM, Univ Montpellier, CNRS, ENSCM, F-34000 Montpellier, France
| | - Alain Duperray
- INSERM, U1209, Université Grenoble 896 Alpes, IAB, F-38000 Grenoble, France
| | - Alexei Grichine
- INSERM, U1209, Université Grenoble 896 Alpes, IAB, F-38000 Grenoble, France
| | - Sophie Brasselet
- Univ Aix Marseille, CNRS, Centrale Marseille, Institut Fresnel, UMR 7249, F-13013 Marseille, France
| | - Magali Gary-Bobo
- IBMM, Univ Montpellier, CNRS, ENSCM, F-34000 Montpellier, France
| | - Olivier Maury
- Univ Lyon ENS de Lyon, CNRS Laboratoire de Chimie UMR 5182, Université Claude Bernard Lyon 1, F-69342 Lyon, France
| | - Raphaël Tripier
- Univ Brest, UMR CNRS 6521 CEMCA, 6 Avenue Victor le Gorgeu, 29200 Brest, France
| |
Collapse
|
4
|
Barry DE, Kitchen JA, Pandurangan K, Savyasachi AJ, Peacock RD, Gunnlaugsson T. Formation of Enantiomerically Pure Luminescent Triple-Stranded Dimetallic Europium Helicates and Their Corresponding Hierarchical Self-Assembly Formation in Protic Polar Solutions. Inorg Chem 2020; 59:2646-2650. [DOI: 10.1021/acs.inorgchem.0c00058] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Dawn E. Barry
- School of Chemistry and Trinity Biomedical Science Institute, Trinity College Dublin, Dublin 2 D02 PN40, Ireland
| | - Jonathan A. Kitchen
- Chemistry, School of Natural and Computational Sciences, Massey University, Auckland, New Zealand
| | - Komala Pandurangan
- School of Chemistry and Trinity Biomedical Science Institute, Trinity College Dublin, Dublin 2 D02 PN40, Ireland
| | - Aramballi Jayant Savyasachi
- School of Chemistry and Trinity Biomedical Science Institute, Trinity College Dublin, Dublin 2 D02 PN40, Ireland
| | - Robert D. Peacock
- School of Chemistry, University of Glasgow, Glasgow G12 8QQ, Scotland
| | - Thorfinnur Gunnlaugsson
- School of Chemistry and Trinity Biomedical Science Institute, Trinity College Dublin, Dublin 2 D02 PN40, Ireland
- Advanced Materials and BioEngineering Research (AMBER) Centre, Trinity College Dublin, The University of Dublin, Dublin 2 D02 PN40, Ireland
| |
Collapse
|
5
|
Wang Y, Sayyadi N, Zheng X, Woods TA, Leif RC, Shi B, Graves SW, Piper JA, Lu Y. Time-resolved microfluidic flow cytometer for decoding luminescence lifetimes in the microsecond region. LAB ON A CHIP 2020; 20:655-664. [PMID: 31934716 DOI: 10.1039/c9lc00895k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Time-resolved luminescence detection using long-lived probes with lifetimes in the microsecond region have shown great potential in ultrasensitive and multiplexed bioanalysis. In flow cytometry, however, the long lifetime poses a significant challenge to measure wherein the detection window is often too short to determine the decay characteristics. Here we report a time-resolved microfluidic flow cytometer (tr-mFCM) incorporating an acoustic-focusing chip, which allows slowing down of the flow while providing the same detection conditions for every target, achieving accurate lifetime measurement free of autofluorescence interference. Through configuration of the flow velocity and detection aperture with respect to the time-gating sequence, a multi-cycle luminescence decay profile is captured for every event under maximum excitation and detection efficiency. A custom fitting algorithm is then developed to resolve europium-stained polymer microspheres as well as leukemia cells against abundant fluorescent particles, achieving counting efficiency approaching 100% and lifetime CVs (coefficient of variation) around 2-6%. We further demonstrate lifetime-multiplexed detection of prostate and bladder cancer cells stained with different europium probes. Our acoustic-focusing tr-mFCM offers a practical technique for rapid screening of biofluidic samples containing multiple cell types, especially in resource-limited environments such as regional and/or underdeveloped areas as well as for point-of-care applications.
Collapse
Affiliation(s)
- Yan Wang
- ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP), Macquarie University, Sydney, New South Wales 2109, Australia. and Department of Physics and Astronomy, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Nima Sayyadi
- ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP), Macquarie University, Sydney, New South Wales 2109, Australia. and Department of Molecular Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Xianlin Zheng
- ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP), Macquarie University, Sydney, New South Wales 2109, Australia. and Department of Physics and Astronomy, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Travis A Woods
- Centre for Biomedical Engineering, University of New Mexico, Albuquerque, New Mexico 87131, USA
| | - Robert C Leif
- Newport Instruments, 3345 Hopi Place, San Diego, California 92117-3516, USA
| | - Bingyang Shi
- ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP), Macquarie University, Sydney, New South Wales 2109, Australia. and Department of Biomedical Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Steven W Graves
- Centre for Biomedical Engineering, University of New Mexico, Albuquerque, New Mexico 87131, USA
| | - James A Piper
- ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP), Macquarie University, Sydney, New South Wales 2109, Australia. and Department of Physics and Astronomy, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Yiqing Lu
- ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP), Macquarie University, Sydney, New South Wales 2109, Australia. and Department of Physics and Astronomy, Macquarie University, Sydney, New South Wales 2109, Australia and School of Engineering, Macquarie University, Sydney, New South Wales 2109, Australia
| |
Collapse
|
6
|
Chen X, Mevissen C, Huda S, Göb C, Oppel IM, Albrecht M. Cation‐Controlled Formation and Interconversion of the
fac
/
fac
and
mer
/
mer
Stereoisomers of a Triple‐Stranded Helicate. Angew Chem Int Ed Engl 2019; 58:12879-12882. [DOI: 10.1002/anie.201904181] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 05/07/2019] [Indexed: 11/07/2022]
Affiliation(s)
- Xiaofei Chen
- Institut für Organische Chemie RWTH Aachen University Landoltweg 1 52074 Aachen Germany
| | - Christian Mevissen
- Institut für Organische Chemie RWTH Aachen University Landoltweg 1 52074 Aachen Germany
| | - Saskia Huda
- Institut für Organische Chemie RWTH Aachen University Landoltweg 1 52074 Aachen Germany
| | - Christian Göb
- Institut für Anorganische Chemie RWTH Aachen University Landoltweg 1 52074 Aachen Germany
| | - Iris M. Oppel
- Institut für Anorganische Chemie RWTH Aachen University Landoltweg 1 52074 Aachen Germany
| | - Markus Albrecht
- Institut für Organische Chemie RWTH Aachen University Landoltweg 1 52074 Aachen Germany
| |
Collapse
|
7
|
Chen X, Mevissen C, Huda S, Göb C, Oppel IM, Albrecht M. Kationen‐gesteuerte Bildung und Umwandlung der
fac
/
fac
‐ und
mer
/
mer
‐Stereoisomere eines dreisträngigen Helicats. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201904181] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Xiaofei Chen
- Institut für Organische Chemie RWTH Aachen University Landoltweg 1 52074 Aachen Deutschland
| | - Christian Mevissen
- Institut für Organische Chemie RWTH Aachen University Landoltweg 1 52074 Aachen Deutschland
| | - Saskia Huda
- Institut für Organische Chemie RWTH Aachen University Landoltweg 1 52074 Aachen Deutschland
| | - Christian Göb
- Institut für Anorganische Chemie RWTH Aachen University Landoltweg 1 52074 Aachen Deutschland
| | - Iris M. Oppel
- Institut für Anorganische Chemie RWTH Aachen University Landoltweg 1 52074 Aachen Deutschland
| | - Markus Albrecht
- Institut für Organische Chemie RWTH Aachen University Landoltweg 1 52074 Aachen Deutschland
| |
Collapse
|
8
|
Otero C, Carreño A, Polanco R, Llancalahuen FM, Arratia-Pérez R, Gacitúa M, Fuentes JA. Rhenium (I) Complexes as Probes for Prokaryotic and Fungal Cells by Fluorescence Microscopy: Do Ligands Matter? Front Chem 2019; 7:454. [PMID: 31297366 PMCID: PMC6606945 DOI: 10.3389/fchem.2019.00454] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 06/07/2019] [Indexed: 12/22/2022] Open
Abstract
Re(I) complexes have exposed highly suitable properties for cellular imaging (especially for fluorescent microscopy) such as low cytotoxicity, good cellular uptake, and differential staining. These features can be modulated or tuned by modifying the ligands surrounding the metal core. However, most of Re(I)-based complexes have been tested for non-walled cells, such as epithelial cells. In this context, it has been proposed that Re(I) complexes are inefficient to stain walled cells (i.e., cells protected by a rigid cell wall, such as bacteria and fungi), presumably due to this physical barrier hampering cellular uptake. More recently, a series of studies have been published showing that a suitable combination of ligands is useful for obtaining Re(I)-based complexes able to stain walled cells. This review summarizes the main characteristics of different fluorophores used in bioimage, remarking the advantages of d6-based complexes, and focusing on Re(I) complexes. In addition, we explored different structural features of these complexes that allow for obtaining fluorophores especially designed for walled cells (bacteria and fungi), with especial emphasis on the ligand choice. Since many pathogens correspond to bacteria and fungi (yeasts and molds), and considering that these organisms have been increasingly used in several biotechnological applications, development of new tools for their study, such as the design of new fluorophores, is fundamental and attractive.
Collapse
Affiliation(s)
- Carolina Otero
- Facultad de Medicina, Escuela de Química y Farmacia, Universidad Andres Bello, Santiago, Chile
| | - Alexander Carreño
- Center for Applied Nanosciences (CANS), Universidad Andres Bello, Santiago, Chile
| | - Rubén Polanco
- Facultad de Ciencias de la Vida, Centro de Biotecnología Vegetal, Universidad Andres Bello, Santiago, Chile
| | - Felipe M Llancalahuen
- Facultad de Medicina, Escuela de Química y Farmacia, Universidad Andres Bello, Santiago, Chile
| | - Ramiro Arratia-Pérez
- Center for Applied Nanosciences (CANS), Universidad Andres Bello, Santiago, Chile
| | - Manuel Gacitúa
- Facultad de Química y Biología, Universidad de Santiago de Chile (USACH), Santiago, Chile
| | - Juan A Fuentes
- Laboratorio de Genética y Patogénesis Bacteriana, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| |
Collapse
|
9
|
Van Craen D, Schlottmann M, Stahl W, Räuber C, Albrecht M. Kinetic investigation of the dissociation of dinuclear hierarchically assembled titanium( iv) helicates. Dalton Trans 2019; 48:10574-10580. [DOI: 10.1039/c9dt01065c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hierarchically assembled helicates consisting of lithium-bridged triscatecholate titanium(iv) complexes represent a powerful self-assembled supramolecular system with applications as e.g. molecular balances for the evaluation of weak interactions, stereoselectivity switches in asymmetric synthesis or molecular switches.
Collapse
Affiliation(s)
- David Van Craen
- Institut für Organische Chemie
- RWTH Aachen University
- 52074 Aachen
- Germany
| | | | - Wolfgang Stahl
- Institut für Physikalische Chemie
- RWTH Aachen University
- 52074 Aachen
- Germany
| | - Christoph Räuber
- Institut für Organische Chemie
- RWTH Aachen University
- 52074 Aachen
- Germany
| | - Markus Albrecht
- Institut für Organische Chemie
- RWTH Aachen University
- 52074 Aachen
- Germany
| |
Collapse
|
10
|
Mathieu E, Sipos A, Demeyere E, Phipps D, Sakaveli D, Borbas KE. Lanthanide-based tools for the investigation of cellular environments. Chem Commun (Camb) 2018; 54:10021-10035. [PMID: 30101249 DOI: 10.1039/c8cc05271a] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Biological probes constructed from lanthanides can provide a variety of readout signals, such as the luminescence of Eu(iii), Tb(iii), Yb(iii), Sm(iii) and Dy(iii), and the proton relaxation enhancement of Gd(iii) and Eu(ii). For numerous applications the intracellular delivery of the lanthanide probe is essential. Here, we review the methods for the intracellular delivery of non-targeted complexes (i.e. where the overall complex structure enhances cellular uptake), as well as complexes attached to a targeting unit (i.e. to a peptide or a small molecule) that facilitates delivery. The cellular applications of lanthanide-based supramolecules (dendrimers, metal organic frameworks) are covered briefly. Throughout, we emphasize the techniques that can confirm the intracellular localization of the lanthanides and those that enable the determination of the fate of the probes once inside the cell. Finally, we highlight methods that have not yet been applied in the context of lanthanide-based probes, but have been successful in the intracellular delivery of other metal-based probes.
Collapse
Affiliation(s)
- Emilie Mathieu
- Department of Chemistry, Ångström Laboratory, Uppsala University, Box 523, 75120, Uppsala, Sweden.
| | | | | | | | | | | |
Collapse
|
11
|
Kovacs D, Borbas KE. The role of photoinduced electron transfer in the quenching of sensitized Europium emission. Coord Chem Rev 2018. [DOI: 10.1016/j.ccr.2018.03.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
12
|
Zhang KY, Yu Q, Wei H, Liu S, Zhao Q, Huang W. Long-Lived Emissive Probes for Time-Resolved Photoluminescence Bioimaging and Biosensing. Chem Rev 2018; 118:1770-1839. [DOI: 10.1021/acs.chemrev.7b00425] [Citation(s) in RCA: 479] [Impact Index Per Article: 79.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Kenneth Yin Zhang
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, P. R. China
| | - Qi Yu
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, P. R. China
| | - Huanjie Wei
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, P. R. China
| | - Shujuan Liu
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, P. R. China
| | - Qiang Zhao
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, P. R. China
| | - Wei Huang
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, P. R. China
- Shaanxi
Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU), Xi’an 710072, P. R. China
- Key
Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced
Materials (IAM), Jiangsu National Synergetic Innovation Center for
Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), Nanjing 211800, P. R. China
| |
Collapse
|
13
|
Hamon N, Galland M, Le Fur M, Roux A, Duperray A, Grichine A, Andraud C, Le Guennic B, Beyler M, Maury O, Tripier R. Combining a pyclen framework with conjugated antenna for the design of europium and samarium luminescent bioprobes. Chem Commun (Camb) 2018; 54:6173-6176. [DOI: 10.1039/c8cc02035c] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Pyclen-based ligand bearing picolinate ILCT antenna forms highly luminescent one- and two-photon Eu(iii) and Sm(iii) complexes.
Collapse
Affiliation(s)
- Nadège Hamon
- Université de Brest
- UMR-CNRS 6521
- UFR des Sciences et Techniques 6 avenue Victor le Gorgeu
- Brest
- France
| | - Margaux Galland
- Université de Lyon
- ENS Lyon
- CNRS
- Université Lyon 1, Laboratoire de Chimie
- UMR 5182
| | - Mariane Le Fur
- Université de Brest
- UMR-CNRS 6521
- UFR des Sciences et Techniques 6 avenue Victor le Gorgeu
- Brest
- France
| | - Amandine Roux
- Université de Lyon
- ENS Lyon
- CNRS
- Université Lyon 1, Laboratoire de Chimie
- UMR 5182
| | | | | | - Chantal Andraud
- Université de Lyon
- ENS Lyon
- CNRS
- Université Lyon 1, Laboratoire de Chimie
- UMR 5182
| | - Boris Le Guennic
- Univ Rennes
- CNRS
- ISCR (Institut des Sciences Chimiques de Rennes) – UMR 6226
- Rennes
- France
| | - Maryline Beyler
- Université de Brest
- UMR-CNRS 6521
- UFR des Sciences et Techniques 6 avenue Victor le Gorgeu
- Brest
- France
| | - Olivier Maury
- Université de Lyon
- ENS Lyon
- CNRS
- Université Lyon 1, Laboratoire de Chimie
- UMR 5182
| | - Raphaël Tripier
- Université de Brest
- UMR-CNRS 6521
- UFR des Sciences et Techniques 6 avenue Victor le Gorgeu
- Brest
- France
| |
Collapse
|
14
|
Kovacs D, Lu X, Mészáros LS, Ott M, Andres J, Borbas KE. Photophysics of Coumarin and Carbostyril-Sensitized Luminescent Lanthanide Complexes: Implications for Complex Design in Multiplex Detection. J Am Chem Soc 2017; 139:5756-5767. [PMID: 28388066 DOI: 10.1021/jacs.6b11274] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Luminescent lanthanide (Ln(III)) complexes with coumarin or carbostyril antennae were synthesized and their photophysical properties evaluated using steady-state and time-resolved UV-vis spectroscopy. Ligands bearing distant hydroxycoumarin-derived antennae attached through triazole linkers were modest sensitizers for Eu(III) and Tb(III), whereas ligands with 7-amidocarbostyrils directly linked to the coordination site could reach good quantum yields for multiple Ln(III), including the visible emitters Sm(III) and Dy(III), and the near-infrared emitters Nd(III) and Yb(III). The highest lanthanide-centered luminescence quantum yields were 35% (Tb), 7.9% (Eu), 0.67% (Dy), and 0.18% (Sm). Antennae providing similar luminescence intensities with 2-4 Ln-emitters were identified. Photoredox quenching of the carbostyril antenna excited states was observed for all Eu(III)-complexes and should be sensitizing in the case of Yb(III); the scope of the process extends to Ln(III) for which it has not been seen previously, specifically Dy(III) and Sm(III). The proposed process is supported by photophysical and electrochemical data. A FRET-type mechanism was identified in architectures with both distant and close antennae for all of the Lns. This mechanism seems to be the only sensitizing one at long distance and probably contributes to the sensitization at shorter distances along with the triplet pathway. The complexes were nontoxic to either bacterial or mammalian cells. Complexes of an ester-functionalized ligand were taken up by bacteria in a concentration-dependent manner. Our results suggest that the effects of FRET and photoredox quenching should be taken into consideration when designing luminescent Ln complexes. These results also establish these Ln(III)-complexes for multiplex detection beyond the available two-color systems.
Collapse
Affiliation(s)
- Daniel Kovacs
- Department of Chemistry, Ångström Laboratory, Box 523, Uppsala University , Uppsala 75120, Sweden
| | - Xi Lu
- Department of Engineering Sciences, Ångström Laboratory, Box 534, Uppsala University , Uppsala 75121, Sweden
| | - Lívia S Mészáros
- Department of Chemistry, Ångström Laboratory, Box 523, Uppsala University , Uppsala 75120, Sweden
| | - Marjam Ott
- Department of Engineering Sciences, Ångström Laboratory, Box 534, Uppsala University , Uppsala 75121, Sweden
| | - Julien Andres
- Department of Chemistry, Ångström Laboratory, Box 523, Uppsala University , Uppsala 75120, Sweden
| | - K Eszter Borbas
- Department of Chemistry, Ångström Laboratory, Box 523, Uppsala University , Uppsala 75120, Sweden
| |
Collapse
|
15
|
Barry DE, Caffrey DF, Gunnlaugsson T. Lanthanide-directed synthesis of luminescent self-assembly supramolecular structures and mechanically bonded systems from acyclic coordinating organic ligands. Chem Soc Rev 2016; 45:3244-74. [PMID: 27137947 DOI: 10.1039/c6cs00116e] [Citation(s) in RCA: 156] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Herein some examples of the use of lanthanide ions (f-metal ions) to direct the synthesis of luminescent self-assembly systems (architectures) will be discussed. This area of lanthanide supramolecular chemistry is fast growing, thanks to the unique physical (magnetic and luminescent) and coordination properties of the lanthanides, which are often transferred to the resulting supermolecule. The emphasis herein will be on systems that are luminescent, and hence, generated by using either visibly emitting ions (such as Eu(III), Tb(III) and Sm(III)) or near infrared emitting ions (like Nd(III), Yb(III) and Er(III)), formed through the use of templating chemistry, by employing structurally simple ligands, possessing oxygen and nitrogen coordinating moieties. As the lanthanides have high coordination requirements, their use often allows for the formation of coordination compounds and supramolecular systems such as bundles, grids, helicates and interlocked molecules that are not synthetically accessible through the use of other commonly used templating ions such as transition metal ions. Hence, the use of the rare-earth metal ions can lead to the formation of unique and stable species in both solution and in the solid state, as well as functional and responsive structures.
Collapse
Affiliation(s)
- Dawn E Barry
- School of Chemistry and Trinity Biomedical Sciences Institute (TBSI), Trinity College Dublin, The University of Dublin, Dublin 2, Ireland.
| | | | | |
Collapse
|
16
|
Sy M, Nonat A, Hildebrandt N, Charbonnière LJ. Lanthanide-based luminescence biolabelling. Chem Commun (Camb) 2016; 52:5080-95. [DOI: 10.1039/c6cc00922k] [Citation(s) in RCA: 155] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Multiplexing, time-resolution, FRET…lanthanide-based biolabels reveal exceptional spectroscopic properties for bioanalytical applications.
Collapse
Affiliation(s)
- Mohamadou Sy
- Laboratoire d'Ingénierie Moléculaire Appliquée à l'Analyse
- IPHC
- UMR 7178 CNRS
- Université de Strasbourg
- ECPM
| | - Aline Nonat
- Laboratoire d'Ingénierie Moléculaire Appliquée à l'Analyse
- IPHC
- UMR 7178 CNRS
- Université de Strasbourg
- ECPM
| | - Niko Hildebrandt
- NanoBioPhotonics, Institut d'Electronique Fondamentale
- Université Paris-Saclay
- Université Paris-Sud
- CNRS
- Orsay
| | - Loïc J. Charbonnière
- Laboratoire d'Ingénierie Moléculaire Appliquée à l'Analyse
- IPHC
- UMR 7178 CNRS
- Université de Strasbourg
- ECPM
| |
Collapse
|
17
|
Yip YW, Law GL, Wong WT. A highly selective on–off–on responsive lanthanide(iii) based probe for recognition of copper and hydrogen sulfide. Dalton Trans 2016; 45:928-35. [DOI: 10.1039/c5dt03627e] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Highly selective EuL1 was developed for the detection of Cu(ii) ions with binding constant of 74 026 ± 2899 M−1 and a sensitive detection limit. The stable EuL1Cu showed a specific binding response to H2S with detection limit of 2.7 ± 0.1 μM. Its on–off–on luminescent response was observed by alternate addition of Cu(ii) and H2S ions.
Collapse
Affiliation(s)
- Yuk-Wang Yip
- State Key Laboratory for Chirosciences
- Department of Applied Biology and Chemical Technology
- The Hong Kong Polytechnic University
- Hong Kong SAR
- China
| | - Ga-Lai Law
- State Key Laboratory for Chirosciences
- Department of Applied Biology and Chemical Technology
- The Hong Kong Polytechnic University
- Hong Kong SAR
- China
| | - Wing-Tak Wong
- State Key Laboratory for Chirosciences
- Department of Applied Biology and Chemical Technology
- The Hong Kong Polytechnic University
- Hong Kong SAR
- China
| |
Collapse
|
18
|
Bui AT, Grichine A, Brasselet S, Duperray A, Andraud C, Maury O. Unexpected Efficiency of a Luminescent Samarium(III) Complex for Combined Visible and Near-Infrared Biphotonic Microscopy. Chemistry 2015; 21:17757-61. [DOI: 10.1002/chem.201503711] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 09/22/2015] [Indexed: 02/06/2023]
|
19
|
Liao Z, Tropiano M, Mantulnikovs K, Faulkner S, Vosch T, Sørensen TJ. Spectrally resolved confocal microscopy using lanthanide centred near-IR emission. Chem Commun (Camb) 2015; 51:2372-5. [PMID: 25563394 DOI: 10.1039/c4cc09618e] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The narrow, near infrared (NIR) emission from lanthanide ions has attracted great interest, particularly with regard to developing tools for bioimaging, where the long lifetimes of lanthanide excited states can be exploited to address problems arising from autofluorescence and sample transparency. Despite the promise of lanthanide-based probes for near-IR imaging, few reports on their use are present in the literature. Here, we demonstrate that images can be recorded by monitoring NIR emission from lanthanide complexes using detectors, optical elements and a microscope that were primarily designed for the visible part of the spectrum.
Collapse
Affiliation(s)
- Zhiyu Liao
- Nano-Science Center & Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100 København ø, Denmark.
| | | | | | | | | | | |
Collapse
|
20
|
Søndergaard RV, Christensen NM, Henriksen JR, Kumar EKP, Almdal K, Andresen TL. Facing the Design Challenges of Particle-Based Nanosensors for Metabolite Quantification in Living Cells. Chem Rev 2015; 115:8344-78. [PMID: 26244372 DOI: 10.1021/cr400636x] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Rikke V Søndergaard
- Department of Micro- and Nanotechnology, Technical University of Denmark , Produktionstorvet 423, 2800 Lyngby, Denmark
| | - Nynne M Christensen
- Department of Micro- and Nanotechnology, Technical University of Denmark , Produktionstorvet 423, 2800 Lyngby, Denmark
| | - Jonas R Henriksen
- Department of Micro- and Nanotechnology, Technical University of Denmark , Produktionstorvet 423, 2800 Lyngby, Denmark
| | - E K Pramod Kumar
- Department of Micro- and Nanotechnology, Technical University of Denmark , Produktionstorvet 423, 2800 Lyngby, Denmark
| | - Kristoffer Almdal
- Department of Micro- and Nanotechnology, Technical University of Denmark , Produktionstorvet 423, 2800 Lyngby, Denmark
| | - Thomas L Andresen
- Department of Micro- and Nanotechnology, Technical University of Denmark , Produktionstorvet 423, 2800 Lyngby, Denmark
| |
Collapse
|
21
|
Abstract
This review presents an accessible discussion of the application of trivalent lanthanide ions in both optical and magnetic resonance imaging.
Collapse
|
22
|
Liao Z, Tropiano M, Faulkner S, Vosch T, Sørensen TJ. Time-resolved confocal microscopy using lanthanide centred near-IR emission. RSC Adv 2015. [DOI: 10.1039/c5ra15759e] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Time-resolved NIR imaging of lanthanide coated silica particles using Photon Arrival Time Imaging allows fast acquisition of high contrast images based on the probe luminescence lifetime.
Collapse
Affiliation(s)
- Zhiyu Liao
- Nano-Science Center & Department of Chemistry
- University of Copenhagen
- Denmark
| | - Manuel Tropiano
- Chemistry Research Laboratory
- Oxford University
- Oxford OX1 3TA
- UK
| | | | - Tom Vosch
- Nano-Science Center & Department of Chemistry
- University of Copenhagen
- Denmark
| | | |
Collapse
|
23
|
Pershagen E, Borbas KE. Multiplex Detection of Enzymatic Activity with Responsive Lanthanide-Based Luminescent Probes. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201408560] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
24
|
Pershagen E, Borbas KE. Multiplex detection of enzymatic activity with responsive lanthanide-based luminescent probes. Angew Chem Int Ed Engl 2014; 54:1787-90. [PMID: 25504579 DOI: 10.1002/anie.201408560] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Revised: 10/21/2014] [Indexed: 11/06/2022]
Abstract
Multiplex analyte detection in complex dynamic systems is desirable for the investigation of cellular communication networks as well as in medical diagnostics. A family of lanthanide-based responsive luminescent probes for multiplex detection is reported. The high modularity of the probe design enabled the rapid assembly of both green and red emitters for a large variety of analytes by the simple exchange of the lanthanide or an analyte-cleavable caging group, respectively. The real-time three-color detection of up to three analytes was demonstrated, thus setting the stage for the non-invasive investigation of interconnected biological processes.
Collapse
Affiliation(s)
- Elias Pershagen
- Department of Chemistry-BMC, Uppsala University, Box 576, Uppsala, 75123 (Sweden)
| | | |
Collapse
|
25
|
Abstract
Lanthanide bioprobes and bioconjugates are ideal luminescent stains in view of their low propensity to photobleaching, sharp emission lines and long excited state lifetimes permitting time-resolved detection for enhanced sensitivity. We show here how the interplay between physical, chemical and biochemical properties allied to microfluidics engineering leads to self-assembled dinuclear lanthanide luminescent probes illuminating live cells and selectively detecting biomarkers expressed by cancerous human breast cells.
Collapse
Affiliation(s)
- Jean-Claude G Bünzli
- Institute of Chemical Sciences and Engineering , École Polytechnique Fédérale de Lausanne , BCH 1402, 1015 Lausanne , Switzerland
| |
Collapse
|
26
|
Peterson KL, Dang JV, Weitz EA, Lewandowski C, Pierre VC. Effect of lanthanide complex structure on cell viability and association. Inorg Chem 2014; 53:6013-21. [PMID: 24901440 PMCID: PMC4060611 DOI: 10.1021/ic500282n] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A systematic study of the effect of hydrophobicity and charge on the cell viability and cell association of lanthanide metal complexes is presented. The terbium luminescent probes feature a macrocyclic polyaminocarboxylate ligand (DOTA) in which the hydrophobicity of the antenna and that of the carboxyamide pendant arms are independently varied. Three sensitizing antennas were investigated in terms of their function in vitro: 2-methoxyisophthalamide (IAM(OMe)), 2-hydroxyisophthalamide (IAM), and 6-methylphenanthridine (Phen). Of these complexes, Tb-DOTA-IAM exhibited the highest quantum yield, although the higher cell viability and more facile synthesis of the structurally related Tb-DOTA-IAM(OMe) platform renders it more attractive. Further modification of this latter core structure with carboxyamide arms featuring hydrophobic benzyl, hexyl, and trifluoro groups as well as hydrophilic amino acid based moieties generated a family of complexes that exhibit high cell viability (ED50 > 300 μM) regardless of the lipophilicity or the overall complex charge. Only the hexyl-substituted complex reduced cell viability to 60% in the presence of 100 μM complex. Additionally, cellular association was investigated by ICP-MS and fluorescence microscopy. Surprisingly, the hydrophobic moieties did not increase cell association in comparison to the hydrophilic amino acid derivatives. It is thus postulated that the hydrophilic nature of the 2-methoxyisophthalamide antenna (IAM(OMe)) disfavors the cellular association of these complexes. As such, responsive luminescent probes based on this scaffold would be appropriate for the detection of extracellular species.
Collapse
Affiliation(s)
- Katie L Peterson
- Department of Chemistry, University of Minnesota , Minneapolis, Minnesota 55455, United States
| | | | | | | | | |
Collapse
|
27
|
Lu Y, Lu J, Zhao J, Cusido J, Raymo FM, Yuan J, Yang S, Leif RC, Huo Y, Piper JA, Paul Robinson J, Goldys EM, Jin D. On-the-fly decoding luminescence lifetimes in the microsecond region for lanthanide-encoded suspension arrays. Nat Commun 2014; 5:3741. [PMID: 24796249 PMCID: PMC4024748 DOI: 10.1038/ncomms4741] [Citation(s) in RCA: 119] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2014] [Accepted: 03/27/2014] [Indexed: 12/23/2022] Open
Abstract
Significant multiplexing capacity of optical time-domain coding has been recently demonstrated by tuning luminescence lifetimes of the upconversion nanoparticles called 'τ-Dots'. It provides a large dynamic range of lifetimes from microseconds to milliseconds, which allows creating large libraries of nanotags/microcarriers. However, a robust approach is required to rapidly and accurately measure the luminescence lifetimes from the relatively slow-decaying signals. Here we show a fast algorithm suitable for the microsecond region with precision closely approaching the theoretical limit and compatible with the rapid scanning cytometry technique. We exploit this approach to further extend optical time-domain multiplexing to the downconversion luminescence, using luminescence microspheres wherein lifetimes are tuned through luminescence resonance energy transfer. We demonstrate real-time discrimination of these microspheres in the rapid scanning cytometry, and apply them to the multiplexed probing of pathogen DNA strands. Our results indicate that tunable luminescence lifetimes have considerable potential in high-throughput analytical sciences.
Collapse
Affiliation(s)
- Yiqing Lu
- Advanced Cytometry Laboratories, ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP), Macquarie University, Sydney, New South Wales 2109, Australia
| | - Jie Lu
- Advanced Cytometry Laboratories, ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP), Macquarie University, Sydney, New South Wales 2109, Australia
| | - Jiangbo Zhao
- Advanced Cytometry Laboratories, ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP), Macquarie University, Sydney, New South Wales 2109, Australia
| | - Janet Cusido
- Laboratory for Molecular Photonics, University of Miami, 1301 Memorial Drive, Coral Gables, Florida 33146-0431, USA
| | - Françisco M Raymo
- Laboratory for Molecular Photonics, University of Miami, 1301 Memorial Drive, Coral Gables, Florida 33146-0431, USA
| | - Jingli Yuan
- State Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, Dalian 116024, China
| | - Sean Yang
- Newport Instruments, 3345 Hopi Place, San Diego, California 92117-3516, USA
| | - Robert C. Leif
- Newport Instruments, 3345 Hopi Place, San Diego, California 92117-3516, USA
| | - Yujing Huo
- Department of Electronic Engineering, Tsinghua University, Beijing 100084, China
| | - James A. Piper
- Advanced Cytometry Laboratories, ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP), Macquarie University, Sydney, New South Wales 2109, Australia
| | - J Paul Robinson
- Purdue University Cytometry Laboratories, Bindley Bioscience Center, Purdue University, West Lafayette, Indiana 47907, USA
| | - Ewa M. Goldys
- Advanced Cytometry Laboratories, ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP), Macquarie University, Sydney, New South Wales 2109, Australia
| | - Dayong Jin
- Advanced Cytometry Laboratories, ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP), Macquarie University, Sydney, New South Wales 2109, Australia
- Purdue University Cytometry Laboratories, Bindley Bioscience Center, Purdue University, West Lafayette, Indiana 47907, USA
| |
Collapse
|
28
|
Coogan MP, Fernández-Moreira V. Progress with, and prospects for, metal complexes in cell imaging. Chem Commun (Camb) 2014; 50:384-99. [DOI: 10.1039/c3cc45229h] [Citation(s) in RCA: 156] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
29
|
Gamba I, Rama G, Ortega-Carrasco E, Maréchal JD, Martínez-Costas J, Eugenio Vázquez M, López MV. Programmed stereoselective assembly of DNA-binding helical metallopeptides. Chem Commun (Camb) 2014; 50:11097-100. [DOI: 10.1039/c4cc03606a] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We have applied solid phase peptide synthesis methods for the construction of peptide ligands that coordinate Fe(ii) ions and fold into chiral peptide helicates that show great affinity and chiral selectivity for three-way DNA junctions and promising cell-internalization properties.
Collapse
Affiliation(s)
- Ilaria Gamba
- Departamento de Química Inorgánica
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS)
- Universidade de Santiago de Compostela
- 15782 Santiago de Compostela, Spain
| | - Gustavo Rama
- Departamento de Química Inorgánica
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS)
- Universidade de Santiago de Compostela
- 15782 Santiago de Compostela, Spain
| | | | | | - José Martínez-Costas
- Departamento de Bioquímica y Biología Molecular
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS)
- Universidade de Santiago de Compostela
- 15782 Santiago de Compostela, Spain
| | - M. Eugenio Vázquez
- Departamento de Química Orgánica
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS)
- Universidade de Santiago de Compostela
- 15782 Santiago de Compostela, Spain
| | - Miguel Vázquez López
- Departamento de Química Inorgánica
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS)
- Universidade de Santiago de Compostela
- 15782 Santiago de Compostela, Spain
| |
Collapse
|
30
|
Ju J, Zhang R, He S, Chen W. Nitrogen-doped graphene quantum dots-based fluorescent probe for the sensitive turn-on detection of glutathione and its cellular imaging. RSC Adv 2014. [DOI: 10.1039/c4ra10601f] [Citation(s) in RCA: 184] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Fluorescence turn-on sensor based on nitrogen-doped graphene quantum dots can be used for glutathione detection in living cells.
Collapse
Affiliation(s)
- Jian Ju
- State Key Laboratory of Electroanalytical Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022, China
| | - Ruizhong Zhang
- State Key Laboratory of Electroanalytical Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022, China
- University of Chinese Academy of Sciences
| | - Shuijian He
- State Key Laboratory of Electroanalytical Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022, China
- University of Chinese Academy of Sciences
| | - Wei Chen
- State Key Laboratory of Electroanalytical Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022, China
| |
Collapse
|
31
|
Baggaley E, Botchway SW, Haycock JW, Morris H, Sazanovich IV, Williams JAG, Weinstein JA. Long-lived metal complexes open up microsecond lifetime imaging microscopy under multiphoton excitation: from FLIM to PLIM and beyond. Chem Sci 2014. [DOI: 10.1039/c3sc51875b] [Citation(s) in RCA: 147] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
32
|
Mauro M, Aliprandi A, Septiadi D, Kehr NS, De Cola L. When self-assembly meets biology: luminescent platinum complexes for imaging applications. Chem Soc Rev 2014; 43:4144-66. [DOI: 10.1039/c3cs60453e] [Citation(s) in RCA: 249] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Self-assembled luminescent structures based on platinum complexes. A new tool for bioimaging?
Collapse
Affiliation(s)
- Matteo Mauro
- ISIS & icFRC
- Université de Strasbourg & CNRS
- 67000 Strasbourg, France
- University of Strasbourg Institute for Advanced Study (USIAS)
- 67083 Strasbourg, France
| | | | - Dedy Septiadi
- ISIS & icFRC
- Université de Strasbourg & CNRS
- 67000 Strasbourg, France
| | - Nermin Seda Kehr
- ISIS & icFRC
- Université de Strasbourg & CNRS
- 67000 Strasbourg, France
| | - Luisa De Cola
- ISIS & icFRC
- Université de Strasbourg & CNRS
- 67000 Strasbourg, France
| |
Collapse
|
33
|
Baggaley E, Sazanovich IV, Williams JAG, Haycock JW, Botchway SW, Weinstein JA. Two-photon phosphorescence lifetime imaging of cells and tissues using a long-lived cyclometallated Npyridyl^Cphenyl^Npyridyl Pt(ii) complex. RSC Adv 2014. [DOI: 10.1039/c4ra04489d] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The ‘longer’ picture: emission bio-imaging over microsecond time frame with scanning, multi-photon posphorescence-lifetime-imaging-microscopy (PLIM).
Collapse
Affiliation(s)
| | - Igor V. Sazanovich
- Department of Chemistry
- University of Sheffield
- Sheffield S3 7HF, U.K
- Central Laser Facility
- Science and Technology Facilities Council
| | | | - John W. Haycock
- Department of Engineering Materials
- The Kroto Research Institute
- University of Sheffield
- Sheffield, UK
| | | | | |
Collapse
|
34
|
Time-Resolved Emission Imaging Microscopy Using Phosphorescent Metal Complexes: Taking FLIM and PLIM to New Lengths. LUMINESCENT AND PHOTOACTIVE TRANSITION METAL COMPLEXES AS BIOMOLECULAR PROBES AND CELLULAR REAGENTS 2014. [DOI: 10.1007/430_2014_168] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
35
|
Cámara V, Masciocchi N, Gil-Rubio J, Vicente J. Triple Helicates with Golden Strands: Self-Assembly of M2Au6Complexes from Gold(I) Metallaligands and Iron(II), Cobalt(II) or Zinc(II) Cations. Chemistry 2013; 20:1389-402. [DOI: 10.1002/chem.201303744] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Indexed: 11/05/2022]
|
36
|
Gill MR, Cecchin D, Walker MG, Mulla RS, Battaglia G, Smythe C, Thomas JA. Targeting the endoplasmic reticulum with a membrane-interactive luminescent ruthenium(ii) polypyridyl complex†Electronic supplementary information (ESI) available: Experimental details, characterization of 2 and Fig. S1-S6. See DOI: 10.1039/c3sc51725jClick here for additional data file. Chem Sci 2013; 4:4512-4519. [PMID: 25580209 PMCID: PMC4285105 DOI: 10.1039/c3sc51725j] [Citation(s) in RCA: 104] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Accepted: 10/02/2013] [Indexed: 01/08/2023] Open
Abstract
The characterization and bioactivity of the dinuclear ruthenium(ii) complex [(Ru(DIP)2)2(tpphz)]4+ (DIP = 4,7-diphenyl-1,10-phenanthroline and tpphz = tetrapyrido[3,2-a:2',3'-c:3'',2''-h:2''',3'''-j]phenazine) is reported. This new complex is found to be luminescent in acetonitrile, where excitation into MLCT (metal-to-ligand charge-transfer) bands in the visible area of the spectrum (λex = 450 nm, ε = 45 000 M-1 cm-1) result in red emission (λem,max = 620 nm, ΦMLCT = 0.017). Aqueous in vitro binding studies indicate that this complex binds to duplex DNA with an affinity of 1.8 × 106 M-1 through a non-classical groove-binding interaction, however, unlike the parent complex [(Ru(phen)2)2(tpphz)]4+ (phen = 1,10-phenanthroline), it also displays an increase in MLCT luminescence on addition of liposomes. Confocal microscopy and TEM studies show that this lipophilic complex targets the endoplasmic reticulum of eukaryotic cells, where it functions as an imaging agent for this organelle, and cytotoxicity studies in human cancer cell lines indicate a comparable potency to the anti-cancer drug cisplatin.
Collapse
Affiliation(s)
- Martin R Gill
- Department of Chemistry , University of Sheffield , Sheffield , UK . ; ; Tel: +44 (0)114 22 29325 ; Department of Biomedical Science , University of Sheffield , Sheffield , UK . ; Fax: +44 (0)114 222 2787 ; Tel: +44 (0)114 222 2320
| | - Denis Cecchin
- Department of Chemistry , University College London , London , UK . ; Tel: +44 (0)20 7679 4623
| | - Michael G Walker
- Department of Chemistry , University of Sheffield , Sheffield , UK . ; ; Tel: +44 (0)114 22 29325
| | - Raminder S Mulla
- Department of Chemistry , University of Sheffield , Sheffield , UK . ; ; Tel: +44 (0)114 22 29325
| | - Giuseppe Battaglia
- Department of Chemistry , University College London , London , UK . ; Tel: +44 (0)20 7679 4623
| | - Carl Smythe
- Department of Biomedical Science , University of Sheffield , Sheffield , UK . ; ; Tel: +44 (0)114 222 2320
| | - Jim A Thomas
- Department of Chemistry , University of Sheffield , Sheffield , UK . ; ; Tel: +44 (0)114 22 29325
| |
Collapse
|
37
|
Zhang M, Le HN, Jiang XQ, Yin BC, Ye BC. Time-Resolved Probes Based on Guanine/Thymine-Rich DNA-Sensitized Luminescence of Terbium(III). Anal Chem 2013; 85:11665-74. [DOI: 10.1021/ac4034054] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Min Zhang
- Lab of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science & Technology, Meilong Road 130, Shanghai, 200237, China
| | - Huynh-Nhu Le
- Lab of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science & Technology, Meilong Road 130, Shanghai, 200237, China
| | - Xiao-Qin Jiang
- Lab of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science & Technology, Meilong Road 130, Shanghai, 200237, China
| | - Bin-Cheng Yin
- Lab of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science & Technology, Meilong Road 130, Shanghai, 200237, China
| | - Bang-Ce Ye
- Lab of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science & Technology, Meilong Road 130, Shanghai, 200237, China
| |
Collapse
|
38
|
Chauvin AS, Thomas F, Song B, Vandevyver CDB, Bünzli JCG. Synthesis and cell localization of self-assembled dinuclear lanthanide bioprobes. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2013; 371:20120295. [PMID: 23776298 DOI: 10.1098/rsta.2012.0295] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Lanthanide bioprobes and bioconjugates are ideal luminescent stains in view of their low propensity to photobleaching, sharp emission lines and long excited state lifetimes permitting time-resolved detection for enhanced sensitivity. In this paper, we expand our previous work which demonstrated that self-assembled dinuclear triple-stranded helicates [Ln2(L(C2X))3] behave as excellent cell and tissue labels in immunocytochemical and immunohistochemical assays. The synthetic strategy of the hexadentate ditopic ligands incorporating dipicolinic acid, benzimidazole units and polyoxyethylene pendants is revisited in order to provide a more straightforward route and to give access to further functionalization of the polyoxyethylene arms by incorporating a terminal function X. Formation of the helicates [Ln2(L(C2X))3] (X=COOH, CH2OH, COEt, NH2, phthalimide) is ascertained by several experimental techniques and their stability tested against diethylenetriaminepentaacetate. Their photophysical properties (quantum yield, lifetime, radiative lifetime and sensitization efficiency) are presented and compared with those of the parent helicates [Ln2(L(C2))3]. Finally, the cellular uptake of five Eu(III) helicates is monitored by time-resolved luminescence microscopy and their localization in HeLa cells established by co-staining experiments.
Collapse
Affiliation(s)
- Anne-Sophie Chauvin
- Laboratory of Lanthanide Supramolecular Chemistry, École Polytechnique Fédérale de Lausanne, BCH 1404, 1015 Lausanne, Switzerland
| | | | | | | | | |
Collapse
|
39
|
Nchimi-Nono K, Wegner KD, Lindén S, Lecointre A, Ehret-Sabatier L, Shakir S, Hildebrandt N, Charbonnière LJ. Activated phosphonated trifunctional chelates for highly sensitive lanthanide-based FRET immunoassays applied to total prostate specific antigen detection. Org Biomol Chem 2013; 11:6493-501. [DOI: 10.1039/c3ob40898a] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
40
|
Ryan PE, Guénée L, Piguet C. Monitoring helical twists and effective molarities in dinuclear triple-stranded lanthanide helicates. Dalton Trans 2013; 42:11047-55. [DOI: 10.1039/c3dt50941a] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
41
|
|
42
|
Deiters E, Eliseeva SV, Bünzli JCG. Self-assembly of a helical zinc-europium complex: speciation in aqueous solution and luminescence. Front Chem 2013; 1:15. [PMID: 24790943 PMCID: PMC3982565 DOI: 10.3389/fchem.2013.00015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Accepted: 08/13/2013] [Indexed: 11/13/2022] Open
Abstract
Two new tridentate(NNO)-bidentate(NN) compartmental ligands, HL5 and HL6, are synthesized from pyridine and benzimidazole synthons. They react in aqueous solution under physiological conditions with ZnII, LnIII, or a mixture thereof, to yield complexes of different stoichiometries, 1:3, 2:2, 2:3, 1:1:3, the speciation of which is established by UV-visible titrations and ESI mass spectrometry. Photophysical studies of the EuIII-containing solutions in Tris-HCl 0.1 M (pH = 7.4) show that lanthanide luminescence arises from a unique N6O3 coordination site with pseudo D3 symmetry. Relevant parameters such as crystal field splitting, lifetime, radiative lifetime, and intrinsic quantum yield perfectly match those reported for dinuclear 4f-4f helicates in which the EuIII ion has the same coordination environment.
Collapse
Affiliation(s)
- Emmanuel Deiters
- Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne Lausanne, Switzerland
| | - Svetlana V Eliseeva
- Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne Lausanne, Switzerland ; Centre de Biophysique Moléculaire, Centre National de la Recherche Scientifique UPR 4301 Orléans, France
| | - Jean-Claude G Bünzli
- Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne Lausanne, Switzerland ; Department of Advanced Materials Chemistry, WCU Center for Next Generation Photovoltaic Systems, Korea University Sejong-si, South Korea
| |
Collapse
|
43
|
Lu Y, Xi P, Piper JA, Huo Y, Jin D. Time-gated orthogonal scanning automated microscopy (OSAM) for high-speed cell detection and analysis. Sci Rep 2012; 2:837. [PMID: 23150787 PMCID: PMC3495287 DOI: 10.1038/srep00837] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Accepted: 10/15/2012] [Indexed: 11/17/2022] Open
Abstract
We report a new development of orthogonal scanning automated microscopy (OSAM) incorporating time-gated detection to locate rare-event organisms regardless of autofluorescent background. The necessity of using long-lifetime (hundreds of microseconds) luminescent biolabels for time-gated detection implies long integration (dwell) time, resulting in slow scan speed. However, here we achieve high scan speed using a new 2-step orthogonal scanning strategy to realise on-the-fly time-gated detection and precise location of 1-μm lanthanide-doped microspheres with signal-to-background ratio of 8.9. This enables analysis of a 15 mm × 15 mm slide area in only 3.3 minutes. We demonstrate that detection of only a few hundred photoelectrons within 100 μs is sufficient to distinguish a target event in a prototype system using ultraviolet LED excitation. Cytometric analysis of lanthanide labelled Giardia cysts achieved a signal-to-background ratio of two orders of magnitude. Results suggest that time-gated OSAM represents a new opportunity for high-throughput background-free biosensing applications.
Collapse
Affiliation(s)
- Yiqing Lu
- Advanced Cytometry Laboratories, MQ Biofocus Research Centre, Macquarie University, Sydney, NSW 2109, Australia.
| | | | | | | | | |
Collapse
|
44
|
Mohandessi S, Rajendran M, Magda D, Miller LW. Cell-penetrating peptides as delivery vehicles for a protein-targeted terbium complex. Chemistry 2012; 18:10825-9. [PMID: 22807190 DOI: 10.1002/chem.201201805] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Indexed: 11/07/2022]
Abstract
Release after transmission: Arginine-rich, cell-penetrating peptides (CPPs) mediate cytoplasmic delivery of trimethoprim (TMP)-terbium complex conjugates and selective, intracellular labeling of E. coli dihydrofolate reductase (eDHFR) fusion proteins. A disulfide bond linking CPP and cargo is reduced following uptake. CPP conjugation can be used to deliver otherwise cell-impermeable, ligand-fluorophore conjugates.
Collapse
Affiliation(s)
- Shabnam Mohandessi
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL 60607, USA
| | | | | | | |
Collapse
|
45
|
Avti PK, Sitharaman B. Luminescent single-walled carbon nanotube-sensitized europium nanoprobes for cellular imaging. Int J Nanomedicine 2012; 7:1953-64. [PMID: 22619533 PMCID: PMC3356200 DOI: 10.2147/ijn.s29545] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Lanthanoid-based optical probes with excitation wavelengths in the ultra-violet (UV) range (300–325 nm) have been widely developed as imaging probes. Efficient cellular imaging requires that lanthanoid optical probes be excited at visible wavelengths, to avoid UV damage to cells. The efficacy of europium-catalyzed single-walled carbon nanotubes (Eu-SWCNTs), as visible nanoprobes for cellular imaging, is reported in this study. Confocal fluorescence microscopy images of breast cancer cells (SK-BR-3 and MCF-7) and normal cells (NIH 3T3), treated with Eu-SWCNT at 0.2 μg/mL concentration, showed bright red luminescence after excitation at 365 nm and 458 nm wavelengths. Cell viability analysis showed no cytotoxic effects after the incubation of cells with Eu-SWCNTs at this concentration. Eu-SWCNT uptake is via the endocytosis mechanism. Labeling efficiency, defined as the percentage of incubated cells that uptake Eu-SWCNT, was 95%–100% for all cell types. The average cellular uptake concentration was 6.68 ng Eu per cell. Intracellular localization was further corroborated by transmission electron microscopy and Raman microscopy. The results indicate that Eu-SWCNT shows potential as a novel cellular imaging probe, wherein SWCNT sensitizes Eu3+ ions to allow excitation at visible wavelengths, and stable time-resolved red emission. The ability to functionalize biomolecules on the exterior surface of Eu-SWCNT makes it an excellent candidate for targeted cellular imaging.
Collapse
Affiliation(s)
- Pramod K Avti
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794-5281, USA
| | | |
Collapse
|
46
|
Szíjjártó C, Pershagen E, Borbas KE. Functionalisation of lanthanide complexes via microwave-enhanced Cu(i)-catalysed azide–alkyne cycloaddition. Dalton Trans 2012; 41:7660-9. [DOI: 10.1039/c2dt30569k] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
47
|
Xi P, Cheng K, Sun X, Zeng Z, Sun S. Magnetic Fe3O4 nanoparticles coupled with a fluorescent Eu complex for dual imaging applications. Chem Commun (Camb) 2012; 48:2952-4. [DOI: 10.1039/c2cc18122c] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
48
|
Cheng Z, Ma P, Hou Z, Wang W, Dai Y, Zhai X, Lin J. YVO4:Eu3+functionalized porous silica submicrospheres as delivery carriers of doxorubicin. Dalton Trans 2012; 41:1481-9. [DOI: 10.1039/c1dt11399b] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
49
|
Katia NN, Lecointre A, Regueiro-Figueroa M, Platas-Iglesias C, Charbonnière LJ. Nonmacrocyclic Luminescent Lanthanide Complexes Stable in Biological Media. Inorg Chem 2011; 50:1689-97. [DOI: 10.1021/ic102173f] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Nchimi Nono Katia
- Laboratoire d’Ingénierie Moléculaire Appliquée à l’Analyse, IPHC, UMR 7178 CNRS/UdS, ECPM, Bâtiment R1N0, 25 Rue Becquerel, 67087, Strasbourg Cedex 02, France
| | - Alexandre Lecointre
- Laboratoire d’Ingénierie Moléculaire Appliquée à l’Analyse, IPHC, UMR 7178 CNRS/UdS, ECPM, Bâtiment R1N0, 25 Rue Becquerel, 67087, Strasbourg Cedex 02, France
| | - Martín Regueiro-Figueroa
- Departamento de Química Fundamental, Universidade da Coruña, Campus de Zapateira, Rúa da Fraga 10, 15008, A Coruña, Spain
| | - Carlos Platas-Iglesias
- Departamento de Química Fundamental, Universidade da Coruña, Campus de Zapateira, Rúa da Fraga 10, 15008, A Coruña, Spain
| | - Loïc J. Charbonnière
- Laboratoire d’Ingénierie Moléculaire Appliquée à l’Analyse, IPHC, UMR 7178 CNRS/UdS, ECPM, Bâtiment R1N0, 25 Rue Becquerel, 67087, Strasbourg Cedex 02, France
| |
Collapse
|
50
|
|