1
|
Naderer C, Krobath H, Sivun D, Gvindzhiliia G, Klar TA, Jacak J. New buffer systems for photopainting of single biomolecules. RSC APPLIED INTERFACES 2024; 1:110-121. [PMID: 39166527 PMCID: PMC10805099 DOI: 10.1039/d3lf00125c] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 10/03/2023] [Indexed: 08/23/2024]
Abstract
We present newly developed buffer systems that significantly improve the efficiency of a photochemically induced surface modification at the single molecule level. Buffers with paramagnetic cations and radical oxygen promoting species facilitate laser-assisted protein adsorption by photobleaching (LAPAP) of single fluorescently labelled oligonucleotides or biotin onto multi-photon-lithography-structured 2D and 3D acrylate scaffolds. Single molecule fluorescence microscopy has been used to quantify photopainting efficiency. We identify specific cation interaction sites for members of the cyanine, coumarin and rhodamine classes of fluorophores using quantum mechanical calculations. We show that our buffer systems provide an up to three-fold LAPAP-efficiency increase for the cyanine fluorophore, while keeping excitation parameters constant.
Collapse
Affiliation(s)
- Christoph Naderer
- School of Medical Engineering and Applied Social Sciences, University of Applied Sciences Upper Austria Garnisonstraße 21 4020 Linz Austria
| | - Heinrich Krobath
- Institute of Theoretical Physics, Johannes Kepler University Linz Altenberger Straße 69 4040 Linz Austria
| | - Dmitry Sivun
- School of Medical Engineering and Applied Social Sciences, University of Applied Sciences Upper Austria Garnisonstraße 21 4020 Linz Austria
| | - Georgii Gvindzhiliia
- Institute of Applied Physics, Johannes Kepler University Linz Altenberger Straße 69 4040 Linz Austria
| | - Thomas A Klar
- Institute of Applied Physics, Johannes Kepler University Linz Altenberger Straße 69 4040 Linz Austria
| | - Jaroslaw Jacak
- School of Medical Engineering and Applied Social Sciences, University of Applied Sciences Upper Austria Garnisonstraße 21 4020 Linz Austria
| |
Collapse
|
2
|
Kunfi A, Ábrahám Á, Gyulai G, Kiss É, London G. Light‐Induced and Thermal Isomerization of Azobenzenes on Immobilized Gold Nanoparticle Aggregates. Chempluschem 2022; 87:e202200153. [DOI: 10.1002/cplu.202200153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/24/2022] [Indexed: 11/07/2022]
Affiliation(s)
- Attila Kunfi
- Research Centre for Natural Sciences: Termeszettudomanyi Kutatokozpont Institute of Organic Chemistry HUNGARY
| | - Ágnes Ábrahám
- Eötvös Loránd Tudományegyetem: Eotvos Lorand Tudomanyegyetem Laboratory of Interfaces and Nanostructures HUNGARY
| | - Gergő Gyulai
- Eötvös Loránd Tudományegyetem: Eotvos Lorand Tudomanyegyetem Laboratory of Interfaces and Nanostructures HUNGARY
| | - Éva Kiss
- Eötvös Loránd Tudományegyetem: Eotvos Lorand Tudomanyegyetem Laboratory of Interfaces and Nanostructures HUNGARY
| | - Gabor London
- Research Centre for Natural Sciences Institute of Organic Chemistry Magyar tudósok körűtja 2. 1117 Budapest HUNGARY
| |
Collapse
|
3
|
Arndt NB, Schlüter F, Böckmann M, Adolphs T, Arlinghaus HF, Doltsinis NL, Ravoo BJ. Self-Assembled Monolayers of Arylazopyrazoles on Glass and Silicon Oxide: Photoisomerization and Photoresponsive Wettability. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:735-742. [PMID: 34989243 DOI: 10.1021/acs.langmuir.1c02651] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Surface coatings that respond to external influences and change their physical properties upon application of external stimuli are of great interest, with light being a particularly desirable choice. Photoswitches such as azobenzenes have been employed in a range of photoresponsive coatings. One striking change in physical property of many photoresponsive coatings is their responsive wettability upon illumination. In this work, we present photoswitchable self-assembled monolayers based on arylazopyrazoles (AAPs). In solution, AAPs offer significant improvements in terms of the photostationary state, thermal stability, and fatigue resistance. The AAP photoswitch is coupled to triethoxysilanes for an easy, one-step functionalization of glass and silicon oxide surfaces. We show the synthesis of AAP-based silanes and the successful surface functionalization, and we confirm the excellent photoswitchability of the AAPs in a self-assembled monolayer upon alternating irradiation with UV (365 nm) and green (520 nm) light. The self-assembled monolayers are investigated by UV/vis spectroscopy, X-ray photoelectron spectroscopy (XPS), time-of-flight secondary ion mass spectrometry (ToF-SIMS), and contact angle goniometry. We furthermore investigate the effect of substitution of the AAPs on the photoresponsive wetting behavior and compare this with density functional theory (DFT) calculations of the dipole moments of the AAPs.
Collapse
Affiliation(s)
- Niklas B Arndt
- Center for Soft Nanoscience and Organic Chemistry Institute, Westfälische Wilhelms-Universität Münster, Busso-Peus Straße 10, 48149 Münster, Germany
| | - Friederike Schlüter
- Center for Soft Nanoscience and Organic Chemistry Institute, Westfälische Wilhelms-Universität Münster, Busso-Peus Straße 10, 48149 Münster, Germany
| | - Marcus Böckmann
- Center for Soft Nanoscience and Institute of Solid State Theory, Westfälische Wilhelms-Universität Münster, Wilhelm-Klemm-Straße 10, 48149 Münster, Germany
| | - Thorsten Adolphs
- Center for Soft Nanoscience and Physics Institute, Westfälische Wilhelms-Universität Münster, Wilhelm-Klemm-Straße 10, 48149 Münster, Germany
| | - Heinrich F Arlinghaus
- Center for Soft Nanoscience and Physics Institute, Westfälische Wilhelms-Universität Münster, Wilhelm-Klemm-Straße 10, 48149 Münster, Germany
| | - Nikos L Doltsinis
- Center for Soft Nanoscience and Institute of Solid State Theory, Westfälische Wilhelms-Universität Münster, Wilhelm-Klemm-Straße 10, 48149 Münster, Germany
| | - Bart Jan Ravoo
- Center for Soft Nanoscience and Organic Chemistry Institute, Westfälische Wilhelms-Universität Münster, Busso-Peus Straße 10, 48149 Münster, Germany
| |
Collapse
|
4
|
Dewangan S, Barik T, Halder B, Mishra A, Dhiman R, Sasamori T, Chatterjee S. Rhodamine tethered 1,1’-unsymmetrical ferrocene functionalization: Metal sensing, cell imaging and logic gate properties. J Organomet Chem 2021. [DOI: 10.1016/j.jorganchem.2021.121922] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
5
|
Murphy RB, Johnston MR. A temperature switchable pyridyl-zinc(II) side arm porphyrin with functionality for surface immobilisation. J PORPHYR PHTHALOCYA 2021. [DOI: 10.1142/s1088424621500759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
A pyridyl side arm porphyrin incorporating C[Formula: see text] alkyl chains at the periphery of the porphyrin suitable for surface immobilisation on HOPG has been synthesised and tested for two state switching in solution. Temperature switching, involving reversible complexation of a covalently appended pyridyl side arm to the Zn(II) porphyrin, was comprehensively characterised by using variable temperature 1H NMR (-30 to +100[Formula: see text]C) and UV-vis (10 to 90[Formula: see text]C) in toluene. Molecular modelling assisted in understanding strain within the complex.
Collapse
Affiliation(s)
- Rhys B. Murphy
- Flinders Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University, Bedford Park, Adelaide, Australia
- Current address: Research School of Chemistry, Australian National University, Australian Capital Territory, Australia
| | - Martin R. Johnston
- Flinders Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University, Bedford Park, Adelaide, Australia
| |
Collapse
|
6
|
Yu S, Kupryakov A, Lewis JEM, Martí-Centelles V, Goldup SM, Pozzo JL, Jonusauskas G, McClenaghan ND. Damming an electronic energy reservoir: ion-regulated electronic energy shuttling in a [2]rotaxane. Chem Sci 2021; 12:9196-9200. [PMID: 34276950 PMCID: PMC8261707 DOI: 10.1039/d1sc02225c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 06/04/2021] [Indexed: 12/14/2022] Open
Abstract
We demonstrate the first example of bidirectional reversible electronic energy transfer (REET) between the mechanically bonded components of a rotaxane. Our prototypical system was designed such that photoexcitation of a chromophore in the axle results in temporary storage of electronic energy in a quasi-isoenergetic “reservoir” chromophore in the macrocycle. Over time, the emissive state of the axle is repopulated from this reservoir, resulting in long-lived, delayed luminescence. Importantly, we show that cation binding in the cavity formed by the mechanical bond perturbs the axle chromophore energy levels, modulating the REET process, and ultimately providing a luminescence read-out of cation binding. Modulation of REET processes represents an unexplored mechanism in luminescent molecular sensor development. Delayed emission due to reversible electronic energy transfer (REET) between chromophores in the axle and macrocycle components of a rotaxane is demonstrated. The REET process can be modulated by metal ion binding in the cavity of the rotaxane.![]()
Collapse
Affiliation(s)
- Shilin Yu
- Institut des Sciences Moléculaires, University of Bordeaux/CNRS Talence France .,Department of Chemistry, University of Jyvaskyla 40014 Jyväskylä Finland
| | - Arkady Kupryakov
- Laboratoire Ondes et Matière d'Aquitaine, University of Bordeaux/CNRS Talence France
| | - James E M Lewis
- School of Chemistry, University of Southampton Highfield Southampton SO17 1BJ UK .,Department of Chemistry, Imperial College London, Molecular Sciences Research Hub 82 Wood Lane London W12 0BZ UK
| | | | - Stephen M Goldup
- School of Chemistry, University of Southampton Highfield Southampton SO17 1BJ UK
| | - Jean-Luc Pozzo
- Institut des Sciences Moléculaires, University of Bordeaux/CNRS Talence France
| | - Gediminas Jonusauskas
- Laboratoire Ondes et Matière d'Aquitaine, University of Bordeaux/CNRS Talence France
| | | |
Collapse
|
7
|
Wang Y, Han Y, Tan X, Dai Y, Xia F, Zhang X. Cyclodextrin capped gold nanoparticles (AuNP@CDs): from synthesis to applications. J Mater Chem B 2021; 9:2584-2593. [DOI: 10.1039/d0tb02857f] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The synthesis of AuNP@CDs is summarized according to the type and order of bonding. The applications of AuNP@CDs are also highlighted.
Collapse
Affiliation(s)
- Yichuan Wang
- Faculty of Materials Science and Chemistry
- China University of Geosciences
- Wuhan 430074
- China
| | - Yufen Han
- Faculty of Materials Science and Chemistry
- China University of Geosciences
- Wuhan 430074
- China
| | - Xiaoling Tan
- Faculty of Materials Science and Chemistry
- China University of Geosciences
- Wuhan 430074
- China
| | - Yu Dai
- Faculty of Materials Science and Chemistry
- China University of Geosciences
- Wuhan 430074
- China
| | - Fan Xia
- Faculty of Materials Science and Chemistry
- China University of Geosciences
- Wuhan 430074
- China
| | - Xiaojin Zhang
- Faculty of Materials Science and Chemistry
- China University of Geosciences
- Wuhan 430074
- China
| |
Collapse
|
8
|
Ogoshi T, Kotera D, Fa S, Nishida S, Kakuta T, Yamagishi TA, Brouwer AM. A light-operated pillar[6]arene-based molecular shuttle. Chem Commun (Camb) 2020; 56:10871-10874. [PMID: 32789406 DOI: 10.1039/d0cc03945d] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
A molecular shuttle comprising a pillar[6]arene macrocyclic ring and an axle with two equal-energy-level stations connected by an azobenzene unit was synthesised. The E isomer of the azobenzene functioned as "open gate", allowing the pillar[6]arene ring to rapidly shuttle back-and-forth between the two stations. Ultraviolet irradiation induced photo-isomerisation of the azobenzene from E to Z form. The Z isomer of the azobenzene functioned as a "closed gate", inhibiting shuttling of the pillar[6]arene ring.
Collapse
Affiliation(s)
- Tomoki Ogoshi
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan. and WPI Nano Life Science Institute, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Daisuke Kotera
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Shixin Fa
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan.
| | - Shungo Nishida
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Takahiro Kakuta
- WPI Nano Life Science Institute, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan and Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Tada-Aki Yamagishi
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Albert M Brouwer
- van't Hoff Institute for Molecular Sciences, University of Amsterdam, P.O. Box 94157, 1090 GD Amsterdam, The Netherlands
| |
Collapse
|
9
|
Kuenstler AS, Lahikainen M, Zhou H, Xu W, Priimagi A, Hayward RC. Reconfiguring Gaussian Curvature of Hydrogel Sheets with Photoswitchable Host-Guest Interactions. ACS Macro Lett 2020; 9:1172-1177. [PMID: 32864191 PMCID: PMC7445929 DOI: 10.1021/acsmacrolett.0c00469] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 07/22/2020] [Indexed: 11/28/2022]
Abstract
Photoinduced shape morphing has implications in fields ranging from soft robotics to biomedical devices. Despite considerable effort in this area, it remains a challenge to design materials that can be both rapidly deployed and reconfigured into multiple different three-dimensional forms, particularly in aqueous environments. In this work, we present a simple method to program and rewrite spatial variations in swelling and, therefore, Gaussian curvature in thin sheets of hydrogels using photoswitchable supramolecular complexation of azobenzene pendent groups with dissolved α-cyclodextrin. We show that the extent of swelling can be programmed via the proportion of azobenzene isomers, with a 60% decrease in areal swelling from the all trans to the predominantly cis state near room temperature. The use of thin gel sheets provides fast response times in the range of a few tens of seconds, while the shape change is persistent in the absence of light thanks to the slow rate of thermal cis-trans isomerization. Finally, we demonstrate that a single gel sheet can be programmed with a first swelling pattern via spatially defined illumination with ultraviolet light, then erased with white light, and finally redeployed with a different swelling pattern.
Collapse
Affiliation(s)
- Alexa S. Kuenstler
- Department of Polymer
Science and Engineering, University of Massachusetts
Amherst, Amherst, Massachusetts 01003, United States
| | - Markus Lahikainen
- Smart Photonic Materials, Faculty of Engineering
and Natural Sciences, Tampere University, P.O. Box 541F1-33101, Tampere, Finland
| | - Hantao Zhou
- Department of Polymer
Science and Engineering, University of Massachusetts
Amherst, Amherst, Massachusetts 01003, United States
| | - Wenwen Xu
- Department of Polymer
Science and Engineering, University of Massachusetts
Amherst, Amherst, Massachusetts 01003, United States
| | - Arri Priimagi
- Smart Photonic Materials, Faculty of Engineering
and Natural Sciences, Tampere University, P.O. Box 541F1-33101, Tampere, Finland
| | - Ryan C. Hayward
- Department of Polymer
Science and Engineering, University of Massachusetts
Amherst, Amherst, Massachusetts 01003, United States
| |
Collapse
|
10
|
Zhu F, Tan S, Dhinakaran MK, Cheng J, Li H. The light-driven macroscopic directional motion of a water droplet on an azobenzene-calix[4]arene modified surface. Chem Commun (Camb) 2020; 56:10922-10925. [PMID: 32808622 DOI: 10.1039/d0cc00519c] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A novel photo-responsive surface was constructed via modifying azobenzene-calix[4]arene (ABC4) on a microstructured silicon surface. Asymmetric UV light irradiation could drive the macroscopic directional motion of a water droplet on this photo-responsive surface.
Collapse
Affiliation(s)
- Fei Zhu
- Key Laboratory of Pesticide and Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China.
| | - Shiliang Tan
- Key Laboratory of Pesticide and Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China.
| | - Manivannan Kalavathi Dhinakaran
- Key Laboratory of Pesticide and Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China.
| | - Jing Cheng
- Key Laboratory of Pesticide and Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China.
| | - Haibing Li
- Key Laboratory of Pesticide and Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China.
| |
Collapse
|
11
|
Solvent free synthesis of ferrocene based rhodamine – hydrazone molecular probe with improved bioaccumulation for sensing and imaging applications. J Organomet Chem 2019. [DOI: 10.1016/j.jorganchem.2019.120999] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
12
|
Hashidzume A, Yamaguchi H, Harada A. Cyclodextrin-Based Rotaxanes: from Rotaxanes to Polyrotaxanes and Further to Functional Materials. European J Org Chem 2019. [DOI: 10.1002/ejoc.201900090] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Akihito Hashidzume
- Graduate School of Science; Osaka Univerisy; 1-1 Machikaneyama-cho Toyonaka, Osaka 560-0043 Japan
| | - Hiroyasu Yamaguchi
- Graduate School of Science; Osaka Univerisy; 1-1 Machikaneyama-cho Toyonaka, Osaka 560-0043 Japan
| | - Akira Harada
- Graduate School of Science; Osaka Univerisy; 1-1 Machikaneyama-cho Toyonaka, Osaka 560-0043 Japan
- Current address: The Institute of Scientific and Industrial Research; Osaka University; 8-1 Mihogaoka Ibaraki, Osaka 567-0047 Japan
| |
Collapse
|
13
|
Huang Y, Shen L, Guo D, Yasen W, Wu Y, Su Y, Chen D, Qiu F, Yan D, Zhu X. A NIR-triggered gatekeeper of supramolecular conjugated unimicelles with two-photon absorption for controlled drug release. Chem Commun (Camb) 2019; 55:6735-6738. [DOI: 10.1039/c9cc02901j] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Near-infrared-sensitive supramolecular hyperbranched conjugated unimicelles were constructed for controlled drug release via two-photon excited fluorescence resonance energy transfer.
Collapse
|
14
|
Wang Y, Xing P, An W, Ma M, Yang M, Luan T, Tang R, Wang B, Hao A. pH-Responsive Dipeptide-Based Dynamic Covalent Chemistry Systems Whose Products and Self-Assemblies Depend on the Structure of Isomeric Aromatic Dialdehydes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:13725-13734. [PMID: 30354164 DOI: 10.1021/acs.langmuir.7b04397] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Facile control over preparation of organic building blocks and self-assembled aggregations to construct the desired materials remains challenges. This article reports selective dynamic covalent bonds formation and the corresponding self-assembly behaviors by using a dipeptide, glycylglycine (GlyGly), reacting with isomeric aromatic dialdehydes o-phthalaldehyde (OPA), p-phthalaldehyde (PPA), and m-phthalaldehyde (MPA) to demonstrate diversified aggregation forms caused by structure topology variations. Under alkaline condition, the aldehyde groups of phthalaldehydes can be connected with the amino groups of GlyGly by imine bonds as the dynamic chemical bonds. Owing to the fact that formation and dissociation of the imine bonds were reversibly pH-responsive, the reactions and aggregates assembled by their products were also reversibly controlled by changing pH. Three products, including two-armed product (OPGG, in which two GlyGly molecules were connected with one OPA molecule), single-armed product (PPG, in which only one GlyGly molecule was connected with a PPA molecule), and a mixture product (MPGG and MPG), as well as their different self-assembly behaviors, were obtained from OPA/GlyGly, PPA/GlyGly, and MPA/GlyGly systems, respectively, at the same condition of pH 8.6 in 90% methanol aqueous solution. However, for OPA/GlyGly system, another different type of product with benzopyrrole structure (OPG) was obtained by nucleophilic substitution via mixing OPA and GlyGly in water, which generated organic nanoparticles. Based on the results above, we conjectured the differences in dynamic covalent bond formation and supramolecular assembly clearly were influenced by the structure topologies of phthalaldehydes (OPA, PPA, and MPA). The experimental phenomenon verified the hypothesis as well, which may guide us to realize facile construction of selective reaction products and intelligent reversibly responsive materials with diverse morphologies and functions.
Collapse
Affiliation(s)
- Yajie Wang
- Key Laboratory of Colloid and Interface Chemistry of Ministry of Education and School of Chemistry and Chemical Engineering , Shandong University , Jinan 250100 , P. R. China
| | - Pengyao Xing
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences , Nanyang Technological University , 21 Nanyang Link , Singapore 637371 , Singapore
| | - Wei An
- Key Laboratory of Colloid and Interface Chemistry of Ministry of Education and School of Chemistry and Chemical Engineering , Shandong University , Jinan 250100 , P. R. China
| | - Mingfang Ma
- Key Laboratory of Colloid and Interface Chemistry of Ministry of Education and School of Chemistry and Chemical Engineering , Shandong University , Jinan 250100 , P. R. China
| | - Minmin Yang
- Key Laboratory of Colloid and Interface Chemistry of Ministry of Education and School of Chemistry and Chemical Engineering , Shandong University , Jinan 250100 , P. R. China
| | - Tianxiang Luan
- Key Laboratory of Colloid and Interface Chemistry of Ministry of Education and School of Chemistry and Chemical Engineering , Shandong University , Jinan 250100 , P. R. China
| | - Ruipeng Tang
- Key Laboratory of Colloid and Interface Chemistry of Ministry of Education and School of Chemistry and Chemical Engineering , Shandong University , Jinan 250100 , P. R. China
| | - Bo Wang
- Key Laboratory of Colloid and Interface Chemistry of Ministry of Education and School of Chemistry and Chemical Engineering , Shandong University , Jinan 250100 , P. R. China
| | - Aiyou Hao
- Key Laboratory of Colloid and Interface Chemistry of Ministry of Education and School of Chemistry and Chemical Engineering , Shandong University , Jinan 250100 , P. R. China
| |
Collapse
|
15
|
Wang K, Wang MM, Dou HX, Xing SY, Zhu BL, Cui JH. Comparative Study on the Supramolecular Assemblies Formed by Calixpyridinium and Two Alginates with Different Viscosities. ACS OMEGA 2018; 3:10033-10041. [PMID: 31459131 PMCID: PMC6645020 DOI: 10.1021/acsomega.8b01554] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 07/31/2018] [Indexed: 06/09/2023]
Abstract
In this work, a comparative study on the supramolecular assemblies formed by calixpyridinium and two alginates with different viscosities was performed. We found that sodium alginate (SA) with medium viscosity (SA-M) had a better capability to induce aggregation of calixpyridinium in comparison with SA with low viscosity (SA-L) because of the stronger electrostatic interactions between calixpyridinium and SA-M. Therefore, the morphology of calixpyridinium-SA-M supramolecular aggregates was a compact spherical structure, while that of calixpyridinium-SA-L supramolecular aggregates was an incompact lamellar structure. As a result, adding much more amount of 1,3,6,8-pyrenetetrasulfonic acid tetrasodium salt to calixpyridinium-SA-M solution was required to achieve the balance of the competitive binding, and in comparison with calixpyridinium-SA-L supramolecular aggregates, calixpyridinium-SA-M supramolecular aggregates were more sensitive to alkali. However, for the same reason, in comparison with calixpyridinium-SA-M supramolecular aggregates, calixpyridinium-SA-L supramolecular aggregates were much more stable in water not only at room temperature but also at a higher temperature, and even in salt solution. Therefore, in comparison with calixpyridinium-SA-L supramolecular aggregates, calixpyridinium-SA-M supramolecular aggregates exhibited a completely opposite response to acid because of the generation of salt. Because SA is an important biomaterial with excellent biocompatibility, it is anticipated that this comparative study is extremely important in constructing functional supramolecular biomaterials.
Collapse
|
16
|
Shi L, Liu F, Liu T, Chen J, Xu S, Zeng H. Reversible fabrication and self-assembly of a gemini supra-amphiphile driven by dynamic covalent bonds. SOFT MATTER 2018; 14:5995-6000. [PMID: 30020304 DOI: 10.1039/c8sm01239c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
A smart gemini supra-amphiphile behaving with pH/CO2 dual-sensitive hierarchical self-assembly was fabricated under the effect of dynamic covalent bonds. In the presence of an amino-functionalized cation, water-insoluble terephthalaldehyde, and an amphiphilic anion, the benzoic imine bond can initiate the transformation from a single-tailed supra-amphiphile to a gemini supra-amphiphile with increasing pH, followed by the subsequent evolution from micelles to vesicles. Reversible self-assembly and disassembly of the gemini supra-amphiphile can be realized via CO2/N2 treatment, thus inducing the fission and reversion of vesicles. Interestingly, the flexible nature of supra-amphiphiles allows for the hierarchical assembly of vesicles, leading to the formation of aqueous two-phase systems. Multiple responsive supra-amphiphiles have useful applications in the fabrication of smart supra-molecular materials, including self-healing materials, nanocarriers and chemosensors.
Collapse
Affiliation(s)
- Lijuan Shi
- Key Laboratory of Coal Science and Technology of Ministry of Education and Shanxi Province, Taiyuan University of Technology, Taiyuan 030024, Shanxi Province, P. R. China
| | | | | | | | | | | |
Collapse
|
17
|
Hu J, Li X, Dong J. Development of Highly Efficient Oil-Water Separation Carbon Nanotube Membranes with Stimuli-Switchable Fluxes. ACS OMEGA 2018; 3:6635-6641. [PMID: 31458838 PMCID: PMC6644334 DOI: 10.1021/acsomega.8b00641] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 06/01/2018] [Indexed: 05/21/2023]
Abstract
In this work, a carbon nanotube (CNT)-based membrane [(4-((4-((11-ferroceneundecyl)oxy)phenyl)diazenyl)phenoxy)-diethylene triamine (FADETA)/polyethyleneimine (PEI)-decorated CNT membrane] with stimuli-switchable separation fluxes was developed. The multiwalled CNTs were modified by a pH-, light-, and redox stimuli-responsive surfactant FADETA initially, and then the FADETA-decorated CNTs were further cross-linked by PEI and finally coated on the polypropylene membrane. Interestingly, the particular membrane was successfully applied in emulsion systems to separate oil and water with high efficiency. First, the FADETA-/PEI-decorated CNT membrane showed highly porous microstructural characteristics owing to the overlapped and cross-linked CNTs as confirmed by the scanning electron microscopy observation. Then, it showed strong hydrophilicity to water in the air and high oleophobicity to oil underwater, thereby endowing the membrane with the potential to separate oil and water. Owing to the modified multiple stimuli-responsive FADETA on CNTs, the separation fluxes were stimuli-switchable, which could be adjusted reversibly by environmental factors including pH, light, and redox.
Collapse
Affiliation(s)
- Junwen Hu
- College of Chemistry and
Molecular
Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Xuefeng Li
- College of Chemistry and
Molecular
Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Jinfeng Dong
- College of Chemistry and
Molecular
Sciences, Wuhan University, Wuhan 430072, P. R. China
| |
Collapse
|
18
|
Wang D, Zhao W, Wei Q, Zhao C, Zheng Y. Photoswitchable Azobenzene/Cyclodextrin Host-Guest Complexes: From UV- to Visible/Near-IR-Light-Responsive Systems. CHEMPHOTOCHEM 2018. [DOI: 10.1002/cptc.201700233] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Dongsheng Wang
- School of Optoelectronic Information; University of Electronic Science and Technology of China, No. 4, Section 2; North Jianshe Road 610054 Chengdu China
| | - Weifeng Zhao
- College of Polymer Science and Engineering; Sichuan University, No. 24 South Section 1; Yihuan Road Chengdu China
| | - Qiang Wei
- Department of Cellular Biophysics; Max-Planck-Institute for Medical Research, Heidelberg; Heisenbergstr. 3 70569 Stuttgart Germany
| | - Changsheng Zhao
- College of Polymer Science and Engineering; Sichuan University, No. 24 South Section 1; Yihuan Road Chengdu China
| | - Yonghao Zheng
- School of Optoelectronic Information; University of Electronic Science and Technology of China, No. 4, Section 2; North Jianshe Road 610054 Chengdu China
| |
Collapse
|
19
|
Wang K, Ren XW, Cui JH, Guo JS, Xing SY, Dou HX, Wang MM. Multistimuli Responsive Supramolecular Polymeric Nanoparticles Formed by Calixpyridinium and Chondroitin 4-Sulfate. ChemistrySelect 2018. [DOI: 10.1002/slct.201800570] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Kui Wang
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules; Key Laboratory of Inorganic-Organic Hybrid Functional Materials Chemistry (Tianjin Normal University), Ministry of Education; College of Chemistry; Tianjin Normal University; Tianjin 300387 China
| | - Xiao-Wei Ren
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules; Key Laboratory of Inorganic-Organic Hybrid Functional Materials Chemistry (Tianjin Normal University), Ministry of Education; College of Chemistry; Tianjin Normal University; Tianjin 300387 China
| | - Jian-Hua Cui
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules; Key Laboratory of Inorganic-Organic Hybrid Functional Materials Chemistry (Tianjin Normal University), Ministry of Education; College of Chemistry; Tianjin Normal University; Tianjin 300387 China
| | - Jia-Shuang Guo
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules; Key Laboratory of Inorganic-Organic Hybrid Functional Materials Chemistry (Tianjin Normal University), Ministry of Education; College of Chemistry; Tianjin Normal University; Tianjin 300387 China
| | - Si-Yang Xing
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules; Key Laboratory of Inorganic-Organic Hybrid Functional Materials Chemistry (Tianjin Normal University), Ministry of Education; College of Chemistry; Tianjin Normal University; Tianjin 300387 China
| | - Hong-Xi Dou
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules; Key Laboratory of Inorganic-Organic Hybrid Functional Materials Chemistry (Tianjin Normal University), Ministry of Education; College of Chemistry; Tianjin Normal University; Tianjin 300387 China
| | - Meng-Meng Wang
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules; Key Laboratory of Inorganic-Organic Hybrid Functional Materials Chemistry (Tianjin Normal University), Ministry of Education; College of Chemistry; Tianjin Normal University; Tianjin 300387 China
| |
Collapse
|
20
|
Guo J, Zhang HY, Zhou Y, Liu Y. Light-controlled reversible self-assembly of nanorod suprastructures. Chem Commun (Camb) 2018; 53:6089-6092. [PMID: 28530009 DOI: 10.1039/c7cc03280c] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Nanorod suprastructures constructed by the coordination of zinc ions with the inclusion complex of 4,4'-dipyridine in β-cyclodextrin can dissociate and rebuild repeatedly via alternate visible light irradiation in the presence of photoacid merocyanine in aqueous solution.
Collapse
Affiliation(s)
- Jie Guo
- Department of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, P. R. China.
| | | | | | | |
Collapse
|
21
|
Yang C, Chen L, Huang H, Ji T, Jiang Y, Chen X, Zhou C. Controllable fabrication of novel pH-, thermo-, and light-responsive supramolecular dendronized copolymers with dual self-assembly behavior. Polym Chem 2018. [DOI: 10.1039/c8py00448j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Novel tri-stimulus responsive supramolecular dendronized copolymers with dual self-assembly behavior are prepared, exhibiting fast and fully reversible phase transitions and trans–cis isomerization.
Collapse
Affiliation(s)
- ChangAn Yang
- Department of Chemistry and Chemical Engineering
- Hunan Institute of Science and Technology
- Yueyang 414006
- PR China
| | - Ling Chen
- Department of Chemistry and Chemical Engineering
- Hunan Institute of Science and Technology
- Yueyang 414006
- PR China
| | - He Huang
- Department of Chemistry and Chemical Engineering
- Hunan Institute of Science and Technology
- Yueyang 414006
- PR China
| | - Tuo Ji
- Department of Chemistry and Chemical Engineering
- Hunan Institute of Science and Technology
- Yueyang 414006
- PR China
| | - YingXiang Jiang
- Department of Chemistry and Chemical Engineering
- Hunan Institute of Science and Technology
- Yueyang 414006
- PR China
| | - Xiaobo Chen
- Department of Chemistry
- University of Missouri – Kansas City
- Kansas City
- USA
| | - CongShan Zhou
- Department of Chemistry and Chemical Engineering
- Hunan Institute of Science and Technology
- Yueyang 414006
- PR China
| |
Collapse
|
22
|
Wang C, Cao X, Zhu Y, Xu Z, Gong Q, Zhang L, Zhang L, Zhao S. Interfacial rheological behaviors of inclusion complexes of cyclodextrin and alkanes. SOFT MATTER 2017; 13:8636-8643. [PMID: 29115365 DOI: 10.1039/c7sm02025b] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The transformation of cyclodextrins (CDs) and alkanes from separated monomers to inclusion complexes at the interface is illustrated by analyzing the evolution of interfacial tension along with the variation of interfacial area for an oscillating drop. Amphiphilic intermediates are formed by threading one CD molecule on one alkane molecule at the oil/aqueous interface. After that, the amphiphilic intermediates transform into non-amphiphilic supramolecules which further assemble through hydrogen bonding at the oil/aqueous interface to generate a rigid network. With the accumulation of supramolecules at the interface, microcrystals are formed at the interface. The supramolecules of dodecane@2α-CD grow into microrods which form an unconsolidated shell and gradually cover the drop. However, the microcrystals of dodecane@2β-CD are significantly smaller which fabricate into skin-like films at the interface. The amphiphilic intermediates during the transformation increase the feasibility of self-emulsification and the skin-like films enhance the stability of the emulsion. With these unique properties, CDs can be promising for application in hydrophobic drug delivery, food industry and enhanced oil recovery.
Collapse
Affiliation(s)
- Ce Wang
- School of Food and Chemical Engineering, Beijing Technology and Business University, Beijing 100048, P. R. China
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Zhang J, Ma W, He XP, Tian H. Taking Orders from Light: Photo-Switchable Working/Inactive Smart Surfaces for Protein and Cell Adhesion. ACS APPLIED MATERIALS & INTERFACES 2017; 9:8498-8507. [PMID: 28221015 DOI: 10.1021/acsami.6b15599] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Photoresponsive smart surfaces are promising candidates for a variety of applications in optoelectronics and sensing devices. The use of light as an order signal provides advantages of remote and noninvasive control with high temporal and spatial resolutions. Modification of the photoswitches with target biomacromolecules, such as peptides, DNA, and small molecules including folic acid derivatives and sugars, has recently become a popular strategy to empower the smart surfaces with an improved detection efficiency and specificity. Herein, we report the construction of photoswitchable self-assembled monolayers (SAMs) based on sugar (galactose/mannose)-decorated azobenzene derivatives and determine their photoswitchable, selective protein/cell adhesion performances via electrochemistry. Under alternate UV/vis irradiation, interconvertible high/low recognition and binding affinity toward selective lectins (proteins that recognize sugars) and cells that highly express sugar receptors are achieved. Furthermore, the cis-SAMs with a low binding affinity toward selective proteins and cells also exhibit minimal response toward unselective protein and cell samples, which offers the possibility in avoiding unwanted contamination and consumption of probes prior to functioning for practical applications. Besides, the electrochemical technique used facilitates the development of portable devices based on the smart surfaces for on-demand disease diagnosis.
Collapse
Affiliation(s)
- Junji Zhang
- Key Laboratory for Advanced Materials & Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology , 130 Meilong Road, Shanghai 200237, P. R. China
| | - Wenjing Ma
- Key Laboratory for Advanced Materials & Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology , 130 Meilong Road, Shanghai 200237, P. R. China
| | - Xiao-Peng He
- Key Laboratory for Advanced Materials & Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology , 130 Meilong Road, Shanghai 200237, P. R. China
| | - He Tian
- Key Laboratory for Advanced Materials & Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology , 130 Meilong Road, Shanghai 200237, P. R. China
| |
Collapse
|
24
|
Dai L, Cai L, Yuan Y, Liu A, Li Z. Reversible wettability of optothermal responsively perfluoroalkyl azobenzene self-assembled monolayers. PHOSPHORUS SULFUR 2017. [DOI: 10.1080/10426507.2016.1237947] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Li Dai
- College of Textile and Clothing Engineering, Soochow University, Suzhou, China
- National Engineering Laboratory for Modern Silk, Suzhou, China
| | - Lu Cai
- College of Textile and Clothing Engineering, Soochow University, Suzhou, China
- National Engineering Laboratory for Modern Silk, Suzhou, China
| | - Yanhua Yuan
- College of Textile and Clothing Engineering, Soochow University, Suzhou, China
- National Engineering Laboratory for Modern Silk, Suzhou, China
| | - Anqi Liu
- College of Textile and Clothing Engineering, Soochow University, Suzhou, China
- National Engineering Laboratory for Modern Silk, Suzhou, China
| | - Zhanxiong Li
- College of Textile and Clothing Engineering, Soochow University, Suzhou, China
- National Engineering Laboratory for Modern Silk, Suzhou, China
| |
Collapse
|
25
|
Wang D, Wagner M, Saydjari AK, Mueller J, Winzen S, Butt HJ, Wu S. A Photoresponsive Orthogonal Supramolecular Complex Based on Host-Guest Interactions. Chemistry 2017; 23:2628-2634. [PMID: 27925694 DOI: 10.1002/chem.201604634] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Indexed: 01/20/2023]
Abstract
We synthesized a novel green-light-responsive tetra-ortho-isopropoxy-substituted azobenzene (ipAzo). Cis-ipAzo forms a strong host-guest complex with γ-cyclo dextrin (γ-CD) whereas trans-ipAzo binds weakly. This new photoresponsive host-guest interaction is reverse to the well-known azobenzene (Azo)/α-cyclodextrin (α-CD) complex, which is strong only between trans-Azo and α-CD. By combining the UV-light-responsive Azo/α-CD and green-light-responsive ipAzo/γ-CD host-guest complexes, a photoresponsive orthogonal supramolecular system is developed.
Collapse
Affiliation(s)
- Dongsheng Wang
- Max-Planck Institute of Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Manfred Wagner
- Max-Planck Institute of Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Andrew K Saydjari
- Max-Planck Institute of Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
- Department of Chemistry, Yale University, 225 Prospect St., New Haven, CT, 06520, USA
| | - Julius Mueller
- Max-Planck Institute of Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Svenja Winzen
- Max-Planck Institute of Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Hans-Jürgen Butt
- Max-Planck Institute of Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Si Wu
- Max-Planck Institute of Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| |
Collapse
|
26
|
Mahmoodi NO, Aghajani N, Ghavidast A. Synthesis and photochromic properties of thiolated N-salicylidene-anilines on silver nanoparticles. J Mol Struct 2017. [DOI: 10.1016/j.molstruc.2016.08.043] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
27
|
Möller N, Hellwig T, Stricker L, Engel S, Fallnich C, Ravoo BJ. Near-infrared photoswitching of cyclodextrin–guest complexes using lanthanide-doped LiYF4 upconversion nanoparticles. Chem Commun (Camb) 2017; 53:240-243. [DOI: 10.1039/c6cc08321h] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
This communication reports a new type of supramolecular cyclodextrin–guest complexes using cyclodextrin coated upconversion nanoparticles as hosts and monovalent and divalent azobenzenes and arylazopyrazoles as guests.
Collapse
Affiliation(s)
- Nadja Möller
- Organic Chemistry Institute
- Westfälische Wilhelms-Universität Münster
- 48149 Münster
- Germany
| | - Tim Hellwig
- Institute of Applied Physics
- Westfälische Wilhelms-Universität Münster
- 48149 Münster
- Germany
| | - Lucas Stricker
- Organic Chemistry Institute
- Westfälische Wilhelms-Universität Münster
- 48149 Münster
- Germany
| | - Sabrina Engel
- Organic Chemistry Institute
- Westfälische Wilhelms-Universität Münster
- 48149 Münster
- Germany
| | - Carsten Fallnich
- Institute of Applied Physics
- Westfälische Wilhelms-Universität Münster
- 48149 Münster
- Germany
| | - Bart Jan Ravoo
- Organic Chemistry Institute
- Westfälische Wilhelms-Universität Münster
- 48149 Münster
- Germany
| |
Collapse
|
28
|
Liu N, Li C, Zhang T, Hou R, Xiong Z, Li Z, Wei B, Yang Z, Gao P, Lou X, Zhang X, Guo W, Xia F. Fabrication of "Plug and Play" Channels with Dual Responses by Host-Guest Interactions. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2017; 13:1600287. [PMID: 27158970 DOI: 10.1002/smll.201600287] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 03/22/2016] [Indexed: 06/05/2023]
Abstract
The "Plug and Play" template can be individually or successively grafted by dual-responsive molecules on the α-CD modified channels by host-guest interactions and can be peeled off by UV irradiation. The artificial channels present six kinds of responses cycling among four states responding to three environment stimuli, as light, pH, and temperature.
Collapse
Affiliation(s)
- Nannan Liu
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, P. R. China
| | - Cao Li
- Key Laboratory of Biomedical Polymers, Ministry of Education, Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
- Faculty of Materials Science & Engineering, Hubei University, Wuhan, 430062, P. R. China
| | - Tianchi Zhang
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, P. R. China
| | - Ruizuo Hou
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, P. R. China
| | - Zhiping Xiong
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, P. R. China
| | - Zeyong Li
- Key Laboratory of Biomedical Polymers, Ministry of Education, Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
| | - Benmei Wei
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, P. R. China
| | - Zekun Yang
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, P. R. China
| | - Pengcheng Gao
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, P. R. China
| | - Xiaoding Lou
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, P. R. China
| | - Xianzheng Zhang
- Key Laboratory of Biomedical Polymers, Ministry of Education, Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
| | - Wei Guo
- Laboratory of Bio-inspired Smart Interface Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Fan Xia
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, P. R. China
| |
Collapse
|
29
|
Huebner D, Rossner C, Vana P. Light-induced self-assembly of gold nanoparticles with a photoresponsive polymer shell. POLYMER 2016. [DOI: 10.1016/j.polymer.2016.05.073] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
30
|
Wang Y, Xing P, Li S, Ma M, Yang M, Zhang Y, Wang B, Hao A. Facile Stimuli-Responsive Transformation of Vesicle to Nanofiber to Supramolecular Gel via ω-Amino Acid-Based Dynamic Covalent Chemistry. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:10705-10711. [PMID: 27686007 DOI: 10.1021/acs.langmuir.6b02478] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
This paper reports an interesting type of self-assembly systems based on dynamic covalent bonds. The systems are pH-responsible and reversible, which could be utilized for controlling the morphology transformation of the assemblies. In alkaline conditions, the amine group of 11-aminoundecanoic acid (AUA) can connect with the aldehyde group of benzaldehyde (BA) or 1-naphthaledhyde (NA) by dynamic covalent bond to form a small organic building block accompanied by the morphological transformation from vesicles to fibers. When pH is lowered to a neutral value, the dynamic covalent bonds (imine bonds) can be hydrolyzed, leading to the dissociation of fibers and appearance of spherical aggregates. The transformation was confirmed reversible as fibers appeared again when the pH was changed back to alkaline value. In addition, a reversibly controlled gel was designed based on the nanofiber formation. NaCl, which is capable of greatly enhance the nanofiber density and cross-linking, was used to induce the growth of free-standing gel from free-flowing nanofiber system, and the resultant gel was proven to be pH-reversible.
Collapse
Affiliation(s)
- Yajie Wang
- Key Laboratory of Colloid and Interface Chemistry of Ministry of Education and School of Chemistry and Chemical Engineering, Shandong University , Jinan 250100, People's Republic of China
| | - Pengyao Xing
- Key Laboratory of Colloid and Interface Chemistry of Ministry of Education and School of Chemistry and Chemical Engineering, Shandong University , Jinan 250100, People's Republic of China
| | - Shangyang Li
- Department of chemistry, College of Science, Agricultural University of Hebei , Baoding 071001, People's Republic of China
| | - Mingfang Ma
- Key Laboratory of Colloid and Interface Chemistry of Ministry of Education and School of Chemistry and Chemical Engineering, Shandong University , Jinan 250100, People's Republic of China
| | - Minmin Yang
- Key Laboratory of Colloid and Interface Chemistry of Ministry of Education and School of Chemistry and Chemical Engineering, Shandong University , Jinan 250100, People's Republic of China
| | - Yimeng Zhang
- Key Laboratory of Colloid and Interface Chemistry of Ministry of Education and School of Chemistry and Chemical Engineering, Shandong University , Jinan 250100, People's Republic of China
| | - Bo Wang
- Key Laboratory of Colloid and Interface Chemistry of Ministry of Education and School of Chemistry and Chemical Engineering, Shandong University , Jinan 250100, People's Republic of China
| | - Aiyou Hao
- Key Laboratory of Colloid and Interface Chemistry of Ministry of Education and School of Chemistry and Chemical Engineering, Shandong University , Jinan 250100, People's Republic of China
| |
Collapse
|
31
|
Shi ZQ, Cai YT, Deng J, Zhao WF, Zhao CS. Host-Guest Self-Assembly Toward Reversible Thermoresponsive Switching for Bacteria Killing and Detachment. ACS APPLIED MATERIALS & INTERFACES 2016; 8:23523-23532. [PMID: 27552087 DOI: 10.1021/acsami.6b07397] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
A facile method to construct reversible thermoresponsive switching for bacteria killing and detachment was currently developed by host-guest self-assembly of β-cyclodextrin (β-CD) and adamantane (Ad). Ad-terminated poly(N-isopropylacrylamide) (Ad-PNIPAM) and Ad-terminated poly[2-(methacryloyloxy)ethyl]trimethylammonium chloride (Ad-PMT) were synthesized via atom transfer radical polymerization, and then assembled onto the surface of β-CD grafted silicon wafer (SW-CD) by simply immersing SW-CD into a mixed solution of Ad-PNIPAM and Ad-PMT, thus forming a thermoresponsive surface (SW-PNIPAM/PMT). Atomic force microscopy (AFM), X-ray photoelectron spectrometry (XPS), and water contact angle (WCA) analysis were used to characterize the surface of SW-PNIPAM/PMT. The thermoresponsive bacteria killing and detachment switch of the SW-PNIPAM/PMT was investigated against Staphyloccocus aureus. The microbiological experiments confirmed the efficient bacteria killing and detachment switch across the lower critical solution temperature (LCST) of PNIPAM. Above the LCST, the Ad-PNIPAM chains on the SW-PNIPAM/PMT surface were collapsed to expose Ad-PMT chains, and then the exposed Ad-PMT would kill the attached bacteria. While below the LCST, the previously collapsed Ad-PNIPAM chains became more hydrophilic and swelled to cover the Ad-PMT chains, leading to the detachment of bacterial debris. Besides, the proposed method to fabricate stimuli-responsive surfaces with reversible switches for bacteria killing and detachment is facile and efficient, which creates a new route to extend the application of such smart surfaces in the fields requiring long-term antimicrobial treatment.
Collapse
Affiliation(s)
- Zhen-Qiang Shi
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University , Chengdu 610065, China
| | - Yu-Ting Cai
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University , Chengdu 610065, China
| | - Jie Deng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University , Chengdu 610065, China
| | - Wei-Feng Zhao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University , Chengdu 610065, China
| | - Chang-Sheng Zhao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University , Chengdu 610065, China
| |
Collapse
|
32
|
Molecular Plasmonics: From Molecular-Scale Measurements and Control to Applications. ACTA ACUST UNITED AC 2016. [DOI: 10.1021/bk-2016-1224.ch002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2023]
|
33
|
Schwarz FB, Heinrich T, Kaufmann JO, Lippitz A, Puttreddy R, Rissanen K, Unger WES, Schalley CA. Photocontrolled On-Surface Pseudorotaxane Formation with Well-Ordered Macrocycle Multilayers. Chemistry 2016; 22:14383-9. [PMID: 27539781 DOI: 10.1002/chem.201603156] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Indexed: 11/12/2022]
Abstract
The photoinduced pseudorotaxane formation between a photoresponsive axle and a tetralactam macrocycle was investigated in solution and on glass surfaces with immobilized multilayers of macrocycles. In the course of this reaction, a novel photoswitchable binding station with azobenzene as the photoswitchable unit and diketopiperazine as the binding station was synthesized and studied by NMR and UV/Vis spectroscopy. Glass surfaces have been functionalized with pyridine-terminated SAMs and subsequently with multilayers of macrocycles through layer-by-layer self assembly. A preferred orientation of the macrocycles could be confirmed by NEXAFS spectroscopy. The photocontrolled deposition of the axle into the surface-bound macrocycle-multilayers was monitored by UV/Vis spectroscopy and led to an increase of the molecular order, as indicated by more substantial linear dichroism effects in angle-resolved NEXAFS spectra.
Collapse
Affiliation(s)
- Felix B Schwarz
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustrasse 3, 14195, Berlin, Germany
| | - Thomas Heinrich
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustrasse 3, 14195, Berlin, Germany.,BAM-Federal Institute for Materials Research and Testing, Unter den Eichen 44-46, 12203, Berlin, Germany
| | - J Ole Kaufmann
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustrasse 3, 14195, Berlin, Germany
| | - Andreas Lippitz
- BAM-Federal Institute for Materials Research and Testing, Unter den Eichen 44-46, 12203, Berlin, Germany
| | - Rakesh Puttreddy
- University of Jyvaskyla, Department of Chemistry, Nanoscience Center, P.O. Box. 35, 40014, Jyvaskyla, Finland
| | - Kari Rissanen
- University of Jyvaskyla, Department of Chemistry, Nanoscience Center, P.O. Box. 35, 40014, Jyvaskyla, Finland
| | - Wolfgang E S Unger
- BAM-Federal Institute for Materials Research and Testing, Unter den Eichen 44-46, 12203, Berlin, Germany.
| | - Christoph A Schalley
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustrasse 3, 14195, Berlin, Germany.
| |
Collapse
|
34
|
Capitao D, Sahli R, Raouafi N, Limoges B, Fave C, Schöllhorn B. Electro-assisted Deposition of Binary Self-Assembled 1,2-Dithiolane Monolayers on Gold with Predictable Composition. ChemElectroChem 2016. [DOI: 10.1002/celc.201600260] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Dany Capitao
- Laboratoire d'Electrochimie Moléculaire, UMR CNRS 7591; Université Paris Diderot, Sorbonne Paris Cité, Bâtiment Lavoisier; 15 rue Jean-Antoine de Baïf 75205 Paris Cedex 13 France
| | - Rihab Sahli
- Laboratoire d'Electrochimie Moléculaire, UMR CNRS 7591; Université Paris Diderot, Sorbonne Paris Cité, Bâtiment Lavoisier; 15 rue Jean-Antoine de Baïf 75205 Paris Cedex 13 France
- Laboratoire de Chimie Analytique et d'Electrochimie; Département de Chimie, Faculté des Sciences de Tunis; Université El-Manar; 2092 Tunis El-Manar Tunisia
| | - Noureddine Raouafi
- Laboratoire de Chimie Analytique et d'Electrochimie; Département de Chimie, Faculté des Sciences de Tunis; Université El-Manar; 2092 Tunis El-Manar Tunisia
| | - Benoit Limoges
- Laboratoire d'Electrochimie Moléculaire, UMR CNRS 7591; Université Paris Diderot, Sorbonne Paris Cité, Bâtiment Lavoisier; 15 rue Jean-Antoine de Baïf 75205 Paris Cedex 13 France
| | - Claire Fave
- Laboratoire d'Electrochimie Moléculaire, UMR CNRS 7591; Université Paris Diderot, Sorbonne Paris Cité, Bâtiment Lavoisier; 15 rue Jean-Antoine de Baïf 75205 Paris Cedex 13 France
| | - Bernd Schöllhorn
- Laboratoire d'Electrochimie Moléculaire, UMR CNRS 7591; Université Paris Diderot, Sorbonne Paris Cité, Bâtiment Lavoisier; 15 rue Jean-Antoine de Baïf 75205 Paris Cedex 13 France
| |
Collapse
|
35
|
Ghavidast A, Mahmoodi NO. A comparative study of the photochromic compounds incorporated on the surface of nanoparticles. J Mol Liq 2016. [DOI: 10.1016/j.molliq.2015.12.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
36
|
Nietzold C, Dietrich P, Lippitz A, Panne U, Unger W. Cyclodextrin - ferrocene host - guest complexes on silicon oxide surfaces. SURF INTERFACE ANAL 2016. [DOI: 10.1002/sia.5958] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- C. Nietzold
- BAM Federal Institute for Materials Research and Testing; Unter den Eichen 87; Berlin 12205 Germany
| | - P. M. Dietrich
- BAM Federal Institute for Materials Research and Testing; Unter den Eichen 87; Berlin 12205 Germany
| | - A. Lippitz
- BAM Federal Institute for Materials Research and Testing; Unter den Eichen 87; Berlin 12205 Germany
| | - U. Panne
- BAM Federal Institute for Materials Research and Testing; Unter den Eichen 87; Berlin 12205 Germany
| | - W. E. S. Unger
- BAM Federal Institute for Materials Research and Testing; Unter den Eichen 87; Berlin 12205 Germany
| |
Collapse
|
37
|
Biswas TK, Sarkar SM, Yusoff MM, Rahman ML. Synthesis and characterization of azobenzene-based gold nanoparticles for photo-switching properties. J Mol Liq 2016. [DOI: 10.1016/j.molliq.2015.12.078] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
38
|
Schwarz FB, Heinrich T, Lippitz A, Unger WES, Schalley CA. A photoswitchable rotaxane operating in monolayers on solid support. Chem Commun (Camb) 2016; 52:14458-14461. [DOI: 10.1039/c6cc08586e] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A novel photoswitchable rotaxane was synthesised and its switching behaviour in solution and on solid support was studied.
Collapse
Affiliation(s)
- Felix B. Schwarz
- Institut für Chemie und Biochemie
- Freie Universität Berlin
- 14195 Berlin
- Germany
| | - Thomas Heinrich
- Institut für Chemie und Biochemie
- Freie Universität Berlin
- 14195 Berlin
- Germany
- BAM – Federal Institute for Materials Research and Testing
| | - Andreas Lippitz
- BAM – Federal Institute for Materials Research and Testing
- 12203 Berlin
- Germany
| | | | | |
Collapse
|
39
|
Zhang W, Chen Y, Yu J, Zhang XJ, Liu Y. Photo/chemo dual-controlled reversible morphological conversion and chiral modulation of supramolecular nanohelixes with nanosquares and nanofibers. Chem Commun (Camb) 2016; 52:14274-14277. [DOI: 10.1039/c6cc07089b] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
A photo/chemo dually interconvertible system was constructed with switchable morphologies among a nanohelix, nanofiber and nanosquare.
Collapse
Affiliation(s)
- Wen Zhang
- Department of Chemistry
- State Key Laboratory of Elemento-Organic Chemistry
- Nankai University
- Tianjin 300071
- P. R. China
| | - Yong Chen
- Department of Chemistry
- State Key Laboratory of Elemento-Organic Chemistry
- Nankai University
- Tianjin 300071
- P. R. China
| | - Jie Yu
- Department of Chemistry
- State Key Laboratory of Elemento-Organic Chemistry
- Nankai University
- Tianjin 300071
- P. R. China
| | - Xu-Jie Zhang
- Department of Chemistry
- State Key Laboratory of Elemento-Organic Chemistry
- Nankai University
- Tianjin 300071
- P. R. China
| | - Yu Liu
- Department of Chemistry
- State Key Laboratory of Elemento-Organic Chemistry
- Nankai University
- Tianjin 300071
- P. R. China
| |
Collapse
|
40
|
Abstract
Complexation-to-deaggregation effect of cyclodextrin was applied to achieve ordered functional monolayers on a gold surface.
Collapse
Affiliation(s)
- Ruyi Sun
- School of Chemistry and Molecular Engineering
- East China Normal University
- Shanghai 200241
- China
| | - Liangliang Zhu
- State Key Laboratory of Molecular Engineering of Polymers
- Department of Macromolecular Science
- Fudan University
- Shanghai 200433
- China
| |
Collapse
|
41
|
Sun Y, Ma J, Tian D, Li H. Macroscopic switches constructed through host–guest chemistry. Chem Commun (Camb) 2016; 52:4602-12. [DOI: 10.1039/c6cc00338a] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In this feature article, we discuss recent developments in macroscopic contact angle switches formed by different macrocyclic hosts and highlight the properties of these new functional surfaces and their potential applications.
Collapse
Affiliation(s)
- Yue Sun
- Key Laboratory of Pesticide and Chemical Biology (CCNU)
- Ministry of Education
- College of Chemistry
- Central China Normal University
- Wuhan
| | - Junkai Ma
- Key Laboratory of Pesticide and Chemical Biology (CCNU)
- Ministry of Education
- College of Chemistry
- Central China Normal University
- Wuhan
| | - Demei Tian
- Key Laboratory of Pesticide and Chemical Biology (CCNU)
- Ministry of Education
- College of Chemistry
- Central China Normal University
- Wuhan
| | - Haibing Li
- Key Laboratory of Pesticide and Chemical Biology (CCNU)
- Ministry of Education
- College of Chemistry
- Central China Normal University
- Wuhan
| |
Collapse
|
42
|
Roling O, Stricker L, Voskuhl J, Lamping S, Ravoo BJ. Supramolecular surface adhesion mediated by azobenzene polymer brushes. Chem Commun (Camb) 2016; 52:1964-6. [DOI: 10.1039/c5cc08968a] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Surface immobilised polymer brushes containing azobenzenes were prepared using microcontact chemistry and surface-initiated atom transfer radical polymerisation. Two surfaces bearing brushes can be glued together in the presence of a β-cyclodextrin polymer.
Collapse
Affiliation(s)
- Oliver Roling
- Organic Chemistry Institute and Center for Soft Nanoscience
- Westfälische Wilhelms-Universität Münster
- 48149 Münster
- Germany
| | - Lucas Stricker
- Organic Chemistry Institute and Center for Soft Nanoscience
- Westfälische Wilhelms-Universität Münster
- 48149 Münster
- Germany
| | - Jens Voskuhl
- Organic Chemistry Institute and Center for Soft Nanoscience
- Westfälische Wilhelms-Universität Münster
- 48149 Münster
- Germany
| | - Sebastian Lamping
- Organic Chemistry Institute and Center for Soft Nanoscience
- Westfälische Wilhelms-Universität Münster
- 48149 Münster
- Germany
| | - Bart Jan Ravoo
- Organic Chemistry Institute and Center for Soft Nanoscience
- Westfälische Wilhelms-Universität Münster
- 48149 Münster
- Germany
| |
Collapse
|
43
|
Yang H, Liu Z, Chandran BK, Deng J, Yu J, Qi D, Li W, Tang Y, Zhang C, Chen X. Self-Protection of Electrochemical Storage Devices via a Thermal Reversible Sol-Gel Transition. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2015; 27:5593-8. [PMID: 26294084 DOI: 10.1002/adma.201502484] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2015] [Revised: 06/30/2015] [Indexed: 05/22/2023]
Abstract
Thermal self-protected intelligent electrochemical storage devices are fabricated using a reversible sol-gel transition of the electrolyte, which can decrease the specific capacitance and increase and enable temperature-dependent charging and discharging rates in the device. This work represents proof of a simple and useful concept, which shows tremendous promise for the safe and controlled power delivery in electrochemical devices.
Collapse
Affiliation(s)
- Hui Yang
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Zhiyuan Liu
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Bevita K Chandran
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Jiyang Deng
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Jiancan Yu
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Dianpeng Qi
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Wenlong Li
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Yuxin Tang
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Chenguang Zhang
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Xiaodong Chen
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| |
Collapse
|
44
|
Affiliation(s)
- Sundus Erbas-Cakmak
- School of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - David A. Leigh
- School of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Charlie T. McTernan
- School of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Alina
L. Nussbaumer
- School of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| |
Collapse
|
45
|
Xiao W, Zeng X, Lin H, Han K, Jia HZ, Zhang XZ. Dual stimuli-responsive multi-drug delivery system for the individually controlled release of anti-cancer drugs. Chem Commun (Camb) 2015; 51:1475-8. [PMID: 25494173 DOI: 10.1039/c4cc08831j] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A dual stimuli-responsive multi-drug delivery system was developed for "cancer cocktail therapy". Upon UV irradiation, microcapsules could rapidly release the small-molecule drugs, and thereafter the macromolecular drugs would be released in the presence of MMP in the tumor cells. This system will find great potential as a novel chemotherapeutic combination for cancer treatment.
Collapse
Affiliation(s)
- Wang Xiao
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, P. R. China.
| | | | | | | | | | | |
Collapse
|
46
|
Dos Ramos L, de Beer S, Hempenius MA, Vancso GJ. Redox-Induced Backbiting of Surface-Tethered Alkylsulfonate Amphiphiles: Reversible Switching of Surface Wettability and Adherence. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:6343-6350. [PMID: 25989156 DOI: 10.1021/acs.langmuir.5b01105] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The synthesis and characterization of electrode-supported poly(ferrocenylsilane) (PFS) films bearing iodopropyl (PFS-I) and undecanesulfonate (PFS-SO3(-)) surface moieties are presented. The redox responsiveness of these PFS films allows for controlled and repeatable switching of the surface energy of the PFS-I and PFS-SO3(-) layers under electrochemical control. Static water/surface contact angle measurements showed a change in contact angle values for PFS-I from 80° (reduced state) to 70° (oxidized state) over repeated cycles. However, an opposite change in wettability was observed for PFS-SO3(-), where the values observed varied from 59° (reduced state) to 77° (oxidized state). Nanoscale adherence was assessed with colloid probe AFM. The adhesive forces between these surfaces and a polystyrene (PS) colloid probe in water alternated between 130 nN (reduced state) and 30 nN (oxidized state) for PFS-I layers and between 75 nN (reduced) and 180 nN (oxidized) for the PFS-SO3(-) films. The reversed response of PFS-I films to oxidation compared to that of PFS-SO3(-), in both contact angles and adhesive forces, suggests a different underlying mechanism for switching. As PFS-I is tuned from the reduced to the oxidized state, positively charged ferrocenium (Fc(+)) centers that formed in the film increase its wettability and reduce its adherence to the hydrophobic colloid probe. For PFS-SO3(-) in the reduced state, the exposed alkanesulfonate moieties increase the hydrophilicity of the surface. When oxidized, the Fc(+) units attract the negatively charged sulfonate groups, which results in a bending of the sulfonate groups toward the PFS surface, exposing the undecyl spacer. This alteration of the surface chemistry reduces the surface energy and increases the adherence between the bent alkyl chains and the hydrophobic PS colloid in water. The attraction of the charged sulfonate group to Fc(+) is in competition with the counterions present in the electrolyte solution. Therefore, the backbiting of the chain can be achieved only in electrolytes where the affinity of Fc(+) for the ions is lower than for the sulfonate group, in agreement with the Hofmeister series.
Collapse
Affiliation(s)
- Lionel Dos Ramos
- Materials Science and Technology of Polymers, MESA+ Institute for Nanotechnology, University of Twente, 7500 AE Enschede, The Netherlands
| | - Sissi de Beer
- Materials Science and Technology of Polymers, MESA+ Institute for Nanotechnology, University of Twente, 7500 AE Enschede, The Netherlands
| | - Mark A Hempenius
- Materials Science and Technology of Polymers, MESA+ Institute for Nanotechnology, University of Twente, 7500 AE Enschede, The Netherlands
| | - G Julius Vancso
- Materials Science and Technology of Polymers, MESA+ Institute for Nanotechnology, University of Twente, 7500 AE Enschede, The Netherlands
| |
Collapse
|
47
|
Wang J, Zhang HY, Zhang XJ, Song ZH, Zhao XJ, Liu Y. Light-controlled reversible formation and dissociation of nanorods via interconversion of pseudorotaxanes. Chem Commun (Camb) 2015; 51:7329-32. [PMID: 25819834 DOI: 10.1039/c5cc01372k] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Nanorod-like supramolecular aggregates are fabricated by the self-assembly of the amphiphilic [2]pseudorotaxane, which can be dissociated and rebuilt by the alternating UV/vis irradiation.
Collapse
Affiliation(s)
- Jun Wang
- Department of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300071, P. R. China.
| | | | | | | | | | | |
Collapse
|
48
|
|
49
|
Xue M, Yang Y, Chi X, Yan X, Huang F. Development of Pseudorotaxanes and Rotaxanes: From Synthesis to Stimuli-Responsive Motions to Applications. Chem Rev 2015; 115:7398-501. [DOI: 10.1021/cr5005869] [Citation(s) in RCA: 605] [Impact Index Per Article: 67.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Min Xue
- State Key Laboratory of Chemical Engineering, Center for Chemistry of High-Performance & Novel Materials, Department of Chemistry, Zhejiang University, Hangzhou 310027, People’s Republic of China
| | - Yong Yang
- Department
of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, People’s Republic of China
| | - Xiaodong Chi
- State Key Laboratory of Chemical Engineering, Center for Chemistry of High-Performance & Novel Materials, Department of Chemistry, Zhejiang University, Hangzhou 310027, People’s Republic of China
| | - Xuzhou Yan
- State Key Laboratory of Chemical Engineering, Center for Chemistry of High-Performance & Novel Materials, Department of Chemistry, Zhejiang University, Hangzhou 310027, People’s Republic of China
| | - Feihe Huang
- State Key Laboratory of Chemical Engineering, Center for Chemistry of High-Performance & Novel Materials, Department of Chemistry, Zhejiang University, Hangzhou 310027, People’s Republic of China
| |
Collapse
|
50
|
Qu DH, Wang QC, Zhang QW, Ma X, Tian H. Photoresponsive Host–Guest Functional Systems. Chem Rev 2015; 115:7543-88. [DOI: 10.1021/cr5006342] [Citation(s) in RCA: 622] [Impact Index Per Article: 69.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Da-Hui Qu
- Key Laboratory for Advanced Materials & Institute of Fine Chemicals, East China University of Science & Technology, Meilong Road 130, Shanghai 200237, P. R. China
| | - Qiao-Chun Wang
- Key Laboratory for Advanced Materials & Institute of Fine Chemicals, East China University of Science & Technology, Meilong Road 130, Shanghai 200237, P. R. China
| | - Qi-Wei Zhang
- Key Laboratory for Advanced Materials & Institute of Fine Chemicals, East China University of Science & Technology, Meilong Road 130, Shanghai 200237, P. R. China
| | - Xiang Ma
- Key Laboratory for Advanced Materials & Institute of Fine Chemicals, East China University of Science & Technology, Meilong Road 130, Shanghai 200237, P. R. China
| | - He Tian
- Key Laboratory for Advanced Materials & Institute of Fine Chemicals, East China University of Science & Technology, Meilong Road 130, Shanghai 200237, P. R. China
| |
Collapse
|