1
|
Linhart I, Himl M, Urban V, Mráz J. Syntheses of methylcarbamoylated amino acids using synthetic equivalents of methyl isocyanate. SYNTHETIC COMMUN 2022. [DOI: 10.1080/00397911.2022.2042563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Igor Linhart
- Department of Organic Chemistry, Faculty of Chemical Technology, University of Chemistry and Technology, Prague, Czech Republic
| | - Michal Himl
- Department of Organic Chemistry, Faculty of Chemical Technology, University of Chemistry and Technology, Prague, Czech Republic
| | - Vojtěch Urban
- Department of Organic Chemistry, Faculty of Chemical Technology, University of Chemistry and Technology, Prague, Czech Republic
| | - Jaroslav Mráz
- National Institute of Public Health, Prague, Czech Republic
| |
Collapse
|
2
|
Itoh H, Inoue M. Comprehensive Structure–Activity Relationship Studies of Macrocyclic Natural Products Enabled by Their Total Syntheses. Chem Rev 2019; 119:10002-10031. [DOI: 10.1021/acs.chemrev.9b00063] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Hiroaki Itoh
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Masayuki Inoue
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
3
|
Scala MC, Spensiero A, Pepe G, Bertamino A, Carotenuto A, Grieco P, Novellino E, Gomez-Monterrey IM, Campiglia P, Sala M. Investigation on side-product formation during the synthesis of a lactoferrin-derived lactam-bridged cyclic peptide. Amino Acids 2018; 50:1367-1375. [PMID: 29974257 DOI: 10.1007/s00726-018-2612-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 06/28/2018] [Indexed: 11/24/2022]
Abstract
Bovine lactoferrin C-lobe is able to prevent both influenza virus hemagglutination and cell infection. In particular, it was demonstrated that the fragment 418SKHSSLDCVLRP429 is a potent antiviral peptide. Therefore, we tried to increase the stability of this fragment through side-chain lactam cyclization of the peptide, S[KHSSLD]CVLRP (1). However, classic strategy involving solid-supported cyclization of the linear precursor, containing orthogonal allyl/alloc-based protection for the key amino and carboxyl residues, did not provide the desired cyclic peptide. Here, we report the identification of problematic stretches during the sequence assembly process and the optimization of the different parameters involved in the construction of 1. Results indicated a significant influence of β-protecting group of both aspartic acid and adjacent cysteine residues on the formation of side products. Therefore, the identification of suitable β-protecting groups of these residues allowed us to optimize the synthesis of designed lactam-bridged cyclic peptide.
Collapse
Affiliation(s)
- Maria Carmina Scala
- Dipartimento di Farmacia, Università degli Studi di Salerno, 84084, Fisciano, SA, Italy
| | - Antonia Spensiero
- Dipartimento di Farmacia, Università degli Studi di Salerno, 84084, Fisciano, SA, Italy
| | - Giacomo Pepe
- Dipartimento di Farmacia, Università degli Studi di Salerno, 84084, Fisciano, SA, Italy
| | - Alessia Bertamino
- Dipartimento di Farmacia, Università degli Studi di Salerno, 84084, Fisciano, SA, Italy
| | - Alfonso Carotenuto
- Dipartimento di Farmacia, Università degli Studi di Napoli "Federico II", 80131, Naples, Italy
| | - Paolo Grieco
- Dipartimento di Farmacia, Università degli Studi di Napoli "Federico II", 80131, Naples, Italy
| | - Ettore Novellino
- Dipartimento di Farmacia, Università degli Studi di Napoli "Federico II", 80131, Naples, Italy
| | | | - Pietro Campiglia
- Dipartimento di Farmacia, Università degli Studi di Salerno, 84084, Fisciano, SA, Italy
| | - Marina Sala
- Dipartimento di Farmacia, Università degli Studi di Salerno, 84084, Fisciano, SA, Italy.
| |
Collapse
|
4
|
Itoh H, Tokumoto K, Kaji T, Paudel A, Panthee S, Hamamoto H, Sekimizu K, Inoue M. Total Synthesis and Biological Mode of Action of WAP-8294A2: A Menaquinone-Targeting Antibiotic. J Org Chem 2017; 83:6924-6935. [PMID: 29019678 DOI: 10.1021/acs.joc.7b02318] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
WAP-8294A2 (lotilibcin, 1) is a potent antibiotic with superior in vivo efficacy to vancomycin against methicillin-resistant Staphylococcus aureus (MRSA). Despite the great medical importance, its molecular mode of action remains unknown. Here we report the total synthesis of complex macrocyclic peptide 1 comprised of 12 amino acids with a β-hydroxy fatty-acid chain, and its deoxy analogue 2. A full solid-phase synthesis of 1 and 2 enabled their rapid assembly and the first detailed investigation of their functions. Compounds 1 and 2 were equipotent against various strains of Gram-positive bacteria including MRSA. We present evidence that the antimicrobial activities of 1 and 2 are due to lysis of the bacterial membrane, and their membrane-disrupting effects depend on the presence of menaquinone, an essential factor for the bacterial respiratory chain. The established synthetic routes and the menaquinone-targeting mechanisms provide valuable information for designing and developing new antibiotics based on their structures.
Collapse
Affiliation(s)
- Hiroaki Itoh
- Graduate School of Pharmaceutical Sciences , The University of Tokyo , 7-3-1 Hongo , Bunkyo-ku , Tokyo 113-0033 , Japan
| | - Kotaro Tokumoto
- Graduate School of Pharmaceutical Sciences , The University of Tokyo , 7-3-1 Hongo , Bunkyo-ku , Tokyo 113-0033 , Japan
| | - Takuya Kaji
- Graduate School of Pharmaceutical Sciences , The University of Tokyo , 7-3-1 Hongo , Bunkyo-ku , Tokyo 113-0033 , Japan
| | - Atmika Paudel
- Teikyo University Institute of Medical Mycology , 359 Otsuka , Hachioji , Tokyo 192-0395 , Japan
| | - Suresh Panthee
- Teikyo University Institute of Medical Mycology , 359 Otsuka , Hachioji , Tokyo 192-0395 , Japan
| | - Hiroshi Hamamoto
- Teikyo University Institute of Medical Mycology , 359 Otsuka , Hachioji , Tokyo 192-0395 , Japan
| | - Kazuhisa Sekimizu
- Teikyo University Institute of Medical Mycology , 359 Otsuka , Hachioji , Tokyo 192-0395 , Japan
| | - Masayuki Inoue
- Graduate School of Pharmaceutical Sciences , The University of Tokyo , 7-3-1 Hongo , Bunkyo-ku , Tokyo 113-0033 , Japan
| |
Collapse
|
5
|
Kaji T, Murai M, Itoh H, Yasukawa J, Hamamoto H, Sekimizu K, Inoue M. Total Synthesis and Functional Evaluation of Fourteen Derivatives of Lysocin E: Importance of Cationic, Hydrophobic, and Aromatic Moieties for Antibacterial Activity. Chemistry 2016; 22:16912-16919. [PMID: 27739191 DOI: 10.1002/chem.201604022] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Indexed: 12/22/2022]
Abstract
Lysocin E (1) is a structurally complex 37-membered depsipeptide comprising 12 amino-acid residues with an N-methylated amide and an ester linkage. Compound 1 binds to menaquinone (MK) in the bacterial membrane to exert its potent bactericidal activity. To decipher the biologically important functionalities within this unique antibiotic, we performed a comprehensive structure-activity relationship (SAR) study by systematically changing the side-chain structures of l-Thr-1, d-Arg-2, N-Me-d-Phe-5, d-Arg-7, l-Glu-8, and d-Trp-10. First, we achieved total synthesis of the 14 new side-chain analogues of 1 by employing a solid-phase strategy. We then evaluated the MK-dependent liposomal disruption and antimicrobial activity against Staphylococcus aureus by 1 and its analogues. Correlating data between the liposome and bacteria experiments revealed that membrane lysis was mainly responsible for the antibacterial functions. Altering the cationic guanidine moiety of d-Arg-2/7 to a neutral amide, and the C7-acyl group of l-Thr-1 to the C2 or C11 counterpart decreased the antimicrobial activities four- or eight-fold. More drastically, chemical mutation of d-Trp-10 to d-Ala-10 totally abolished the bioactivities. These important findings led us to propose the biological roles of the side-chain functionalities.
Collapse
Affiliation(s)
- Takuya Kaji
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Motoki Murai
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Hiroaki Itoh
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Jyunichiro Yasukawa
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.,Faculty of Pharmaceutical Sciences, Doshisha Women's College of Liberal Arts, Kohdo, Kyotanabe, Kyoto, 610-0395, Japan
| | - Hiroshi Hamamoto
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.,Teikyo University Institute of Medical Mycology, 359 Otsuka, Hachioji, Tokyo, 192-0395, Japan
| | - Kazuhisa Sekimizu
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.,Teikyo University Institute of Medical Mycology, 359 Otsuka, Hachioji, Tokyo, 192-0395, Japan
| | - Masayuki Inoue
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| |
Collapse
|
6
|
Sugawara A, Maita N, Gouda H, Yamamoto T, Hirose T, Kimura S, Saito Y, Nakano H, Kasai T, Nakano H, Shiomi K, Hirono S, Watanabe T, Taniguchi H, O̅mura S, Sunazuka T. Creation of Customized Bioactivity within a 14-Membered Macrolide Scaffold: Design, Synthesis, and Biological Evaluation Using a Family-18 Chitinase. J Med Chem 2015; 58:4984-97. [DOI: 10.1021/acs.jmedchem.5b00175] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Akihiro Sugawara
- The
Kitasato Institute, Kitasato Institute for Life Sciences and Graduate
School of Infection Control Sciences, Kitasato University, 5-9-1, Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Nobuo Maita
- Institute
for Enzyme Research, University of Tokushima, 3-18-15 Kuramotocho, Tokushima City, Tokushima, 770-8503, Japan
| | - Hiroaki Gouda
- School
of Pharmacy, Kitasato University, 5-9-1, Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Tsuyoshi Yamamoto
- The
Kitasato Institute, Kitasato Institute for Life Sciences and Graduate
School of Infection Control Sciences, Kitasato University, 5-9-1, Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Tomoyasu Hirose
- The
Kitasato Institute, Kitasato Institute for Life Sciences and Graduate
School of Infection Control Sciences, Kitasato University, 5-9-1, Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Saori Kimura
- The
Kitasato Institute, Kitasato Institute for Life Sciences and Graduate
School of Infection Control Sciences, Kitasato University, 5-9-1, Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Yoshifumi Saito
- The
Kitasato Institute, Kitasato Institute for Life Sciences and Graduate
School of Infection Control Sciences, Kitasato University, 5-9-1, Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Hayato Nakano
- The
Kitasato Institute, Kitasato Institute for Life Sciences and Graduate
School of Infection Control Sciences, Kitasato University, 5-9-1, Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Takako Kasai
- The
Kitasato Institute, Kitasato Institute for Life Sciences and Graduate
School of Infection Control Sciences, Kitasato University, 5-9-1, Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Hirofumi Nakano
- The
Kitasato Institute, Kitasato Institute for Life Sciences and Graduate
School of Infection Control Sciences, Kitasato University, 5-9-1, Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Kazuro Shiomi
- The
Kitasato Institute, Kitasato Institute for Life Sciences and Graduate
School of Infection Control Sciences, Kitasato University, 5-9-1, Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Shuichi Hirono
- School
of Pharmacy, Kitasato University, 5-9-1, Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Takeshi Watanabe
- Department
of Applied Biological Chemistry, Faculty of Agriculture, Niigata University, 8050 Ikarashi-2, Niigata 950-2181, Japan
| | - Hisaaki Taniguchi
- Institute
for Enzyme Research, University of Tokushima, 3-18-15 Kuramotocho, Tokushima City, Tokushima, 770-8503, Japan
| | - Satoshi O̅mura
- The
Kitasato Institute, Kitasato Institute for Life Sciences and Graduate
School of Infection Control Sciences, Kitasato University, 5-9-1, Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Toshiaki Sunazuka
- The
Kitasato Institute, Kitasato Institute for Life Sciences and Graduate
School of Infection Control Sciences, Kitasato University, 5-9-1, Shirokane, Minato-ku, Tokyo 108-8641, Japan
| |
Collapse
|
7
|
Gao X, Ren Q, Choi S, Xu Z, Ye T. Total synthesis of the putative structure of the proposed Banyasin A. Front Chem 2015; 3:19. [PMID: 25853121 PMCID: PMC4362330 DOI: 10.3389/fchem.2015.00019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 03/02/2015] [Indexed: 11/13/2022] Open
Abstract
The first total synthesis of four possible isomers of a molecule possessing the configuration proposed for Banyasin A is described. The structure synthesized appears to be different from that of the natural product.
Collapse
Affiliation(s)
- Xuguang Gao
- Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate SchoolShenzhen, China
| | - Qi Ren
- Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate SchoolShenzhen, China
| | - Sun Choi
- National Leading Research Laboratory of Molecular Modeling and Drug Design, College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans UniversitySeoul, South Korea
| | - Zhengshuang Xu
- Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate SchoolShenzhen, China
| | - Tao Ye
- Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate SchoolShenzhen, China
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic UniversityHong Kong, China
| |
Collapse
|
8
|
Arnhold FS, Linden A, Heimgartner H. Synthesis of Aib- and Phe(2Me)-Containing Cyclopentapeptides. Helv Chim Acta 2015. [DOI: 10.1002/hlca.201400323] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
9
|
Murai M, Kaji T, Kuranaga T, Hamamoto H, Sekimizu K, Inoue M. Total Synthesis and Biological Evaluation of the Antibiotic Lysocin E and Its Enantiomeric, Epimeric, and N-Demethylated Analogues. Angew Chem Int Ed Engl 2014; 54:1556-60. [DOI: 10.1002/anie.201410270] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Indexed: 11/11/2022]
|
10
|
Murai M, Kaji T, Kuranaga T, Hamamoto H, Sekimizu K, Inoue M. Total Synthesis and Biological Evaluation of the Antibiotic Lysocin E and Its Enantiomeric, Epimeric, and N-Demethylated Analogues. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201410270] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
11
|
Nefzi A. Hantzsch based macrocyclization approach for the synthesis of thiazole containing cyclopeptides. Methods Mol Biol 2013; 1081:1-11. [PMID: 24014430 DOI: 10.1007/978-1-62703-652-8_1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
An innovative macrocyclization approach via high-yielding solid-phase intramolecular thioalkylation reaction is described. The reaction of S-nucleophiles with newly generated N-terminal 4-chloromethyl thiazoles leads to the desired cyclic products in high purities and good yields.
Collapse
Affiliation(s)
- Adel Nefzi
- Torrey Pines Institute for Molecular Studies, Port St. Lucie, FL, USA
| |
Collapse
|
12
|
Duspara PA, Islam MS, Lough AJ, Batey RA. Synthesis and Reactivity of N-Alkyl Carbamoylimidazoles: Development of N-Methyl Carbamoylimidazole as a Methyl Isocyanate Equivalent. J Org Chem 2012; 77:10362-8. [DOI: 10.1021/jo302084a] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Petar A. Duspara
- Department
of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario, Canada
M5S 3H6
| | - Md. Sadequl Islam
- Department
of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario, Canada
M5S 3H6
| | - Alan J. Lough
- Department
of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario, Canada
M5S 3H6
| | - Robert A. Batey
- Department
of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario, Canada
M5S 3H6
| |
Collapse
|
13
|
Subirós-Funosas R, El-Faham A, Albericio F. Aspartimide formation in peptide chemistry: occurrence, prevention strategies and the role of N-hydroxylamines. Tetrahedron 2011. [DOI: 10.1016/j.tet.2011.08.046] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
14
|
Solution-phase total synthesis of the hydrophilic natural product argifin using 3,4,5-tris(octadecyloxy)benzyl tag. Tetrahedron 2011. [DOI: 10.1016/j.tet.2011.05.073] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
15
|
Rhodes DI, Peat TS, Vandegraaff N, Jeevarajah D, Newman J, Martyn J, Coates JAV, Ede NJ, Rea P, Deadman JJ. Crystal structures of novel allosteric peptide inhibitors of HIV integrase identify new interactions at the LEDGF binding site. Chembiochem 2011; 12:2311-5. [PMID: 21850718 DOI: 10.1002/cbic.201100350] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2011] [Indexed: 11/11/2022]
Abstract
An optimised method of solution cyclisation gave us access to a series of peptides including SLKIDNLD (2). We investigated the crystallographic complexes of the HIV integrase (HIV-IN) catalytic core domain with 13 of the peptides and identified multiple interactions at the binding site, including hydrogen bonds with residues Thr125 and Gln95, that have not previously been described as being accessible within the binding site. We show that the peptides inhibit the interaction of lens epithelium-derived growth factor (LEDGF) with HIV-IN in a proximity AlphaScreen assay and in an assay for the LEDGF enhancement of HIV-IN strand transfer. The interactions identified represent a potential framework for the development of new HIV-IN inhibitors.
Collapse
|
16
|
Pantoom S, Vetter IR, Prinz H, Suginta W. Potent family-18 chitinase inhibitors: x-ray structures, affinities, and binding mechanisms. J Biol Chem 2011; 286:24312-23. [PMID: 21531720 PMCID: PMC3129211 DOI: 10.1074/jbc.m110.183376] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2010] [Revised: 03/20/2011] [Indexed: 11/06/2022] Open
Abstract
Six novel inhibitors of Vibrio harveyi chitinase A (VhChiA), a family-18 chitinase homolog, were identified by in vitro screening of a library of pharmacologically active compounds. Unlike the previously identified inhibitors that mimicked the reaction intermediates, crystallographic evidence from 14 VhChiA-inhibitor complexes showed that all of the inhibitor molecules occupied the outer part of the substrate-binding cleft at two hydrophobic areas. The interactions at the aglycone location are well defined and tightly associated with Trp-397 and Trp-275, whereas the interactions at the glycone location are patchy, indicating lower affinity and a loose interaction with two consensus residues, Trp-168 and Val-205. When Trp-275 was substituted with glycine (W275G), the binding affinity toward all of the inhibitors dramatically decreased, and in most structures two inhibitor molecules were found to stack against Trp-397 at the aglycone site. Such results indicate that hydrophobic interactions are important for binding of the newly identified inhibitors by the chitinase. X-ray data and isothermal microcalorimetry showed that the inhibitors occupied the active site of VhChiA in three different binding modes, including single-site binding, independent two-site binding, and sequential two-site binding. The inhibitory effect of dequalinium in the low nanomolar range makes this compound an extremely attractive lead compound for plausible development of therapeutics against human diseases involving chitinase-mediated pathologies.
Collapse
Affiliation(s)
- Supansa Pantoom
- From the Biochemistry-Electrochemistry Research Unit, Schools of Chemistry and Biochemistry, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand and
| | - Ingrid R. Vetter
- the Max Planck Institute for Molecular Physiology, 44227 Dortmund, Germany
| | - Heino Prinz
- the Max Planck Institute for Molecular Physiology, 44227 Dortmund, Germany
| | - Wipa Suginta
- From the Biochemistry-Electrochemistry Research Unit, Schools of Chemistry and Biochemistry, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand and
| |
Collapse
|
17
|
Nefzi A, Arutyunyan S, Fenwick JE. Two-Steps Hantzsch Based Macrocyclization Approach for the Synthesis of Thiazole Containing Cyclopeptides. J Org Chem 2010; 75:7939-7941. [PMID: 21113437 PMCID: PMC2989683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Macrocyclization via an efficient high-yielding solid-phase intramolecular thioalkylation reaction is described. The reaction of S-nucleophiles with newly generated N-terminal 4-chloromethyl thiazoles led to the desired macrocyclization products 5 in high purities and good overall yields.
Collapse
Affiliation(s)
- Adel Nefzi
- Torrey Pines Institute for Molecular Studies, 11350 SW Village Parkway, Port Saint Lucie, FL 34987
| | - Sergey Arutyunyan
- Torrey Pines Institute for Molecular Studies, 11350 SW Village Parkway, Port Saint Lucie, FL 34987
| | - Jason E. Fenwick
- Torrey Pines Institute for Molecular Studies, 11350 SW Village Parkway, Port Saint Lucie, FL 34987
| |
Collapse
|
18
|
Nefzi A, Arutyunyan S, Fenwick JE. Two-step Hantzsch based macrocyclization approach for the synthesis of thiazole-containing cyclopeptides. J Org Chem 2010; 75:7939-41. [PMID: 21033717 DOI: 10.1021/jo1016822] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Macrocyclization via an efficient high-yielding solid-phase intramolecular thioalkylation reaction is described. The reaction of S-nucleophiles with newly generated N-terminal 4-chloromethyl thiazoles led to the desired macrocyclization products 5 in high purities and good overall yields.
Collapse
Affiliation(s)
- Adel Nefzi
- Torrey Pines Institute for Molecular Studies, 11350 SW Village Parkway, Port Saint Lucie, Florida 34987, United States
| | | | | |
Collapse
|
19
|
Dellai A, Maricic I, Kumar V, Arutyunyan S, Bouraoui A, Nefzi A. Parallel synthesis and anti-inflammatory activity of cyclic peptides cyclosquamosin D and Met-cherimolacyclopeptide B and their analogs. Bioorg Med Chem Lett 2010; 20:5653-7. [PMID: 20801649 PMCID: PMC2940269 DOI: 10.1016/j.bmcl.2010.08.033] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2010] [Revised: 08/04/2010] [Accepted: 08/06/2010] [Indexed: 11/19/2022]
Abstract
We report the parallel synthesis of two natural cyclopeptides, isolated from the seeds of Annona squamosa, cyclosquamosin D (A1), and Met-cherimolacyclopeptide B (B) and their analogs. All of the compounds were screened for anti-inflammatory activity by evaluating their inhibitory effects on the production of pro-inflammatory cytokines using the lipopolysaccharide stimulated macrophage J774A.1 cell line. Compounds having significant anti-inflammatory activity in suppressing the secretion of IL-6 and TNF-α have been identified, some of which exhibit activity superior to that observed with the natural products.
Collapse
Affiliation(s)
- Afef Dellai
- Faculté de Pharmacie, Laboratoire de Pharmacologie Marine, 5000 Monastir, Tunisia
| | | | | | | | | | | |
Collapse
|
20
|
Derbal S, Hensler M, Fang W, Nizet V, Ghedira K, Nefzi A. On resin amino acid side chain attachment strategy for the head to tail synthesis of new glutamine containing gramicidin-S analogs and their antimicrobial activity. Bioorg Med Chem Lett 2010; 20:5701-4. [PMID: 20800485 PMCID: PMC2963184 DOI: 10.1016/j.bmcl.2010.08.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2010] [Revised: 08/02/2010] [Accepted: 08/04/2010] [Indexed: 10/19/2022]
Abstract
The alarming increase in infections caused by multiple drug resistant bacteria including methicillin-resistant Staphylococcus aureus has prompted a desperate search for new antimicrobials. Augmenting the discoveries of completely new scaffolds with antimicrobial activity are efforts aimed at modifying existing molecules to optimize activity or reduce toxicity. We report herein the parallel solid-phase synthesis of analogues of the cationic antimicrobial peptide gramicidin S (GS) using amino acid side chain attachment strategy. The ornithine (Orn) residues were replaced by glutamine (Gln) and the aromatic D-phenylalanine (Phe) were replaced by different aromatic D-amino acids. Additional Gln containing GS analogues with all the possible combinations of the hydrophobic amino acids valine and leucine were also synthesized. In this work we also report the antibacterial activity of these analogs against several clinically-important drug-resistant Gram-positive and Gram-negative pathogens.
Collapse
Affiliation(s)
- Safa Derbal
- Laboratoire de Pharmacognosie, Faculté de Pharmacie, Rue Avicenne, 5000 Monastir, Tunisia
| | | | | | | | | | | |
Collapse
|
21
|
Hirose T, Sunazuka T, Ōmura S. Recent development of two chitinase inhibitors, Argifin and Argadin, produced by soil microorganisms. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2010; 86:85-102. [PMID: 20154467 PMCID: PMC3417560 DOI: 10.2183/pjab.86.85] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Chitin, the second most abundant polysaccharide in nature, occurs in fungi, some algae and many invertebrates, including insects. Thus, chitin synthesis and degradation could represent specific targets for fungicides and insecticides. Chitinases hydrolyze chitin into oligomers of N-acetyl-D-glucosamine at key points in the life cycles of organisms, consequently, chitinase inhibitors have become subject of increasing interest. This review covers the development of two chitinase inhibitors of natural origin, Argifin and Argadin, isolated from the cultured broth of microorganisms in our laboratory. In particular, the practical total synthesis of these natural products, the synthesis of lead compounds via computer-aided rational molecular design, and discovery methods that generate only highly-active compounds using a kinetic target(chitinase)-guided synthesis approach (termed in situ click chemistry) are described.
Collapse
Affiliation(s)
- Tomoyasu Hirose
- The Kitasato Institute, Kitasato Institute for Life Sciences and Graduate School of Infection Control Sciences, Kitasato University, Tokyo, Japan
| | - Toshiaki Sunazuka
- The Kitasato Institute, Kitasato Institute for Life Sciences and Graduate School of Infection Control Sciences, Kitasato University, Tokyo, Japan
- Correspondence should be addressed: T. Sunazuka and S. Ōmura, The Kitasato Institute and Kitasato Institute for Life Science and Graduate School of Infection Control Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan (e-mail: and )
| | - Satoshi Ōmura
- The Kitasato Institute, Kitasato Institute for Life Sciences and Graduate School of Infection Control Sciences, Kitasato University, Tokyo, Japan
- Correspondence should be addressed: T. Sunazuka and S. Ōmura, The Kitasato Institute and Kitasato Institute for Life Science and Graduate School of Infection Control Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan (e-mail: and )
| |
Collapse
|
22
|
La Clair JJ. Natural product mode of action (MOA) studies: a link between natural and synthetic worlds. Nat Prod Rep 2010; 27:969-95. [DOI: 10.1039/b909989c] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
23
|
Berlinck RGS, Burtoloso ACB, Trindade-Silva AE, Romminger S, Morais RP, Bandeira K, Mizuno CM. The chemistry and biology of organic guanidine derivatives. Nat Prod Rep 2010; 27:1871-907. [DOI: 10.1039/c0np00016g] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
24
|
Hirose T, Sunazuka T, Sugawara A, Noguchi Y, Tanaka T, Iguchi K, Yamamoto T, Gouda H, Shiomi K, Ōmura S. Solid-phase total synthesis of the chitinase inhibitor Argadin using a supported acetal resin. J Antibiot (Tokyo) 2009; 62:495-500. [DOI: 10.1038/ja.2009.57] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
25
|
Saavedra C, Hernández R, Boto A, Álvarez E. Catalytic, One-Pot Synthesis of β-Amino Acids from α-Amino Acids. Preparation of α,β-Peptide Derivatives. J Org Chem 2009; 74:4655-65. [DOI: 10.1021/jo9004487] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Carlos Saavedra
- Instituto de Productos Naturales y Agrobiología del CSIC, Avda. Astrofísico Francisco Sánchez 3, 38206-La Laguna, Tenerife, Spain, and Instituto de Investigaciones Químicas (CSIC-USe), Isla de la Cartuja, Avda. Américo Vespucio 49, 41092-Sevilla, Spain
| | - Rosendo Hernández
- Instituto de Productos Naturales y Agrobiología del CSIC, Avda. Astrofísico Francisco Sánchez 3, 38206-La Laguna, Tenerife, Spain, and Instituto de Investigaciones Químicas (CSIC-USe), Isla de la Cartuja, Avda. Américo Vespucio 49, 41092-Sevilla, Spain
| | - Alicia Boto
- Instituto de Productos Naturales y Agrobiología del CSIC, Avda. Astrofísico Francisco Sánchez 3, 38206-La Laguna, Tenerife, Spain, and Instituto de Investigaciones Químicas (CSIC-USe), Isla de la Cartuja, Avda. Américo Vespucio 49, 41092-Sevilla, Spain
| | - Eleuterio Álvarez
- Instituto de Productos Naturales y Agrobiología del CSIC, Avda. Astrofísico Francisco Sánchez 3, 38206-La Laguna, Tenerife, Spain, and Instituto de Investigaciones Químicas (CSIC-USe), Isla de la Cartuja, Avda. Américo Vespucio 49, 41092-Sevilla, Spain
| |
Collapse
|