1
|
Mukhopadhyay J, Sahoo SC, Bharatam PV. (Imidazol-2-ylidene) → S coordination interactions and its modulation upon S-oxidation. Dalton Trans 2024; 53:17050-17058. [PMID: 39356278 DOI: 10.1039/d4dt02286f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2024]
Abstract
(NHC) → E coordination interactions are being explored in many chemical species, including carbones and nitreones. (NHC) → S interactions are rare, but increasing attention is being paid to the compounds containing such interactions. The electron deficiency at the S centre is responsible for triggering electron donation from the NHC unit in (NHC) → SR(+) systems. It is well known that the positive charge at the sulfur centre increases upon single oxidation and further increases upon double oxidation. This implies that (NHC) → S interactions may become explicit after S-oxidation in the (NHC) → SR(+) systems. To explore this hypothesis, we performed quantum chemical design and synthesis of (NHC) → SR(+), (NHC) → S(O)R(+), and (NHC) → S(O)2R(+) complexes in which the ligands are imidazol-2-ylidene derivatives. Eight derivatives of the (imidazol-2-ylidene) → SR(+) systems were generated, and their sulfoxide and sulfone derivatives were obtained by oxidation using urea-H2O2 and mCPBA, respectively. The crystal structures of three compounds belonging to a series were determined. A comparison of the geometric, energetic and electronic characteristics confirmed the hypothesis that the (NHC) → S coordination interaction becomes comparatively stronger with an increase in oxygen atoms at the sulfur centre.
Collapse
Affiliation(s)
- Joy Mukhopadhyay
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S. A. S. Nagar, Punjab 160062, India.
| | - Subash C Sahoo
- Department of Chemistry, Panjab University, Sector 14, Chandigarh, 160014, India
| | - Prasad V Bharatam
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S. A. S. Nagar, Punjab 160062, India.
| |
Collapse
|
2
|
Zou Y, Bao SJ, Tang H, Zhang HN, Jin GX. Synergizing Steric Hindrance and Stacking Interactions To Facilitate the Controlled Assembly of Multiple 4 1 Metalla-Knots and Pseudo-Solomon Links. Angew Chem Int Ed Engl 2024; 63:e202410722. [PMID: 38965047 DOI: 10.1002/anie.202410722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/04/2024] [Accepted: 07/04/2024] [Indexed: 07/06/2024]
Abstract
In this work, a noncoplanar terphenyl served as a building block to synthesize a novel 3,3'-substituted bipyridyl ligand (L1) which further reacted with binuclear half-sandwich units A/B, giving rise to two aesthetic 41 metalla-knots in high yields via a coordination-driven self-assembly strategy. Furthermore, given the inherent compactness of the 41 metalla-knots, it creates favorable conditions for the emergence of steric repulsion. We focused on progressively introducing nitrogen atoms featuring a lone pair of electrons (LPEs) into ligand L1 to manipulate the balance of H⋅⋅⋅H/LPEs⋅⋅⋅LPEs steric repulsion during the assembly process, ultimately achieving controlled assembly from 41 metalla-knots to the pseudo-Solomon link and then to molecular tweezer-like assembly facilitated by stacking interactions. All the assemblies were well characterized by solution-state NMR techniques, ESI-TOF/MS, and single-crystal X-ray diffraction. The evolutionary process of the topological architectures is equivalent to visualizing the synergistic effect of steric hindrance and stacking interactions on structural assembly, providing a new avenue for achieving the controlled synthesis of different topologies.
Collapse
Affiliation(s)
- Yan Zou
- State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200438, P. R. China
| | - Shu-Jin Bao
- State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200438, P. R. China
| | - Haitong Tang
- State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200438, P. R. China
| | - Hai-Ning Zhang
- State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200438, P. R. China
| | - Guo-Xin Jin
- State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200438, P. R. China
| |
Collapse
|
3
|
Mukhopadhyay J, Bhagat S, Sahoo SC, Bharatam PV. L→S Coordination Complexes Containing Benzothiazol-2-ylidene Ligand: Quantum Chemical Analysis and Synthesis. Chempluschem 2024; 89:e202400150. [PMID: 38554142 DOI: 10.1002/cplu.202400150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 03/29/2024] [Accepted: 03/29/2024] [Indexed: 04/01/2024]
Abstract
(NHC)→E coordination interactions were known where NHC is an N-heterocyclic carbene, and E is a main group element (B, C, N, Si, P). Recently, it was suggested that compounds with (NHC)→S coordination chemistry are also possible. This work reports quantum chemical analysis and synthesis of (NHC)→S-R(+) complexes in which benzothiazol-2-ylidene acts as a ligand. A Density functional study established that (NHC)→S interaction can best be described as a coordination interaction. Synthetic efforts were made, initially, to generate divalent sulfur compounds containing benzothiazole substituents. N-alkylation of the heterocyclic ring in these sulfides using methyl triflate led to the generation of the desired products with (NHC)→S coordination chemistry, which involves the in situ generation of NHC ring ligands. The observed changes in the 13C NMR spectra, before and after methylation, confirmed the change in the electronic character of the C-S bond from a covalent character to a coordination character.
Collapse
Affiliation(s)
- Joy Mukhopadhyay
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S. A. S., Nagar, Punjab, 160062, India
| | - Srikant Bhagat
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S. A. S., Nagar, Punjab, 160062, India
| | - Subash C Sahoo
- Department of Chemistry, Panjab University, Sector 14, Chandigarh, 160014, India
| | - Prasad V Bharatam
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S. A. S., Nagar, Punjab, 160062, India
| |
Collapse
|
4
|
Wanjari PJ, Rath A, Sathe RY, Bharatam PV. Identification of CYP3A4 inhibitors as potential anti-cancer agents using pharmacoinformatics approach. J Mol Model 2023; 29:156. [PMID: 37097473 DOI: 10.1007/s00894-023-05538-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 03/30/2023] [Indexed: 04/26/2023]
Abstract
Biguanide derivatives exhibit a wide variety of therapeutic applications, including anti-cancer effects. Metformin is an effective anti-cancer agent against breast cancer, lung cancer, and prostate cancer. In the crystal structure (PDB ID: 5G5J), it was found that metformin is found in the active site of CYP3A4, and the associated anti-cancer effect was explored. Taking clues from this work, pharmacoinformatics research has been carried out on a series of known and virtual biguanide, guanylthiourea (GTU), and nitreone derivatives. This exercise led to the identification of more than 100 species that exhibit greater binding affinity toward CYP3A4 in comparison to that of metformin. Selected six molecules were subjected to molecular dynamics simulations, and the results are presented in this work.
Collapse
Affiliation(s)
- Pravin J Wanjari
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar-160062, Punjab, India
| | - Asutosh Rath
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar-160062, Punjab, India
| | - Rohit Y Sathe
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar-160062, Punjab, India
| | - Prasad V Bharatam
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar-160062, Punjab, India.
| |
Collapse
|
5
|
Ovais Dar M, Kapse RY, Dubey G, Singh T, Thiruvenkatam V, Bharatam PV. Electronic Structure Analysis and Synthesis of Nitroso
N
‐Heterocyclic Imines. ChemistrySelect 2022. [DOI: 10.1002/slct.202203613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Mohammad Ovais Dar
- Department of Medicinal Chemistry National Institute of Pharmaceutical Education and Research Sector 67, S.A.S. Nagar 160062 Punjab India
| | - Rahul Y. Kapse
- Department of Medicinal Chemistry National Institute of Pharmaceutical Education and Research Sector 67, S.A.S. Nagar 160062 Punjab India
| | - Gurudutt Dubey
- Department of Medicinal Chemistry National Institute of Pharmaceutical Education and Research Sector 67, S.A.S. Nagar 160062 Punjab India
- Current address Discipline of Chemistry Indian Institute of Technology Gandhinagar Palaj Gandhinagar 382355 Gujarat India
| | - Tejender Singh
- Department of Medicinal Chemistry National Institute of Pharmaceutical Education and Research Sector 67, S.A.S. Nagar 160062 Punjab India
- Current address Tata Institute of Fundamental Research (TIFR) Hyderabad Gopanpally Hyderabad 500046 Telangana India
| | - Vijay Thiruvenkatam
- Discipline of Biological Engineering Indian Institute of Technology Gandhinagar Palaj Gandhinagar 382355 Gujarat India
| | - Prasad V. Bharatam
- Department of Medicinal Chemistry National Institute of Pharmaceutical Education and Research Sector 67, S.A.S. Nagar 160062 Punjab India
| |
Collapse
|
6
|
Wanjari PJ, Saha N, Dubey G, Bharatam PV. Metal-free methods for the generation of benzimidazoles and 2-aminobenzimidazoles. Tetrahedron 2022. [DOI: 10.1016/j.tet.2022.133143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
7
|
Bankar AA, Kathuria D. Guanylguanidines: Catalyst and Ligand for Organic Transformations. ChemistrySelect 2022. [DOI: 10.1002/slct.202201273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Affiliation(s)
- Apoorva A. Bankar
- Department of Pharmaceutical Chemistry Government College of Pharmacy, Kathora Naka Amravati Maharashtra 444604 India
| | - Deepika Kathuria
- University Center for Research and Development Chandigarh University Gharuan Punjab 140413 India
| |
Collapse
|
8
|
Kulsha AV, Ragoyja EG, Ivashkevich OA. Strong Bases Design: Predicted Limits of Basicity. J Phys Chem A 2022; 126:3642-3652. [PMID: 35657384 DOI: 10.1021/acs.jpca.2c00521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Brønsted superbases have wide applications in organic chemistry due to their ability to activate C-H bonds. The strongest neutral bases to date are substituted aminophosphazenes developed in the late 1980s by Reinhard Schwesinger. Since then, much effort has been expended to create even stronger neutral bases. In this article, the reasons for the instability of very basic compounds are investigated by means of high-level quantum-chemical calculations. Theoretical basicity limits are suggested for solutions as well as for the gas phase. A record-breaking superbase most likely to be synthesizable and stable at ambient conditions is proposed. Hexamethylphosphoramide is considered a reliable ionizing solvent for superbases.
Collapse
Affiliation(s)
- Andrey V Kulsha
- Chemical Department, Belarusian State University, 4 Nezavisimosti Avenue, 220030 Minsk, Republic of Belarus
| | - Ekaterina G Ragoyja
- Chemical Department, Belarusian State University, 4 Nezavisimosti Avenue, 220030 Minsk, Republic of Belarus
| | - Oleg A Ivashkevich
- Laboratory for Chemistry of Condensed Systems, Research Institute for Physical Chemical Problems of the Belarusian State University, 14 Leningradskaya Street, 220006 Minsk, Republic of Belarus
| |
Collapse
|
9
|
Tian J, Cordier M, Bour C, Auffrant A, Gandon V. A cyclic divalent N(I) species isoelectronic to carbodiphosphoranes. Chem Commun (Camb) 2022; 58:5741-5744. [PMID: 35466973 DOI: 10.1039/d2cc01637k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The formation of a rare type of diphosphazenium cation is described. Its synthesis features a unique oxidative dealkylation of an iminophosphorane-phosphole by a silver(I) salt. DFT study of this compound reveals the low valent character of the N(I) center.
Collapse
Affiliation(s)
- Jiaxin Tian
- Institut de Chimie Moléculaire et des Matériaux d'Orsay, CNRS UMR 8182, Université Paris-Saclay, Bâtiment 420, 91405 Orsay cedex, France.
| | - Marie Cordier
- Laboratoire de Chimie Moléculaire (LCM), CNRS UMR 9168 Ecole Polytechnique, Institut Polytechnique de Paris, route de Saclay, 91120 Palaiseau, France.
| | - Christophe Bour
- Institut de Chimie Moléculaire et des Matériaux d'Orsay, CNRS UMR 8182, Université Paris-Saclay, Bâtiment 420, 91405 Orsay cedex, France.
| | - Audrey Auffrant
- Laboratoire de Chimie Moléculaire (LCM), CNRS UMR 9168 Ecole Polytechnique, Institut Polytechnique de Paris, route de Saclay, 91120 Palaiseau, France.
| | - Vincent Gandon
- Institut de Chimie Moléculaire et des Matériaux d'Orsay, CNRS UMR 8182, Université Paris-Saclay, Bâtiment 420, 91405 Orsay cedex, France. .,Laboratoire de Chimie Moléculaire (LCM), CNRS UMR 9168 Ecole Polytechnique, Institut Polytechnique de Paris, route de Saclay, 91120 Palaiseau, France.
| |
Collapse
|
10
|
Deb R, Balakrishna P, Majumdar M. Recent Developments in the Chemistry of Pn(I) (Pn=N, P, As, Sb, Bi) Cations. Chem Asian J 2021; 17:e202101133. [PMID: 34786856 DOI: 10.1002/asia.202101133] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/13/2021] [Indexed: 12/16/2022]
Abstract
The Group 15 Pn(I) cations (Pn=N, P, As, Sb and Bi), which are isoelectronic with the donor-stabilized carbones, have emerged recently. Despite the presence of two lone pair of electrons, the Pn(I) cations are weakly nucleophilic due to their inherent positive charge. Strongly electron-donating supporting ligands including zwitterionic forms have been used to enhance their Lewis basicity. Furthermore, the chelating effect of cyclic ligand systems proved effective in increasing their nucleophilicity. The strategies involved in successfully isolating the fleeting Sb(I) and Bi(I) cations as the recent most achievements in this field have been discussed. The syntheses, structure, bonding situations and reactivity of the Pn(I) cations are discussed. An outlook on the periodic trends and future applications of these electronically unique electron-rich cationic moieties have been provided.
Collapse
Affiliation(s)
- Rahul Deb
- Department of Chemistry, Indian Institute of Science Education and Research, Pune, Dr. Homi Bhabha Road, Pashan, Pune-411008, Maharashtra, India
| | - P Balakrishna
- Department of Chemistry, Indian Institute of Science Education and Research, Pune, Dr. Homi Bhabha Road, Pashan, Pune-411008, Maharashtra, India
| | - Moumita Majumdar
- Department of Chemistry, Indian Institute of Science Education and Research, Pune, Dr. Homi Bhabha Road, Pashan, Pune-411008, Maharashtra, India
| |
Collapse
|
11
|
Singh T, Sahoo SC, Bharatam PV. Compound with possible N → N coordination bond: Synthesis, crystal structure and electronic structure analysis. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2021.153246] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
12
|
Biguanides drugs: Past success stories and promising future for drug discovery. Eur J Med Chem 2021; 224:113726. [PMID: 34364161 DOI: 10.1016/j.ejmech.2021.113726] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 07/27/2021] [Accepted: 07/27/2021] [Indexed: 12/13/2022]
Abstract
Biguanides have attracted much attention a century ago and showed resurgent interest in recent years after a long period of dormancy. They constitute an important class of therapeutic agents suitable for the treatment of a wide spectrum of diseases. Therapeutic indications of biguanides include antidiabetic, antimalarial, antiviral, antiplaque, and bactericidal applications. This review presents an extensive overview of the biological activity of biguanides and different mechanisms of action of currently marketed biguanide-containing drugs, as well as their pharmacological properties when applicable. We highlight the recent developments in research on biguanide compounds, with a primary focus on studies on metformin in the field of oncology. We aim to provide a critical overview of all main bioactive biguanide compounds and discuss future perspectives for the design of new drugs based on the biguanide fragment.
Collapse
|
13
|
Munz D, Meyer K. Charge frustration in ligand design and functional group transfer. Nat Rev Chem 2021; 5:422-439. [PMID: 37118028 DOI: 10.1038/s41570-021-00276-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/25/2021] [Indexed: 02/08/2023]
Abstract
Molecules with different resonance structures of similar importance, such as heterocumulenes and mesoionics, are prominent in many applications of chemistry, including 'click chemistry', photochemistry, switching and sensing. In coordination chemistry, similar chameleonic/schizophrenic entities are referred to as ambidentate/ambiphilic or cooperative ligands. Examples of these had remained, for a long time, limited to a handful of archetypal compounds that were mere curiosities. In this Review, we describe ambiphilicity - or, rather, 'charge frustration' - as a general guiding principle for ligand design and functional group transfer. We first give a historical account of organic zwitterions and discuss their electronic structures and applications. Our discussion then focuses on zwitterionic ligands and their metal complexes, such as those of ylidic and redox-active ligands. Finally, we present new approaches to single-atom transfer using cumulated small molecules and outline emerging areas, such as bond activation and stable donor-acceptor ligand systems for reversible 1e- chemistry or switching.
Collapse
|
14
|
Kathuria D, Raul AD, Wanjari P, Bharatam PV. Biguanides: Species with versatile therapeutic applications. Eur J Med Chem 2021; 219:113378. [PMID: 33857729 DOI: 10.1016/j.ejmech.2021.113378] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 03/04/2021] [Accepted: 03/08/2021] [Indexed: 12/18/2022]
Abstract
Biguanides are compounds in which two guanidine moieties are fused to form a highly conjugated system. Biguanides are highly basic and hence they are available as salts mostly hydrochloride salts, these cationic species have been found to exhibit many therapeutic properties. This review covers the research and development carried out on biguanides and accounts the various therapeutic applications of drugs containing biguanide group-such as antimalarial, antidiabetic, antiviral, anticancer, antibacterial, antifungal, anti-tubercular, antifilarial, anti-HIV, as well as other biological activities. The aim of this review is to compile all the medicinal chemistry applications of this class of compounds so as to pave way for the accelerated efforts in finding the drug action mechanisms associated with this class of compounds. Importance has been given to the organic chemistry of these biguanide derivatives also.
Collapse
Affiliation(s)
- Deepika Kathuria
- University Center for Research and Development, Chandigarh University, Gharuan, Punjab, 140413, India
| | - Akshay D Raul
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S. A. S. Nagar, 160 062, Punjab, India
| | - Pravin Wanjari
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S. A. S. Nagar, 160 062, Punjab, India
| | - Prasad V Bharatam
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S. A. S. Nagar, 160 062, Punjab, India.
| |
Collapse
|
15
|
Quantum chemical study in exploring the role of donor→acceptor interactions in 1,3-bis carbene-stabilized guanidinium cations. J Mol Model 2021; 27:87. [PMID: 33598784 DOI: 10.1007/s00894-021-04707-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 02/08/2021] [Indexed: 10/22/2022]
Abstract
Guanidinium species are highly basic and hence mostly exist in cationic state. Because these cations carry electron-deficient centers, they can be stabilized with the help of electron-donating ligands like N-heterocyclic carbenes. A few novel guanidinium cationic species stabilized by electron-donating ligands were designed and quantum chemically evaluated. It was shown that strong hydrogen bonds and tautomerism are the important characteristics of these species. Further, the possibility of donor→acceptor coordination interactions in these species have been explored between the electron-donating carbenes and the central guanidinium unit. The results suggest that the title compounds can be considered as ligand-stabilized guanidinium cations similar to the ligand-stabilized N+ and N3+ centers.
Collapse
|
16
|
Siddiqui MM, Sarkar SK, Nazish M, Morganti M, Köhler C, Cai J, Zhao L, Herbst-Irmer R, Stalke D, Frenking G, Roesky HW. Donor-Stabilized Antimony(I) and Bismuth(I) Ions: Heavier Valence Isoelectronic Analogues of Carbones. J Am Chem Soc 2021; 143:1301-1306. [DOI: 10.1021/jacs.0c12084] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Mujahuddin M. Siddiqui
- Institut für Anorganische Chemie, Universität Göttingen, Tammannstrasse 4, 37077 Göttingen, Germany
| | - Samir Kumar Sarkar
- Institut für Anorganische Chemie, Universität Göttingen, Tammannstrasse 4, 37077 Göttingen, Germany
| | - Mohd Nazish
- Institut für Anorganische Chemie, Universität Göttingen, Tammannstrasse 4, 37077 Göttingen, Germany
| | - Massimiliano Morganti
- Institut für Anorganische Chemie, Universität Göttingen, Tammannstrasse 4, 37077 Göttingen, Germany
| | - Christian Köhler
- Institut für Anorganische Chemie, Universität Göttingen, Tammannstrasse 4, 37077 Göttingen, Germany
| | - Jiali Cai
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic InnovationCenter for Advanced Materials, Nanjing Tech University, Nanjing 211816, China
| | - Lili Zhao
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Regine Herbst-Irmer
- Institut für Anorganische Chemie, Universität Göttingen, Tammannstrasse 4, 37077 Göttingen, Germany
| | - Dietmar Stalke
- Institut für Anorganische Chemie, Universität Göttingen, Tammannstrasse 4, 37077 Göttingen, Germany
| | - Gernot Frenking
- Fachbereich Chemie, Universität Marburg, Hans-Meerwein-Strasse, 35032 Marburg, Germany
| | - Herbert W. Roesky
- Institut für Anorganische Chemie, Universität Göttingen, Tammannstrasse 4, 37077 Göttingen, Germany
| |
Collapse
|
17
|
Patel N, Arfeen M, Singh T, Bhagat S, Sakhare A, Bharatam PV. Divalent N I Compounds: Identifying new Carbocyclic Carbenes to Design Nitreones using Quantum Chemical Methods. J Comput Chem 2020; 41:2624-2633. [PMID: 32964506 DOI: 10.1002/jcc.26417] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 08/23/2020] [Accepted: 08/24/2020] [Indexed: 11/05/2022]
Abstract
Nitreones are compounds with oxidation state 1 at the nitrogen, these compounds carry formal positive charge as well as two lone pairs of electrons at nitrogen center. These compounds are also known as divalent NI compounds and can be represented with the general formula L → N+ ← L, where L is an electron donating ligand. In the recent past, several divalent NI compounds have been reported with L = N-heterocyclic carbene (NHC), remote N-heterocyclic carbene (rNHC), carbocyclic carbene (CCC) and diaminocarbene. Recently, our group reported that a novel six-membered CCC (cyclohexa-2,5-diene-4-[diaminomethynyl]-1-ylidene) can stabilize N+ center in nitreones. As an independent carbene, this species is very unstable. In this work, modulation of this CCC using (a) annulation, (b) heterocyclic ring modification, (c) substitutions adjacent to the carbenic carbon, (d) exocyclic double bond insertion and (e) ring contraction, has been reported. These modulations and quantum chemical analyses helped in the identification of five new six-membered CCCs which carry improved donation and stability properties. Further, these CCCs were employed in the design of new divalent NI compounds (nitreones) which carry coordination bonds between ligands and N+ center. The molecular and electronic structure properties, and the donor→acceptor coordination interactions present in the resultant low oxidation state divalent NI compounds have been explored.
Collapse
Affiliation(s)
- Neha Patel
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), S. A. S. Nagar, Punjab, India
- Biocon Bristol-Myers Squibb R&D Center (BBRC), Syngene International Ltd., Bengaluru, Karnataka, India
| | - Minhajul Arfeen
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), S. A. S. Nagar, Punjab, India
| | - Tejender Singh
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), S. A. S. Nagar, Punjab, India
| | - Shweta Bhagat
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), S. A. S. Nagar, Punjab, India
| | - Ajay Sakhare
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), S. A. S. Nagar, Punjab, India
| | - Prasad V Bharatam
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), S. A. S. Nagar, Punjab, India
| |
Collapse
|
18
|
Loan HTP, Van Duc H, Quang DT, Cong VT, Van Tat P, Trung NT, Nhung NTA. Theoretical exploitation of donor-acceptor ability in low-valent group-14 elements complexes [E(PPh 3
) 2
→ SiH 2
] 2+
(E = C to Pb) using energy decomposition analysis. VIETNAM JOURNAL OF CHEMISTRY 2019. [DOI: 10.1002/vjch.201900078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Huynh Thi Phuong Loan
- Department of Chemistry; University of Sciences, Hue University; Hue City 530000 Viet Nam
| | - Hoang Van Duc
- Department of Chemistry; University of Education, Hue University; Hue City 530000 Viet Nam
| | - Duong Tuan Quang
- Department of Chemistry; University of Education, Hue University; Hue City 530000 Viet Nam
| | - Vo Thanh Cong
- Department of Chemical Engineering; Industrial University of Ho Chi Minh City; Ho Chi Minh City 700000 Viet Nam
| | - Pham Van Tat
- Faculty of Science and Engineering; Hoa Sen University; Ho Chi Minh City 700000 Viet Nam
| | - Nguyen Tien Trung
- Laboratory of Computational Chemistry and Modeling, Department of Chemistry; Quy Nhon University; Quy Nhon City 820000 Viet Nam
| | - Nguyen Thi Ai Nhung
- Department of Chemistry; University of Sciences, Hue University; Hue City 530000 Viet Nam
| |
Collapse
|
19
|
Singh T, Bharatam PV. Donor→acceptor coordination interactions in 1,3-bis(NHC)triazenyl Cations: An electronic structure analysis. J Comput Chem 2019; 40:2207-2215. [PMID: 31144352 DOI: 10.1002/jcc.25872] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 05/16/2019] [Accepted: 05/16/2019] [Indexed: 11/08/2022]
Abstract
Donor→acceptor coordination interactions (L → N) between ligands and nitrogen center as in L → N⊕ ← L were reported in the recent past. This article describes the possibility of L → N coordination interactions in triazenyl cation species L → N3 ⊕ ← L. A few 1,3-bis(NHC)triazenyl cation species were experimentally known, the electronic structure analysis reported in this work reveals the presence of L → N (donor→acceptor) interactions in these species. Molecular orbital analysis, NBO charge analysis, energy decomposition analysis, and so forth, confirm the possibility of L → N coordination bond character. Ten molecules with the general formula L → N3 ⊕ ← L have been designed carrying L → N3 ⊕ ← L interactions. © 2019 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Tejender Singh
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Sector 67, S.A.S. Nagar, Punjab, 160 062, India
| | - Prasad V Bharatam
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Sector 67, S.A.S. Nagar, Punjab, 160 062, India
| |
Collapse
|
20
|
Doddi A, Peters M, Tamm M. N-Heterocyclic Carbene Adducts of Main Group Elements and Their Use as Ligands in Transition Metal Chemistry. Chem Rev 2019; 119:6994-7112. [PMID: 30983327 DOI: 10.1021/acs.chemrev.8b00791] [Citation(s) in RCA: 309] [Impact Index Per Article: 61.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
N-Heterocyclic carbenes (NHC) are nowadays ubiquitous and indispensable in many research fields, and it is not possible to imagine modern transition metal and main group element chemistry without the plethora of available NHCs with tailor-made electronic and steric properties. While their suitability to act as strong ligands toward transition metals has led to numerous applications of NHC complexes in homogeneous catalysis, their strong σ-donating and adaptable π-accepting abilities have also contributed to an impressive vitalization of main group chemistry with the isolation and characterization of NHC adducts of almost any element. Formally, NHC coordination to Lewis acids affords a transfer of nucleophilicity from the carbene carbon atom to the attached exocyclic moiety, and low-valent and low-coordinate adducts of the p-block elements with available lone pairs and/or polarized carbon-element π-bonds are able to act themselves as Lewis basic donor ligands toward transition metals. Accordingly, the availability of a large number of novel NHC adducts has not only produced new varieties of already existing ligand classes but has also allowed establishment of numerous complexes with unusual and often unprecedented element-metal bonds. This review aims at summarizing this development comprehensively and covers the usage of N-heterocyclic carbene adducts of the p-block elements as ligands in transition metal chemistry.
Collapse
Affiliation(s)
- Adinarayana Doddi
- Technische Universität Braunschweig, Institut für Anorganische und Analytische Chemie, Hagenring 30, 38106 Braunschweig, Germany
| | - Marius Peters
- Technische Universität Braunschweig, Institut für Anorganische und Analytische Chemie, Hagenring 30, 38106 Braunschweig, Germany
| | - Matthias Tamm
- Technische Universität Braunschweig, Institut für Anorganische und Analytische Chemie, Hagenring 30, 38106 Braunschweig, Germany
| |
Collapse
|
21
|
Singh T, George A, Parameswaran P, Bharatam PV. Enols, Diamino Enols, and Breslow Intermediates: A Comparative Quantum Chemical Analysis. European J Org Chem 2019. [DOI: 10.1002/ejoc.201801817] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Tejender Singh
- Department of Medicinal Chemistry; National Institute of Pharmaceutical Education and Research (NIPER), Sector 67; 160 062 S.A.S. Nagar - Punjab India
| | - Anjana George
- Department of Chemistry; National Institute of Technology Calicut; NIT Calicut Campus P.O. 673 601 Kozhikode - Kerala India
| | - Pattiyil Parameswaran
- Department of Chemistry; National Institute of Technology Calicut; NIT Calicut Campus P.O. 673 601 Kozhikode - Kerala India
| | - Prasad V. Bharatam
- Department of Medicinal Chemistry; National Institute of Pharmaceutical Education and Research (NIPER), Sector 67; 160 062 S.A.S. Nagar - Punjab India
| |
Collapse
|
22
|
Chourasiya SS, Kathuria D, Wani AA, Bharatam PV. Azines: synthesis, structure, electronic structure and their applications. Org Biomol Chem 2019; 17:8486-8521. [DOI: 10.1039/c9ob01272a] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Azines (2,3-diaza-1,3-butadienes): structure, electronic structure, tautomerism, and their applications in organic synthesis, medicinal chemistry and materials chemistry.
Collapse
Affiliation(s)
- Sumit S. Chourasiya
- Department of Medicinal Chemistry
- National Institute of Pharmaceutical Education and Research (NIPER)
- India
| | - Deepika Kathuria
- Department of Medicinal Chemistry
- National Institute of Pharmaceutical Education and Research (NIPER)
- India
| | - Aabid Abdullah Wani
- Department of Medicinal Chemistry
- National Institute of Pharmaceutical Education and Research (NIPER)
- India
| | - Prasad V. Bharatam
- Department of Medicinal Chemistry
- National Institute of Pharmaceutical Education and Research (NIPER)
- India
| |
Collapse
|
23
|
Bhagat S, Arfeen M, Das G, Patel N, Bharatam PV. Electronic and ligating properties of carbocyclic carbenes: A theoretical investigation. J Comput Chem 2018; 40:726-733. [PMID: 30549074 DOI: 10.1002/jcc.25756] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Revised: 10/27/2018] [Accepted: 11/01/2018] [Indexed: 11/05/2022]
Abstract
Carbocyclic carbenes (CCCs) are a class of nucleophilic carbenes which are very similar to N-heterocyclic carbenes (NHCs) in terms of their reactivity, but they do not contain a stabilizing heteroatom in their cyclic ring system. In this study, 17 representative known CCCs and 34 newly designed CCCs are evaluated using quantum chemical methods, and the results are compared in terms of their stability, nucleophilicity, and proton affinity (PA) parameters. The results are divided on the basis of ring size of the known and reported CCCs. The stability, nucleophilicity, PA, complexation energy, and bond strength-related parameters were estimated using M06/6-311++G(d,p) method. The results indicated that the CCCs known in the literature are strong σ-electron donating species and have considerable π-accepting properties. This study led to the design and identification of a few new CCCs with dimethylamine and diaminomethynyl substituents which can be singlet stable and are substantially nucleophilic. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Shweta Bhagat
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, Mohali, Punjab, 160062, India
| | - Minhajul Arfeen
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, Mohali, Punjab, 160062, India
| | - Gourav Das
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, Mohali, Punjab, 160062, India
| | - Neha Patel
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, Mohali, Punjab, 160062, India
| | - Prasad V Bharatam
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, Mohali, Punjab, 160062, India
| |
Collapse
|
24
|
Abstract
Phase-transfer catalysts (PTCs), currently, are one of the most important tools of chemists for performing organic reactions. PTCs accelerate several types of reactions in biphasic systems, giving excellent yields of the desired product. Most of the PTCs belong to the general formula NR4+X-. In the recent past, several compounds possessing a novel scaffold with the general formula NL2+X- have been reported as PTCs. In the NL2+ species, a nitrogen atom with a formal positive charge accepts electron density from electron-donating ligands. Electronic structure studies reported in the literature confirmed the possibility of L → N coordination (donor-acceptor) interactions in these species, and thus, this class of compounds are known as divalent NI compounds. These species are reported to exhibit better catalytic potential in comparison to the traditional NR4+ systems. Some of the NL2+ systems are found to be useful in asymmetric phase-transfer catalysis. Thus, these systems offer extensive opportunities for exploring the catalytic properties and novel mechanistic aspects associated with their unique electronic structure. In this paper, the synthesis, electronic, and structural properties and the applications in catalysis of the NL2+-based PTCs are reviewed with their bright future scope in catalytic organic chemistry.
Collapse
Affiliation(s)
- Neha Patel
- Department of Medicinal Chemistry , National Institute of Pharmaceutical Education and Research (NIPER) , Sector 67, Sahibzada Ajit Singh Nagar 160 062 , Punjab , India
| | - Radhika Sood
- Department of Medicinal Chemistry , National Institute of Pharmaceutical Education and Research (NIPER) , Sector 67, Sahibzada Ajit Singh Nagar 160 062 , Punjab , India
| | - Prasad V Bharatam
- Department of Medicinal Chemistry , National Institute of Pharmaceutical Education and Research (NIPER) , Sector 67, Sahibzada Ajit Singh Nagar 160 062 , Punjab , India
| |
Collapse
|
25
|
Patel N, Arfeen M, Sood R, Khullar S, Chakraborti AK, Mandal SK, Bharatam PV. Can Remote N-Heterocyclic Carbenes Coordinate with Main Group Elements? Synthesis, Structure, and Quantum Chemical Analysis of N + -Centered Complexes. Chemistry 2018; 24:6418-6425. [PMID: 29504658 DOI: 10.1002/chem.201705999] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Indexed: 11/11/2022]
Abstract
Remote N-heterocyclic carbenes (rNHCs), such as N-methyl-4-pyridylidene, are known to form coordination complexes with TMs. Herein, it is established that rNHCs can also coordinate to the N+ centre. Synthesis of some novel divalent NI complexes with the general formula (rNHC)→N+ ←(NHC) and (rNHC)→N+ ←(rNHC) was achieved, and X-ray diffraction studies supported the coordination bond character between the rNHCs and the N+ centre. Quantum chemical analysis established the presence of divalent NI character at the central nitrogen in these systems.
Collapse
Affiliation(s)
- Neha Patel
- National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S., Nagar, 160 062, Punjab, India
| | - Minhajul Arfeen
- National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S., Nagar, 160 062, Punjab, India
| | - Radhika Sood
- National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S., Nagar, 160 062, Punjab, India
| | - Sadhika Khullar
- Department of Chemistry, D.A.V. University, Jalandhar-Pathankot National Highway, Jalandhar, 144012, Punjab, India
| | - Asit K Chakraborti
- National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S., Nagar, 160 062, Punjab, India
| | - Sanjay K Mandal
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Sector 81, S.A.S., Nagar, 140 308, Punjab, India
| | - Prasad V Bharatam
- National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S., Nagar, 160 062, Punjab, India
| |
Collapse
|
26
|
|
27
|
|
28
|
Yang T, Andrada DM, Frenking G. Dative versus electron-sharing bonding in N-oxides and phosphane oxides R3EO and relative energies of the R2EOR isomers (E = N, P; R = H, F, Cl, Me, Ph). A theoretical study. Phys Chem Chem Phys 2018; 20:11856-11866. [DOI: 10.1039/c8cp00951a] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Quantum chemical calculations using ab initio methods at the CCSD(T)/def2-TZVPP level and density functional theory using BP86 and M06-2X functionals in conjunction with def2-TZVPP basis sets have been carried out on the title molecules.
Collapse
Affiliation(s)
- Tao Yang
- Fachbereich Chemie
- Philipps-Universität Marburg
- Marburg 35032
- Germany
| | - Diego M. Andrada
- Fachbereich Chemie
- Philipps-Universität Marburg
- Marburg 35032
- Germany
| | - Gernot Frenking
- Fachbereich Chemie
- Philipps-Universität Marburg
- Marburg 35032
- Germany
- Institute of Advanced Synthesis
| |
Collapse
|
29
|
Andersen V, Berg RW, Shim I. Ab Initio Assessment of the Bonding in Disulfonates Containing Divalent Nitrogen and Phosphorus Atoms. ACS OMEGA 2017; 2:4447-4455. [PMID: 31457737 PMCID: PMC6641889 DOI: 10.1021/acsomega.7b00266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 05/19/2017] [Indexed: 06/10/2023]
Abstract
The iminodisulfonate, [N(SO3)2]3-, and phosphinodisulfonate, [P(SO3)2]3-, ions have been investigated by performing ab initio MP2/6-311+G** calculations. The nitrogen and phosphorus atoms as part of the ions are shown to be divalent with a negative charge and two lone pairs on the nitrogen and phosphorus atoms. The experimentally known calcium sodium iminodisulfonate trihydrate and the analogous unknown compound calcium sodium phosphinodisulfonate trihydrate have also been investigated using the MP2/6-311+G** calculations. For the nitrogen compound, only minor changes occur in the iminodisulfonate ion when it becomes part of the calcium sodium iminodisulfonate trihydrate. For the phosphorus compound, the geometry of the phosphinodisulfonate ion changes significantly as part of calcium sodium phosphinodisulfonate trihydrate. Furthermore, the charges associated with the atoms in calcium sodium phosphinodisulfonate trihydrate are quite different from those of the phosphinodisulfonate ion. For calcium sodium iminodisulfonate trihydrate, the Raman spectrum has been measured, and it compares well with the spectrum derived using HF/6-311+G** calculations.
Collapse
Affiliation(s)
| | | | - Irene Shim
- E-mail: . Phone: +45 4525 5432. Fax: +45 4588 3136 (I.S.)
| |
Collapse
|
30
|
|
31
|
Guanylthiourea derivatives as potential antimalarial agents: Synthesis, in vivo and molecular modelling studies. Eur J Med Chem 2017; 135:339-348. [DOI: 10.1016/j.ejmech.2017.04.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2017] [Revised: 04/03/2017] [Accepted: 04/10/2017] [Indexed: 11/21/2022]
|
32
|
Chourasiya SS, Patel DR, Nagaraja CM, Chakraborti AK, Bharatam PV. Sulfonamide vs. sulfonimide: tautomerism and electronic structure analysis of N-heterocyclic arenesulfonamides. NEW J CHEM 2017. [DOI: 10.1039/c7nj01353a] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Experimental and computational studies suggest a preference toward the sulfonimide tautomer in N-heterocyclic arenesulfonamide.
Collapse
Affiliation(s)
- Sumit S. Chourasiya
- Department of Medicinal Chemistry
- National Institute of Pharmaceutical Education and Research
- Punjab – 160 062
- India
| | - Dhara R. Patel
- Department of Medicinal Chemistry
- National Institute of Pharmaceutical Education and Research
- Punjab – 160 062
- India
| | - C. M. Nagaraja
- Department of Chemistry
- Indian Institute of Technology (IIT) Ropar
- Roopnagar – 140 001
- India
| | - Asit K. Chakraborti
- Department of Medicinal Chemistry
- National Institute of Pharmaceutical Education and Research
- Punjab – 160 062
- India
| | - Prasad V. Bharatam
- Department of Medicinal Chemistry
- National Institute of Pharmaceutical Education and Research
- Punjab – 160 062
- India
| |
Collapse
|
33
|
Morosaki T, Fujii T. Recent Advances in Heteroatom-Stabilized Carbones and Their Metal Complexes. ADVANCES IN ORGANOMETALLIC CHEMISTRY 2017. [DOI: 10.1016/bs.adomc.2017.08.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
34
|
Hornung J, Hübner O, Kaifer E, Himmel HJ. Bent and twisted: the electronic structure of 2-azapropenylium ions obtained by guanidine oxidation. RSC Adv 2016. [DOI: 10.1039/c6ra04494h] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
New bis-2-azapropenylium ions are obtained by oxidation of guanidino-substituted aromatic compounds.
Collapse
Affiliation(s)
- Julius Hornung
- Anorganisch-Chemisches Institut
- Ruprecht-Karls-Universität Heidelberg
- 69120 Heidelberg
- Germany
| | - Olaf Hübner
- Anorganisch-Chemisches Institut
- Ruprecht-Karls-Universität Heidelberg
- 69120 Heidelberg
- Germany
| | - Elisabeth Kaifer
- Anorganisch-Chemisches Institut
- Ruprecht-Karls-Universität Heidelberg
- 69120 Heidelberg
- Germany
| | - Hans-Jörg Himmel
- Anorganisch-Chemisches Institut
- Ruprecht-Karls-Universität Heidelberg
- 69120 Heidelberg
- Germany
| |
Collapse
|
35
|
Bharatam PV, Arfeen M, Patel N, Jain P, Bhatia S, Chakraborti AK, Khullar S, Gupta V, Mandal SK. Design, Synthesis, and Structural Analysis of Divalent N(I) Compounds and Identification of a New Electron-Donating Ligand. Chemistry 2015; 22:1088-96. [PMID: 26615987 DOI: 10.1002/chem.201503618] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Indexed: 11/09/2022]
Abstract
The dative-bond representation (L→E) in compounds with main group elements (E) has triggered extensive debate in the recent past. The scope and limits of this nonclassical coordination bond warrant comprehensive exploration. Particularly compounds with (L→N←L')(+) arrangement are of special interest because of their therapeutic importance. This work reports the design and synthesis of novel chemical species with the general structural formula (L→N←L')(+) carrying the unusual ligand cyclohexa-2,5-diene-4-(diaminomethynyl)-1-ylidene. Four species belonging to the (L→N←L')(+) class carrying this unconventional ligand were synthesized. Quantum chemical and X-ray diffraction analyses showed that the electronic and geometric parameters are consistent with those of already reported divalent N(I) compounds. The molecular orbital analysis, geometric parameters, and spectral data clearly support the L→N and N←L' interactions in these species. The newly identified ligand has the properties of a reactive carbene and high nucleophilicity.
Collapse
Affiliation(s)
- Prasad V Bharatam
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar -, 160 062, Punjab, India.
| | - Minhajul Arfeen
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar -, 160 062, Punjab, India
| | - Neha Patel
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar -, 160 062, Punjab, India
| | - Priyanka Jain
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar -, 160 062, Punjab, India
| | - Sonam Bhatia
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar -, 160 062, Punjab, India
| | - Asit K Chakraborti
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar -, 160 062, Punjab, India.
| | - Sadhika Khullar
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER), Mohali, Sector 81, S.A.S. Nagar -, 140 308, Punjab, India
| | - Vijay Gupta
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER), Mohali, Sector 81, S.A.S. Nagar -, 140 308, Punjab, India
| | - Sanjay K Mandal
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER), Mohali, Sector 81, S.A.S. Nagar -, 140 308, Punjab, India.
| |
Collapse
|
36
|
Borpuzari MP, Guha AK, Kar R. Structural, electronic and reactivity studies on group 15 analogues of N-heterocyclic carbene. Struct Chem 2015. [DOI: 10.1007/s11224-014-0552-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
37
|
Singh S, Wanjari PJ, Bhatia S, Sonwane VC, Chakraborti AK, Bharatam PV. Design, synthesis, biological evaluation and toxicity studies of N,N-disubstituted biguanides as quorum sensing inhibitors. Med Chem Res 2014. [DOI: 10.1007/s00044-014-1255-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
38
|
Arfeen M, Patel DS, Abbat S, Taxak N, Bharatam PV. Importance of cytochromes in cyclization reactions: Quantum chemical study on a model reaction of proguanil to cycloguanil. J Comput Chem 2014; 35:2047-55. [DOI: 10.1002/jcc.23719] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2014] [Revised: 08/04/2014] [Accepted: 08/06/2014] [Indexed: 12/23/2022]
Affiliation(s)
- Minhajul Arfeen
- Department of Medicinal Chemistry; National Institute of Pharmaceutical Education and Research (NIPER); S. A. S. Nagar (Mohali) 160 062 Punjab India
| | - Dhilon S. Patel
- Department of Medicinal Chemistry; National Institute of Pharmaceutical Education and Research (NIPER); S. A. S. Nagar (Mohali) 160 062 Punjab India
| | - Sheenu Abbat
- Department of Pharmacoinformatics; National Institute of Pharmaceutical Education and Research (NIPER); S. A. S. Nagar (Mohali) 160 062 Punjab India
| | - Nikhil Taxak
- Department of Medicinal Chemistry; National Institute of Pharmaceutical Education and Research (NIPER); S. A. S. Nagar (Mohali) 160 062 Punjab India
| | - Prasad V. Bharatam
- Department of Medicinal Chemistry; National Institute of Pharmaceutical Education and Research (NIPER); S. A. S. Nagar (Mohali) 160 062 Punjab India
| |
Collapse
|
39
|
Sánchez-Lombardo I, Sánchez-Lara E, Pérez-Benítez A, Mendoza Á, Bernès S, González-Vergara E. Synthesis of Metforminium(2+) Decavanadates - Crystal Structures and Solid-State Characterization. Eur J Inorg Chem 2014. [DOI: 10.1002/ejic.201402277] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
40
|
Mirabdolbaghi R, Dudding T, Stamatatos T. A Class of Phase-Transfer Catalyst with Interionic Strain: Insight into the Bonding of Disubstituted N- vs Carbene-Stabilized NI-Centered Cations. Org Lett 2014; 16:2790-3. [DOI: 10.1021/ol501068f] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Roya Mirabdolbaghi
- Department of Chemistry, Brock University, 500 Glenridge Avenue, St. Catharines, Ontario L2R1H1, Canada
| | - Travis Dudding
- Department of Chemistry, Brock University, 500 Glenridge Avenue, St. Catharines, Ontario L2R1H1, Canada
| | - Theocharis Stamatatos
- Department of Chemistry, Brock University, 500 Glenridge Avenue, St. Catharines, Ontario L2R1H1, Canada
| |
Collapse
|
41
|
Bhatia S, Bharatam PV. Possibility of the Existence of Donor–Acceptor Interactions in Bis(azole)amines: An Electronic Structure Analysis. J Org Chem 2014; 79:4852-62. [DOI: 10.1021/jo402862r] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Sonam Bhatia
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S. A. S.
Nagar, Punjab 160 062, India
| | - Prasad V. Bharatam
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S. A. S.
Nagar, Punjab 160 062, India
| |
Collapse
|
42
|
Design and synthesis of guanylthiourea derivatives as potential inhibitors of Plasmodium falciparum dihydrofolate reductase enzyme. Bioorg Med Chem Lett 2014; 24:613-7. [DOI: 10.1016/j.bmcl.2013.12.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Revised: 11/22/2013] [Accepted: 12/02/2013] [Indexed: 11/18/2022]
|
43
|
Nathavad ZP, Bhatia S, Dhaked DK, Bharatam PV. Electronic structure analysis of isomeric preferences of canonical and zwitterionic forms of lornoxicam. COMPUT THEOR CHEM 2013. [DOI: 10.1016/j.comptc.2013.09.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
|
44
|
Broeckaert L, Frenking G, Geerlings P, De Proft F. Reactivity of Dicoordinated Stannylones (Sn
0
) versus Stannylenes (Sn
II
): An Investigation Using DFT‐Based Reactivity Indices. Chemphyschem 2013; 14:3233-47. [DOI: 10.1002/cphc.201300596] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Indexed: 11/08/2022]
Affiliation(s)
- Lies Broeckaert
- Department of General Chemistry (ALGC), Vrije Universiteit Brussel (VUB), Pleinlaan 2, 1050 Brussels (Belgium)
| | - Gernot Frenking
- Fachbereich Chemie, Philipps‐Universität Marburg, Hans‐Meerwein‐Straße, 35032 Marburg (Germany)
| | - Paul Geerlings
- Department of General Chemistry (ALGC), Vrije Universiteit Brussel (VUB), Pleinlaan 2, 1050 Brussels (Belgium)
| | - Frank De Proft
- Department of General Chemistry (ALGC), Vrije Universiteit Brussel (VUB), Pleinlaan 2, 1050 Brussels (Belgium)
| |
Collapse
|
45
|
Celik MA, Frenking G, Neumüller B, Petz W. Exploiting the Twofold Donor Ability of Carbodiphosphoranes: Theoretical Studies of [(PPh3)2C→EH2]q(Eq=Be, B+, C2+, N3+, O4+) and Synthesis of the Dication [(Ph3P)2CCH2]2+. Chempluschem 2013; 78:1024-1032. [DOI: 10.1002/cplu.201300169] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Indexed: 11/06/2022]
|
46
|
Taxak N, Patel B, Bharatam PV. Carbene Generation by Cytochromes and Electronic Structure of Heme-Iron-Porphyrin-Carbene Complex: A Quantum Chemical Study. Inorg Chem 2013; 52:5097-109. [DOI: 10.1021/ic400010d] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Nikhil Taxak
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), S. A. S. Nagar (Mohali), 160 062 Punjab, India
| | - Bhargav Patel
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), S. A. S. Nagar (Mohali), 160 062 Punjab, India
| | - Prasad V. Bharatam
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), S. A. S. Nagar (Mohali), 160 062 Punjab, India
| |
Collapse
|
47
|
Alcarazo M, Radkowski K, Mehler G, Goddard R, Fürstner A. Chiral heterobimetallic complexes of carbodiphosphoranes and phosphinidene-carbene adducts. Chem Commun (Camb) 2013; 49:3140-2. [PMID: 23478646 DOI: 10.1039/c3cc40382c] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Heterobimetallic complexes derived from carbodiphosphoranes or phosphinidene-carbene adducts are reported, in which the central atom accepts two lone-pairs from two different donor ligands and - at the same time - donates two lone-pairs to two different metal centers. Therefore these complexes are carbogenic yet captodative chiral entities.
Collapse
Affiliation(s)
- Manuel Alcarazo
- Max-Planck-Institut für Kohlenforschung, 45470 Mülheim an der Ruhr, Germany.
| | | | | | | | | |
Collapse
|
48
|
De S, Parameswaran P. Neutral tricoordinated beryllium(0) compounds – isostructural to BH3 but isoelectronic to NH3. Dalton Trans 2013; 42:4650-6. [DOI: 10.1039/c3dt32749c] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
49
|
Bhatia S, Bagul C, Kasetti Y, Patel DS, Bharatam PV. Divalent N(I) character in 2-(thiazol-2-yl)guanidine: an electronic structure analysis. J Phys Chem A 2012; 116:9071-9. [PMID: 22920939 DOI: 10.1021/jp304789u] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Several medicinally important compounds carry a 2-(thiazol-2-yl)guanidine unit. These species are generally (erroneously) represented as 1-(thiazol-2-yl)guanidine species. Quantum chemical studies were performed to identify the appropriate tautomeric state of this class of compounds. B3LYP/6-31+G(d) calculations indicate the preferred tautomeric state of these species is associated with the 2-(thiazol-2-yl)guanidine structure rather than the 1-(thiazol-2-yl)guanidine structure. G2MP2 calculations on the model system were carried out to study the electronic structure, electron delocalization, and protonation energy; MESP, ELF, HOMA, AIM, and NBO analyses were also carried out. The results indicate that this class of compounds may be treated as species with hidden ::N(←L)R character. Upon protonation of the thiazole ring nitrogen, these systems show the electronic structure as in ::N(←L)2(⊕) systems with divalent N(I) oxidation state.
Collapse
Affiliation(s)
- Sonam Bhatia
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER) , Sector 67, S. A. S. Nagar, Punjab 160062, India
| | | | | | | | | |
Collapse
|
50
|
Nguyen TAN, Frenking G. Transition-Metal Complexes of Tetrylones [(CO)5W-E(PPh3)2] and Tetrylenes [(CO)5W-NHE] (E=C-Pb): A Theoretical Study. Chemistry 2012; 18:12733-48. [DOI: 10.1002/chem.201200741] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Revised: 05/22/2012] [Indexed: 12/29/2022]
|